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ABSTRACT. Toric differential inclusions play a pivotal role in providing a rig-
orous interpretation of the connection between weak reversibility and the per-
sistence of mass-action systems and polynomial dynamical systems. We intro-
duce the notion of quasi-toric differential inclusions, which are strongly related
to toric differential inclusions, but have a much simpler geometric structure.
We show that every toric differential inclusion can be embedded into a quasi-
toric differential inclusion and that every quasi-toric differential inclusion can
be embedded into a toric differential inclusion. In particular, this implies that
weakly reversible dynamical systems can be embedded into quasi-toric differ-
ential inclusions.

1. Imtroduction. Biological and biochemical systems exhibit a wide array of dy-
namical properties. One such property is persistence, which informally means that
no species go extinct. More formally, if x(¢) is a solution of a dynamical system
on RY, then it is persistent if liggf x;(t) > 0for all i = 1,2,...,n and any ini-

tial condition x(0) € RZ,. It is conjectured that if the reaction network is weakly
reversible, then the dynamics is persistent [11]. This conjecture is known as the
Persistence Conjecture [9], and is strongly related to the well known Global At-
tractor Conjecture [8]. Many special cases of these conjectures have already been
proved [1, 9, 17, 13]. A full proof of the persistence conjecture has been proposed
in [5] using toric differential inclusions as the main tool. It is therefore essential
to have a deeper understanding of toric differential inclusions. This is precisely the
theme of the current paper. We introduce a modified version of toric differential
inclusions called quasi-toric differential inclusions, which have a simpler geometric
structure. In addition, we show that one can embed one differential inclusion into
another.

Our paper is organized as follows. In Section 2, we describe several open con-
jectures in the field of reaction networks and mention various approaches towards
their proof. In Section 3, we define the notions of polyhedral cones and fans, which
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2 QUASI-TORIC DIFFERENTIAL INCLUSIONS

play an important role in our analysis. In Section 4, we introduce toric differential
inclusions, which are key dynamical systems in the context of the persistence con-
jecture and the global attractor conjecture. In Section 5, we introduce quasi-toric
differential inclusions. In particular, we give an algorithmic procedure to generate
quasi-toric differential inclusions that are well-defined in a precise sense. The notion
of quasi-toric differential inclusions provides for a more geometric way of thinking
about toric differential inclusions. In Section 7, we show that any toric differential
inclusion can be embedded into a quasi-toric differential inclusion. In Section 8,
we show that any quasi-toric differential inclusion can be embedded into a toric
differential inclusion. As a consequence, quasi-toric differential inclusions represent
an alternate characterization of toric differential inclusions. To embed a dynamical
system into a toric differential inclusion, it therefore suffices to embed it into a
quasi-toric differential inclusion.

2. Euclidean embedded graphs, persistence and permanence. A reaction
network can be represented as a finite, directed graph G = (V| E) called the Eu-
clidean embedded graph (or E-graph) [5, 6, 7], where V' C R" is the set of vertices
and F is the set of edges that correspond to reactions in the network. We will also
denote the edge (y,y’) € Eby y — vy’ € E. An E-graph is reversible ify > ¢y’ € E
implies ¥y’ — y € E. An E-graph is weakly reversible if every edge is contained in a
cycle. An E-graph is endotactic [9] if for every w € R™ such that w - (y' —y) > 0,
there exists § — ¥’ € E such that u - ('[/, —y)<O0and u-g > u-y. Every weakly
reversible network is endotactic [9].

Every reaction network (or equivalently E-graph G = (V, E)) generates a set
of corresponding dynamical systems, depending on our assumptions about kinetic
laws. Assuming mass-action kinetics [19, 14, 20, 15, 10], the dynamical systems
corresponding to G can be written as

dx
== D usyry - ), (1)

y—y' el

where ky_,,» > 0 is the rate constant corresponding to the reaction y — ¥y’ and
x¥ = xr1¥1x5Y2..x,Y". Rate constants can often have a time-dependent form to
incorporate uncertainty and approximations. In such cases, the dynamical system
is given by

%’f - Z fy—y ()Y (y —y). (2)

y—y' €k

Dynamical systems like (2) are called variable-k power law dynamical systems if
there exists € > 0 such that for every y — 4’ € E, we have % < kyoyy (t) <€[6,7,9].
A dynamical system is said to be weakly reversible if there exists a weakly reversible
E-graph that generates it. (A similar definition holds for endotactic dynamical
systems.)

