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The successful deployment of autonomous real-time systems is contingent on their ability to recover from

performance degradation of sensors, actuators, and other electro-mechanical subsystems with low latency. In

this article, we introduce ALERA, a novel framework for real-time control law adaptation in nonlinear control

systems assisted by system state encodings that generate an error signal when the code properties are violated

in the presence of failures. The fundamental contributions of this methodology are twofold—first, we show

that the time-domain error signal contains perturbed system parameters’ diagnostic information that can be

used for quick control law adaptation to failure conditions and second, this quick adaptation is performed

via reinforcement learning algorithms that relearn the control law of the perturbed system from a starting

condition dictated by the diagnostic information, thus achieving significantly faster recovery. The fast (up

to 80X faster than traditional reinforcement learning paradigms) performance recovery enabled by ALERA

is demonstrated on an inverted pendulum balancing problem, a brake-by-wire system, and a self-balancing

robot.
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1 INTRODUCTION

The successful deployment and assimilation of intelligent autonomous systems in human society
depend on the trustworthiness and dependability [12, 13, 17, 18, 25, 30, 33] of these systems. For re-
liable operation, it is imperative that internal failures in sensors, actuators, and electro-mechanical
subsystems of such autonomous systems be detected early and that control procedures for such
systems be modified with low latency to adapt to these failures. In this context, reinforcement
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learning (RL) [15, 26] has been used in several nonlinear control problems [9, 27, 28, 31, 39, 45]
and is a machine learning framework to optimize controller behavior by episodic interactions with
the environment. The quality of the control action, known as the policy, is determined by the re-
ward (specified by the user to achieve a particular goal) received by the controller. The objective
of the RL controller is to apply optimal policy such that the cumulative future rewards, estimated
by the value function, is maximized. In this work, we use the actor-critic (AC) network as the rein-
forcement learning algorithm. In the AC algorithm, the critic approximates the value function and
a separate actor serves as the policy approximator. These actor-critic methods have been widely
used as optimal controllers in nonlinear control problems [10, 29, 37, 41].
The typical AC algorithm starts learning without any model information and performs episodic

experiments to explore the system state-space while gradually developing an optimal actor pol-
icy through trials. This leads to a long period of unpredictable and potentially damaging behavior.
Hence, the learning speed of an AC algorithm needs to be significantly accelerated for practical use
in nonlinear control systems. Prior works have explored mechanisms for accelerating the learning
speed of AC algorithms. In [11] and [16], information from the process model of system dynam-
ics is carefully assimilated in the AC algorithm for efficient learning. Hwang and Lo [19] utilized
an average reward predictor between two learning episodes for improving the policy evolution.
In [36], instead of using the slow incremental update of value function parameters, the authors
employed batch algorithms for learning state value functions. A few works [46, 47] have also ex-
plored ideas from Probably Approximately Correct (PAC) learning framework to reuse previously
discarded experiences intelligently to accelerate the value function learning. Recently, in [40], the
authors have analyzed the rate of parameter convergence for RL algorithms in presence of un-
stable system dynamics and random exploration noise, thus showing the significant potential of
accelerating the learning process.
Recently, reinforcement learning algorithms have also been explored as robust control mecha-

nisms. In [42], a model-free policy iteration algorithm has been used to design a robust controller
for nonlinear systems with model uncertainties. Wang et al. [43] designed an online RL-based
fault-tolerant controller that can withstand unknown fault dynamics in discrete-time MIMO sys-
tems. However, the proposed scheme assumes all outputs and states to be measurable, which may
not be true for all autonomous systems. The adaptive dynamic programming method has been
used as a robust control scheme to handle actuator uncertainties in nonlinear multi-player sys-
tems in [20]. The three major drawbacks of these works are: (i) there is no explicit fault detec-
tion methodology and it is assumed that the compensatory algorithms are executed at all times,
(ii) there is no discussion on latency of the compensatory action applied to mitigate the fault effects
(the research on RL acceleration, discussed previously, proposes methods for faster convergence
of learner parameters during episodic trials and are not designed for in-field learning acceleration
under failures), and (iii) only numerical examples are provided in these research and no data on
practical real-time systems have been provided.
To the best of our knowledge, no previous research has addressed the latency of using rein-

forcement learning algorithms as adaptive controllers to mitigate performance degradation due to
parametric failures and component malfunctions in real-time systems. In this work, we introduce
ALERA, an Accelerated Learning Enabled Reinforcement Architecture as a real-time self-learning
framework for quick recovery of operational performance in presence of component failures. The
use of nonlinear state-space encodings was first proposed in [4] as an error detection scheme. The
nonlinear encoding produces an error signal whose magnitude is used to detect errors. In this ar-
ticle, for the first time, we demonstrate that the transient error signal waveform, in response to
input stimuli, contains diagnostic information that can be used to significantly speed up the learn-
ing process. In [3], early ideas in encoding-assisted reinforcement learning framework were first
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Fig. 1. Overview of the proposed methodology of ALERA.

developed and led up to the core methodology developed in this article. The core contributions of
this research are:

(i) This research shows that the error signal generated through state-space encoding of the
system contains diagnostic information that can be used to rapidly re-design the nonlin-
ear control algorithm in real time using reinforcement learning to adapt to component
failures.

(ii) Two methods of accelerating the reinforcement learning algorithm from the diagnostic
information of the error signatures are demonstrated—one based on a parametric esti-
mation approach followed by a signature clustering algorithm and another based on the
use of a recurrent neural network directly operating on the time-series error signal.

(iii) The underlying technique ALERA is applied to real-world nonlinear control problems
and adaptation results are shown using simulation data as well as fault-injection experi-
ments conducted on a self-balancing robot (hardware).

The rest of the article is organized as follows: In Section 2, we provide an overview of the
proposed architecture and describe the different components. The methodology of real-time self-
learning enabled by ALERA is discussed in Section 3 along with the description of the fault models
used in this research. Two different test cases of inverted pendulum balancing and an automotive
brake-by-wire system are described in Sections 4 and 5 along with simulation results and analysis.
Hardware validation of the proposed scheme is presented on a self-balancing robot in Section 6.
Finally, we conclude in Section 7.

2 OVERVIEW OF PROPOSED ARCHITECTURE

The proposed scheme is illustrated in Figure 1. It consists of three primary components—(i) non-
linear system under observation, (ii) error detection module, and (iii) learning framework. The
nonlinear system under observation consists of the plant, sensors, actuators, state observers, and
the nominal controller. The error detection module detects any deviation of system performance
from the expected behavior. The diagnostic correlator in the learning framework of Figure 1 ex-
tracts information from the time-domain error signal produced by the error detection module and
uses that information to bootstrap the weights of the reinforcement learner in Figure 1. These
weights are determined in a way (from time-domain analysis of the error signal) that allows the
optimal control law for the modified nonlinear system under failure to be learned rapidly (10x–
50x faster) using reinforcement learning algorithm than starting from fixed default weights for all
failure modes of the system.
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Hence, the key contributions of this research are: (i) demonstrating that the error signal from
the error detection module contains diagnostic information about the faults (Section 2.5) and
(ii) this crucial information can be extracted from the time-domain waveform of the error signal in
the diagnostic correlator module for accelerating the reinforcement learning and hence mitigating
the fault effects with low latency (Sections 2.5 and 3).
In the following sections, we describe each of the blocks of Figure 1.

