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A B S T R A C T

Delay differential equations are used as a model when the effect of past states has to be taken into account. In this work we consider delay models of chemical
reaction networks with mass action kinetics. We obtain a sufficient condition for absolute delay stability of equilibrium concentrations, i.e., local asymptotic
stability independent of the delay parameters. Several interesting examples on sequestration networks with delays are presented.

1. Introduction

Many biochemical processes involve time delays, for example trans-
mission of cellular signal [1]. Models using ordinary differential equa-
tions assume that future behavior of the system depends only on the
present time. Taking into account the influence of the past requires
the use of time delay. Delay differential equations have found appli-
cations in biology [1,2], population dynamics [3], chemistry [4–6]
and physics [7]. In biochemistry, delay models are sometimes used
when the full reaction network is not completely known [4,5], or
experimental data displays oscillatory behavior [8]. It is employed most
often to model gene regulatory networks, where the delays account for
transcription and translation times [9].

If all of the time delays are zero, we obtain the system’s ordinary
differential equations counterpart. Both the delay and the ordinary
differential equations systems have the same set of equilibria. The
introduction of delays often, but not always, leads to a stable equi-
librium being destabilized [10], where the delay instability is usually
accompanied by a Hopf bifurcation and the appearance of oscilla-
tions [11]. In that respect, we obtain a sufficient condition which
precludes the appearance of oscillations in delay models of chemical
reaction networks.

Some delay systems of chemical reaction networks, e.g. complex
balanced mass action systems, are always locally asymptotically sta-
ble [12]. Our work does not impose any stringent condition like
complex balanced; instead we consider fully open mass action sys-
tems, i.e., there are inflow and outflow reactions for every chemical
species [13], and time delays appearing only in the production of
chemical species [6]. Based on previous work [14] on delay systems,
we obtained a delay-independent algebraic condition for linear stability
of mass action systems with delays.

∗ Corresponding author.
E-mail address: pollyyu@math.wisc.edu (P.Y. Yu).

This work is organized as follows. In Section 2, we introduce mass
action reaction systems with and without delay. In Section 3, we
follow the standard approach of linearizing delay systems and provide
a sufficient condition for the linear asymptotic stability of a delay mass
action system. In Theorem 4.2, we prove that if a modified version of
the Jacobian matrix is a 𝑃0-matrix, then the delay system is linearly
stable. Furthermore, the conditions of the theorem are independent of
the delay parameters. Finally, we conclude with several biologically
relevant examples and a discussion in Sections 5 and 6 respectively.

2. Mass action systems with delay

Given a vector 𝒚 ∈ R𝑛, we denote by supp(𝒚) the set of indices for
which 𝑦𝑖 ≠ 0. The cardinality of a set 𝑋 is denoted |𝑋|. Consider the
partial order on R𝑛: if 𝒖, 𝒗 ∈ R𝑛, then 𝒖 ≤ 𝒗 if and only if 𝑢𝑖 ≤ 𝑣𝑖 for all
1 ≤ 𝑖 ≤ 𝑛. Strict inequality between vectors is similarly defined. Let R𝑛

≥0
denote the set of vectors 𝒗 ∈ R𝑛 such that 𝒗 ≥ 𝟎. Similarly, R𝑛

>0 denotes
the set of vectors 𝒗 ∈ R𝑛 such that 𝒗 > 𝟎. Given two vectors 𝒙 ∈ R𝑛

>0
and 𝒚 ∈ R𝑛, we denote by 𝒙𝒚 the product

𝒙𝒚 = 𝑥𝑦11 𝑥𝑦22 ⋯ 𝑥𝑦𝑛𝑛 .

Definition 2.1. A chemical reaction network = ( ,), or reaction
network, is a finite directed graph, where each vertex 𝒚 ∈  , called a
complex, is a vector in R𝑛

≥0. Each edge (𝒚, 𝒚′) ∈ , called a reaction, is
denoted 𝒚 → 𝒚′.

Remark 2.2. The definition above is equivalent to the classical defi-
nition of a reaction network being a triple ( ,,), where  is the set
of species,  is the set of complexes and  is the set of reactions [13,15–
18]. Indeed, given  as above, the set of species is identified (by
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an abuse of notation) to the standard basis {𝒆1, 𝒆2,… , 𝒆𝑛} of R𝑛, and
the complexes are non-negative linear combinations of the species.
Conversely, given a triple ( ,,) as described in [13,17], we can use
the same identification between the set of species and the standard
basis of R𝑛 to write the complexes as vectors 𝒚 ∈ R𝑛

≥0. If 𝑖 ∈ supp(𝒚)
then we say that 𝒆𝑖 is a species in the complex 𝒚.