We now proceed by relating weakly reversible and endotactic dynamical systems
with the notions of persistence and permanence. Let G = (V, E) be an E-graph,
whose dynamics can be represented by (2). Consider a solution x(t) of (2). Then a
dynamical system of the form (2) is said to be
(i) persistent if for any initial condition &(0) € RZ, and i = 1,2...,n, we have

lim inf @;(t) > 0, (3)

t—)Tm(o)
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where T(o) is the maximal time for which the solution z(t) is well-defined.
(ii) permanent if for any initial condition x(0) € RZ, there exists a T'> 0 and a
compact set K C (x(0) + S) NRZL,, where

S=span(y' —y |y =y € E), (4)

such that z(t) € K for ¢t > T.
The following are the most important conjectures about persistence and perma-
nence of dynamical systems generated by reaction networks.

Persistence Conjecture: Every weakly reversible dynamical system is per-
sistent.

Extended Persistence Conjecture: Fvery variable-k endotactic dynamical
system is persistent.

Permanence Conjecture: Fvery weakly reversible dynamical system is per-
manent.

Extended Permanence Conjecture: FEvery variable-k endotactic dynam-
ical system is permanent.

These conjectures are strongly related to the Global Attractor Conjecture, which
posits the existence of a unique globally attracting steady-state for a class of dy-
namical systems called complex-balanced. In the past two decades, there has been a
flurry of research making progress towards these open conjectures. It is known from
the work of Angeli, De Leenheer and Sontag [2] that if every siphon of the reaction
network contains a support of a linear conservation law, then the dynamics is persis-
tent. In [1], Anderson has proved the global attractor conjecture when the E-graph
consists of a single linkage class, by partitioning the vertices of the E-graph into
“tiers”. The three dimensional case of the global attractor conjecture was settled in
collaboration with Nazarov and Pantea [9]. Later, Pantea [17] extended this proof
to the case when the stoichiometric subspace corresponding to the E-graph is three
dimensional. Gopalkrishnan, Miller and Shiu [13] have used ideas from toric geome-
try to prove the global attractor conjecture when the E-graph is strongly endotactic.
Recently, a complete proof of the global attractor conjecture has been proposed [5].
This proof uses an embedding of weakly reversible dynamical systems into toric
differential inclusions as a key step [6]. Moreover, this has been extended in [7] to
embed endotactic dynamical systems into toric differential inclusions. It is there-
fore essential to analyze the structure of toric differential inclusions in much more
detail. In what follows, we introduce quasi-toric differential inclusions, a family of
differential inclusions that have a simpler geometric structure than toric differential
inclusions. We show that every toric differential inclusion can be embedded into a
quasi-toric differential inclusion and vice-versa. As a consequence, weakly reversible
and endotactic dynamical systems can be embedded into quasi-toric differential in-
clusions. Further, to embed a dynamical system into a toric differential inclusion,
it suffices to embed it into a quasi-toric differential inclusion.

3. Polyhedral cones and polyhedral fans. A set C C R™ is a convez polyhedral
cone [18, 21] if its elements can be expressed as a finite non-negative combination
of vectors as given below

k
C{Z)\ivip\ieRzo,vieR"}. (5

i=1

~
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In this paper, we will refer to a convex polyhedral cone simply as a cone. The polar
of a cone C, denoted by C? is defined as

C°={uecR"|u-z<0foralxeC}. (6)

A supporting hyperplane of a cone C C R™ is a hyperplane such that the C' lies
in exactly one of the halfspaces generated by the hyperplane and the hyperplane
has a non-empty intersection with the boundary of C. Intersecting a cone with a
supporting hyperplane gives a face of the cone. A face of codimension 1 is called
a facet of the cone. A cone is pointed if the origin is a face of the cone. A cone
C C R™ is maximal if span(C) = R®. We now define the notion of a polyhedral fan.

Definition 3.1. A polyhedral fan F is a finite set of cones satisfying the following
properties

(i) Given a cone C € F, a face of C is also a cone in F.