2.1 Nonlinear System under Observation

The nonlinear physical plant with system dynamics of ẋ(t ) = g(x(t ),u (t )) represents the physi-
cal system. The sensor measures the output y(t ) and the state observer (nonlinear observer such
as extended Kalman filter [22]) estimates the system states x(t ) from the measurement y(t ). The
predicted state x̂(t ) is used along with the externally provided reference input R (t ) in the nominal
controller to generate the required input uc (t ) = h(x̂(t ),R (t )) that is applied to the plant through
the actuators. The nominal controller h(.) is designed to meet the system specifications under
the assumption that all physical components of the system perform accurately. Under faults, the
nominal controller is sub-optimal and cannot meet the system specifications and may even fail to
achieve system functionality under critical errors. The learning framework provides the appropri-
ate compensating actionua (t ) with the assistance of the error detection module in such a way that
u (t ) = uc (t ) + ua (t ) (see Figure 1). Under faults, uc (t ) is a sub-optimal control and an appropriate
ua (t ) � 0 is applied to restore system performance.

2.2 Failure Mechanisms

We assume that sensors, actuators and other electro-mechanical subsystems can malfunction over
time and that failures are permanent (transient performance disruptions such as soft errors in
the digital processor implementing the control algorithm are not considered in this research).
Under failure, multiple sensor/actuator/electro-mechanical subsystem parameters can simultane-
ously deviate from their nominal values. We assume that error monitoring is performed at specific
intervals of time and that performance degradation of system functions occurs either rapidly or
gradually over time. The core methodology is also applicable to the case where error monitoring
is performed on a continuous basis but performance degradation occurs rapidly from the onset
of a failure. Once a failure is detected, we assume the nonlinear system is operated in a degraded
but safe mode until system performance is restored using control law adaptation. The goal of this
research is to employ diagnosis-aided control law adaptation to minimize the time needed to recover

system performance from the onset of failures.
The mathematical model for temporal degradation of a sensor/actuator/electro-mechanical sub-

system parameter p is expressed as:

p̃ (t ) |t>τp = p (t ) |t<τp × αeβ (t−τp ) (1)

where t = τp is the start of parametric degradation, p (t ) |t<τp is the nominal value of parameter p
before t = τp (usually a fixed value), p̃ (t ) |t>τp is the degraded parameter value and α and β denote
the degree and rate of degradation. This parametric perturbation model alters the sensor/actuator
parameters p1,p2, . . . ,pn into a modified set p̃1, p̃2, . . . , p̃n such that the nonlinear dynamics of the
entire system is changed.
Equation (1) represents the mathematical model of the synthetic failure mechanisms considered

for fault injection purpose in this article and this model is not part of the core ALERAmethodology
shown in Figure 1.
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Fig. 2. Error detection is performed by nonlinear state-space encodings.

2.3 Error Detection Module

The error detection is accomplished by a state-encoding-based methodology described in [4] and
illustrated in Figure 2. In this approach, a nonlinear prediction function generates a single encoded
check state at each time instant, known asmapped predictive check state (MPCS) from the reference
input and observed output over a fixed number of data samples. Mathematically, in the discrete
domain, a unified system variable s[k] = [R[k], y[k]]ᵀ is formed and the MPCS is predicted from
Tp prior data samples s[k − 1], s[k − 2], . . . , s[k −Tp] as

sc [k] = Fc (s[k], s[k − 1], . . . , s[k −Tp]), (2)

where Fc (.) indicates the nonlinear prediction function. Similarly, a different prediction function
Fm (.) generates an additional encoded state, known as mapped information state (MIS) from a
separate unified variable z[k] = [y[k],uc [k − 1]]ᵀ as

sm[k] = Fm (z[k]). (3)

The prediction functions Fc (.) and Fm (.) are trained such that the error, defined as e[k] =
sc [k] − sm[k], is minimal with its magnitude lying below a certain threshold. It must be noted
that this error signal e[k] is different from the tracking error (in classical control theory) for the
nominal controller that indicates the difference between the reference input and the system state
that follows the reference input. The tracking error is used inside the nominal controller for gener-
ating the appropriate control signal. The error signal in the detection module is designed to detect
any anomaly for which the prediction functions are not trained. In a faulty system, the magni-
tude of error signal e[k] is greater than the pre-computed threshold, thus detecting presence of
faults. Possible candidates for prediction functions include nonlinear regression such as multivari-
ate adaptive regression splines (MARS), Volterra filters and neural networks that are described
in [4] and [5] along with the tradeoffs between nonlinear mapping accuracy and implementation
overhead. In this work, MARS is selected as the prediction function.
It has been demonstrated in both linear [32] and nonlinear [3] systems that in presence of

faults, the transient waveform of the error signal contains diagnostic information and possesses
strong correlation with the optimal control parameters to compensate such faults. This diagnostic
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Fig. 3. Schematic overview of an actor-critic algorithm. The dashed line indicates the updating of critic and

actor by the critic output.

capability of the error signal e[k] is exploited in the current research for fast reconfiguration of
control law in real-time.

2.4 Learning Framework

The learning framework contains a diagnostic correlator that bootstraps the weights of the re-
inforcement learning algorithm. Before describing this in detail, we describe the reinforcement
learning (RL) framework of this research.
A deterministic RL framework is modeled by a Markov Decision Process (MDP) tuple

M (X ,U , f̄ , ρ̄) where X is the state space of the control system,U is the space of control inputs, f̄ :
X ×U �→ X is the state transition function that describes the system dynamics and ρ̄ : X ×U �→ �
provides the reward function, assumed to be bounded. At each time step t , the controller takes an
action u(t ) ∈ U depending on the system state x(t ) ∈ X from a control policy π : X �→ U . The ob-
jective of a RL algorithm is to find an optimal policy that maximizes the cumulative future rewards
over an infinite horizon of time. The discounted sum of such rewards is known as return and de-
fined as the continuous value functionV π : X �→ � asV π (x(t )) =

∫ ∞
t

e− s−tτ ρ̄ (x(s ), u(s ))ds for any
initial state x(t ) and τ is the time constant for discounting future rewards.
Actor-critic methods [6, 7, 23, 24, 34], used in this research as RL algorithms, contain two distinct

learning units—a critic that tries to learn the value function of the policy and an actor that provides
the action according to a certain policy. A structure of an actor-critic algorithm is illustrated in
Figure 3. The actor generates the policy action u depending on the current state x. The critic
receives the reward r for applying the current action and evaluates the quality of the present
policy by updating the value function estimate. After a few policy evaluation steps by the critic,
the actor is updated using gradient descent on the actor parameter space.
The actor-critic methods utilize the popular framework of temporal difference (TD) learning

[38]. Any imperfect estimate of the value function generates the TD error,

δ (t ) ≡ r (t ) − 1

τ
V (t ) + V̇ (t ). (4)

At each step of the learning algorithm, the value function estimate is adjusted to reduce the
TD error δ (t ). Thus, the magnitude of the TD error δ (t ) provides a quantitative estimate of how
different the current value function estimate is from the actual value function. The convergence of
the value function and the policy to their optimal values is signified by the TD error approaching
zero. Hence, the TD error is exploited for gradient descent update [38] of the critic parameters. The
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learning is further accelerated by the use of eligibility traces that introduce a notion of memory in
the learning procedure. To define eligibility traces, the TD error in (4) is expressed in its discretized
form as