For any reaction 𝒚 → 𝒚′, we call the source vertex 𝒚 a reactant
complex, and the target vertex 𝒚′ a product complex. A species in 𝒚
is a reactant species of the reaction 𝒚 → 𝒚′, and a species in 𝒚′ is a
product species of the reaction. In other words, supp(𝒚) consists of the
reactant species while supp(𝒚′) consists of the product species.

A reaction of the form 𝐴 → 0 is an outflow reaction, and a reaction
of the type 0 → 𝐴 is an inflow reaction. A reaction 𝒚 → 𝒚′ is
autocatalytic if supp(𝒚)∩supp(𝒚′) ≠ ∅ and for every 𝑖 ∈ supp(𝒚)∩supp(𝒚′),
we have 𝑦′𝑖 > 𝑦𝑖. Thus for a non-autocatalytic network, i.e., one with
no autocatalytic reactions, we have 𝑦′𝑖 ≤ 𝑦𝑖 for all reaction 𝒚 → 𝒚′ and
any 𝑖 ∈ supp(𝒚) ∩ supp(𝒚′).

A model comes with a reaction network, by assuming that each
reaction proceeds at a certain rate. A kinetics for a reaction network
 = ( ,) is an assignment of a rate function 𝒦𝒚→𝒚′ ∶ R𝑛

>0 → R>0
to each reaction 𝒚 → 𝒚′ ∈ . One of the most common models in
the literature for chemistry and biochemistry is that of mass action
kinetics [19,20]. Although we briefly mention results for a general
class of kinetics, in this paper the focus is mass action. Mass action
kinetics assumes that the rate at which a reaction 𝒚 → 𝒚′ proceeds is
proportional to the concentrations of the reactant species, i.e., at rate
𝒦𝒚→𝒚′ (𝒙) = 𝑘𝒚→𝒚′𝒙𝒚 , where 𝑘𝒚→𝒚′ > 0 is a positive rate constant and
𝒙 = 𝒙(𝑡) ∈ R𝑛

>0 is the (time-dependent) vector of concentrations.

Definition 2.3. A mass action system 𝒌 is a reaction network  =
( ,) together with a vector of positive rate constants 𝒌 ∈ R

>0. The
dynamics of the concentration vector 𝒙(𝑡) is given by

𝒙̇(𝑡) =
∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′ [𝒙(𝑡)]𝒚(𝒚′ − 𝒚). (1)

There are chemical systems where the products are not immediately
produced though the reactants are consumed. For example, biopolymer
processes that involve a nucleation–propagation mechanism, like the
binding of two single-strand DNA molecules 2𝑆 → 𝐷. In a model of this
process, the consumption of 𝑆 happens with no delay, but 𝐷 becomes
available after a time delay 𝜏 > 0. In an upcoming work, we show that
this model of duplex formation is delay stable [21].

In a delay model for realistic chemical and biochemical systems,
the delay terms only affect product formation. This is consistent with
the physical intuition that reactant species are generally consumed
immediately, while the product species are available only at a later
time. While different products of the same reaction may be available
after two different delays, for simplicity of notation, we assign at most
one delay parameter to each reaction. As we note later, our main result
Theorem 4.2 does not depend on this assumption.

Let 𝝉 = (𝜏𝒚→𝒚′ )𝒚→𝒚′∈ ∈ R
≥0 be a vector of time delays for the

reactions in  . If 𝜏𝒚→𝒚′ = 0, we say the reaction 𝒚 → 𝒚′ occurs without
delay. Note that inflow and outflow reactions always occur without
delay. In the case when a reaction is delayed, the rate function for
product formation is evaluated at a shifted time 𝑘𝒚→𝒚′ [𝒙(𝑡 − 𝜏𝒚→𝒚′ )]𝒚 .
These considerations lead us to the definition of a delay mass-action
system, as introduced by Roussel in [6].

Definition 2.4. A delay mass action system 𝝉 ,𝒌 is a mass action
system 𝒌 with a vector of delays 𝝉 ∈ R

≥0. The dynamics of the
concentration vector 𝒙(𝑡) is given by

𝒙̇(𝑡) =
∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′ [𝒙(𝑡 − 𝜏𝒚→𝒚′ )]𝒚𝒚′ −

∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′ [𝒙(𝑡)]𝒚𝒚. (2)

For an initial value problem, the initial data has to be specified
on the interval [−𝜏, 0] where 𝜏 = max𝒚→𝒚′ 𝜏𝒚→𝒚′ . If all reactions occur
without delay, i.e., 𝝉 = 𝟎, then from the perspective of dynamics, 𝝉 ,𝒌
is not different from 𝒌 [22]. Indeed, the ODE system (1) is identical
to the delay system (2) when 𝝉 = 𝟎.