(ii) For any two cones C,C € F, we have that C' N C is a face of both C' and C.

oK
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FIGURE 1. (a) Polyhedral fan in two dimensions. This fan has seven
cones: three two-dimensional or maximal cones, three one-dimensional
cones and one zero-dimensional cone. (b) Hyperplane-generated polyhe-
dral fan in two dimensions. This fan has 13 cones: six two-dimensional
cones, six one-dimensional cones and one cone of dimension zero. (c)
Polyhedral fan in three dimensions. This fan has seven cones: three
three-dimensional cones, three two-dimensional cones and one cone of
dimension one. (d) Hyperplane-generated polyhedral fan in three di-
mensions. This fan has nine cones: four three-dimensional cones, four
two-dimensional cones and one cone of dimension one. Cones in (a) and
(b) are pointed, while cones in (c¢) and (d) are not pointed. Fans in
(b) and (d) are hyperplane generated, while fans in (a) and (c) are not
hyperplane generated.
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A polyhedral fan F in R™ is said to be complete if U C = R". Analogous to the

CeF
case of a convex polyhedral cone, we will sometimes refer to a complete polyhedral

fan simply as a fan. It is known [7] that the maximal cones of a fan define the
fan uniquely. A fan is a hyperplane-generated polyhedral fan if there exists a set of
hyperplanes passing through the origin such that the cones in the fan are exactly
the intersections of half-spaces generated by these hyperplanes. Figure 1 gives a
few examples of polyhedral fans, some of which are hyperplane-generated.

4. Toric differential inclusions. Differential inclusions are generalizations of dif-
ferential equations. As remarked before, differential inclusions play a vital role in
the analysis of dynamical systems. In particular, tropically endotactic differential
inclusions [4] and toric differential inclusions [5] have been used to prove persistence
properties of certain dynamical systems.

Definition 4.1. A differential inclusion on a domain 2 C R" is a dynamical system
of the form ‘é—’f € F(x), where F(x) C R" for every x € Q.

We are interested in a specific type of differential inclusions called toric differen-
tial inclusions:

Definition 4.2. Consider a complete polyhedral fan F and a positive real number
0. The toric differential inclusion [5, 6, 7] given by F and ¢ is a differential inclusion

defined on the positive orthant by the Equation
dx
o € Frs(log(a)), (7)

where

Frs(X) = N cf- 8)

CeF
dist(X,0)<5

for every X € R™.

FIGURE 2. Right-hand side of a toric differential inclusion (denoted by
Frs(X)) for a hyperplane-generated fan F. The red region represents
the set of points for which Fr s(X) = R?. For points outside the red
region, the blue cones indicate F ;(X), which is not R?.
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By [7, Equation 16], we know that (8) can be written as

o

Frs(X) = N cf . (9)
CeF
dim(C)=n
dist(X,C)<5

Figure 2 gives an example of a toric differential inclusion in two dimensions. In
general, toric differential inclusions in higher dimensions are quite complicated be-
cause the regions in which F'r 5 is constant have a relatively complicated polyhedral
structure. We introduce quasi-toric differential inclusions in the next section, which

have a much simpler geometric structure.

5. Quasi-toric differential inclusions.

Definition 5.1. Let F be a complete polyhedral fan and d = (dg, dy, ...,dn—1) €
RZ,. A quasi-toric differential inclusion given by F and d is a differential inclusion
92 ¢ Fra(X), where X = log(z) € R™ and Fr 4(X) is defined by the following
procedure.
Step 0: If dist(X,Cy) < doy, where Cy € F is a cone of dimension 0, then
Fra(X) = Cjg.
Step 1: If not Step 0 and dist(X,Cy) < dy, where C; € F is a cone of
dimension 1, then F'r 4(X) = CY.
Step 2: If not Step 0 and not Step 1 and dist(X,Csy) < da, where Cy € F is
a cone of dimension 2, then Fr 4(X) = C3.

Step n — 1: If not Step 1, Step 2,..., Step n — 2, and dist(X,Cp—1) < dp—_1,
where C,,_1 € F is a cone of dimension n — 1, then Fr 4(X) = C?9_,.

Step n: If not Step 1, Step 2...., Step n—1, then there exists a unique maximal
cone C,, € F such that X € C,,, and we define Fr 4(X) = C9.

Definition 5.2. Consider a complete polyhedral fan F and a vector d = (do, d1,
woydpn_1) € RZ,. We say that the quasi-toric differential inclusion given by F
and d is well-defined if the following property holds for any cones C,C € F with
dim(C) = k and dim(C) = m: If dist(X,C) < dj and dist(X,C) < d,, for some
X € R”, then we have dist(X,C) < dj, where C = CNC and dim(C) = h. We will
see in Proposition 7.1 that for any d € RY, there exists de R%, such that d < d
(where the inequality is defined component wise) and the quasi-toric differential
inclusion given by F and d is well-defined.