δt = rt + γVt −Vt−1, (5)

whereγ = 1 − Δt
τ
� e− Δt

τ is the discretized discount factorwithΔt as the sampling duration and the

variable values are scaled as Vt =
1
ΔtV (t ). Eligibility trace is an additional memory variable zt (x)

associated with each state x that evolves with time t . At each learning step, the eligibility traces for
all states decay byγλ and the eligibility trace for the current state visited is incremented by 1where
λ ∈ [0, 1] is the trace decay parameter. At any time, the eligibility traces record the past history
of recently visited states and indicate the degree to which each state is eligible for undergoing
learning changes. This evaluates the trajectory of system states instead of each particular state
in response to the current policy. This is because the reward rt is received as a result of a series
of actions taken. Hence, eligibility traces are used to assign credit to states visited several steps
earlier and provides multiple-step backup for distributing the reinforcement learning.
In practical implementations of RL algorithms, function approximators [38] such as linear cod-

ing, tile coding, radial basis functions, Kanerva coding, and the like are used to represent an actor
and a critic due to the infinite size of continuous state and action spaces. In this work, normalized
Gaussian networks are used as function approximators [14] for implementation of actor and critic.
The value function is represented by the parameter vector wc as

V (x,wc ) =
K∑
k=1

wc
kbk (x), (6)

where

bk (x) =
ak (x)∑K
l=1 al (x)

, ak (x) = e−| |s
ᵀ
k
(x−ck ) | |2 .

The vectors ck and sk define the center and the size of the kth Gaussian basis function. The num-
ber of basis functions K denote the level of discretization of the continuous state space and is a
design choice. The discretization granularity is chosen based on the tradeoff between the available
computational resources and the learning performance of the RL algorithm. The eligibility trace
update equation [24] is

zt = γλzt−1 + ∇wcVwc
t
(xt ), (7)

where wc
t is the critic parameter at time t . Defining the TD error δt and eligibility trace zt from

(5) and (7), the update equation of the critic parameter is

wc
t = wc

t−1 + ηcδt zt (8)

where ηc > 0 is the learning rate of the critic.
The actor policy is also implemented as a normalized Gaussian network based approximator

π (x,wa ) parametrized by wa and given as

ut = umaxs
(
π (xt ,w

a
t ) + nt

)

= umaxs ��
∑
k

wa
k (t )bk (xt ) + nt �� (9)

where umax is the maximum action possible, nt is a stochastic term that is initially used for ex-
ploration of the parametric space for evaluating new policies and gradually reduced to zero with
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Fig. 4. Schematic of the actor-critic based rein-

forcement learner module.

Fig. 5. Schematic of the diagnostic correlator mod-

ule. It consists of either a PNN or a RNN depending

on the pre-deployment training cost required.

progress of learning and s (.) is a component-wise sigmoid function. The update equation of the
actor parameter is

wa
t = wa

t−1 + ηaδt∇waπwa
t
(xt ), (10)

where ηa > 0 is the learning rate of the actor.
The above equations demonstrate that an actor-critic network is completely defined by its

weight vectors wc and wa . The proposed research in this work intends to reduce the exploration
while finding optimum weight vectors significantly by initializing these weights to appropriate
parameters, thus accelerating the self-learning process and enabling fast system adaptation under
faults or unforeseen situations.
The actor-critic reinforcement learner is an augmentation to the nominal controller as shown

in Figure 1. The nominal controller with output uc (t ) is designed for the physical plant to satisfy
certain system specifications. The estimated state x̂(t ) along with the reference input R (t ) is used
to compute the reference tracking error eR (t ) and the required control input uc (t ) to reduce the
tracking error. In a nominal fault-free system, the reinforcement learner is initially trained online
with the nominal controller present in the control loop for improved closed-loop tracking perfor-
mance [8]. The reward function for the reinforcement learner is derived from the estimated state
x̂(t ) and the actor policy ua (t ) such that the actor-critic algorithm assumes the nominal controller
as part of the environment with which it reacts and learns the actor-critic weights appropriately. In
a system compromised by faults, the TD error δ (t ) of the trained nominal reinforcement learner
becomes non-zero indicating exertion of sub-optimal control policy. The learning algorithm of
the actor-critic network is triggered by the non-zero TD error to reconfigure the actor and critic
weight vectorswa andwc such that the return is maximized in the altered environment. However,
due to the episodic task based updates inherent in reinforcement learning, the optimal policy takes
significant time to converge. The diagnostic correlator module is designed to reduce the latency
of learning by bootstrapping the learning process. The schematic of the actor-critic reinforcement
learner module is shown in Figure 4.

2.5 Diagnostic Correlator

The diagnostic correlator is shown in Figure 5 and takes as input, the error signal e (t ) produced by
the error detection module and the reference input R (t ) to the nonlinear system (see Figure 1). It
produces as outputs the weightswa andwc of the actor-critic networks, respectively, from which
the AC reinforcement learning algorithm can rapidly relearn the optimal control law of the system
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under failure. The mapping from e (t ) and R (t ) to wa and wc is learned using supervised machine
learning experiments described later in Section 3.1 and implemented via probabilistic neural net-
works (PNNs) or recurrent neural networks (RNNs) as shown in Figure 5with appropriate tradeoffs
discussed later in Section 4.2. A brief overview of PNNs and RNNs is given below.

(i) PNN - PNNs assign a class to an input data depending on the learned classification of
class-labeled training vectors. The input layer contains N neurons where N is the size of
the input vector. The number of neurons in the hidden layer is equal to the number of
classes in the training dataset. Each of the neurons stores the input data from the training
set along with the target class. Presented with a new test vector from the input layer,
each hidden neuron computes the �2-norm of the test vector from the neuron’s data and
applies a radial basis function (RBF) to the distance to compute the weight of each training
point with respect to the test data. The next layer consists of one pattern neuron for each
target class. The weighted value from the hidden neuron is fed to the pattern neuron that
corresponds to the neuron’s category. All the class nodes add the values for the category
they represent and finally the decision layer compares the weighted votes for each target
class accumulated in the pattern layer and uses the largest vote to predict the target class
for the input data.

(ii) RNN - The primary idea behind RNNs are to exploit sequential information while learning
a function. Unlike traditional feed-forward neural networks, RNNs implement a recurrent
connectionwith a tap delay associated with it. This allows the network to integrate “mem-
ory” in the learning procedure. An RNN is structurally similar to a feed-forward neural
network with an additional feedback of the hidden layer output to the input of the hid-
den layer neurons. This enables the learning of nonlinear mapping from a temporal data
sequence to a target vector associated with each sequence.

With this description of the different components of ALERA, we next focus on the proposed
methodology of diagnosis-aided rapid performance recovery.

3 PROPOSED DIAGNOSIS-AIDED RAPID PERFORMANCE RECOVERY

The key idea of the proposed methodology is to construct a mapping between the error signal and
starting conditions for the actor-critic algorithm in pre-deployment phase and use this mapping
to determine optimal actor-critic weights in presence of failures in post-deployment phase.

3.1 Pre-deployment

The primary objective of the pre-deployment phase is to construct a mapping between the er-
ror signal and the optimal AC weights for proper control of a fault-injected system as shown in
Figure 6. The different steps are:

(i) Fault Sampling. Based on the assumed failure models and parametric degradations of the
system (plant, sensors, actuators, and mixed-signal interfaces), a finite fault universe is
created. A Monte Carlo sampling of the system is performed over the parameter space of
the assumed fault models, thus generating a number of fault parameter sets.

(ii) Fault Injection. The parametric perturbations are introduced in the nominal parameter
values of the original set to create a collection of fault-injected systems.