It is well-known that the ODE system (1) has only non-negative
solutions if the initial condition is non-negative [12]. The first quadrant
for a delay system such as (2) is also forward invariant [23]. The
systems (1) and (2) share the same set of positive steady states [12].
In other words, a positive constant solution 𝒙(𝑡) ≡ 𝒙∗ is a steady state
for the delay system (2) if and only if it is a steady state of the ODE
system (1). We call a positive steady state 𝒙∗ an equilibrium.

Remark 2.5. In general, the associated ODE equations (1) of a mass-
action system, with positive initial data 𝜽 ∈ R𝑛

>0, may have a conserva-
tion relation

𝒙(𝑡) − 𝜽 ∈ 𝑆,

where 𝑆 = span{𝒚′ − 𝒚 ∶ 𝒚 → 𝒚′ ∈ } is the stoichiometric subspace.1
Similarly, the delay equations (2) of a delay mass-action system, with
continuous and positive initial data 𝜽 defined on the interval [−𝜏, 0],
may admit a conservation relation [12]

𝒙(𝑡) − 𝜽(0) +
∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′

(

∫

𝑡

𝑡−𝜏𝒚→𝒚′
[𝒙(𝑠)]𝒚 𝑑𝑠 − ∫

0

−𝜏𝒚→𝒚′
[𝜽(𝑠)]𝒚 𝑑𝑠

)

𝒚 ∈ 𝑆.

While the ODE and delay models share the same set of positive
equilibria, when 𝑆 ⊊ R𝑛, solving for an equilibrium with a given initial
data can be difficult. In this paper, we only consider systems whose
stoichiometric subspace 𝑆 is the whole R𝑛.

We represent a mass action system 𝒌 or a delay mass action system
𝝉 ,𝒌 by labeling the reactions with their rate constants and (if non-
zero) delay parameters. A reaction 𝒚 → 𝒚′ with rate constant 𝑘 > 0 that
occurs without delay, i.e., 𝜏𝒚→𝒚′ = 0, is shown as

𝒚
𝑘
←←←←←←→ 𝒚′,

while a reaction with rate constant 𝑘 > 0 and delay parameter 𝜏𝒚→𝒚′ =
𝜏 > 0 will be shown as

𝒚
𝑘
←←←←←←→
𝜏

𝒚′.

Sometimes we omit the labels altogether; in this case, it will be clear
from the context whether we are referring to the reaction network  ,
or the mass action system 𝒌 or the delay mass action system 𝝉 ,𝒌.

Example 2.6. Consider a reaction network  with three species 𝐴1,
𝐴2, 𝐴3. The network consists of the following reactions:

𝐴1 + 𝐴2
𝑘1
←←←←←←←←←←→ 𝐴3, 𝐴1

𝑘2
←←←←←←←←←←→ 𝐴2, 0

𝑘3
←←←←←←←←←←→ 𝐴1,

𝐴1
𝑘4
←←←←←←←←←←→ 0, 𝐴2

𝑘5
←←←←←←←←←←→ 0, 𝐴3

𝑘6
←←←←←←←←←←→ 0.

The system of ODEs for this mass action system

𝑥̇1 = −𝑘1𝑥1𝑥2 − 𝑘2𝑥1 + 𝑘3 − 𝑘4𝑥1
𝑥̇2 = −𝑘1𝑥1𝑥2 + 𝑘2𝑥1 − 𝑘5𝑥2
𝑥̇3 = 𝑘1𝑥1𝑥2 − 𝑘6𝑥3

admits a unique positive equilibrium.
Consider delay 𝜏1 ≥ 0 for the reaction 𝐴1 + 𝐴2 → 𝐴3 and 𝜏2 ≥ 0

for the reaction 𝐴1 → 𝐴2. To simplify notation in the system of delay
equations, when the concentration function 𝑥𝑖 is not shifted in time,
i.e., 𝑥𝑖 = 𝑥𝑖(𝑡), we suppress the explicit appearance of time. The system
delay differential equations for 𝝉 ,𝒌 is

𝑥̇1 = −𝑘1𝑥1𝑥2 − 𝑘2𝑥1 + 𝑘3 − 𝑘4𝑥1
𝑥̇2 = −𝑘1𝑥1𝑥2 + 𝑘2𝑥1(𝑡 − 𝜏2) − 𝑘5𝑥2
𝑥̇3 = 𝑘1𝑥1(𝑡 − 𝜏1)𝑥2(𝑡 − 𝜏1) − 𝑘6𝑥3.