Remark 5.3. For a well-defined quasi-toric differential inclusion, all the steps in
Definition 5.1 are unambiguous. Figure 3 shows a scenario when a point X is close
to two one dimensional cones and it is not clear what the cone F'r 4(X) should be.
Figure 4 gives an example of a well-defined quasi-toric differential inclusion in two
dimensions.

6. General properties of polyhedral fans and cones. The next lemma char-
acterizes a cone in a complete polyhedral fan. Restricted to its own subspace, a
cone is the intersection of half-spaces containing the cone, that are generated by
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FIGURE 3. Example of a quasi-toric differential inclusion that is not
well-defined in the sense of Definition 5.2. Consider a point X labeled by
a black dot in the figure. If we iterate through the steps of Definition 5.1,
we get dist(X,C1) < di and dist(X,C'l) < d; in Step 1. It is not
clear whether Fr 4(X) = CY or Fr 4(X) = Cf and hence the notion
of quasi-toric differential inclusion is not well-defined for this choice of
d = (do,d1).

A

L]

FIGURE 4. Right-hand side of a quasi-toric differential inclusion (de-
noted by Fr q(X)) for a hyperplane-generated fan F. The red circle
represents the set of points for which Fir 4(X) = R?. For points outside
the red circle, the blue cones indicate Fr ¢(X). The numbers do, d; are
chosen so that the quasi-toric differential inclusion generated by F and
d = (do,d1) is well-defined in the sense of Definition 5.2.

supporting hyperplanes corresponding to its facets. The lemma is essentially a gen-
eralization of [12, Property 7]. We will use this fact crucially in Lemma 6.4 (See
Equation (19)).
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Lemma 6.1. Consider a cone C C R™ and let S(C) denote the subspace spanned
by C. Then, we have

C = (N H|()s©), (10)

oEfacets of C

for any choice of H,, where ﬁg is a half-space that is formed by a supporting
hyperplane H, such that C C H, and H, NC = o for facet o of C'.

Proof. If dim(C) = 0, then C = S(C) = {0} and the statement is trivial. Other-
wise, note that C C H, implies

Cg( N Ho>ﬂ5(0). (11)

oefacets of C

We now show that if H, are chosen as in the statement of Lemma 6.1, then

( N ﬁg> s cc. (12)

o€facets of C

For contradiction, assume that there exists x € ( ﬂ ﬁg> NS(C), but

oefacets of C
x ¢ C. Take a point &’ in the relative interior of C. Consider the line segment

joining « and «’ and let & be a point on this line segment within the cone C' that is
nearest point to . Certainly, £ must be on the relative boundary of C'. Since the
relative boundary! of C is the union of its facets [12, pp. 10], the point  must lie
on a facet o’ of C. Consider a supporting hyperplane H,: such that H,» N C = ¢’.
Note that x, 2’ ¢ H, and since the line segment joining them intersects H,, it
follows that & and «’ lie on different half-spaces generated by H,/. Since &’ was
taken to be in the relative interior of C', the point & does not lie in the half-space
H, that contains the cone C, contradicting the assumption that x € H,. O

The next lemma shows that the operations of performing an orthogonal projec-
tion and taking intersection over convex cones in a polyhedral fan commute if the
kernel of the projection is the linear subspace corresponding to the intersection of
these cones. This fact will be invoked in the proof of Lemma 6.5. (See Equation

(29))-

Lemma 6.2. Consider a complete polyhedral fan F. Let Cy,Cs, ..., C, € F be cones
such that

Ne=c (13)

Let S(C) denote the subspace spanned by the cone C. Let ® be the orthogonal
projection that maps a vector in R™ to S(C)*. Then, we have

T (ﬂ ci> = (= (Cy). (14)
i=1 i=1

IFulton [12] actually uses the term topological boundary of the cone. In our case, the topological
boundary of the cone when restricted to its subspace coincides with its relative boundary.
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Proof. By [16, Theorem 6], to show that

m (ﬂ Cl> = m F(Ci), (15)
i=1 i=1

it suffices to show that for any C; # C}, where i,j € {1,2,..,r}, we have C; UC} is
convex” along the ker(m). In our case, ker(m) = S(C). Let a,b € C; UC;. We will
show that if b —a € S(C'), then either a,b € C; or a,b € C;. This will imply that
the line segment [a, b] C C; U C}, as required.

