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Abstract. In this paper we study the rate of convergence to the complex bal-
anced equilibrium for some chemical reaction-di↵usion systems with boundary
equilibria. We first analyze a three-species system with boundary equilibria
in some stoichiometric classes, and whose right hand side is bounded above
by a quadratic nonlinearity in the positive orthant. We prove similar results
on the convergence to the positive equilibrium for a fairly general two-species
reversible reaction-di↵usion network with boundary equilibria.

1. Introduction. The dynamical behavior of spatially homogeneous mass-action
reaction systems has been the focus of much research over the last fifty years. These
ODE systems are usually high-dimensional, non-linear, and depend on a large num-
ber of parameters, which makes them generally di�cult to study. However, a fertile
theory started fifty years ago with work of Horn, Jackson and Feinberg [15, 22, 23]
has been successful in addressing questions of existence and stability of positive
equilibria, and persistence (nonextinction) of variables. Their work shows that,
surprisingly, the large class of complex balanced mass-action systems have unique
positive equilibria which admit a global Lyapunov function, which makes them lo-
cally asymptotically stable independently of reaction rate constant values. This
robustness is relevant in applications, where exact values of system parameters are
typically unknown. Moreover, Horn conjectured that the unique equilibria are in
fact globally asymptotically stable [23], a question known as the Global Attractor

Conjecture. The conjecture stayed open until recent years, when new work fueled in
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part by advances in systems biology led to a series of partial results. It was shown
that trajectories of complex balanced systems either converge to the positive equi-
librium or go to boundary equilibria [32, 34], establishing that persistence implies
global stability. A series of subsequent papers showed persistence for complex bal-
anced systems in two variables and other classes of systems, and proved the Global
Attractor Conjecture in two and three variables [1–3, 7, 8, 21, 28]. This work led to
a proposed proof of the Global Attractor Conjecture in full generality [9].

Much less is known about the corresponding reaction-di↵usion models, although
a number of recent papers have focused on extending the results above in the PDE
setting. A promising venue for relating the PDE and ODE models is by way of space
discretization (the method of lines). As proof of concept, the network A+ B ⌦ C

was considered in [27] where it was shown that solutions of the discretized system
converge to the solution of the PDE system as the space discretization grows finer.
Solutions of the reaction-di↵usion system A+B ⌦ C have been shown to approach
a positive spatially homogeneous distribution [31] via semigroup theory. Newer
work uses entropy techniques to prove global asymptotic stability for other systems,
including dimerization networks 2A ⌦ B [10] and monomolecular networks [16].

For reversible complex balanced systems, recent work by Fischer established
global existence of a certain notion of renormalized solutions [18]. Siegel and
Mincheva showed that, with equal di↵usion constants, !-limit sets of general
complex-balanced reaction-di↵usion systems consist of constant functions corre-
sponding to equilibria of the space-homogeneous ODEs [26]. Moreover, the unique
positive equilibria are asymptotically stable. This is the analogous of the “per-
sistence implies global stability” result from the ODE setting, albeit in the case
of equal di↵usion constants. Recent results by Desvillettes, Fellner and collabora-
tors [12, 14, 17] removed the requirement of equal di↵usion constants, and showed
that in the absence of boundary equilibria, the positive equilibrium of a general
complex balanced reaction-di↵usion system attracts all solutions with positive ini-
tial data. These papers also considered special cases of networks with boundary
equilibria, where a detailed analysis showed that positive solutions remain glob-
ally asymptotically stable. However, the general case of systems with boundary
equilibria remains open, and the analysis of such systems is on a case-by-case basis.

A recent paper by Pierre et al [29] studies the general case of a reversible reaction;
the authors prove that for nonnegative initial data in L

1 \L logL, the solution will
converge to some equilibrium. If the equilibrium happens to be the unique complex-
balanced equilibrium in the given stoichiometric class (as opposed to a boundary
equilibrium), then it is shown that the convergence is exponential. Furthermore,
if the solution is globally (in time) essentially bounded, [29] also shows that the
solution converges exponentially to the complex-balanced equilibrium.

Our paper studies two such special cases of complex balanced reaction networks
with boundary equilibria, and uses the entropy method to show that in one spatial
dimension under mild boundedness conditions on the initial data, solutions converge
asymptotically to the unique positive equilibrium at explicit rates. Namely, we
consider the three-species system A + 2B⌦B + C (Theorem 1.1), and the two-
species system m1A+ n1B⌦m2A+ n2B (Theorem 1.2).

In the remainder of this introductory section we set up terminology and notation,
we discuss some of the techniques used here and in previous work, and we state
our main theorems. Sections 2 and 3 contain the proofs of the results for the
three-species and two-species systems. We conclude with a few remarks and open
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problems (Section 4), and with an appendix collecting a few technical results needed
in the paper.

1.1. Terminology and previous results. Let us consider 0 < T  1 and the
semilinear parabolic system

ct �D�c = R(c) in ⌦⇥ (0, T ) (1)

with initial data
c(·, 0) = c0 in ⌦,

where c : ⌦⇥[0, T ) ! Rn is the vector of concentrations at spatial position x 2 ⌦ (an
open subset of Rd) and time t 2 [0,1), D is a positive definite, diagonal n⇥nmatrix,
and R : Rn ! Rn is a vector field whose components are polynomials (determined
by the chemical reactions under consideration). We exclusively consider Neumann
boundary conditions throughout this work:

rci · ⌫ = 0 on @⌦⇥ (0, T ), i = 1, ..., n,

where ⌫ is the outer normal vector to the boundary. This system can be linear and
“trivial” (at least in the sense that “enough” of its equations decouple), such as

at � da�a = �ka,

bt � db�b = ka in ⌦⇥ (0, T ),

(which corresponds to the reaction A ! B with reaction rate k > 0), linear and
nontrivial (weakly coupled) such as

at � da�a = �k1a+ k2b,

bt � db�b = k1a� k2b in ⌦⇥ (0, T ),

(which corresponds to A
k1⌦
k2

B), or (as soon as a reaction includes two or more

reactants) nonlinear in the zero order terms (semilinear). For example, the single

reaction A+B
k! C yields

at � da�a = �kab,

bt � db�b = �kab,

ct � dc�c = kab in ⌦⇥ (0, T ).

We use this last system to illustrate, rather informally, some terminology and no-
tation. Here A, B, and C are the three species of the network, and A + B and C

are its complexes. In general, complexes are formal linear combinations of species
with non-negative integer coe�cients, and sit on both sides of a reaction arrow.
It is useful to think of complexes as vectors in a natural way, for example A + B

corresponds to y = (1, 1, 0), and C to y
0 = (0, 0, 1). The concentrations of A, B, C

are non-negative functions of time and space and are collected in the concentration

vector c = (a, b, c). The reaction rate of a reaction is given by mass-action, and is
proportional to the concentration of each reactant species. This way, the reaction

A+B
k! C has rate kab. The reaction rate constant k is a reaction-specific positive

number. In general, the rate of a the reaction y
k! y

0 is given by

kcy = k

nY

i=1

c
yi
i ,

where n is the number of species, and complexes y and y
0 are viewed as vectors, as

discussed above. The reaction rate kab enters with negative sign in the equations
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for at and bt (A and B are being consumed in the reaction), and with positive sign
in the equation for ct (C is being produced). Reaction rates are collected in the
vector R(c) = (�kab,�kab, kab). In general, this is given by

R(c) :=
X

y!y0

ky!y0cy(y0 � y),

where ky!y0 is the rate constant of y ! y
0 and the summation is over all reactions

y ! y
0 in the network. Finally, D = diag{da, db, dc} 2 M3⇥3(R) denotes the

diagonal matrix of di↵usion constants.
In the previous example the first two equations have the benefit of being decou-

pled, but that feature is lost as soon as we allow for reversibility; indeed, corre-

sponding to A+B
k1⌦
k2

C we have

at � da�a = �k1ab+ k2c,

bt � db�b = �k1ab+ k2c,

ct � dc�c = k1ab� k2c in ⌦⇥ (0, T ).
(2)

When it comes to basic questions on the existence, uniqueness, smoothness and
non-negativity of solutions (if the initial data components are nonnegative), for
linear systems the answers are provided in the (by now, classical) literature (see, e.g.,
[30]). However, complexity adds quickly as nonlinear reactions and more reactants
enter the system.

In this paper we discuss examples of chemical reaction di↵usion systems which
have a specific structure relative to a positive equilibrium, i.e. a steady state solution
with all positive components.

In general, we say that an equilibrium point c0 of a reaction system (i.e. an equi-
librium of the ODE system ct = R(c); di↵usion is removed) is a complex balanced

equilibrium if for all complexes ȳ we have
X

ȳ!y

kȳ!yc
ȳ
0 =

X

y!ȳ

ky!ȳc
y
0.

In other words, the total chemical flux that exits the complex ȳ equals the total
chemical flux that enters the complex ȳ (for any choice of ȳ). A reaction system
is called complex balanced if it admits a positive complex balanced equilibrium.
We call a reaction-di↵usion system complex balanced if its corresponding reaction
system is complex balanced. It was shown that all steady states of a complex
balanced reaction-di↵usion system are constant functions (do not depend on space),
whose values equal the steady states of the corresponding complex balanced reaction
system [26]. We can therefore identify the steady states (equilibria) of complex
balanced reaction-di↵usion systems with those of corresponding reaction systems.