(iii) Error Signal. Before fault injection, the nominal system with unperturbed parameter val-
ues is simulated with a set of expected reference inputs. The MARS regression functions
in the error detection module are trained such that the fault-free error signal e (t ) is mini-
mal and the resulting threshold is noted. Note from Section 2.3 that the error signal e (t ) is
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Fig. 6. Schematic flow of the pre-deployment procedure to create mapping between error signal and optimal

AC weights for proper control of a fault-injected system.

the difference between two encoded states MPCS (mapped predictive check state) and MIS
(mapped information state) generated by two separate mapping functions Fc and Fm . In
this research, the optimal training of function Fm is not explored and theMIS is created as
a sum of the states representing linear mapping. Thus, Fc is trained to generate the MPCS
from the priorTp states to match the MIS at each time instant such that the instantaneous
mismatch e (t ) is minimal. The error detection threshold is selected as the maximummis-
match between the MPCS and MIS during the training of Fc with the simulation data of
nominal system.
The nominal controller is designed to meet system specifications of a fault-free system

and the reinforcement learner is trained with different inputs R (t ) for achieving tighter
reference tracking and ensuring better closed-loop system stability. During this phase,
the AC unit starts from zero weights and performs episodic experiments on the system
and both the critic and the actor learn the optimal value function V ∗ and policy π ∗ with
convergence to nominal weight vectorswc

(nom)
andwa

(nom),
respectively. The completion

of learning is indicated by the TD error δ (t ) converging to zero as discussed in Section 2.4.
For the Monte Carlo set of fault-injected systems, the error signal e (t ) is recorded for

a particular duration from the instant it exceeds the predetermined detection threshold
(chosen as design parameter and traded off between diagnostic capability and latency of
detection) along with storing the fault parameter set. Observation of the transient error
signal over an elongated duration is helpful in diagnosing the probable cause of error
with higher accuracy but delays the compensation procedure along with placing higher
computational burden on the diagnostic correlator.
In fault-injected systems, the TD error δ (t ) becomes non-zero from the instant when

fault effect starts and the AC algorithm starts learning new optimal weight vectors such
that δ (t ) → 0. The TD error δ (t ) is recorded for the same time duration for which the
error signal e (t ) is recorded. The temporal waveform of δ (t ) provides an indication of
the learning progress.

(iv) Mapping between Optimal ACWeights and Error Signal.Two differentmapping techniques
are explored in this research: (a) PNN-based clustering and (b) RNN-based interpolation.
Depending on the choice of mapping technique, the optimal AC learning for the fault-
injected systems vary.
(a) PNN-Based Clustering. The non-zero TD error trajectory indicates the degree of sub-

optimality in a fault-injected system and signifies how far the nominal weight vectors
wc

(nom)
andwa

(nom)
are from the new optimal values for the faulty system. This notion

is exploited in forming the different clusters.
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First, a regression model is built with the error and reference input signal wave-
forms as inputs and the fault parameter set as output such that critical parameters
can be predicted from the transient error signal. Then, the Monte Carlo samples are
clustered into L classes in the fault parameter set based on the summed TD error mag-
nitude during the learning of the nominal AC network over the chosen time duration.
The PNN is trained with the class labels for each Monte Carlo sample. For each of
the L clusters, a cluster medoid is selected to represent one particular fault injected
system that best reflects the learning performance of the nominal AC unit for all the
systems in that cluster. Unlike centroids, medoids are always members of the data set
and do not represent a sample that may not be a practical parameter set. Next, for
each of these L cluster medoids, an optimal AC network is learned such that the TD
error δ (t ) converges to zero, thus satisfying the design specifications in presence of
injected faults. Each of the cluster medoids generates a different set of actor and critic
parameter vectors wa

l
and wc

l
∀ l = 1 to L. The number of clusters L is an important

metric in deciding the benefits achievable through the learning acceleration. With an
increase in L, the number of fault injected systems with relearned optimal AC net-
works increases. Hence, the computational effort in training a new AC for each of the
cluster medoids also increases along with the memory requirement for storing the
AC parameters for each of those learned units. As the cluster count increases beyond
a certain point, the achievable latency benefits by reinitializing the AC weight from
stored pre-learned values are not sustainable due to the high memory requirements.

(b) RNN-Based Interpolation. The RNN-based scheme represents the other end of the
spectrum of increasing cluster counts. In the RNN-based scheme, M maximally sep-
arated (�2-norm in fault parameter space) fault-injected systems are chosen from the
Monte Carlo samples to represent the fault universe as best as possible. For each of
these M systems, an optimal AC unit is trained to convergence generating M differ-
ent actor and critic weights wa

i and wc
i ∀ i = 1 to M . The RNN is trained with the

time series data of the error signal e (t ) along with the input R (t ) for each of the M
systems as input data and the respective actor and critic weights as output data. This
enables the RNN to learn a nonlinear mapping from the temporal signal waveform
of e (t ) and R (t ) such that actor and critic weights can directly be predicted by appro-
priate interpolation from an arbitrary error signal of a fault-injected system without
the need for any intermediate parametric diagnosis and regression model.

3.2 Post-Deployment

The operational flow of the post-deployment phase is shown in Figure 7. In the presence of faults
or anomalies at t = t0, the MPCS based-error detection module generates an error signal e (t ) at
t = t0 above the predetermined threshold, indicating that an error or an unlearned event has oc-
curred. In the PNN-based clustering scheme, the pre-trained regression model described above
predicts the component parameters from the error signal and system input, recorded over a short
time duration until t = t1. During the time duration t0 → t1, the nominal AC unit has started the
reinforcement learning tasks to adapt to the new situation. The PNN categorizes the system be-
havior to one of the clusters in the parameter space and the AC network is initialized with the
weight vectors corresponding to that cluster medoid at a later time t = t2 and learning is resumed
from the reinitialized weight vectors. In the RNN-based interpolation scheme, the RNN is invoked
at t = t1 directly with the error e (t ) and reference R (t ) as time series data input to compute the
actor-critic weights. If the TD error δ (t ) increases in magnitude after this reinitialization, it indi-
cates that the AC unit has better adapted from the learning experience between t0 and t2 and the
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Fig. 7. Operational flow of post-deployment phase

in the proposed methodology.

Fig. 8. Detection, diagnosis, and repair cycle.

Fig. 9. Inverted pendulum system mounted on a cart.

reinitialization procedure deteriorates the learning process. In such a situation, the reinitialization
is not adopted and the usual reinforcement learning is continued. However, if the TD error δ (t )
magnitude reduces due to reinitialization, it indicates an accelerated boost to the learning pro-
cess and significantly reduces time to converge. The temporal steps of error detection and control
compensation are shown in Figure 8.

4 TEST CASE I: INVERTED PENDULUM SYSTEM

We describe the test case of an inverted pendulum balancing and demonstrate how ALERA accel-
erates the performance recovery along with discussion of different tradeoffs.