For contradiction, assume that a € C; = C;\(C;NC;) and b € C; = C;\(C;NC}).
Since C; and C’j are disjoint convex sets, by the hyperplane-separation theorem [3]
there exists v € R™ \ {0} and d > 0 such that the affine hyperplane

H={z cR"|v"x = d} (16)

separates C; and C'j, i.e., we have vTx < d for z € C; and v'x > d for x € é'j.
Note that since C; N C} is a face of both C; and C}, we get vlx < dfor x € C;
and vz > d for ¢ € C;. This implies that if x € C; N C;, then vIx = d or
equivalently that @ € H. Therefore, we get C; NC; € H. Using C C C;NC}, we get
C C H and hence S(C') C H. The line segment [a, b] intersects both the half-spaces
corresponding to the hyperplane H implying that b —a ¢ H. Since S(C) C H, we
get b—a ¢ S(C), a contradiction. O

We now show that points that are close to cones that intersect only at the origin
form a bounded set. Consider the following example in two dimensions. (See
Figure 5).

FIGURE 5. Two dimensional illustration of Lemma 6.3

——
Let O be the origin. Let us denote the cones OA and O? by Cy and Cs respec-
tively. Then there exists ap > 0 such that if X € R? satisfies dist(X,C1) < § and
dist(X,Cs) < 4, then we have dist(X,{0}) < ad, as shown in Figure 5.

2A set A C R™ is said to be convex in a direction € R™ if for all ¢,y € A such that y—x = Ar
for some X\ € R, the line segment [z,y] C A.
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Lemma 6.3. Let C1,Csy,...,C,. be polyhedral cones in R™ such that ﬂ C; = {0}.
i=1

Then there exists cg > 0 such that if X € R™ satisfies dist(X,C;) < & for some

d > 0 and all cones C;, where 1 <i <r, then we have dist(X,{0}) < apd.

Proof. For contradiction, assume not. Then, there exists § > 0 such that for every
k € N there is X, € R™ with || X || > kd and

dist(Xk7Ci) § 1) (17)
for all 1 <14 < r. Consider the sequence (xx)3>, on the unit sphere S € R™ given
by oy = % Dividing Equation (17) throughout by || X ||, we get

0 1
< =
1 Xkl — &

The sequence (x)72 ; has a subsequence with a limit point * on the compact set S

dist(xy, C;) < (18)

T
and we have * € C; for 1 < i < r. This contradicts the fact that ﬂ Cc;={0}. O
i=1
The next lemma is based on the following fact: If a point is close to a cone and
also lies in the subspace corresponding to a proper face of the cone, then it is close
to that face of the cone. Let us consider the same example as before (Figure 6) to
understand the geometric intuition behind this result.

B

FIGURE 6. Two-dimensional illustration of Lemma 6.4.

Let us denote the cone formed by the vectors O—1>4 and @ to be C. The face O?
of the cone C' is then denoted by C. Consider any point P* in the linear subspace
of C' (denoted by S(C)), such that dist(P*,C) < 6*. Let H, denote the supporting
hyperplane corresponding to the facet of C that does not contain the cone C (in this
case the facet is 0—121) Let H, denote the half-space generated by H, that contains
the cone C. Now shift this supporting hyperplane by 6* to get an affine hyperplane
H,(6*), as shown in the figure. Let H,(6*) be the half-space generated by H,(6*)

such that H, C H,(6*) (the half-space H,(6*) is marked with blue stripes in above
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figure). Since dist(P*,C) < § and P* € S(C), it follows that the point P* must

belong to Hy(6*) N S(C), which is essentially the cone O’—B> Note that OT]% is a
shifted version of the cone C' and grows linearly with 6*. As a result, the point
P* must be close to C and its distance from C must grow linearly with §*. In fact
from the figure, we have dist(P*, C) < sec(#)d*. The next lemma makes these ideas
precise.

Lemma 6.4. Consider a polyhedral cone C' and let C be a proper face of C. Denote
by S(C) the subspace spaqned by the cone C'. Then there exists ro > 0 such that if
P* € S(C) and dist(P*,C) < §* for some §* > 0, then dist(P*,C) < rod*.