Reaction systems often admit linear first integrals, called conservation laws; for
example, the single reaction A + B ! C has conservation laws a + c = const

and b + c = const . In this paper, an accessible boundary equilibrium of a reaction
network is an equilibrium on the boundary of the positive orthant which gives the
same values of the conservation laws as some phase point with strictly positive
coordinates. These are the only equilibria that might be reachable from positive
initial conditions, and the only ones relevant for positive solutions of the mass-action
system. We note that not all equilibria on the boundary are accessible boundary
equilibria. For example, A + B ! A has one conservation law a = const . The
positive a-axis {(a, 0)|a > 0} consists of accessible boundary equilibria. On the other
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hand, all points {(0, b)|b � 0} on the non-negative b-axis are boundary equilibria
which are not accessible (the conservation law a = 0 is not compatible with points
in the positive orthant). The distinction between accessible boundary equilibria
and inaccessible ones was relevant in previous work [14], although it was not made
explicit. In that paper it was shown that for complex-balanced reaction-di↵usion
systems without accessible boundary equilibria, certain existence conditions imply
convergence of solutions to positive equilibria. The reaction-di↵usion systems we
consider in this paper are complex-balanced with accessible boundary equilibria.

All systems arising from complex balanced reaction di↵usion systems admit a
“canonical” Lyapunov functional of the relative Boltzmann entropy type. Its general
form (again, see, e.g., [14]), this logarithmic free relative energy functional reads

E(t) :=
nX

i=1

Z

⌦


ci(x, t) log

ci(x, t)

ci,1
� ci(x, t) + ci,1

�
dx,

where c1 := (c1,1, ..., cn,1) is the constant vector denoting the positive complex
balanced equilibrium. The entropy dissipation functional is computed by di↵eren-
tiating E along trajectories; that is, once all the time derivatives of concentrations
are replaced by their equation specific expressions and the Neumann BC are used
to integrate by parts wherever the Laplacian appears, one gets

D(t) :=
nX

i=1

di

Z

⌦

|rci(x, t)|2

ci(x, t)
dx+

⇢X

r=1

krc
yr
1

Z

⌦
�

✓
c
yr

c
yr
1
;
c
y0
r

c
y0
r1

◆
dx,

where ⇢ is the number of reactions and �(x, y) := x log(x/y)�x+y. Of course, one
gets exponential decay to zero for E if one can prove that there exists a positive
constant ↵ such that

D(t) � ↵E(t) for all t � 0. (3)

Naturally, E(t) should not only be identically zero when c(t) = c1, but it should
also be bounded below by some increasing function of the distance (from some
norm) between c(t) and c1.

For complex balanced systems, in the spatially isotropic case (D = 0, so the
PDE’s are reduced to ODE’s) recent work by Craciun [9] answers in the a�rmative
a long standing conjecture on the convergence to the positive equilibrium in each
stoichiometric class, called the Global Attractor Conjecture. This conjecture states
that regardless of the existence of boundary equilibria, trajectories starting in the
positive orthant converge to the unique positive equilibrium in the corresponding
stoichiometric class. In the PDE case, the most general result concerns the case
where there are no boundary equilibria. Very recently, Desvillettes, Fellner and
Tang [14] showed that, contingent on the existence of suitable solutions (essentially,
solutions that may not be classical but they are renormalized and do satisfy a weak
entropy entropy-dissipation law), one obtains exponentially fast convergence to the
equilibrium which lies in the same stoichiometric class as the initial data, which is
merely assumed nonnegative and integrable over some bounded, C2 domain in Rd.
This is also a remarkably general result in the sense that the initial concentrations
are only assumed to lie in L

1(⌦). This improvement (over the previous works,
where L

1-bounds were imposed on the initial data) is achieved via the use of the
Log-Sobolev inequality (see, e.g., [14]) in order to establish the entropy-entropy

dissipation inequality (EEDI) (3). In all the previous works, the EEDI follows from
the standard zero-average Poincaré inequality applied to the square roots of the
concentration functions, combined with their uniform L

1-bounds (in space-time);
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these bounds need to be proved a priori. This uniform L
1-bound is key to the proofs

of convergence to equilibrium in most of the works on this topic, (in fact, to our
knowledge, the only exception comes when there are no boundary equilibria [14])
and the constant ↵ from the EEDI (3) tends to vanish as the L

1-bound on the
solution blows up. We note that (2) is one of the two systems studied in [10],
and the authors use the uniform L

1-bound as available in the literature (for this
particular system). In [27] the authors carry out the proof in some detail (adapted
from a proof in [5]), and show that the properties of the Neumann Heat Kernel
involved in it hold for the discrete Neumann Heat Kernel as well; as a consequence,
one can emulate the proof in the continuous case to obtain uniform L

1 bounds for
the discretized problem. The main idea of the proof is a bootstrapping argument
in which the bounds obtained on a and b in terms of c (from the first two equations
of (2) we get at � ka�a  k2c and bt � kb�b  k2c) are fed into the inequality
ct � kc�c  k1ab (from the third equation of (2)) to yield an L

1 bound on c at
some time t � � > 0 in terms of a sublinear function of the bound at times t  �/2.
The success of this method relies on the right hand sides of the first two equations
of (2) being bounded above in the positive orthant by a constant multiple of c. It
therefore fails for systems where all complexes involve multiple species or multiple
occurrences of the same species (such as A+B⌦2C). These bounds are crucial to
the proof of consistency and, ultimately, convergence [27].

Our method to prove these uniform L
1 bounds seems confined to one-D, as it

uses the stronger form of Poincaré’s inequality on a bounded interval (where the
essential sup norm of a Sobolev function is bounded in terms of its average and the
L
1 norm of its Sobolev derivative). This leads to a uniform estimate (with respect

to t) of the L2 norm of the solutions in cylinders of type (t, t+1)⇥(0, 1), which, once
more using d = 1, leads to a uniform in time L

1 bound in the case where one of
the right hand side polynomials is bounded above by a quadratic polynomial. It is
an important improvement that we can deal with the quadratic case, since previous
results (when accessible boundary equilibria are present) only dealt with two species
reactions or, if at least three species are present, the right hand side of an equation
from the system is dominated by a first-degree polynomial [10], [11], [12], [13], [16]
etc.

1.2. The three-species system. A case not covered so far in the literature is A+
2B⌦B+C; this has accessible boundary equilibria in some (not all) stoichiometric
classes, translates to a 3⇥ 3 system (2⇥ 2 being, in general, easier to treat via the
standard maximum principle for the heat equation), and the right hand side is not
bounded above (in the positive orthant) by a linear term. More precisely, the PDE
system we are looking at is

8
>>>>>><

>>>>>>:

at � da�a = �k1ab
2 + k2bc

bt � db�b = �k1ab
2 + k2bc in ⌦⇥ (0,1)

ct � dc�c = k1ab
2 � k2bc

ra · ⌫ = rb · ⌫ = rc · ⌫ = 0 on @⌦⇥ (0,1)

a(·, 0) = a0, b(·, 0) = b0, c(·, 0) = c0 in ⌦,

(4)

where ⌫ is the (outward) normal vector to @⌦. We can, without loss of generality,
assume that k1 = k2 = 1. Indeed, note that upon changing to ã(x, t) = ↵a(x, ⌧t),
b̃(x, t) = ↵b(x, ⌧t), c̃(x, t) = ↵c(x, ⌧t) for ↵ = k1k

�1
2 and ⌧ = k1k

�2
2 we end up with

(4) satisfied by ã, b̃, c̃ with k1 = k2 = 1, dã = ⌧da, db̃ = ⌧db, dc̃ = ⌧dc and initial
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conditions ↵a0, ↵b0, ↵c0. We assume d = 1 and (possibly after an a�ne spatial
transformation, and without loss of generality) ⌦ = (0, 1). The restriction d = 1
is su�cient to obtain the uniform L

1 bound on the solution, which is crucial to
our analysis. We can (for the time being) only justify this uniform bound in the
d = 1 case; note that only the estimates in subsection 2.1 are predicated on this
restriction.

The conserved (in time) quantities here are ā+ c̄ and b̄+ c̄, where f̄ denotes the
average of the function f over ⌦. If b1 > 0 we obviously can only have a boundary
equilibrium at (0, b1, 0) (i.e. a1 = c1 = 0). The conservation of ā + c̄ forces
a ⌘ c ⌘ 0, the second equation of the system decouples into bt � dbbxx = 0, and
b1 = b̄0. This steady state cannot be approached from any initial state for which
ā0 + c̄0 > 0, so (0, b1, 0) is not an accessible boundary equilibrium. The other
nontrivial type of steady states is given by b1 = 0 and a1 + c1 = ā0 + c̄0 > 0. If
c1 = 0, we get b ⌘ c ⌘ 0 (from the conservation of b̄+ c̄); this is not an accessible
boundary equilibrium either, and no initial data in the positive orthant will yield
solutions which asymptotically converge to it. If, on the other hand, the initial data
is on the b-axis (i.e. a0 ⌘ c0 ⌘ 0), then it is easy to see that (a, b, c) will converge
exponentially to (0, b1, 0), where b1 = b̄0.

We are left with the accessible boundary equilibrium (a1, 0, c1) for a1c1 > 0.
We do not know how to prove that ā0b̄0c̄0 > 0 prevents convergence to such a steady
state, but in this paper we will prove a slightly weaker statement, namely:

Theorem 1.1. If a0, b0, c0 2 L
1(0, 1) are a.e. positive and such that b0 � �

a.e. in (0, 1) for some � > 0, then the (unique) global classical solution to (4)
converges asymptotically exponentially fast (at an explicit rate) to the unique positive

equilibrium in its stoichiometric class.

The above theorem will be proved in Section 2.