1 Generally we say the system has such a conservation relation if 𝑆 ⊊ R𝑛.
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3. Linear analysis of delay reaction systems

In this section, we introduce the linearization of the delay mass
action system (2) about an equilibrium 𝒙∗. For a fixed 𝒙 > 𝟎, we define
a special dot product:

𝒚 ∗ 𝒆𝑖 =
𝒚 ⋅ 𝒆𝑖
𝒙 ⋅ 𝒆𝑖

=
𝑦𝑖
𝑥𝑖
,

where {𝒆𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} is the standard basis of R𝑛. The product depends
on a choice of 𝒙 > 𝟎, which will be evident from context, for example,
as in the partial derivative 𝜕𝑖𝒙𝒚 = 𝒙𝒚(𝒚 ∗ 𝒆𝑖) [13].

The linearization of the delay system (2) is done the usual way, by
adding a small quantity 𝛿𝒙 to an equilibrium 𝒙∗. Linearizing the delay
system (2) about 𝒙∗, we obtain the linear delay system

𝒙̇ =
∑

𝒚→𝒚′∈
𝐽𝜏𝒚→𝒚′

(𝒙∗,𝒌)𝒙(𝑡 − 𝜏𝒚→𝒚′ ) −
∑

𝒚→𝒚′∈
𝐽𝒚→𝒚′ (𝒙∗,𝒌)𝒙(𝑡), (3)

where

𝐽𝜏𝒚→𝒚′
(𝒙,𝒌) =

[

𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆1)𝒚′, … , 𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆𝑛)𝒚′
]

and

𝐽𝒚→𝒚′ (𝒙,𝒌) =
[

𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆1)𝒚, … , 𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆𝑛)𝒚
]

are 𝑛 × 𝑛 matrices.
Next substitute 𝒙(𝑡) − 𝒙∗ = 𝒂𝑒𝜆𝑡 into the linearized system (3) to

obtain its characteristic equation. The resulting linear system (in 𝒂) is
(

∑

𝒚→𝒚′∈

(

𝐽𝜏𝒚→𝒚′
(𝒙∗,𝒌)𝑒−𝜆𝜏𝒚→𝒚′ − 𝐽𝒚→𝒚′ (𝒙∗,𝒌)

)

− 𝜆𝐼

)

𝒂 = 𝟎,

which has a non-zero solution if and only if

det(𝐽𝜆(𝒙∗,𝒌, 𝝉) − 𝜆𝐼) = 0, (4)

The equation for 𝐽𝜆(𝒙,𝒌, 𝝉) is given in Box I. The transcendental equa-
tion (4) is the characteristic equation of (3).

If 𝝉 = 𝟎, we recover the Jacobian matrix of the corresponding ODE
system (1), i.e., we have 𝐽𝜆(𝒙∗,𝒌, 𝝉 = 𝟎) = 𝐽 (𝒙∗,𝒌). The equation for
𝐽 (𝒙,𝒌) is given in Box II.

An equilibrium 𝒙∗ ∈ R𝑛
>0 of a delay mass action system 𝝉 ,𝒌 is

asymptotically stable if the characteristic equation (4) has only roots 𝜆
with negative real parts. The equilibrium 𝒙∗ is unstable if at least one
root of (4) has positive real part [2,24].

Theorem 4.2 gives a sufficient condition on the modified Jacobian
matrix (defined below) for the asymptotic stability of an equilibrium
of the delay system (2) and of the linearized system (3), independent of
the choice of delays. Asymptotic stability of an equilibrium independent
of the delay parameters is known as absolute stability, as opposed to
conditional stability, where asymptotic stability depends on the delay
parameters [25,26]. In light of this, we define the notion of absolute
stability for a mass action system, and the stronger notion of delay
stability for a reaction network (under mass action kinetics).

Definition 3.1. A delay mass action system 𝝉 ,𝒌 is said to be
absolutely stable if for any positive equilibrium, every root 𝜆 of the
characteristic equation (4) has negative real part, for any choice of
delay parameters 𝝉 ≥ 𝟎.

Definition 3.2. A reaction network  is delay stable if the delay
mass action system 𝝉 ,𝒌 is absolutely stable for any choices of 𝒌 > 𝟎
and 𝝉 ≥ 𝟎.