Proof. From Lemma 6.1, the cone C' can be written as

C = (| H,| NSO, (19)

oefacets of C

where H, is a half-space formed by a supporting hyperplane H, such that CCH,
and C'N H, = o for some facet o of C. If dist(P*,C) < 6*, we get

dist(P*, Hy) < 6* (20)

for each such half-space H,. Let us denote by H,(6*) the affine half-space that is
formed by the hyperplane H,(0*) such that
dist(H,, H,(6*)) = 6* and H, C H,(5*). (21)

Using Equations (20) and (21) for facets o of C' that do not contain the cone C, we
get

P c (N H.(0)|. (22)

oefacets of C'
Clo

Since P* € S(C), we get that P* belongs to the set Cs« defined by the following

Cs = N H6)|[)S(©) (23)

oefacets of C
Clo

In general, Cs~ is not an (affine) cone, but we can enlarge it further to an affine
cone Cf., which is defined in the following way. Consider a line ! passing through
the origin in the interior of cone C'. Note that each set H,(5*) NI consists of exactly
one point and define

Ss« = {H,(6")N1|cis a facet of Cand C' & o}. (24)

Denote by @ the point in Ss« that is farthest from the origin. Now shift the
supporting hyperplanes H, corresponding to those facets o of C that do not contain
the cone C, so that the shifted hyperplanes intersect the line [ at Q. Let us denote
this shifted version of H, by H, q. Let fIU)Q denote the affine half-space generated
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by H, q such that ﬁn - HH7Q. Let

Cr = (| Heq |[)S©). (25)

ocfacets of C
Clo

Since Cys« C Cf., it follows that P* € Cj..
We now claim that Cj. is a shifted version of the cone C. Note that C C CNS(C).

We also have C' = CNH for some supporting hyperplane H of C. This implies that
S(C) C H. Therefore, we get CNS(C) C CNH = C and hence C = CNS(C).

Since S(C) C S(C), using Equation (19), it follows that the cone C' can be written
as

C= N  H.|[)s©)

oefacets of C

N H | N  H.[[)s©).

oefacets of C o€efacets of C
Clo CCo

(26)

Note that C' C H, for facets o of C' that contain C. This implies that S(C') C H, C
H, for facets o of C that contain the cone C. Therefore, Equation (26) simplifies
to

C= (| H.|[)s©). (27)

o€efacets of C
Clo

Comparing Equations (25) and (27), it follows that Cj. is just the cone C' shifted
by the vector Q. Moreover ||Q|| grows linearly with 6*, which implies

dist(P*,C) < ryd™. (28)
for some rg > 0, as required. O

Lemma 6.5. Consider a complete polyhedral fan F. Let C1,Cs,...,C,. € F be

such that ﬂ C; = C. Then there exists ag > 0 such that if X € R" satisfies
i=1

dist(X,C;) < 0 for some 6 > 0 and all cones C;, where 1 < i < r, then we have

dist(X,C) < agd.

Proof. If C' = {0}, the result follows from Lemma 6.3. Otherwise let S(C) de-
note the subspace spanned by the cone C. Consider a point P € R" such that
dist(P,C;) < § for some 6 > 0 and all cones C;, where 1 < i < r. We will first
show there exists By > 0 such that dist(P,S(C)) < Bpd. Towards this, project the
polyhedral fan F and the point P onto the subspace S(C)*. Let 7 denote this
projection map. Since projections do not increase distances between sets, we have

=1

dist(n(P),n(C;)) < §. Note that m <ﬂ C’i> = 7w(C) = {0}. Therefore, applying
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Lemma 6.2, we get

m m(C) =7 (ﬂ C’i> =n(C) = {0}. (29)

By Lemma 6.3, there exists Sy > 0 such that dist(w(P),{0}) < Spd. This implies
that dist(P,S(C)) < Bod.
Let P* be the projection of P onto the subspace S(C'). Therefore, we have

dist(P, P*) < fyé. (30)
On the other hand, we also have
dist(P,C;) < ¢ (31)
for 1 <14 < r. By the triangle inequality, we get
dist(P*,C;) < dist(P*, P) + dist(P, C;). (32)

for 1 <4 <r. Let §* = (14 Bp)d. Then Equations (30),(31),(32) together imply
that

dist(P*,C;) < 6. (33)
Let Cy, € {C4,Cy,...,C,}. Therefore, we get
dist(P*,Cy) < 6*. (34)

Since F is a polyhedral fan, C is a face of C. In addition, we have P* € S(C) and
dist(P*,Cy) < §*. Therefore, using Lemma 6.4 we get

dist(P*,C) < rod* = ro(1+ Bo)d. (35)
for some rg > 0. By the triangle inequality, we have
dist(P,C) < dist(P*, P) + dist(P*,C). (36)

Let ag = 19(1 4 Bo) + Bo. Comparing Equations (30),(35),(36) we get dist(P,C')
o0, as required.