1.3. The two-species system. Finally, in Section 3 we prove similar results on
the convergence to the positive equilibrium for a two-species reversible reaction-
di↵usion network with accessible boundary equilibria:

m1A+ n1B⌦m2A+ n2B.

Assume m1, m2, n1, n2 are nonnegative integers and let m̄ := m1 � m2, n̄ :=
n2 � n1. The 2⇥ 2 reaction-di↵usion system is

8
>>><

>>>:

at � da�a = m̄(k2am2b
n2 � k1a

m1b
n1) in ⌦⇥ (0,1)

bt � db�b = n̄(k1am1b
n1 � k2a

m2b
n2) in ⌦⇥ (0,1)

ra · ⌫ = rb · ⌫ = 0 on @⌦⇥ (0,1)

a(·, 0) = a0, b(·, 0) = b0 in ⌦.

(5)

If m̄ 6= n̄ we can, as in the three species system, change to ã(x, t) = �a(x, ⌧t),
b̃(x, t) = �b(x, ⌧t) for � = (k1/k2)1/(m̄�n̄) and ⌧ = k1�

m1+n1�1. We end up with (5)
satisfied by ã, b̃ with k1 = k2 = 1 (da and db get multiplied by positive constants).
If m̄ = n̄ = 0 no rescaling is necessary, while for m̄ = n̄ 6= 0 we only rescale
ã(x, t) = �a(x, t) with � = (k1/k2)1/m̄ to get the system (5) with k1 = k2 = 1,
but where m̄ and n̄ are multiplied by two positive constants. Thus, it is enough to
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study the system

8
>>><

>>>:

at � da�a = �am̄(am2b
n2 � a

m1b
n1) in ⌦⇥ (0,1)

bt � db�b = �bn̄(am1b
n1 � a

m2b
n2) in ⌦⇥ (0,1)

ra · ⌫ = rb · ⌫ = 0 on @⌦⇥ (0,1)

a(·, 0) = a0, b(·, 0) = b0 in ⌦,

(6)

where �a, �b are positive constants.

Theorem 1.2. Let ⌦ be a bounded domain of Rd
with a smooth boundary, for some

integer d � 1. If m̄n̄ � 0 and 0 < ↵  a0(x), b0(x)  � < +1 for a.e. x in ⌦, then
the (unique) global classical solution to (6) converges asymptotically exponentially

(at an explicit rate) to the unique positive equilibrium in its stoichiometric class.

Remarks. (1) The reason for the restriction m̄n̄ � 0 is technical, as the estimates
that follow after the conservation law (42) in subsection 3.2 only hold under this
restriction.

(2) If initial data is on the b-axis (or, respectively, the a-axis), then the solution
(a, b) will converge exponentially to (0, b1) (or, respectively, to (a1, 0)). These
are the only two types of boundary equilibria in this case, and are both accessible.
Theorem 1.2 shows that if the initial condition is bounded away from zero and
infinity componentwise, then the solution will not decay to any such boundary
equilibrium.

2. Asymptotic decay for the three-species system. We consider the entropy
functional E(a, b, c) and the corresponding entropy dissipation (when computed
along solutions) D(a, b, c) = � d

dtE(a, b, c) associated to the system:

E(a, b, c) =

Z 1

0
a(ln a� 1)dx+

Z 1

0
b(ln b� 1)dx+

Z 1

0
c(ln c� 1)dx (7)

and

D(a, b, c) = 4da

Z 1

0
|@x

p
a|2dx+ 4db

Z 1

0
|@x

p
b|2dx+ 4dc

Z 1

0
|@x

p
c|2dx

+

Z 1

0
(ab2 � bc) ln

✓
ab

2

bc

◆
dx.

(8)

We would also like to record (for later use) the following conservation laws

Z 1

0
a(x, t)dx+

Z 1

0
c(x, t)dx =

Z 1

0
a0(x)dx+

Z 1

0
c0(x)dx =: M1,

Z 1

0
b(x, t)dx+

Z 1

0
c(x, t)dx =

Z 1

0
b0(x)dx+

Z 1

0
c0(x)dx =: M2,

(9)

for all t � 0. Note that these are simply obtained by adding equations 1 and 3
(respectively, 2 and 3) and integrating in space over [0, 1] by taking into account
the boundary conditions. Note also that M1 and M2 are finite as long as a0, b0, c0 2
L
1(0, 1).
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2.1. Local L2 estimate (a priori estimate).

Proposition 2.1. Let (a, b, c) be a solution for (4) with initial condition (a0, b0, c0)
such that a0 > 0, b0 > 0, c0 > 0 a.e. in [0, 1] and a0 ln a0, b0 ln b0, c0 ln c0 2 L

1(0, 1).
Then there exists a real constant C such that

kakL2([0,1]⇥[⌧,⌧+1]), kbkL2([0,1]⇥[⌧,⌧+1]), kckL2([0,1]⇥[⌧,⌧+1])  C

for any ⌧ > 0.

Proof. We start with the obvious inequality (which holds for all x 2 [0, 1], t > 0)

����
p
a(x, t)�

Z 1

0

p
a(y, t)dy

���� 
Z 1

0

��@y
p

a(y, t)
��dy,

then use Hölder’s inequality to get

a(x, t) 
✓Z 1

0

p
a(y, t)dy +

Z 1

0

��@y
p
a(y, t)

��dy
◆2

 2

✓Z 1

0

p
a(y, t)dy

◆2

+ 2

✓Z 1

0

��@y
p
a(y, t)

��dy
◆2

 2

Z 1

0
a(y, t)dy + 2

Z 1

0

��@y
p

a(y, t)
��2dy.

(10)

Obviously, the above inequalities also hold for b and c. Next we integrate the
entropy dissipation in time to obtain

E(a(t), b(t), c(t)) +

Z t

0
D(a(s), b(s), c(s))ds = E(a0, b0, c0),

where we have only displayed the dependence on time of the components of the
solution vector. Since the last integrand in right hand side of (8) is nonnegative,
we conclude

E(a(t), b(t), c(t)) + 4da

Z t

0

Z 1

0
|@x

p
a|2dxdt+ 4db

Z t

0

Z 1

0
|@x

p
b|2dxdt+

4dc

Z t

0

Z 1

0
|@x

p
c|2dxdt  E(a0, b0, c0).

(11)

Since x(lnx � 1) � �1 for all x � 0 (at x = 0 this holds in the limiting sense),
we get

4da

Z t

0

Z 1

0
|@x

p
a|2dxdt+ 4db

Z t

0

Z 1

0
|@x

p
b|2dxdt+ 4dc

Z t

0

Z 1

0
|@x

p
c|2dxdt

 E(a0, b0, c0) + 3,

which implies

k@x
p
ak2L2([0,1]⇥[0,t]) + k@x

p
bk2L2([0,1]⇥[0,t]) + k@x

p
ck2L2([0,1]⇥[0,t])

 E(a0, b0, c0) + 3

4d
:= C1
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for any t � 0, where d := min{da, db, dc}. Finally, we take into account (9) and (10)
to estimate

Z ⌧+1

⌧

Z 1

0
a
2
dxdt 

Z ⌧+1

⌧
ka(t)kL1[0,1]

✓Z 1

0
a(x, t)dx

◆
dt

 2M1

Z ⌧+1

⌧

✓Z 1

0
a(x, t)dx+

Z 1

0
|@x

p
a(x, t)|2dx

◆
dt

 2M1

Z ⌧+1

⌧

✓
M1 +

Z 1

0
|@x

p
a(x, t)|2dx

◆
dt  2M1

2 + 2M1C1 =: C

Similar inequalities hold for b and c, therefore we have finished the proof.

2.2. Uniform L
1 estimate. In this section we shall prove that a classical solution

to (4) is bounded uniformly in time (and therefore, it also exists for all time). To
achieve this, our goal is to place ourselves in the setting of Theorem 4.1 [19]. We
shall refrain from transcribing the assumptions (H1)–(H3) from [19] here, as they are
universally satisfied by CRDN systems with nonnegative and essentially bounded
initial conditions. On the other hand, assumption (H4’) is both specific to our
case and nontrivial to verify. We state it below, as it refers to a general semilinear
parabolic m⇥m system

ui,t � i�ui = fi(x, t, u), i = 1, ...,m, (12)

where x 2 ⌦, t > 0, u = (u1, ..., um). It reads:

There exist K1, K2 > 0, 1  p < 1, 1  r < 1 +


1� d

p(d+ 2)

�
2p

d+ 2
such that

for each 1  j  m there exist ↵j,k, 1  j  k with ↵j,j = 1 such that (13)

jX

k=1

↵j,kfj(x, t, v)  K1|v|r +K2 for all v in the positive orthant of Rm
.

The following result is a version of Theorem 4.1 [19] (see a sketch of proof in Ap-
pendix).

Theorem 2.2. Suppose the initial data uj,0 2 L
1(⌦), j = 1, ...,m, the generic

assumptions (H1)–(H3) from [19] hold. Further assume (13) holds for some 1 
p < 1 and

kukLp(⌦⇥(⌧,⌧+1);Rm)  M < 1 for all ⌧ � 0. (14)

Then

u 2 L
1(⌦⇥ [0,1);Rm). (15)

If we go back to (4) and denote by

u := (a, b, c), f := (�ab
2 + bc,�ab

2 + bc, ab
2 � bc)

we see that (13) is satisfied with ↵1,1 = 1, ↵2,1 = �1, ↵2,2 = 1, ↵3,1 = 0, ↵3,2 =
�1, ↵3,3 = 1, r = 2, K1 = k2/2, K2 = 0. Thus, if we can find 1  p < 1 such
that (14) and the first inequality in (13) (the one bounding r in terms of p) are
satisfied, we can apply Theorem 2.2 in order to obtain the uniform L

1 bound. But
Proposition 2.1 shows that p = 2 does the job.