4. Main result

In our main result, the following matrix 𝐽 (𝒙,𝒌) plays an important
role:
[

∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆1)(𝒚′ + 𝒚̃(1)),… ,

∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆𝑛)(𝒚′ + 𝒚̃(𝑛))

]

(7)

where 𝒚̃(𝑖) = (𝑦1, 𝑦2,… ,−𝑦𝑖,… , 𝑦𝑛)⊤. The matrix (7) looks similar to the
Jacobian matrix 𝐽 (𝒙,𝒌), but in the 𝑖th column, instead of the reaction
vectors 𝒚′ − 𝒚, we have 𝒚′ + 𝒚(𝑖). A change of sign occurs in every off-
diagonal component of the reactant complex. We call the matrix 𝐽 (𝒙,𝒌)
the modified Jacobian matrix of the network.

The matrices 𝐽𝜆(𝒙∗,𝒌, 𝝉), 𝐽 (𝒙∗,𝒌), 𝐽 (𝒙∗,𝒌) and the characteristic
equation (4) give information about stability of any equilibrium 𝒙∗
of a delay mass action system 𝝉 ,𝒌. However, the matrices and the
characteristic equation are well-defined at any positive state 𝒙 and any
positive rate constants 𝒌.

Example 4.1. Consider the delay mass action system from Exam-
ple 2.6. Its Jacobian matrix is

𝐽 (𝒙,𝒌) =
⎡

⎢

⎢

⎣

−(𝑘1𝑥2 + 𝑘2 + 𝑘4) −𝑘1𝑥1 0
−𝑘1𝑥2 + 𝑘2 −(𝑘1𝑥1 + 𝑘5) 0

𝑘1𝑥2 𝑘1𝑥1 −𝑘6

⎤

⎥

⎥

⎦

.

For the delay system, we have

𝐽𝜆(𝒙,𝒌, 𝝉) =
⎡

⎢

⎢

⎣

−(𝑘1𝑥2 + 𝑘2 + 𝑘4) −𝑘1𝑥1 0
−𝑘1𝑥2 + 𝑘2𝑒−𝜆𝜏2 −(𝑘1𝑥1 + 𝑘5) 0

𝑘1𝑥2𝑒−𝜆𝜏1 𝑘1𝑥1𝑒−𝜆𝜏1 −𝑘6

⎤

⎥

⎥

⎦

,

and the characteristic equation of the linearized system is

0 = det(𝐽𝜆 − 𝜆𝐼) = 𝜆3 + 𝜆2
(

𝑘1(𝑥1 + 𝑥2) + 𝑘2 + 𝑘4 + 𝑘5 − 𝑘6
)

+ 𝜆
(

𝑘1𝑘2𝑥1 + 𝑘1𝑘4𝑥1 − 𝑘1𝑘6𝑥1 + (𝑘2 − 𝑘6)(𝑘1𝑥2 + 𝑘2 + 𝑘4) − 𝑘5𝑘6
)

+ 𝑘21𝑘6𝑥1𝑥2 + 𝑒−𝜆𝜏2
(

𝜆𝑘1𝑥2 − 𝑘1𝑘6𝑥1
)

.

Finally, the modified Jacobian matrix is

𝐽 (𝒙,𝒌) =
⎡

⎢

⎢

⎣

−(𝑘1𝑥2 + 𝑘2 + 𝑘4) 𝑘1𝑥1 0
𝑘1𝑥2 + 𝑘2 −(𝑘1𝑥1 + 𝑘5) 0

𝑘1𝑥2 𝑘1𝑥1 −𝑘6

⎤

⎥

⎥

⎦

.

A matrix 𝑀 is a 𝑃0-matrix if it has only non-negative principal
minors [27,28]. A matrix 𝑀 is reducible if it can be placed into block
upper triangular form by simultaneous row and column permutations;
otherwise 𝑀 is irreducible [29]. The following theorem is inspired
by [14, Lemma 1]. Note that one of the hypotheses in this theorem is
the absence of autocatalytic reactions; e.g. reactions of the form 𝐴 → 2𝐴
are forbidden. In a non-autocatalytic network, we have 𝑦′𝑖 ≤ 𝑦𝑖 for any
reaction 𝒚 → 𝒚′ and any 𝑖 ∈ supp(𝒚)∩supp(𝒚′). Another restriction comes
from det(𝐽 ) ≠ 0. In particular, the stoichiometric subspace is 𝑆 = R𝑛,
so the system admits no conservation relation.