CIIA

7. Embedding toric differential inclusions into quasi-toric differential in-
clusions. A key idea in the proof is the following: if a point is close to a set of
cones in a polyhedral fan, then the point is close to the intersection of those cones.
Lemma 6.3 establishes this fact when the intersection of cones is just the origin.
Lemma 6.5 proves this fact in full generality by using Lemma 6.3 as a sub-step.
This will allow us to construct a vector d such that a toric differential inclusion
% € Fr 5(X) can be embedded into a well-defined quasi-toric differential inclusion

€ Fr 4(X). Proposition 7.1 illustrates a procedure for generating such a vector

dx
dt
d, which is subsequently used to prove Theorem 7.3.

Proposition 7.1. Consider a complete polyhedral fan F and a vector d € RZ,.
Then there exists a vector d > d such that the quasi-toric differential inclusion
giwen by F and d is well-defined in the sense of Definition 5.2.

Proof. Let Ay, As, ..., Ay 7 denote all the subsets of F. For 1 < j < 2171, define

C’j = ﬂ C;. By Lemma 6.5, there exists of) > 0 such that whenever X € R
Ci€A;

satisfies dist(X, C;) < & for some § > 0 and all C; € A, we have dist(X, C;) < ajd.

Let a = mjax aé. Choose A > 1 such that Aa > 1.
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Define the vector d as follows: d,,_; = = max(do,ds,...,dn—1), dy_o = )\ozcin_l, dp_3
= /\adn 2. do = Mad;. We will show that the quasi-toric differential inclusion
given by F and d is well-defined in the sense of Definition 5.2. Consider cones
C,C € F with dim(C) = k and dim(C) = m such that dist(X,C) < dj and
dist(X,C’) < d,, for some X € R". Let us assume that dzm(C‘) < dzm(C). By
the definition of d, we have d,, > dj. Consider C = C'NC and let dim(C) = h.
Then there exists Sy < « such that dzst(X C) < Bod,y,. Since h < m, by using the
definition of d, we get dist(X, C') < Bodm < ady < Nady, < dp, as required. O

Remark 7.2. The vector d = (do, dy, ..., d,,—1) in the definition of quasi-toric differ-
ential inclusions does not have to be chosen very carefully: as long as the ratio dfll
is smaller than a constant that depends only on the fan F, the notion of quasi-toric
differential inclusions is well-defined.

Theorem 7.3. Consider a complete polyhedral fan F. Given a 6 > 0 and a toric
differential inclusion % € Fr 5(X), there exists d = (dy,dy,...,dn—1) € RZ and
a quasi-toric differential inclusion Z—f € Fr q(X) such that the toric differential
inclusion can be embedded into the quasi-toric differential inclusion, i.e., Fr 5(X) C

Fr a(X) for every X € R™.

Proof. Let A1, As, ..., Ay = denote all the subsets of F. For 1 < j < 2171, define

C’j = ﬂ C;. By Lemma 6.5, there exists aé > 0 such that whenever X €
CieA;

R" satisfies dist(X,C;) < & for all C; € Aj, we have dist(X,C;) < ofd. Let

a = max o%. Choose A > 1 such that Aa > 1. Define the vector d as follows:

dn_1 :]6, dpn_o = Aady,_1,d,_3 = Aad,_o, ...,dg = Aad;. Note that, as in the proof
of Proposition 7.1, it follows that the quasi-toric differential inclusion given by F
and d is well-defined.

Fix X € R". Let Fr 5(X) = C° for some C € F. Then there exists Cy, Ca, ..., Cy

€ F with m C; = C such that dist(X,C;) < . From Lemma 6.5, we get that
i=1

there is Sy < a such that dist(X,C) < Bod. Let Fr q(X) = CP and dim(C;) = L.
This means that dist(X,C;) < d;. We will show that C; C C. For contradiction,
assume that C; € C. By the definition of d, we have dist(X,C) < 5pd < ad < d;.
Therefore, | < dim(C) (otherwise the quasi-toric differential inclusion given by
F and d would not be well-defined). Consider the cone Cy = C N C; and let
dim(Cy) = g. Our assumption C; € C implies ¢ < . By Lemma 6.5, there
exists By < a such that dist(X,Cy) < Bod;. By using the definition of d, we get
Bod; < ad; < Mad; < dg. This implies that dist(X, Cy) < dg, contradicting the fact
that F'r g = C7. Therefore, we have C; C C' and

Frs(X)=C°CC} =Frq(X), (37)
as required. O

See Figure 7 for an illustration of the embedding of a toric differential inclusion
into a quasi-toric differential inclusion.