The same reference [19], Theorem 3.1 (checked, along with the preceding Lemma
3.1, to apply to bounded domains and Neumann BC) guarantees that the solution
is classical, unique and nonnegative. Therefore, we have proved:
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Theorem 2.3. Let a0, b0, c0 2 L
1(0, 1) such that a0 > 0, b0 > 0, c0 > 0 a.e. in

(0, 1) and a0 ln a0, b0 ln b0, c0 ln c0 2 L
1(0, 1). Then a unique classical solution to the

system (4) exists for all time. Furthermore, the solution is uniformly (with respect

to time) bounded in L
1(0, 1), with bounds depending in a bounded way on the L

1

norms of the initial data.

Remark 1. If we approximate the initial data in L
2(0, 1) by BC compatible initial

a0,n, b0,n, c0,n which are uniformly bounded in L
1(0, 1) by, say, ⌘ := 2[ka0k1 +

kb0k1 + kc0k1], then we can easily get the bound

kan(·, t)� a(·, t)k22 + kbn(·, t)� b(·, t)k22 + kcn(·, t)� c(·, t)k22

 e
Ct
⇥
ka0,n � a0k22 + kb0,n � b0k22 + kc0,n � c0k22

⇤

for all t � 0, where C = C(⌘) > 0 is a finite constant. It follows that for any t � 0,
an(t, ·) converges in L

2(0, 1) to a(t, ·) (and likewise for b and c). Furthermore, note
that if b0 is bounded below by 2� > 0, then the approximations b0,n above may also
be chosen to satisfy the extra condition b0,n � � for all n. Via L

1 renormalization
the approximations may also be chosen such that the approximating problem has
the same complex-balanced equilibrium as the original one.

In the next subsection we use the Log-Sobolev and the Csizar-Kullback-Pinsker
inequalities to first prove an entropy-entropy dissipation inequality which guarantees
that the solution to (4) decays asymptotically to the complex balanced equilibrium
at an explicit algebraic rate.

2.3. L
1 convergence. In view of Remark 1 we may assume a0, b0, c0 to be smooth,

positive on [0, 1] and to satisfy the compatibility conditions (i.e. they have zero
derivatives at the boundary). Indeed, if we replace the initial data with approxima-
tions as in Remark 1, then all the decay constants appearing below may be chosen
independent of n. Further assume � = k 1

b0
kL1[0,1] < 1; because the classical so-

lution is continuous on the cylinder [0,1) ⇥ [0, 1], there exists t1 > 0 such that
k 1
b(·,t)kL1[0,1] < 10� for all t 2 [0, t1]. We next divide the second equation in (4) by

�b
2 and use the uniform (in time) L1 boundedness of a to get

@t

✓
1

b

◆
� db�

✓
1

b

◆
=

ab
2

b2
� bc

b2
� 2db

|rb|2

b3
 a  k.

Using the maximum principle for the heat equation, we have that, for all t 2
[0, t1], ����

1

b(·, t)

����
L1[0,1]


����
1

b0

����
L1[0,1]

+ kt = � + kt.

We can iterate this inequality in time to get

b̃(t) := inf
x2[0,1]

b(x, t) � (� + kt)�1 (16)

for all t > 0. Therefore, we now have an estimate on how fast b can decay to zero.
There exists a unique equilibrium with all positive components for (4) and by

(4) and (9) we see that it is given by v1 := (a1, b1, c1), where its components are
uniquely determined by

a1b1 = c1, a1 + c1 = M1, b1 + c1 = M2. (17)
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Now we introduce the relative entropy

E(a, b, c|a1, b1, c1) =

Z

[0,1]

✓
a ln

a

a1
� a+ a1

◆
dx+

Z

[0,1]

✓
b ln

b

b1
� b+ b1

◆
dx

+

Z

[0,1]

✓
c ln

c

c1
� c+ c1

◆
dx

(18)

and its corresponding entropy dissipation

D(a, b, c|a1, b1, c1) = da

Z

[0,1]

|ra|2

a
dx+ db

Z

[0,1]

|rb|2

b
dx+ dc

Z

[0,1]

|rc|2

c
dx

+ a1b
2
1

Z

[0,1]

 

✓
ab

2

a1b21
;

bc

b1c1

◆
dx+ b1c1

Z

[0,1]

 

✓
bc

b1c1
;

ab
2

a1b21

◆
dx,

(19)

where

 (x; y) = x ln

✓
x

y

◆
� x+ y. (20)

At this point we introduce the notation

f̄ :=

Z

[0,1]

f(x)dx for all essentially non-negative f 2 L
1(0, 1).

On the basis of the following identity
Z

[0,1]

✓
a ln

a

a1
� a+ a1

◆
dx =

Z

[0,1]

✓
a ln

a

a
� a+ a

◆
dx+

Z

[0,1]

✓
a ln

a

a1
� a+ a1

◆
dx,

we get

E(a, b, c|a1, b1, c1) = E(a, b, c|a, b, c) + E(a, b, c|a1, b1, c1). (21)

The Logarithmic Sobolev Inequality
Z

[0,1]

|rf |2

f
dx � CLSI

Z

[0,1]

f ln
f

f
dx, (22)

(where CLSI only depends on the domain [0, 1]) yields

da

Z

[0,1]

|ra|2

a
dx+ db

Z

[0,1]

|rb|2

b
dx+ dc

Z

[0,1]

|rc|2

c
dx � C2E(a, b, c|a, b, c) (23)

for an explicit constant C2 = min{da, db, dc} ·CLSI . Next, we define two integrand
functions:

S1(a, b, c) :=

✓
a ln

a

a1
� a+ a1

◆
+

✓
b ln

b

b1
� b+ b1

◆
+

✓
c ln

c

c1
� c+ c1

◆
,

S2(a, b, c) :=  

✓
ab

a1b1
;
c

c1

◆
+ 

✓
c

c1
;

ab

a1b1

◆
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and set S(a, b, c) := S1(a, b, c) + S2(a, b, c). From (19), (21), (23) and (16) we get

D(a, b, c|a1, b1, c1) � C2E(a, b, c|a, b, c)

+ a1b
2
1

Z

[0,1]

 

✓
ab

2

a1b21
;

bc

b1c1

◆
dx+ b1c1

Z

[0,1]

 

✓
bc

b1c1
;

ab
2

a1b21

◆
dx

� C2

⇥
E(a, b, c|a1, b1, c1)� E(a, b, c|a1, b1, c1)

⇤

+ a1b1b̃(t)

Z

[0,1]

 

✓
ab

a1b1
;
c

c1

◆
dx+ c1b̃(t)

Z

[0,1]

 

✓
c

c1
;

ab

a1b1

◆
dx

� C2

Z

[0,1]

S1(a, b, c)dx� C2

Z

[0,1]

S1(a, b, c)dx

+ (� + kt)�1


a1b1

Z

[0,1]

 

✓
ab

a1b1
;
c

c1

◆
dx+ c1

Z

[0,1]

 

✓
c

c1
;

ab

a1b1

◆
dx

�

� C3(t)

⇢ Z

[0,1]

⇥
S1(a, b, c) + S2(a, b, c)

⇤
dx� S1(a, b, c)

�

� C3(t)
⇥
Ŝ(a, b, c)� S1(a, b, c)

⇤
,

(24)

where

C3(t) := (� + kt)�1 min{�C2, a1b1, c1}
and Ŝ is the convexification of S, i.e. the supremum of all a�ne functions below S.
The last inequality above holds due to Jensen’s inequality and the unit volume of
the spatial domain.

We next define the compatible class:

CM1,M2 :=
�
v = (x, y, z) 2 R3

�0 : x+ z = M1, y + z = M2,

E(x, y, z|a1, b1, c1)  E(a0, b0, c0|a1, b1, c1)
 
.

In this class, the first two conditions are related to the conservation laws (9) while
the last one follows from the decreasing relative entropy. Since we know Ŝ =
\S1 + S2 � Ŝ1 + Ŝ2, S1 is convex and S2 is non-negative, we have

(Ŝ � S1)(v) � (Ŝ1 + Ŝ2 � S1)(v) � Ŝ2(v) � 0. (25)

Furthermore, it is not hard to verify that

v 2 CM1,M2 & S2(v) = 0 if and only if v = (a1, b1, c1). (26)

It follows

Ŝ2(v) = 0 if and only if v = (a1, b1, c1).

Let

C4 := inf
v2CM1,M2

(Ŝ � S1)(v)

E(v|a1, b1, c1)
.

By (25) and (26) we get C4 can only be zero if there exists a sequence {vn}n ⇢
CM1,M2 such that vn ! (a1, b1, c1) as n ! 1. This means

lim inf
v2CM1,M2 ,v!v1

(Ŝ � S1)(v)

E(v|a1, b1, c1)
> 0 implies C4 > 0.
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In order to show that the above limit inferior is positive we use the following
lemma [25]:

Lemma 2.4. There exists � > 0 such that for all v 2 B(v1, �) (ball centered at v1
and of radius delta) S(v) is locally convex in this ball.