4.1 System Description

Figure 9 shows the first test case of balancing an inverted pendulum on a moving cart. The control
objective is to optimally move the cart in a manner such that the pendulum is balanced vertically
upright. An extended Kalman filter (EKF) is used to predict unobserved states from noisy mea-
surements. The actuation for the cart movement is provided by a linear servo motor [2]. A hybrid
(with linear and nonlinear components) energy-based controller is used as the nominal controller
along with an AC unit as discussed later. The system dynamics g(.) is expressed as:

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ

θ̇
x
ẋ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ̇

дθ1 (θ , θ̇ ,u)
ẋ

дθ2 (θ , θ̇ ,u)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)
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where

дθ1 (θ , θ̇ ,u) =
ucos(θ ) − (M +m)дsin(θ ) +mlcos(θ )sin(θ )θ̇2

mlcos2 (θ ) − (M +m)l

дθ2 (θ , θ̇ ,u) =
u +mlsin(θ )θ̇ 2 −mдcos(θ )sin(θ )

M +m −mcos2 (θ )

and M is the mass of the cart, m is the mass of the pendulum’s bob, θ is the angle between the
pendulum and the vertical axis pointing upward, x is the position of the cart, l is the length of
the pendulum (assumed mass-less), д is the acceleration due to gravity and u is the motor force
applied to the cart to control its motion. The energy-based hybrid controller in [44] is selected as
the nominal controller. The nonlinear control action of the energy-based controller is expressed
as

uc = (M +msin2 (θ )){д1 (xd − x ) − д2ẋ } +mдcos(θ )sin(θ ) +mlθ̇ 2sin(θ ), (12)

where the term xd represents a sinusoidal reference input constructed from (θ , θ̇ ) at each time
instant and is designed to serve as the reference input for gradual increase of energy of the cart-
balance system. д1 and д2 represent parameters of a second order transfer function from the ref-
erence input xd to the actual cart position x . As the pendulum angle θ approaches the upright
position, the control is switched over to a linear negative state feedback controller for fine balanc-
ing after |θ | ≤ θth , where θth is the switching angle from one controller to the other. The linear
control law is of the form

uc = −K.x, (13)

where K is the feedback gain matrix and x is the system state vector. For measurements, only
the angular position θ of the pendulum and the cart displacement x are observed in presence of
measurement noise and modeled as,

y =

[
1 0 0 0
0 0 1 0

] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ

θ̇
x
ẋ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

[
η1
η2

]
(14)

where η = [η1 η2]
ᵀ represent two Gaussian distributed measurement noise components.

4.2 Simulation Results

(i) Pre-Deployment Training. The simulation experiments are conducted in Matlab on a Windows
PC with a 3.10 GHz processor. The pendulum-cart system is simulated with parameter values of
M = 3 kg,m = 0.2 kg, l = 0.31 m, and д = 9.81 m/s2. The hybrid controller is designed to switch
from the nonlinear controller to the state feedback controller for |θ | ≤ 30◦ where θ = 0◦ is the
vertically upright position. The linear feedback controller is designed to achieve 20% maximum
overshoot and a 2% settling time of 2 seconds. The appropriate feedback gain K in (13) is deter-
mined using Ackermann’s formula for pole placement. The measurement noise is modeled by a
Gaussian distribution with mean 0 and standard deviation of 0.1. The values of the different pa-
rameters for the normalized Gaussian network based actor critic method described in Section 2.4
are shown in Table 1. Exploration is done every fifth step instead of every step [16] to allow for
large exploratory actions while providing sufficient time to the AC controller to learn from the
exploratory actions. Each episode of AC learning trial is 20 seconds long and the balancing is initi-
ated with the pendulum hanging vertically downwards. If a learning episode is terminated due to
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Table 1. Actor-Critic Learning

Parameters

Parameter Value
|θ |max π rad/s

|θ̇ |max 2.5π rad/s
|x |max 2.4m
|ẋ |max 2m/s

Actor grid size 10 × 10 × 10 × 10
Size of wa 10,000

Critic grid size 10 × 10 × 3 × 3
Size of wc 900

γ 0.5
λ 0.5
ηc 0.8
ηa 0.8

Sigmoid s (x ) 2
tan−1 ( πx2 )

π

n(t ) ∼ N [0, 2]
Reward ρ̄ (x) cosθ

violation of state restrictions caused by the exploration of actor policy, the trial is rewarded with
r = −1 to penalize the corresponding action taken.

After learning the nominal AC controller, the system is simulatedwith 100 different initial angles
uniformly sampled between θ = 180◦ and θ = 10◦ over 20 seconds of simulation. The sliding tem-
poral window length is selected as 12 samples in order to accurately map the nonlinear dynamics.
The unified variable z is selected as z = [y1 y2 uc ] where y1 and y2 are the two measurements
in (14). The function Fm (.) is selected as a linear function Fm (z) =

y1
y1(max )

+
y2

y2(max )
+

uc
uc (max )

where

y1(max ) , y2(max ), and uc (max ) denote the absolute maximum values of the respective variables ob-
tained from the 100 different simulations. Thus, a MARS model with memory depth 12 is trained
for implementing Fc (.) such that Fm (z) is predicted from the past 12 observations. The trained
MARS model is evaluated on test data of 30 different simulation experiments with initial angles
uniformly sampled between θ = 180◦ and θ = 10◦, with 15 systems as fault-free and 15 systems as
faulty. The injected faults are perturbations of the torque constant and the back-emf constant of
the linearmotor by a uniform distribution of 35%. The nominal detection threshold of |enom | = 0.05
is established from a target F1-score of 0.9.
For pre-deployment training, the torque constant and the back-emf constant of the linear mo-

tor are perturbed by a uniform distribution of 35% to create the systems with injected actuator
faults. The sensor data in (14) is corrupted with a bias selected from a uniform distribution of 10%
to generate systems with sensor faults. 4,000 Monte Carlo samples are created by sampling the
fault universe of sensor and actuator faults. For all these systems, the error signal e (t ) is recorded
along with the reference input xd (t ) as defined in (12) for Δt = 2 seconds. The TD error δ (t ) is
also recorded for the same duration and the magnitudes are summed up to generate a single value
as an evaluation of the learning performance of the nominal AC controller for each fault-injected
system. For the PNN-based scheme, a nonlinear regression model (MARS) is trained with the error
signal e (t ) and reference input xd (t ) to predict the perturbed parameter set - torque constant, back
emf constant and the sensor output biases. Next, a PNN classifier is used to cluster the 4,000 para-
metric samples on the basis of the TD error magnitude generated previously into three clusters.
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Fig. 10. Classification in the parameter space by the PNN and subsequent generation of representative op-

timal AC controllers for each of the cluster centers.

Fig. 11. Error signal waveforms for the three

different clusters along with the fault-free error.

Fig. 12. This shows the need of a self-learning as-

sisted controller design where a nominally designed

controller is unable to meet system functionality un-

der actuator degradation.

For each of the clusters, one medoid sample is chosen to represent all other points in that cluster.
For each of the medoid systems, a new optimal AC controller is trained by performing episodic
experiments until the TD error δ (t ) converges to zero, thus relearning how to balance the pen-
dulum in presence of sensor and actuator errors. The weights of the three optimal AC controllers
for each cluster center are stored in memory. For the RNN-based scheme, 20 maximally separated
samples are selected from the 4,000 Monte Carlo samples such that the 4-dimensional fault space
is reasonably sampled. For each of these 20 fault-injected systems, an optimal AC controller is
learned and an RNN is trained with the time series data of e (t ) and xd (t ) to directly predict the
AC weight parameters. The clustering and the different AC controllers for the PNN-based scheme
are shown in Figure 10.
The subfigure in the top right inset of Figure 10 shows the nominal actor of the AC controller

trained for the fault-free system. The different colors demonstrate the varying control force ua
between [−3,+3] imparted in addition to the nominal control uc at different state space locations.
The original state space is 4-dimensional and for visual demonstration, this figure is a projection

of actor policy with changing θ and θ̇ on x − ẋ plane. The classification plot in Figure 10 is also
a projection from the 4-dimensional fault parameter space to a 2-dimensional subspace where
the x and y axes show the bias on torque constant and bias on the sensor output y1. The three
optimal actor-critic controllers depicted are relearned on the fault-injected systems represented
by the cluster medoids and they are different from the nominal one as seen in Figure 10. The
corresponding error signals for the three cluster medoids are illustrated in Figure 11 along with
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Fig. 13. Demonstration of learning acceleration of

ALERA in presence of actuator degradations.