Corollary 7.4. Any variable-k weakly reversible dynamical system can be embed-
ded into a quasi-toric differential inclusion. Similarly, any variable-k endotactic
dynamical system can be embedded into a quasi-toric differential inclusion.
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(a) (b)

FIGURE 7. (a) RHS of a toric differential inclusion (denoted by
Frs(X)) for a hyperplane-generated fan F. (b) RHS of a quasi-toric
differential inclusion (denoted by Fr 4(X)) such that the toric differ-
ential inclusion given in part (a) can be embedded into this quasi-toric
differential inclusion, i.e., Fr 5(X) C Fr qa(X) for every X € R". As in
the proof of Theorem 7.3, the vector d is constructed as follows: we set
d1 = § and choose dy large enough (do = Aadi) so that the quasi-toric
differential inclusion is well-defined.

Proof. This follows from Theorem 7.3 and the results on embedding dynamical
systems into toric differential inclusions in [6] and [7]. O

8. Embedding quasi-toric differential inclusions into toric differential in-
clusions.

Theorem 8.1. Consider a complete polyhedral fan F. Givend = (dy,dy, ...,d,—1) €
R%, and a (well-defined) quasi-toric differential inclusion “% € Fr q(X), there ez-
ists a 6 > 0 and a toric differential inclusion ‘i—f € Fr s(X) such that the quasi-

toric differential inclusion can be embedded into the toric differential inclusion, i.e.,
Fra(X) C Frs(X) for every X € R™.

Proof. Let ¢ = max{do,d1,...,d,—1}. Fix X € R™ and let Fr q(X) = Cg, where
©? is the polar of cone Cy € F such that dist(X,Cy) < di. It follows that
dist(X,Cy) < §. Therefore, we have

ﬂ C| C Cy, (38)
CeF
dist(X,C)<é
implying that Fr q(X) C Fr s(X), as required. O

Refer to Figure 8 for an illustration of the embedding of a quasi-toric differential
inclusion into a toric differential inclusion.
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(2) (®)

FIGURE 8. (a) RHS of a quasi-toric differential inclusion (denoted by
Fr,q(X)) for a hyperplane-generated fan F. (b) RHS of a toric differen-
tial inclusion (denoted by Fr s(X)) such that the quasi-toric differential
inclusion given in part (a) can be embedded into this toric differential
inclusion, i.e., Fr q(X) C Fr s5(X) for every X € R". As in the proof
of Theorem 8.1, we choose 6 = max(do,d1) = do.

9. Discussion and future work. We have introduced quasi-toric differential in-
clusions and we have shown they are essentially equivalent to toric differential in-
clusions, in the sense that any quasi-toric differential inclusion can be embedded
into a toric differential inclusions, and the other way around. Quasi-toric differen-
tial inclusions admit a simpler geometric structure than toric differential inclusions.
Previous works [6, 7] have shown that reversible, weakly reversible and (even more
generally) endotactic dynamical systems can be embedded into toric differential in-
clusions. This implies that these systems can be also be embedded into quasi-toric
differential inclusions. Further, since quasi-toric differential inclusions can be em-
bedded into toric differential inclusions, to embed a dynamical system into a toric
differential inclusion, it suffices to embed it into a quasi-toric differential inclusion.
Some persistence properties of toric differential inclusions are key steps in the pro-
posed proof of the Global Attractor Conjecture [5]. Therefore, the ability to embed
dynamical systems into quasi-toric differential inclusions is highly important.

It is also notable that quasi-toric differential inclusions offer an advantage if we
need a complete computational characterization of the regions where the right-hand
side of the differential inclusion is constant, which would be required for computing
invariant regions numerically. For quasi-toric differential inclusions one can employ
a pre-processing step that identifies vectors d for which the notion of quasi-toric
differential inclusion is well-defined; however, as mentioned in Remark 7.2, the only
restriction on d is that the ratio d‘_iil is bounded above by a constant that depends

i

only on the fan. In the case of toric differential inclusions, the sets where the right-
hand side of the differential inclusion is constant are highly non-convex polytopes,
as illustrated in Figure 8(b). Moreover, a complete characterization of one such set
include computations that involve all the other cones in the fan. For quasi-toric
differential inclusions the situation is greatly simplified by the fact that (after the
pre-processing mentioned above) computations can be done “locally”, in the sense
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that, for a fixed cone C' in the fan, we can calculate the set where the right-hand

sidi

e of the differential inclusion equals C° by looking just at the faces of C. We

plan to investigate this in detail in future work.
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