In particular, we get that Ŝ ⌘ S in the ball centered at (a1, b1, c1) with radius
�. Let us now define

D2(v) := a1b
2
1 

✓
ab

2

a1b21
;

bc

b1c1

◆
+ b1c1 

✓
bc

b1c1
;

ab
2

a1b21

◆

and consider the Taylor expansion of

D2(v)

E(v|a1, b1, c1)

around the unique positive equilibrium (a1, b1, c1). Since a1b1 = c1, we have
D2(a1, b1, c1) = rD2(a1, b1, c1) = 0 and quadratic term in the expansion is

D2(v) = 2


�(v1 � a1)

a1
+

�(v2 � b1)

b1
+

(v3 � c1)

c1

�2
.

Thus,

lim inf
v2CM1,M2 ,v!v1

D2(v)

E(v|a1, b1, c1)
= inf

v2CM1,M2

2
⇥�(x�a1)

a1
+ �(y�b1)

b1
+ (z�c1)

c1

⇤2

(x�a1)2

a1
+ (y�b1)2

b1
+ (z�c1)2

c1

Since v 2 CM1,M2 (which means x+ z = a1 + c1, y + z = b1 + c1), we get

�(x� a1) = �(y � b1) = z � c1,

Then

inf
v2CM1,M2

2
⇥�(x�a1)

a1
+ �(y�b1)

b1
+ (z�c1)

c1

⇤2

(x�a1)2

a1
+ (y�b1)2

b1
+ (z�c1)2

c1

= 2

✓
1

a1
+

1

b1
+

1

c1

◆
> 0.

Also notice (by direct computation and using that c1 = a1b1) the identity
D2(v) = bc1S2(v), which implies (in view of the above inequality)

lim inf
v2CM1,M2 ,v!v1

S2(v)

E(v|a1, b1, c1)
> 0.

Combining the above two steps, we have

lim inf
v2CM1,M2 ,v!v1

(Ŝ � S1)(v)

E(v|a1, b1, c1)

= lim inf
v2CM1,M2 ,v!v1

S2(v)

E(v|a1, b1, c1)
> 0.

Therefore, in light of (24), we obtain

D(a, b, c|a1, b1, c1) � C3(t)C4E(a, b, c|a1, b1, c1)

so,
D(a, b, c|a1, b1, c1) � C5(� + kt)�1

E(a, b, c|a1, b1, c1),

where C5 = min{1, C4} ⇥min{�C2, a1b
2
1, b1c1}. Then Gronwall’s lemma yields

E(a, b, c|a1, b1, c1)  E(a0, b0, c0|a1, b1, c1)(� + kt)
�C5

k

for all t > 0.
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Now we need the following lemma [4]:

Lemma 2.5. For all non-negative and measurable functions a, b, c : [0, 1] ! R andR 1
0 (a + c) = M1,

R 1
0 (b + c) = M2. Then there exists a constant CK > 0 depending

boundedly only on M1,M2 such that:

E(a, b, c|a1, b1, c1) � CK(ka� a1k21 + kb� b1k21 + kc� c1k21)

Therefore, we get

ka(·, t)� a1k21 + kb(·, t)� b1k21 + kc(·, t)� c1k21  C6(� + kt)
�C5

k for all t � 0,

where C6 = E(a0,b0,c0|a1,b1,c1)
CK

.
The above inequality shows that the solution stays away from the boundary

equilibrium; in fact, its converges to the unique positive equilibrium in the L
1

norm. In order to show that the convergence rate is, in fact, exponential, we use
the above inequality to conclude that there exists a time

T✏ := max

⇢
1,

1

k

✓
2

min{a1, b1, c1}

◆2k/C5

� �

k

�

such that

|a(t)k1, kb(t)k1, kc(t)k1 > ✏
2 := min{a1, b1, c1}/2 > 0 for all t > T✏. (27)

We pause here briefly to comment on the fact that T✏ can also be taken independent
of n if the initial data is as in Theorem 2.3 and is approximated as indicated in
Remark 1. Thus, in view of Remark 1, we drop here the extra assumptions we
made on the initial data in the beginning of this subsection.

2.4. Entropy entropy-dissipation estimate. In what follows we use the lower
bound on the total mass of each species for t � T✏ to improve the algebraic rate to
an explicit exponential decay rate. The Poincaré inequality for the square roots of
the densities minus their averages, along with a few important algebraic inequalities
proved in the Appendix and (27) help us obtain an EEDI of the type D(t) � cE(t),
where c is a positive real number (independent of time). Most of the algebraic
intricacies involved are due to the special algebraic coupling of the equations of the
system.

By using the inequality (45), Appendix, we obtain

D(a, b, c|a1, b1, c1) = da

Z

[0,1]

|ra|2

a
dx+ db

Z

[0,1]

|rb|2

b
dx+ dc

Z

[0,1]

|rc|2

c
dx

+ a1b
2
1

Z

[0,1]

 

✓
ab

2

a1b21
;

bc

b1c1

◆
dx+ b1c1

Z

[0,1]

 

✓
bc

b1c1
;

ab
2

a1b21

◆
dx

� 4dakr
p
ak22 + 4dbkr

p
bk22 + 4dckr

p
ck22

+ a1b
2
1

����

s
ab2

a1b21
�
r

bc

b1c1

����
2

2

+ b1c1

����

r
bc

b1c1
�

s
ab2

a1b21

����
2

2

� C7

✓
kr

p
ak22 + kr

p
bk22 + kr

p
ck22 +

����

s
ab2

a1b21
�
r

bc

b1c1

����
2

2

◆
,

(28)

where C7 := min(4da, 4db, 4dc, a1b
2
1+ b1c1). Due to (9), we have M := max(M1,

M2) such that a(t), b(t), c(t) < M for all t � 0. In what follows we drop the
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dependence on t from the notation; each time we write a or the likes we mean the
spatial average of a(t) = a(·, t). Due to (47), we see that

 (x, y)   (M, y)

(
p
M �p

y)2
(
p
x�p

y)2 for all x  M.

Since 0 < a1, b1, c1 < M , we have

E(a, b, c|a1, b1, c1) =

✓
a ln

a

a1
� a+ a1

◆
+

✓
b ln

b

b1
� b+ b1

◆

+

✓
c ln

c

c1
� c+ c1

◆
<

 (M,a1)

(
p
M �p

a1)2
(
p
a�

p
a1)2

+
 (M, b1)

(
p
M �

p
b1)2

(
p
b�

p
b1)2 +

 (M, c1)

(
p
M �p

c1)2
(
p
c�

p
c1)2

 C8

⇥
(
p
a�

p
a1)2 + (

p
b�

p
b1)2 + (

p
c�

p
c1)2

⇤
,

(29)

where

C8 := max

⇢
 (M,a1)

(
p
M �p

a1)2
,

 (M, b1)

(
p
M �

p
b1)2

,
 (M, c1)

(
p
M �p

c1)2

�
.

Next we claim that there exists a real constant C9 such that

kr
p
ak22 + kr

p
bk22 + kr

p
ck22 +

����

s
ab2

a1b21
�
r

bc

b1c1

����
2

2

> C9


kr

p
ak22 + kr

p
bk22 + kr

p
ck22 +

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2�
.

(30)

In order to get the above estimate, we introduce the deviations from the mean,

i.e. �a =
p
a�

p
a, �b =

p
b�

p
b, �c =

p
c�

p
c. Now we make the decomposition

[0, 1] = DL [D
{
L,

where DL = {x 2 [0, 1] : |�a|, |�b|, |�c|  L} for a fixed constant L. We expand

p
ab2 =

�p
a+ �a

��p
b+ �b

�2
=

p
a

p
b

2

+
⇥
�a

�p
b+ �b

�2
+
p
a
�
2
p
b�b + �

2
b

�⇤

and

p
bc =

�p
b+ �b

��p
c+ �c

�
=

p
b
p
c+

⇥
�b
p
c+ �c

�p
b+ �b

�⇤

to see that on the set DL one has

�a

�p
b+ �b

�2
+
p
a
�
2
p
b�b + �

2
b

�

 (|�a|+ |�b|)
⇥�p

M2 + L
�2

+
p

M1

�
2
p
M2 + L

�⇤
= (|�a|+ |�b|)R1

and

�b
p
c+ �c

�p
b+ �b

�

 (|�b|+ |�c|)
⇥p

M2 + (
p
M2 + L)

⇤
= (|�b|+ |�c|)R2,
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where R1 :=
�p

M2+L
�2

+
p
M1

�
2
p
M2+L

�
and R2 :=

p
M2+

�p
M2+L

�
. Thus,

����

s
ab2

a1b21
�
r

bc

b1c1

����
2

L2(DL)

=

����

p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

+
[�a(

p
b+ �b)2 +

p
a(2

p
b�b + �

2
b )]p

a1b21
� [�b

p
c+ �c(

p
b+ �b)]p

b1c1

����
2

L2(DL)

� 1

2

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

|DL| � 2
��|�a|+ |�b|

��2
L2(DL)

R
2
1

a1b21

� 2
��|�b|+ |�c|

��2
L2(DL)

R
2
2

b1c1

� 1

2

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

|DL| �R(M1,M2, L)
⇥
k�ak2L2(DL)+

k�bk2L2(DL) + k�ck2L2(DL)

⇤
,

(31)

where R(M1,M2, L) :=
4R2

1
a1b21

+ 4R2
2

b1c1
.

On the set D{
L, by using Poincaré’s inequality, we get

kr
p
ak22 + kr

p
bk22 + kr

p
ck22

� CP (k�ak2L2(D{
L)

+ k�bk2L2(D{
L)

+ k�ck2L2(D{
L)
)

� CPL
2|D{

L|.
Since

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2


✓p

M1
p
M2

2

p
a1b21

+

p
M2

p
M2p

b1c1

◆2

,

we infer

kr
p
ak22 + kr

p
bk22 + kr

p
ck22 � R̃

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

|D{
L|, (32)

where

R̃ :=
CPL

2

✓p
M1

p
M2

2p
a1b21

+
p
M2

p
M2p

b1c1

◆2 .