Theorem 4.2. Let  be a non-autocatalytic network, and 𝝉 ,𝒌 be the
delay mass action system for some 𝒌 > 𝟎 and 𝝉 ≥ 𝟎. Let 𝒙∗ > 𝟎 be an
equilibrium of 𝝉 ,𝒌. Let 𝐽𝜆, 𝐽 and 𝐽 be defined as in (5)–(7) at 𝒙∗, 𝒌 and
𝝉. Suppose det 𝐽 ≠ 0, 𝐽𝑖𝑖 < 0 for all 𝑖, and −𝐽 is a 𝑃0-matrix. Then all
the roots of the characteristic equation det(𝐽𝜆 − 𝜆𝐼) = 0 have negative real
parts.

Proof. Any root 𝜆 of the characteristic equation det(𝐽𝜆 − 𝜆𝐼) = 0 is
non-zero, because 𝐽𝜆 = 𝐽 when 𝜆 = 0. Suppose for a contradiction,
that for some values of delay, the characteristic equation (4) has a root
𝜆 ≠ 0 with real part Re(𝜆) ≥ 0. Such a root 𝜆 is an eigenvalue of 𝐽𝜆.

For 𝑖 ≠ 𝑘, we have |(𝐽𝜆)𝑖𝑘| ≤ 𝐽𝑖𝑘, and 𝐽𝑖𝑘 ≠ 0 if (𝐽𝜆)𝑖𝑘 ≠ 0. Suppose
for now that 𝐽 is irreducible. Because −𝐽 is an irreducible 𝑃0-matrix,
there exists a vector 𝒗 > 𝟎 such that 𝐽𝒗 ≤ 𝟎 [27, Theorem 5.8]. For
𝑖 = 1, 2,… , 𝑛, we have

𝐽𝑖𝑖𝑣𝑖 +
∑

𝑘≠𝑖
𝐽𝑖𝑘𝑣𝑘 ≤ 0. (8)

To apply Gershgorin circle theorem, we are interested in the disks
𝐵𝑖 with center (𝐽𝜆)𝑖𝑖 and radius 𝑣−1𝑖

∑

𝑘≠𝑖 |𝐽𝜆|𝑖𝑘𝑣𝑘. For each 𝑖 = 1, 2,… , 𝑛,
there are two cases to consider. In the first case, suppose 𝑒−𝜆𝜏𝒚→𝒚′ ∈ R
for every 𝒚 → 𝒚′ with 𝑦𝑖, 𝑦′𝑖 ≠ 0. Then (𝐽𝜆)𝑖𝑖 ≤ 𝐽𝑖𝑖 ≤ 0. From (8), we
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𝐽𝜆(𝒙,𝒌, 𝝉) =
∑

𝒚→𝒚′∈
𝐽𝜏𝒚→𝒚′

(𝒙,𝒌)𝑒−𝜆𝜏𝒚→𝒚′ −
∑

𝒚→𝒚′∈
𝐽𝒚→𝒚′ (𝒙,𝒌)

=

[

∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆1)(𝒚′𝑒

−𝜆𝜏𝒚→𝒚′ − 𝒚), … ,
∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆𝑛)(𝒚′𝑒

−𝜆𝜏𝒚→𝒚′ − 𝒚)

]

. (5)

Box I.

𝐽 (𝒙,𝒌) =

[

∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆1)(𝒚′ − 𝒚), … ,

∑

𝒚→𝒚′∈
𝑘𝒚→𝒚′𝒙𝒚(𝒚 ∗ 𝒆𝑛)(𝒚′ − 𝒚)

]

. (6)

Box II.

have

𝑣−1𝑖
∑

𝑘≠𝑖
|(𝐽𝜆)𝑖𝑘|𝑣𝑘 ≤ −𝐽𝑖𝑖 ≤ −Re(𝐽𝜆)𝑖𝑖.

In the second case, suppose there is at least one reaction 𝒚 → 𝒚′
for which 𝑦𝑖, 𝑦′𝑖 ≠ 0 and 𝑒−𝜆𝜏𝒚→𝒚′ ∉ R. For every such reaction,
sin(Im(𝜆)𝜏𝒚→𝒚′ ) ≠ 0, or cos(Im(𝜆)𝜏𝒚→𝒚′ ) < 1, and thus

𝑦′𝑖Re(𝑒
−𝜆𝜏𝒚→𝒚′ ) = 𝑦′𝑖𝑒

−Re(𝜆)𝜏𝒚→𝒚′ cos(Im(𝜆)𝜏𝒚→𝒚′ ) < 𝑦′𝑖 .

Therefore, Re(𝐽𝜆)𝑖𝑖 < 𝐽𝑖𝑖. It follows from (8) that

Re(𝐽𝜆)𝑖𝑖𝑣𝑖 +
∑

𝑘≠𝑖
|(𝐽𝜆)𝑖𝑘|𝑣𝑘 < 𝐽𝑖𝑖𝑣𝑖 +

∑

𝑘≠𝑖
𝐽𝑖𝑘𝑣𝑘 ≤ 0.