Fig. 14. Comparison of learning acceleration

ψ between PNN and RNN schemes with PNN

variable as number of clusters and RNN vari-

able as number of training samples.

the fault-free error signal. The pre-determined threshold is shown in the magnified image in the
inset of Figure 11 as dashed lines.
(ii) Post-Deployment Experiments. Figure 12 shows the system behavior in absence of any rein-

forcement learning controller. Only the hybrid controller is used and the augmentationua (t ) from
the AC controller is disabled. In the fault-free system, the nominal controller is able to balance
the pendulum vertically at t = 10.83 seconds. An actuator fault of 20% degradation in the torque
constant of the motor is gradually injected from t = 0 and the maximum degradation of 20% is
complete at t = 4 seconds according to Equation (1) (the fault is inserted at a high rate for illus-
trative purposes). It is seen that the hybrid controller fails to balance the pendulum in presence of
the actuator fault and a self-learning module is necessary to supplement the nominal controller
for providing correction capabilities.
Figure 13 demonstrates the learning acceleration enabled by ALERA-PNN and ALERA-RNN in

comparison to the nominal learning of the augmented controller. The same 20% actuator degrada-
tion is injected as mentioned above. In the fault-free case, the pendulum is vertically balanced at
t = 10.83 seconds. In presence of the actuator degradation, the pendulum is vertically balanced at
t = 28.8 seconds without the assistance of the diagnostic correlator. With the PNN-based diagnos-
tic correlator enabled with three clusters used for the PNN training, the pendulum gets balanced
at t = 13.8 seconds, thus accomplishing the desired functionality faster than the nominal learning.
However, the RNN-based learning scheme balances the pendulum at t = 11.05s providing signifi-
cantly low latency in adapting to the altered circumstances.
Defining the additional time to achieve the same application level functionality through nominal

and assisted schemes as tn and ta respectively, the “learning acceleration” ψ is defined as ψ =
tn
ta
.

Thus, the acceleration ψ for ALERA-PNN is ψ = 28.8−10.83
13.8−10.83 = 17.97

2.97 = 6.05. Similarly, the learning

acceleration ψ for ALERA-RNN is given as ψ = 28.8−10.83
11.05−10.83 = 17.97

0.22 = 81.68. Thus, the learning ac-
celeration of ALERA-PNN and ALERA-RNN provides a 6.05X and 81.68X boost for application
level compensation, respectively.
(iii)Analysis andDiscussion.The learning accelerationψ depends on how close the optimal actor-

critic weights proposed by the correlator module are to the actual optimal values achieved after
learning convergence. As discussed in Section 3.1, the cluster medoid is a representation for all sys-
tems in that cluster for which the learning behavior of the nominal AC is similar. With the increase
in the number of clusters, the disparity between a system close to any cluster boundary and the
medoid decreases and the potential for learning acceleration increases. The performance variation
with the increase in cluster count is depicted in Figure 14 along with the upper and lower bounds.
Five thousand (5,000) different fault-injected systems are created by exhaustive sampling of the
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Fig. 15. Memory overhead and machine time re-

quired for pre-deployment training in the PNN-

and RNN-based schemes.

Fig. 16. Variation of learning acceleration ψ for

ALERA-PNN and ALERA-RNN with different de-

grees of sensor and actuator degradation.

4-dimensional fault space described previously. For each of those systems, the ALERA-enabled
learning acceleration is applied with the PNN trained with different number of clusters in pre-
deployment phase. The mean accelerationψ achieved along with the maximum and minimum for
each cluster count is plotted in Figure 14. It is seen thatψ increases from 3X to 70X with increase
in the cluster count from 2 to 10. However, the trend shown in Figure 14 illustrates that the rate
of increase of ψ is initially high and it starts tapering off after cluster count of 6, showing dimin-
ishing benefits with increasing clusters. After 10 clusters, the acceleration of the RNN-scheme is
presented. The RNN interpolates the optimal AC weights depending on the training received. An
RNN trained with 5 data samples provides a meanψ of 32X and the acceleration grows up to 80X
for training with 50 data samples. However, due to the interpolation by an RNN trained on a few
training cases, the performance varies widely with the maximum and minimum bounds gradually
reducing with the increasing number of training data samples.
The memory overhead required along with the machine time consumed for pre-deployment

training is shown in Figure 15. It is seen that the memory overhead increases linearly with the
number of clusters for the PNN-based scheme. The depicted memory overhead indicates the space
required to store the learned AC parameters corresponding to each cluster center along with the
trained PNN classifier and the regression model. The RNN-based scheme requires significantly
low memory since only the trained RNN is stored without separately storing any individual AC
parameters. The memory requirement of the RNN is fixed with the number of training data as only
the trained network is stored. However, the pre-deployment simulation time necessary to train the
RNN is quite large in comparison to the PNN-based scheme. For example, the RNN scheme with
only 5 training data samples takes 3.88 hours of machine time in comparison with 3.75 hours in
the PNN scheme with 10 clusters. This significant machine time requirement is due to the primary
reason that the RNN is trained to directly predict the AC parameters (10,900 output data points)
from the time-series data of the error signal e (t ) and reference input (4,000 input data points), thus
leading to significantly slower training than PNN. It is seen in Figure 15 that the machine time
requirement for the RNN-scheme increases exponentially with the increase in number of training
data. Thus, for applications where pre-deployment simulation is expensive, an RNN-based scheme
may not be feasible despite providing better benefits than a PNN-based clustering scheme.
Figure 16 shows the variation of learning acceleration ψ for the PNN and RNN schemes in

presence of actuator and sensor degradations. The x-axis shows the degree of bias for sensor
degradation and the amount of parametric perturbation in motor torque constant for actuator
degradation. It is seen that sensor faults are more difficult to correct than actuator errors. The data
shown is for the ALERA-PNN with 10 clusters and ALERA-RNNwith 50 data samples for training.
The left portion of Figure 16 represents actuator errors ranging between 5%–32% while the right
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Fig. 17. Logarithmic variation of learning accelerationψ with ϕ under different magnitude of injected actu-

ator errors.