Pick K >
R+1

min{1,CP } and combine (31) and (32) to conclude

3K
�
kr

p
ak22 + kr

p
bk22 + kr

p
ck22

�
+

����

s
ab2

a1b21
�
r

bc

b1c1

����
2

2

� K
�
kr

p
ak22 + kr

p
bk22 + kr

p
ck22

�
+KR̃

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

|D{
L| +

⇢
1

2

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

|DL| �R
�
k�ak2L2(DL) + k�bk2L2(DL) + k�ck2L2(DL)

��

+K
�
k�ak2L2(DL) + k�bk2L2(DL) + k�ck2L2(DL)

�
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� K
�
kr

p
ak22 + kr

p
bk22 + kr

p
ck22

�
+min

⇢
KR̃,

1

2

�✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

+ (KCP �R)
�
k�ak2L2(DL) + k�bk2L2(DL) + k�ck2L2(DL)

�

� CK,R


kr

p
ak22 + kr

p
bk22 + kr

p
ck22 +

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2�
.

where CK,R = min
�
K,KR̃,

1
2 ,KCP � R

 
= min

�
KR̃,

1
2

 
(because K � R > 1).

Therefore, (30) is proved with C9 = CK,R

3K .

It remains to show that there exists a constant C10 such that

kr
p
ak22 + kr

p
bk22 + kr

p
ck22 +

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

�

C10

⇥�p
a�

p
a1

�2
+
�p

b�
p
b1

�2
+
�p

c�
p
c1

�2⇤
.

(33)

To this end, we introduce µa, µb, µc to parameterize
p
a,

p
b,
p
c with

p
a =

p
a1(1+

µa),
p
b =

p
b1(1 + µb),

p
c =

p
c1(1 + µc), where �1  µa, µb, µc < µk for µk =p

k
min{pa1,

p
b1,

p
c1} � 1. Since �a =

p
a�

p
a, we have

k�ak22 = a� (
p
a)2 = (

p
a�

p
a)(

p
a+

p
a)

=)
p
a = � k�ak22p

a+
p
a

+
p
a =

p
a� T (a)k�ak22,

where T (a) = 1p
a+

p
a
 1

✏ ; this inequality follows from a = kak1 > ✏
2
> 0. Simi-

larly,
p
b =

p
b� T (b)k�bk22 &

p
c =

p
c� T (c)k�ck22,

where T (b) = 1p
b+

p
b
, T (c) = 1p

c+
p
c
 1

✏ . And since

✏
2
< kbk1  k

p
bk1k

p
bk1 

p
kk

p
bk1 =)

p
b � ✏

2

p
k
,

due to this lower bound on
p
b, we can factor out (

p
bp

b1
)2 and reduce (4) to the

system associated with the reversible reaction A + B⌦C (which does not have
accessible boundary equilibria). More precisely, we have

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

=

�p
b
�2

b1

✓ p
a
p
bp

a1b1
�

p
c

p
c1

◆2

� ✏
4

b1k

⇢
(
p
a� T (a)k�ak22)(

p
b� T (b)k�bk22)p

a1b1
�

p
c� T (c)k�ck22p

c1

�2

=
✏
4

b1k

⇢
[1 + µa �

T (a)k�ak22p
a1

][1 + µb �
T (b)k�bk22p

b1
]� [1 + µc �

T (c)k�ck22p
c1

]

�2

(34)
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=
✏
4

b1k

⇢
[(1 + µa)(1 + µb)� (1 + µc)] +

T (a)k�ak22T (b)k�bk22p
a1

+
T (c)k�ck22p

c1

� T (a)k�ak22p
a1

(1 + µb)�
T (b)k�bk22p

b1
(1 + µa)

�2

� ✏
4

b1k

⇢
1

2
[(1 + µa)(1 + µb)� (1 + µc)]

2 �

T (a)k�ak22T (b)k�bk22p

a1
+

T (c)k�ck22p
c1

� T (a)k�ak22p
a1

(1 + µb)�
T (b)k�bk22p

b1
(1 + µa)

�2�

� ✏
4

b1k

⇢
1

2

⇥
(1 + µa)(1 + µb)� (1 + µc)

⇤2 � 4


T (a)k�ak22T (b)k�bk22p

a1

�2

� 4


T (c)k�ck22p

c1

�2
� 4


T (a)k�ak22p

a1
(1 + µb)

�2
� 4


T (b)k�bk22p

b1
(1 + µa)

�2�
.

Since k�ak22 = a �
�p

a
�2
, we get k�ak22  k; similarly, k�bk22, k�ck22  k. Combined

with T (a), T (b), T (c)  1
✏ and 0  1 + µa, 1 + µb, 1 + µc  1 + µk, (34) gives

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

� ✏
4

b1k

⇢
1

2

⇥
(1 + µa)(1 + µb)� (1 + µc)

⇤2

� 4k3

✏4a1
k�ak22 �

4k

✏2c1
k�ck22 �

4k(1 + µk)2

✏2a1
k�ak22 �

4k(1 + µk)2

✏2b1
k�bk22

�

� ✏
4

2b1k

⇥
(1 + µa)(1 + µb)� (1 + µc)

⇤2 � C11

�
k�ak22 + k�bk22 + k�ck22

�
,

where

C11 := max

⇢
4k2 + 4(1 + µk)2

a1b1
,
4(1 + µk)2

b21
,
4(1 + µk)2

b1c1

�
.

Poincaré’s inequality reveals

kr
p
ak22 + kr

p
bk22 + kr

p
ck22 +

✓ p
a
p
b

2

p
a1b21

�
p
b
p
cp

b1c1

◆2

� C12

⇥
(1 + µa)(1 + µb)� (1 + µc)

⇤2
,

for C12 := CP ✏4

2b1kC11
. On the other hand,

(
p
a�

p
a1)2 + (

p
b�

p
b1)2 + (

p
c�

p
c1)2 = a1µ

2
a + b1µ

2
b + c1µ

2
c ,

so we would like to compare [(1 + µa)(1 + µb)� (1 + µc)]2 and µ
2
a + µ

2
b + µ

2
c . The

conservation laws (9) (applied to a, b, c and a1, b1, c1) yield

a

a1
= (1 + µa),

b

b1
= (1 + µb),

c

c1
= (1 + µc),

a+ c = a1 + c1 = M1, b+ c = b1 + c1 = M2,

and so, a1µa + c1µc = b1µb + c1µc = 0. Thus, unless µa, µb, µc are all zero
(trivial case!), we get µaµc < 0 and µbµc < 0. If µa, µb > 0 and 0 > µc, then

[(1 + µa)(1 + µb)� (1 + µc)]
2 = (µaµb + µa + µb � µc)

2

� (µaµb + µa + µb)
2 + (µc)

2
> µ

2
a + µ

2
b + µ

2
c .
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Otherwise, if µa, µb < 0 and 0 < µc, then

[(1 + µa)(1 + µb)� (1 + µc)]
2 = (µaµb + µa + µb � µc)

2

� (µa + µb � µc)
2 + (µaµb)

2
> µ

2
a + µ

2
b + µ

2
c .

Therefore, in both cases we have

[(1 + µa)(1 + µb)� (1 + µc)]
2 � µ

2
a + µ

2
b + µ

2
c .

(Notice that when µa = µb = µc = 0, both sides of the inequality are equal to zero.)
Set

C10 :=
C12

max(a1, b1, c1)
to conclude the proof of (33).

Proof of Theorem 1.1:

Proof. Finally, by (28), (29), (30) and (33), we obtain

D(a, b, c|a1, b1, c1)

� C7C9C10

⇥�p
a�

p
a1

�2
+
�p

b�
p
b1

�2
+
�p

c�
p
c1

�2⇤

� C7C9C10

C8
E(a, b, c|a1, b1, c1).

In view of the above inequality and (23), we discover

D(a, b, c|a1, b1, c1) � C13E(a, b, c|a1, b1, c1),

where

C13 := min

✓
C7C9C10

C8
, C2

◆
.

In conclusion, we have proved that the solution decays exponentially to the pos-
itive equilibrium (with explicit rate).

3. Asymptotic decay for the two-species system. In this section we prove
Theorem 1.2.

3.1. Uniform boundedness and global existence for the two-species sys-
tem. To show the uniform boundedness for classical solutions to (6) we employ an
invariant region approach. Note that here we do not need the assumptions from
Theorem 1.2 on the signs of m̄ and n̄.

Theorem 3.1. Let f denote the two-dimensional mass-action vector field generated

by the single reversible reaction m1A + n1B
k1⌦
k2

m2A + n2B, where m̄ = m1 �m2

and n̄ = n2 � n1 are nonzero. Then, for any compact set K ⇢ R2
>0 there exists a

rectangle R = [↵1, ↵2]⇥ [�1, �2] ⇢ R2
>0 such that K ⇢ R and such that f points into

the interior of R on @R.