In other words,

𝑣−1𝑖
∑

𝑘≠𝑖
|(𝐽𝜆)𝑖𝑘|𝑣𝑘 < −Re(𝐽𝜆)𝑖𝑖.

Therefore, for 𝑖 = 1, 2,… , 𝑛, any non-zero element in the disk 𝐵𝑖, with
center (𝐽𝜆)𝑖𝑖 and radius ∑

𝑘≠𝑖 𝑣
−1
𝑖 |(𝐽𝜆)𝑖𝑘|𝑣𝑘, has negative real part.

Let 𝐷 = diag(𝑣1, 𝑣2,… , 𝑣𝑛), and consider the matrix 𝐷−1𝐽𝜆𝐷, which
is similar to 𝐽𝜆 and shares the same eigenvalues. By Gershgorin’s
theorem, the eigenvalues of 𝐷−1𝐽𝜆𝐷 are contained in the union of the
disks 𝐵𝑖. Hence, any non-zero eigenvalue of 𝐽𝜆 has negative real part.
This contradicts our assumption that 𝜆 has non-negative real part.

Now consider the case when 𝐽 is reducible. By relabeling the
species, we may assume that 𝐽 is an upper block triangular matrix with
irreducible blocks along the diagonal [14,30]. Of course, the principal
minors of 𝐽 are unchanged. Whenever 𝑖 ≠ 𝑘, note that 𝐽𝑖𝑘 = 0 implies
that (𝐽𝜆)𝑖𝑘 = 0, so each irreducible diagonal block of 𝐽 corresponds to
a (possibly reducible) diagonal block of 𝐽𝜆. In particular, det(𝐽𝜆 − 𝜆𝐼)
is the product of det(𝑀𝑗 − 𝜆𝐼), where each 𝑀𝑗 is a diagonal block of
𝐽𝜆 corresponding to an irreducible diagonal block of 𝐽 . Since 𝜆 is an
eigenvalue of 𝐽𝜆, it is an eigenvalue of some 𝑀𝑗 . Now the result above
can be applied to the corresponding irreducible 𝑃0-block of 𝐽 . □

Remark 4.3. Although Theorem 4.2 is stated for mass action systems,
the result holds for more general kinetics under some mild conditions.
More precisely, the result above holds for kinetics 𝒦 defined on R𝑛

>0,
where

𝜕𝒦𝒚→𝒚′

𝜕𝑥𝑗
≥ 0 for all indices 𝑗, and for any 𝑖 ∈ supp(𝒚) we also

require that
𝜕𝒦𝒚→𝒚′

𝜕𝑥𝑖
> 0.

Remark 4.4. In the proof above, we did not make use of the fact
that the same delay parameter 𝜏𝒚→𝒚′ could appear more than once in
𝐽𝜆. The above result holds even when different species are produced by
the same reaction with different delay parameters, as in Example 5.6.

For example, we may have a reaction 𝐴1 → 2𝐴2 + 𝐴3, where 𝐴2 is
produced after a delay time 𝜏1 and 𝐴3 is produced after a delay time

𝜏2. The matrix 𝐽𝜆 would include in its first column the term

𝑘𝑥1
⎡

⎢

⎢

⎣

−1
2𝑒−𝜏1
𝑒−𝜏2

⎤

⎥

⎥

⎦

.

When the assumptions in Theorem 4.2 hold independent of the rate
constants 𝒌 and equilibrium 𝒙∗, we conclude delay stability.

Corollary 4.5. Let  be a non-autocatalytic network. Let 𝐽 and 𝐽 be
defined as in (6) and (7) as functions of 𝒙 > 𝟎 and 𝒌 > 𝟎. Suppose det 𝐽 ≠ 0,
𝐽𝑖𝑖 < 0 for all 𝑖, and −𝐽 is a 𝑃0-matrix for all choices of 𝒌 > 𝟎 and all
equilibrium points 𝒙 > 𝟎 of 𝒌. Then  is delay stable.

Under the hypotheses of Corollary 4.5, any positive equilibrium 𝒙∗
of the delay mass action system 𝝉 ,𝒌 is asymptotically stable for any
choice of 𝒌 > 𝟎, 𝝉 ≥ 𝟎.

5. Examples

Example 5.1. Again, we return to the delay mass action system of
Examples 2.6 and 4.1, which we claim is delay stable. In other words,
for any choice of rate constants 𝒌 ∈ R

>0 and any choice of delay
parameters 𝝉 ∈ R

≥0, the delay mass action system 𝝉 ,𝒌 is absolutely
stable — any positive equilibrium is linearly stable for the system of
delay differential equations.