portion denotes sensor degradations with errors ranging between 1%–7%. It is seen that as the
magnitude of injected faults increases, the learning boost reduces for both sensor and actuator
errors.ψ is shown to be zero at actuator and sensor degradations of 32% and 10%, respectively, to
indicate that the AC controller fails to balance the pendulum and functionality is never achieved
with fault magnitudes equal to or greater than that. This is explained from the fact that the AC
controller is used to augment the nominal controller by providing a supplementary actionua to the
nominal control uc . However, the combined action u = uc + ua has to satisfy the physical limita-
tion of applied control u, defined by umax . This is accomplished by choosing individual maximum
restrictions uc (max ) and ua (max ) for the nominal and AC controller in the design phase. The re-

configuration ratio ϕ =
ua (max )

umax
determines the extent of impact that the AC controller exercises

during the reconfiguration. ϕ = 0 indicates that the nominal controller is solely responsible for
providing adequate control with ua = 0, whereas ϕ = 1 represents that the AC controller is com-
pletely responsible with uc = 0. A significant downside of choosing this approach is that it leads
to a sub-optimal design because both the nominal and AC controller typically do not generate the
maximum control simultaneously.
Figure 17 demonstrates the logarithmic variation of learning accelerationψ with actuator error

magnitude under five different values of ϕ - 0.2, 0.4, 0.6, 0.8, and 1. The key observations from this
plot are: (i) As ϕ increases from 0.2 to 1.0, the contribution of the RL controller to the total applied
control increases. This enhances the extent of self-learning capabilities of the RL controller since
it forms a higher portion of the applied control. Hence, the AC controller is able to tolerate and
correct higher magnitude of injected actuator errors as seen from the logarithmic plot of Figure 17.
With ϕ = 0.2, the maximum actuator error that can be corrected with restoration of system func-
tionality is 32%, whereas with ϕ = 1.0, the maximum actuator error that can be corrected is 51%.
(ii) With the increase of ϕ, the learning acceleration ψ decreases. For example, with the same 5%
actuator error, the learning boost is ≈80X with ϕ = 0.2 whereas, with ϕ = 0.8, the learning accel-
eration is only 8X. This is because, with increase of ϕ, the AC controller has to contribute more
to the applied action and has to perform significant learning and takes longer to converge, thus
effectively reducing the learning acceleration.
This analysis demonstrates that there is a tradeoff in the choice of the reconfiguration ratio ϕ. A

lower value of ϕ provides faster performance recovery but corrects less errors, whereas a higher
value of ϕ recovers from more severe errors but the adaptation is slow.

5 TEST CASE II: BRAKE-BY-WIRE SYSTEM

We describe an automotive brake-by-wire (BBW) system and demonstrate how ALERA restores
system functionality in a braking event with a degraded brake pad with significantly low latency.
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5.1 System Description

In a typical BBW system, electromechanical actuators are integrated with electronic controllers
and communicating sensor interfaces. A supervisory brake-torque controller, implemented on a
micro-controller, receives the desired braking input as displacement of pedal sensor and computes
the required vehicle deceleration. Speed data are gathered from wheel-mounted sensors and the
appropriate braking torque is generated by the designed control algorithm. The braking is applied
through electro-magnetic brakes known as eddy-current brakes (ECBs). In this work, the BBW
dynamics described in [21] are adopted. The longitudinal velocity and the rotational dynamics are

v̇x = − 1

M

4∑
i=1

μi (κi )Fzi (15)

ω̇i =
1

Iwi
(−Tbi + μi (κi )FziR), (16)

where vx is vehicle longitudinal speed, M is total vehicle mass, ωi is angular speed of ith wheel,
Iwi is rotational inertia of ith wheel, R is the effective wheel rolling radius, Fzi is normal frictional
force at the interface of ith wheel and road surface and Tbi is the generated brake torque at ith
wheel. The term μi (κ) represents the friction coefficient as a function of time-varying wheel slip
ratio κi (t ) defined as

κi (t ) =
vx − Rωi

vx
(17)

The nonlinearity in the function μ (κ) depends on road surfaces (asphalt, snow, ice, etc.) and the
friction coefficient varies significantly with the slip-ratio κ. Equations (15–17) represent the plant
equations of the BBW test case.
The nominal controller design is adopted from the anti-lock braking system (ABS) described in

[1]. The primary control objective is to modulate the applied braking torque Tb such that wheel
lock-up conditions can be avoided while maintaining the critical slip-ratio. In a wheel lock-up
situation, one or more wheels start having higher rate of angular deceleration than the equivalent
linear deceleration of the vehicle, causing loss of traction, slippage of wheel over road surface and
eventual loss of vehicle control. The sliding mode nonlinear control law for ABS is

Tbi = RαsiκiFzi +
Iwi

vx

ωi

M

4∑
i=1

αsiκiFzi + η
Iwi

R
vx ∗ SAT

(κth − κi
ν

)
,

where the saturation function SAT( x
y
) is defined as

SAT

(
x

y

)
=
⎧⎪⎨⎪⎩
x
y

if | x
y
| ≤ 1

sgn( x
y
) if | x

y
| > 1.

(18)

The terms αsi , κth , η and ν are nonlinear parameters of the sliding mode controller. The wheel-slip
dynamics along with the ECB implementation is described in details in [1]. The sensors measure
the 4 wheel speeds ωi s and the linear vehicle speed vx .

Similar to the previous test case, a nominal AC controller is trained in addition to the sliding
mode controller described above with 500 fault-free episodic simulations of the vehicle dynamics
with different applied pedal forces. The AC controller is provided a positive reward if the vehicle
deceleration v̇x matches the reference input deceleration and penalized with a negative reward
proportional to the tracking error. The reward function generates the maximum negative reward if
the angular speed of any wheel is less than the equivalent linear velocity of the vehicle, indicating
a potential wheel lock-up condition. The range of angular speeds for each wheel is 0-100 rad/s

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 4, Article 44. Publication date: July 2019.



44:20 S. Banerjee and A. Chatterjee

Fig. 18. The augmented scheme under ALERA achieves the functionality in presence of 20% actuator degra-

dation with an additional stopping distance of 10 ft. The RNN-based scheme provides a 43X acceleration

while the PNN-based scheme delivers 4.12X boost.

with a maximum linear velocity of 100 mph. The 5-dimensional state space is divided into grids
of 10 for each dimension, thus creating 10 × 10 × 10 × 10 × 10 = 105 parameters for each of the
actor and critic. However, in this test case, the actor and critic parameter matrices are sparse since
the wheel speeds ωi s and the vehicle speed vx are tightly coupled. The parameter choices of the
reinforcement learning and the sigmoid function selection are the same as in the previous test
case.

5.2 Simulation Results

(i) Pre-Deployment Training. The values of the different parameters for the BBW system are
M = 1,300 kg, R = 0.4 m, Iw = 0.6 kg/m2, Fz = 2,000 N, αsi = 4.5, κth = 0.2, η = 0.8, and
ν = 1.5. The MARS prediction function Fc (.) in the error detection module is trained with
braking data for 1,000 different initial vehicle speeds ranging between 50 mph and 100
mph with the temporal sliding window length chosen as Tp = 6 samples. The function
Fm (.) is selected to generate the sum of wheel speeds. A Gaussian distributed measure-
ment noise with mean 0 and standard deviation of 2 rad/s is considered while measuring
the angular speed ωi of each wheel. The trained MARS model is evaluated on test data of
200 different braking experiments with initial vehicle speeds uniformly sampled between
50 mph and 100 mph, with 100 experiments as fault-free and 100 systems with injected
faults of altering the braking torque by a uniform distribution of 20%. The detection
threshold is chosen as |enom | = 0.8 (different from that in test case I, due to different dy-
namic ranges of state variables) for a target F1-score of 0.9. For training the diagnostic
correlator module, the fault model is defined as perturbations in the wheel speed readings
(sensor errors) and corruption of the ECB signal (actuator errors) by altering the applied
braking torque Tb by a uniform distribution of 20%. One thousand (1,000) fault-injected
systems are created and a PNN classification with four clusters is adopted, followed by
training of optimal AC controller for each cluster medoid. For the RNN-based scheme, 50
systems are selected out of 1,000 choices and an optimal AC controller is learned for each
of these systems. The RNN is trained with the time-series data of e (t ) for all such systems
to directly predict the 2 × 105 AC parameters.