Proof. With the notation we have already introduced, a, b denote the concentra-
tions of A and B, and m̄ = m1�m2, n̄ = n2�n1. The corresponding ODE system
reads ✓

ȧ

ḃ

◆
= (k1a

m1b
n1 � k2a

m2b
n2)

✓
��am̄
�bn̄

◆
,

so positive trajectories are confined to stoichiometric classes (p+span(��am̄, �bn̄)t)
\R2

>0 (see Figure 1). The positive steady state manifold is the curve a�m̄
b
n̄ = k1/k2,
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a.
a

b

b.
a

b

Figure 1. Construction of a rectangular invariant region for the
reversible reaction m1A + n1B ⌦ m2A + n2B for the cases a.
m̄ = m1 �m2, n̄ = n2 � n1 nonzero and of the same sign; b. m̄, n̄

nonzero and of di↵erent signs.

and it is easily checked that it intersects each stoichiometric class intersects at
precisely one point. It is also easy to see that the unique steady state in each
stoichiometric class is globally asymptotically stable on that class. It follows that
a rectangular region R ⇢ R2

>0 is invariant if and only if it contains the steady state
on each stoichiometric class that intersects R. If m̄n̄ 6= 0 this can be achieved by
choosing opposite vertices of R on the steady state curve (Figure 1a, b.).

Now we use a less general (tailored to our needs) version of Corollary 14.8
from [33].

Theorem 3.2. Suppose that D is a k ⇥ k nonnegative definite diagonal matrix.

Then any region of the form (invariant rectangle)

⌃ =
k\

i=1

{u : ai  ui  bi}

is invariant for the k ⇥ k reaction-di↵usion system

vt = Dvxx + f(v, t)

provided that f points strictly into ⌃ on @⌃.

(1) By using the above two theorems we immediately conclude that if m̄n̄ 6= 0,
then the reaction-di↵usion system (6) shares the same invariant regions with the
corresponding reaction system. Thus, under the restrictions on a0 and b0 from the
statement of Theorem 1.2, we get a uniform upper bound 0 < ! < 1 for a and b;
this also implies the existence of a unique global classical solution.

(2) If m̄ = n̄ = 0, then we are dealing with two decoupled homogeneous Neumann
heat problems on the same domain. It is known that the lower and upper bounds
on a0, b0 are preserved for all time. Both densities converge exponentially to the
averages of the initial data.

(3) If only one of m̄, n̄ is zero, say m̄ = 0, then the equation for a decouples and,
as above, we have that a stays bounded globally in time between inf a0 and sup a0,
and it converges exponentially to the average of a0. The equation for b becomes

bt � db�b = �b|n̄|am1b
p
�
1� b

|n̄|�
,

where p := min{n1, n2}. The positive equilibrium is b1 ⌘ 1. Now we use Theorem
3.2 with k = 1 and f(b, t) := �b|n̄|am1b

p
�
1 � b

|n̄|�; since a is bounded uniformly
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away from zero and infinity, we conclude that at the boundary of any interval [�,M ],
(where 0 < � < 1 < M < 1) f does, indeed, point strictly inside said interval.

In conclusion, if a0, b0 are bounded away from zero by ↵ and from infinity by �
(as in the statement of Theorem 1.2) we get explicit (depending only on ↵ and �)
global bounds (and global existence and uniqueness) on a, b in all cases. Let these
bounds be ✏2, !, so that

0 < ✏
2  min{a(x, t), b(x, t)}  max{a(x, t), b(x, t)}

 ! < 1 for all (x, t) 2 ⌦⇥ [0,1).
(35)

3.2. Convergence for the two-species system. We use the same entropy en-
tropy dissipation method to obtain an explicit exponential convergence rate for the
two species system in any dimension. Once again, the Log-Sobolev inequality, the
Poincaré inequality for the square roots of the densities minus their averages, along
with a few important algebraic inequalities proved in the Appendix help us obtain
an EEDI of the type D(t) � cE(t), where c is a positive real number (independent
of time). Again we introduce the relative entropy

E(a, b|a1, b1) =

Z

⌦

✓
a ln

a

a1
� a+ a1

◆
dx+

Z

⌦

✓
b ln

b

b1
� b+ b1

◆
dx

and its corresponding entropy dissipation

D(a, b|a1, b1) = da

Z

⌦

|ra|2

a
dx+ db

Z

⌦

|rb|2

b
dx

+ a
m1
1 b

n1
1

Z

⌦
 

✓
a
m1b

n1

a
m11 b

n11
;
a
m2b

n2

a
m21 b

n21

◆
dx+ a

m2
1 b

n2
1

Z

⌦
 

✓
a
m2b

n2

a
m21 b

n21
;
a
m1b

n1

a
m11 b

n11

◆
dx.

Due to the following identity

E(a, b|a1, b1) = E(a, b|a, b) + E(a, b|a1, b1)

and the Logarithmic Sobolev Inequality (22) we have

da

Z

⌦

|ra|2

a
dx+ db

Z

⌦

|rb|2

b
dx � D1E(a, b|a, b), (36)

where D1 = min(da, db) · CLSI .
From inequality (45) we get the following estimate

D(a, b|a1, b1) = da

Z

⌦

|ra|2

a
dx+ db

Z

⌦

|rb|2

b
dx

+ a
m1
1 b

n1
1

Z

⌦
 

✓
a
m1b

n1

a
m11 b

n11
;
a
m2b

n2

a
m21 b

n21

◆
dx+ a

m2
1 b

n2
1

Z

⌦
 

✓
a
m2b

n2

a
m21 b

n21
;
a
m1b

n1

a
m11 b

n11

◆
dx

� 4dakr
p
ak22 + 4dbkr

p
bk22 + 4dckr

p
ck22

+ a
m1
1 b

n1
1

����

r
am1bn1

a
m11 b

n11
�
r

am2bn2

a
m21 b

n21

����
2

2

+ a
m2
1 b

n2
1

����

r
am2bn2

a
m21 b

n21
�
r

am1bn1

a
m11 b

n11

����
2

2

� D2

✓
kr

p
ak22 + kr

p
bk22 + kr

p
ck22 +

����

r
am1bn1

a
m11 b

n11
�
r

am2bn2

a
m21 b

n21

����
2

2

◆
,

(37)

where D2 = min(4da, 4db, 4dc, am1
1 b

n1
1 + a

m2
1 b

n2
1 ).
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The global L1 bounds on a and b ensure that there exists N such that a, b < N .
Thus, (47) (see Appendix) yields

 (x, y)   (N, y)

(
p
N �p

y)2
(
p
x�p

y)2 for all x  N.

Since 0 < a1, b1 < N ,

E(a, b|a1, b1) =

✓
a ln

a

a1
� a+ a1

◆
+

✓
b ln

b

b1
� b+ b1

◆

<
 (N, a1)

(
p
N �p

a1)2
(
p
a�

p
a1)2 +

 (N, b1)

(
p
N �

p
b1)2

(
p
b�

p
b1)2

 D3

⇥�p
a�

p
a1

�2
+
�p

b�
p
b1

�2⇤
,

(38)

where

D3 = max

⇢
 (N, a1)

(
p
N �p

a1)2
,

 (N, b1)

(
p
N �

p
b1)2

�
.

Now we claim there exists a constant D4 > 0 such that

kr
p
ak22 + kr

p
bk22 +

����

r
am1bn1
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(39)

Now we again introduce the deviations �a =
p
a �

p
a, �b =

p
b �

p
b and make

the decomposition

⌦ = DL [D
{
L,

where DL := {x 2 ⌦ : | �a|, |�b|  L} with a fixed constant L. On the set DL we
get

p
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where R1 and R2 are finite due to the boundedness of |�a|, |�b|,
p
a,
p
b. Then we

get
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where R(|�a|, |�b|,
p
a,
p
b) = 4R2

1

a
m11 b

n11
+ 4R2

2

a
m21 b

n21
is finite (depends on the choice of L

and N).
On the set D{

L, by using Poincaré’s inequality, we get
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we infer
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We combine the above two parts, pick K >
R+1

min{1,CP } and have the following
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where CK,R := min{KR̃,
1
2}. We can fix L > 0 and get the corresponding R, then

pick su�ciently large K (e.g. K > R+1) such that we obtain (39) with D4 = CK,R

3K .
It remains to show that there exists a constant D5 such that
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We again introduce µa, µb to parameterize
p
a,

p
b with

p
a =

p
a1(1 + µa),

p
b =

p
b1(1 + µb), (41)

where, in view of (35), we have µ✏  µa, µb < µ! with µ✏ =
✏

max{pa1,
p
b1} � 1 and

µ! =
p
!

min{pa1,
p
b1} � 1. We have

p
a = � k�ak2

2p
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a� T (a)k�ak22 , where

T (a) = 1p
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p
a
. Similarly,

p
b =

p
b � T (b)k�bk22 , where T (b) = 1p

b+
p
b
. Both

T (a), T (b) have uniform (in time) upper and lower bounds. Given the symmetry of
(6), it su�ces to discuss the case m̄, n̄ � 0, so we make this assumption in what
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follows; thus, we can factor out
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from the squared term in the left

hand side of (40) to see that
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Of course, if m̄, n̄  0 we would factor out
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instead, which would

replace the constant ✏2(m2+n1)

a
m21 b
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a
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and the proof would continue otherwise

unchanged. We evaluate
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where S = max (|S1|, |S2|).
We have k�ak22 = a � (
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a)2  !, similarly k�bk22  ! and T (a), T (b)  1
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µa, µb < µ!; so S is uniformly bounded and
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kSk1. Poincaré’s inequality yields
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2
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b ,

so we need to compare [(1+µa)m̄� (1+µb)n̄]2 with µ
2
a+µ

2
b . First assume m̄n̄ > 0,

i.e. both m̄, n̄ are positive integers. The conservation law for (6) reads

�bn̄a(t) + �am̄b(t) = �bn̄a1 + �am̄b1 for all t � 0, (42)

so (41) together with the nonnegativity of �a, �b, m̄, n̄ implies that either µa =
µb = 0 (trivial case) or µaµb < 0. Recall that µa > �1, µb > �1 for all time. If
µa > 0 > µb, then

[(1 + µa)
m̄ � (1 + µb)

n̄]2 � [(1 + µa)� (1 + µb)]
2
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2
a + µ
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Otherwise, if µb > 0 > µa,

[(1 + µa)
m̄ � (1 + µb)

n̄]2 = [(1 + µb)
n̄ � (1 + µa)

m̄]2 > µ
2
a + µ

2
b ,

so in all three cases we have that for all time t � 0

[(1 + µa)
m̄ � (1 + µb)

n̄]2 � µ
2
a + µ

2
b .

Now, if m̄ = n̄ = 0, we get the decoupled heat equations case where µa = µb = 0
for all time t, so the inequality above is trivially satisfied. If m̄ = 0 and n̄ > 0, we
get µa = 0 for all time and it is easy to see that the inequality still holds because
we can use 1� (1 + µb)n̄ � �µb if µb  0 and (1 + µb)n̄ � 1 > n̄µb > µb if µb > 0.

Proof of Theorem 1.2:

Proof. Set D5 = D7
max(a1,b1) to see that (40) holds, and then combine (37), (38),

(39) and (40) to reveal

D(a, b|a1, b1) � D2D4D5

D3
E(a, b|a1, b1).

In view of (36), we get

D(a, b|a1, b1) � D8E(a, b|a1, b1)

for D8 = min(D2D4D5
D3

, D1), which finally proves that the solution decays exponen-
tially to the positive equilibrium at an explicit rate.

4. Remarks and open problems.

4.1. Generalized model. Here we indicate how to adapt the above analysis to
get convergence to the complex-balanced equilibrium for the following model

A+ (r + 1)B ⌦ rB + C,

where r > 0. By the Gagliardo-Nirenberg interpolation inequality [35] (in spatial
dimension 1), we know that

kuk2L1  C1kruk2L2 · kuk2L2 + C2kuk2L2 ,

where u =
p
a,
p
b,
p
c. The above inequality implies the following

kakL1 . krak2L2 · kak2L1 + kak2L1 . krak2L2 + kak2L1 ;

the last inequality holds since kak2L1 has a uniform upper bound (due to the con-
servation law ¯a(t) + ¯c(t) = ā0 + c̄0). Therefore, we have

Z T

0
kakL1dt .

Z T

0
krak2L2dt+ kak2L1 · T . H1 + kak2L1 · T,

since
R1
0 krak2L2dt = H1 < 1 (similarly as (11)). Thus, we get that

R T
0 kakL1dt

has at most linear growth, and this estimate holds for b, c as well.
Now let us also make the assumption � = k 1

b0
kL1[0,1] < 1; because the classical

solution is continuous, there exists t1 > 0 such that k 1
b(·,t)kL1[0,1] < 10� for all

t 2 [0, t1]. We have the following equation for b:

@tb� db�b = b
r
c� ab

(r+1)
.

We next divide the above equation by �b
(r+1) and get the following:

@t

✓
1

br

◆
� db�

✓
1

br

◆
=

ab
(r+1)

b(r+1)
� b

r
c

b(r+1)
� 2dbr(r + 2)

|rb|2

b(r + 2)
 a.
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Using the maximum principle for the heat equation, we have that, for all t 2
[0, t1],

����
1

br(·, t)

����
L1[0,1]


����
1

b
r
0

����
L1[0,1]

+

Z T

0
kakL1dt . � + kak2L1 · t,

where � = k 1
br0
kL1[0,1] +H1. We can iterate this inequality in time to get

b̃(t) := inf
x2[0,1]

b
r(x, t) � (� + kak2L1t)�1 (43)

for all t > 0. We conclude that b
r decays to zero at most linearly, and use the

following inequality
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a1b
(r+1)
1

;
b
r
c

br1c1

◆
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✓
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◆r

 

✓
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c

b1c1

◆
� b̃(t)

br1
 

✓
ab

a1b1
;

c

b1c1

◆

to get the L1 convergence to the positive equilibrium by the same method as in the
previous sections.

4.2. Future work. We believe this approach works to prove and quantify the decay
rate to the complex balanced equilibrium for more general systems of the type

A1 +A2 + ...+An�1 +mAn⌦An +An+1, (44)

and even more complex systems such as

A1 +A2 + ...+An�1 +mAn⌦An +An+1↵B1 + ...+Bk + lAn,

where k � 1 and l, m � 2 are integers. In fact, for the former the global essential
boundedness of the solution can be proved exactly as for (4), via the method we
adopted from [19]. The work [29] ensures that this global boundedness implies ex-
ponential decay to the complex-balanced equilibrium for reversible reactions. Albeit
with no explicit rate of decay, we infer that if the initial data for (44) lie in L

1(0, 1),
then this system has a globally essentially bounded unique solution which converges
exponentially in time to the its unique accessible complex-balanced equilibrium.

In order to obtain the uniform essential bound on the densities we used the L
1

version of Poincaré’s inequality, which is only available in 1D. Can we employ more
refined techniques in order to prove the essential bounds in higher dimensions?
These are some questions we plan to address in future work.

5. Appendix.

Lemma 5.1. For any x, y > 0 we have

 (x, y) = x ln
x

y
� x+ y � (

p
x�p

y)2. (45)

Proof. The case x = y is trivial. If x > y > 0 we use the Jensen inequality for the
convex function f(s) := [y + s(x� y)]�1 to get

lnx� ln y

x� y
=

Z 1

0
f(s)ds � f

✓Z 1

0
sds

◆
=

2

x+ y
.

By using this inequality and x+ y > 2
p
xy, we conclude

 (x, y) � x
2(x� y)

(x+ y)
� x+ y = x

✓
2� 4y

x+ y

◆
� x+ y

> x

✓
2� 4y

2
p
xy

◆
� x+ y = x� 2

p
xy + y = (

p
x�p

y)2.
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Or suppose we have y > x > 0 and set g(u) = e
u, u(s) = a + s(b � a), for b > a.

Jensen’s inequality shows

e
b � e

a

b� a
=

Z 1

0
g(u(s))ds � g

✓Z 1

0
u(s)ds

◆
= e

a+b
2 .

Let b = ln y, a = lnx to deduce

x� y

lnx� ln y
� p

xy, (46)

which implies
x� y
p
xy

 ln

✓
x

y

◆
.

It follows

 (x, y) � x
(x� y)
p
xy

� x+ y =

r
x

y
x�p

xy � x+ y

=

r
x

y
x+

p
xy � 2

p
xy � x+ y � 2x� 2

p
xy � x+ y = (

p
x�p

y)2.

The second important tool is:

Lemma 5.2. For each fixed y > 0,

 (x, y) :=
 (x, y)

(
p
x�p

y)2
is increasing in x 2 (0,1). (47)

Proof. Suppose x > y > 0 and set k =
q

x
y > 1. We have

d (x, y)

dx
=
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�
x
y

�
(
p
x�p
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x
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x�p
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=
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x
y

��p
x�p
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(
p
x�p
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⇥
2(k � 1) ln k �

�
2k ln k � k + 1
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�⇤p
y

(
p
x�p

y)3
=

�
k � 2 ln k � 1

k

�p
y

(
p
x�p

y)3
.

Since we have k > 1, we use (46) to obtain

k � 1
k

2 ln k
=

k � 1
k

ln k � ln ( 1k )
�
r
k · 1

k
=) k � 2 ln k � 1

k
� 0.

Combine this with
p
x�p

y � 0 and y > 0 to get

d (x, y)

dx
� 0.

We can use the same way to show this inequality is correct when y > x > 0.

Sketch of proof of Theorem 2.2: In [19] the analysis is performed on the whole
space ⌦ = Rd and for more general elliptic operators (instead of the Laplacian).
However, we argue here that Theorem 2.2 holds for the Laplacian with Neumann
BC on bounded domains ⌦ as well. Indeed, our elliptic operator is the Laplacian
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and on a bounded domain ⌦ ⇢ Rd we have that the estimate (used to prove Lemma
2.1 in [19]) on the fundamental solution to the corresponding parabolic operator

0 < G(x, ⇠, t, ⌧)  c1(T )(t� ⌧)�d/2 exp

⇢
� |x� ⇠|2

c2(T )(t� ⌧)

�

for x, ⇠ 2 ⌦, 0 < ⌧ < t  T < 1 (where c1(T ), c2(T ) are bounded for finite T )
holds for the Heat Kernel with Neumann BC on a bounded domain as well (see, e.g,
inequality (1) [6]) with c1(t) = ce

t, and c2(t) = C, for some constants c, C > 0. It
follows that for the homogeneous problem with initial value at T � 0, we also have
the estimate [6]

0 < GT (x, ⇠, t)  c1(t� T )(t� T )�d/2 exp

⇢
� |x� ⇠|2

c2(t� T )(t� T )

�
,

which is used to prove Lemma 4.1 [19]. The proof of Lemma 2.3 [19] requires
no modification for the case of bounded domains and natural BC. In the proof of
Lemma 2.2 [19] there is an estimate on solutions of the backward terminal value
problem for the adjoint equation; [24] is given as a reference. We limit ourselves to
noting that when the second order operator is the Laplacian, this backward terminal
value problem is equivalent to a forward initial value problem for the right hand side
↵̃(t, x) := ↵(x, T � t) (using the notation from [19], proof of Lemma 2.2); [24] does
not cover the Neumann BC case on bounded domains. However, in [36] we do find
the exact same estimate available in this case as well. These are the estimates one
needs to check in order to convince oneself that Theorem 2.2 holds on a bounded
domain ⌦ ⇢ R

d.
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