(ii) Post-Deployment Experiments. Figure 18 shows the braking performance of the augmented
scheme in ALERA where the AC network is used to supplement the performance of the
sliding-mode controller. The fault-free braking is completed at t = 1.75s. A brake shoe
degradation of 20% is injected at t = 1.2s, thus reducing the applied braking torque. Af-
ter the actuator injection, the nonzero TD error δ (t ) (not shown in the figure) guides the
RL learning in the unassisted case and the learning converges at 7.2s, thus completing
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the vehicle stoppage at 8.1s. In comparison, the ALERA-PNN scheme with four clusters
completes the learning at 2.5s and stops the vehicle at 3.3s, thus providing a learning ac-
celeration ofψ = 4.12. The ALERA-RNN scheme trained with 50 pre-deployment training
data completes the learning at 1.72s and stops the vehicle at 1.9s providing a boost of 43X.
In both the ALERA schemes, the error e (t ) (not shown in the figure) is recorded from
t = 1.4s to t = 1.6s.

6 TEST CASE III: SELF-BALANCING ROBOT

The objective of the self-balancing robot is to vertically stand up from a lying-down position by
applying appropriate motor torque computed by the control algorithm implemented on its proces-
sor. In this study, we demonstrate that ALERA can relearn how to balance faster than traditional
reinforcement learning scheme in presence of actuator degradations.

6.1 System and Controller Description

The commercially available Balboa 32U4 self-balancing robot [35] has an Atmel microcontroller
along with an Arduino-enabled bootloader for programming the device. The torque to the two
wheels is provided from two separate 6V, brushed DC motors controlled by on-board motor dri-
vers. The actuator signals for controlling the motor torque are the rotational direction and speed
for each motor formatted as pulse width modulated (PWM) signals from the drivers. For balanc-
ing, eight different sensor measurements are used - six degree-of-freedom (DOF) measurements
(3 angular acceleration + 3 angular rate) from on-board inertial measurement unit (IMU) and two
quadrature encoder measurements of the rotational velocity of the two wheels.
A hybrid controller, combining linear and nonlinear control laws, is the nominal choice for

balancing the robot. Similar to the inverted pendulum case, the nonlinear controller brings the
robot from a lying-down to a near-vertical position and switches to a PID controller for final
balancing around the upright position.

6.2 Hardware Results

The actuator degradation is modeled by changing the motor drive signal transmitted from the
micro-controller to the drivers that generate the appropriate driving current. Corrupting themotor
drive signal alters the torque generated by the motors and affects the system operation. The effect
of 20% actuator fault (motor drive signal altered by 20%) is illustrated in Figure 19.
Figure 19 demonstrates that without error, the robot manages to self-balance in 3s and stays

upright with the angle θ around 0◦. With the injected 20% error, the control algorithm attempts to
swing up the robot and balance itself but fails to accomplish this task. The robot falls back to the
lying down position with angle θ = 110◦ at 3.4s and never manages to rise up and balance itself.
To implement ALERA in the hardware platform of the balancing robot, the nominal controller

is augmented with a reinforcement learning controller with a reconfiguration ratio ϕ = 0.33. The
motor drive signal from the nominal controller is restricted at a maximum value of 200 rpm while
the RL controller’s maximum value is fixed at 100 rpm, with 300 rpm as the maximum drive re-
stricted by the motor specifications. For practical feasibility, the fault model space is restricted to
data corruptions in three signals—(i) the z-axis data from the accelerometer (alters the angular
velocity), (ii) the quadrature encoder readings signifying the rpm of the motors (alters the linear
speed), and (iii) the motor drive signals (alters the applied torque to the motor). The maximum
deviation of each dimension is fixed at ±25% of the nominal values. To implement the check-
ing function, the function Fm is defined to compute the normalized sum of 10 signals—8 sensor
measurements and 2 actuation currents at each instant, and 40 balancing trials are performed to
collect the training data. The sliding window length is Tp = 6 samples. A 3rd-degree polynomial
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Fig. 19. With 20% injected actuator error, the robot

fails to stand up and balance.
Fig. 20. The robot is balanced significantly faster

than the nominal learning procedure of the RL con-

troller by bootstrapping the learning using the er-

ror signal.

function is trained on PC to model the function Fc and is used as the checking function for the
error detection module in ALERA. The trained polynomial is evaluated on test data from 20 sep-
arate balancing trials, where 10 of the trials are injected with faults uniformly sampled from the
3-dimensional fault space. Based on a target F1-score of 0.9, the detection threshold is chosen as
enom = 0.22. For the RL controller implementation, the four states of the system (angle, angular
velocity, position, linear velocity) are discretized in 4 × 4 × 4 × 4 = 256 grid locations resulting in
256 actor and 256 critic parameter values. Fifty hardware episodic experiments are conducted such
that the RL controller learns how to supplement the nominal controller in the balancing task. The
512 actor and critic parameter values are stored as nominal RL controller parameters.
For training the diagnostic correlator module, 40 faulty configurations are uniformly sampled

from the 3-dimensional fault space. For these 40 configurations, the robot fails to balance using
the nominal RL parameters. As described in Section 3.1, the error signal from the pre-trained
polynomial model is recorded for 1 second. The 40 points are clustered in the fault parameter
space based on the TD error δ (t ) into 5 clusters and 5 different medoids are chosen to represent
each of the clusters. For each of these five fault configurations, the learning of the nominal RL
controller is allowed such that it relearns to balance the robot in presence of the injected errors.
After the five RL controllers converge, the resulting AC parameter values are recorded and stored.
The 512 parameter values for the five optimal AC controllers along with the error signals for the

fault sets they represent are stored in the flash memory of the microcontroller. In actual operation,
the �2-norm of the recorded error signal is compared with the stored error signals and the AC
parameters for the closest matching error signal is selected as the bootstrapped version of the RL
controller. The balancing efforts with disabling and enabling of ALERA are shown in Figure 20.
In the ALERA-disabled scheme, the learning of the RL controller starts from the nominally

learned values and through repeated episodic tasks, the learning converges and relearns to bal-
ance the robot as seen in Figure 20. In the ALERA-enabled scheme, in the first effort as the robot
fails to balance itself, the error signal is recorded for 1 second and the matching algorithm boot-
straps the actor-critic learning by reinitializing the parameter values from the stored repository.
It is seen in Figure 20, that the robot gets balanced in the second attempt after reinitialization of
the actor-critic parameter values. The nominal fault-free balancing is accomplished at 3 seconds
while the ALERA-disabled scheme balances it at 23.8 seconds after four episodic experiments. The
ALERA-enabled scheme manages to balance the robot at 9.3 seconds. Thus, the effective learn-
ing acceleration in this experiment is ψ = 23.8−3

9.3−3 = 20.8
6.3 = 3.3. This demonstrates that a learning

boost of 3.3x is achieved in the actual hardware experiments using the assisted learning scheme
of ALERA.
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7 CONCLUSION

This article proposes a real-time control law adaptation in nonlinear systems using actor-critic
network. The presented results from two nonlinear test cases and a hardware experiment demon-
strate the accelerated learning potential of actor-critic networks for performance recovery with
low latency. As future research, more realistic fault models will be studied to replace the syn-
thetic fault models pursued here and self-learning capabilities for safety-critical systems will be
explored where actor-critic network may not be the best controller topology because of the online
experiments that it needs to execute to perform learning.
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