Recall that the modified Jacobian matrix is

𝐽 (𝒙,𝒌) =
⎡

⎢

⎢

⎣

−𝑘1𝑥2 − 𝑘2 − 𝑘4 𝑘1𝑥1 0
𝑘1𝑥2 + 𝑘2 −𝑘1𝑥1 − 𝑘5 0

𝑘1𝑥2 𝑘1𝑥1 −𝑘6

⎤

⎥

⎥

⎦

.

It is not difficult to check that the principal minors of −𝐽 (𝒙,𝒌) are all
positive whenever 𝒙 ∈ R𝑛

>0 and 𝒌 ∈ R
>0. Moreover, all the assumptions

in Corollary 4.5 are satisfied. Therefore, the reaction network presented
in Example 2.6 is delay stable, i.e., for all choices of rate constants 𝒌
and delay parameters 𝝉, any positive equilibrium is linearly stable for
the delay mass action system 𝝉 ,𝒌.

The next two examples contain sequestration reactions. These are
reactions of the type 𝐴1 + 𝐴2 → 𝑃 , where 𝑃 does not participate
in other reactions. One example of sequestration reactions is when
𝐴1 is a substrate that ‘‘sequesters" an enzyme 𝐴2 by binding it and
making it inactive. Inactivation mechanisms containing reactions of
this type (with 𝐴1 sometimes called a suicide substrate) have been
studied both analytically and experimentally [31]. Moreover, versions
of sequestration networks appear as substructures of relevant enzymatic
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systems [32] and feature remarkable connections between network
structure and dynamical behavior [13,32,33].

Example 5.2. Consider the following sequestration network:

𝐴1 + 𝐴2 → 𝑃

𝐴2 + 𝐴3 → 𝑄

𝐴3 + 𝐴1 → 𝑅

𝐴1 ⇌ 0, 𝐴2 ⇌ 0 𝐴3 ⇌ 0

𝑃 ⇌ 0, 𝑄 ⇌ 0 𝑅 ⇌ 0

With 𝑥1, 𝑥2, 𝑥3, 𝑥𝑃 , 𝑥𝑄, 𝑥𝑅 denoting the concentrations of 𝐴1, 𝐴2, 𝐴3, 𝑃 ,
𝑄, and 𝑅 respectively, the corresponding delay system is

𝑥̇1 = −𝑘1𝑥1𝑥2 − 𝑘3𝑥3𝑥1 − 𝑘4𝑥1 + 𝑘5
𝑥̇2 = −𝑘1𝑥1𝑥2 − 𝑘2𝑥2𝑥3 − 𝑘6𝑥2 + 𝑘7
𝑥̇3 = −𝑘2𝑥2𝑥3 − 𝑘3𝑥3𝑥1 − 𝑘8𝑥3 + 𝑘9
𝑥̇𝑃 = 𝑘1𝑥1(𝑡 − 𝜏1)𝑥2(𝑡 − 𝜏1) − 𝑘10𝑥𝑃 + 𝑘11
𝑥̇𝑄 = 𝑘2𝑥2(𝑡 − 𝜏2)𝑥3(𝑡 − 𝜏2) − 𝑘12𝑥𝑄 + 𝑘13
𝑥̇𝑅 = 𝑘1𝑥3(𝑡 − 𝜏3)𝑥1(𝑡 − 𝜏3) − 𝑘14𝑥𝑅 + 𝑘15.

Note that the modified Jacobian matrix for the augmented system
has the block form

𝐽 =
[

𝐽1 0
𝐴 −𝐷

]

where 𝐷 = diag(𝑘10, 𝑘11, 𝑘12) is a positive diagonal matrix and

𝐽1(𝒙,𝒌)=
⎡

⎢

⎢

⎣

−𝑘1𝑥2 − 𝑘3𝑥3 − 𝑘4 𝑘1𝑥1 𝑘3𝑥1
𝑘1𝑥2 −𝑘1𝑥1 − 𝑘2𝑥3 − 𝑘6 𝑘2𝑥2
𝑘3𝑥3 𝑘2𝑥3 −𝑘2𝑥2 − 𝑘3𝑥1 − 𝑘8

⎤

⎥

⎥

⎦

.

Let 𝐽1(𝒙,𝒌) be the top 3 × 3 corner of the Jacobian matrix 𝐽 (𝒙,𝒌) —
the same corner occupied by 𝐽1 in the modified Jacobian matrix 𝐽 . It is
easily checked that the principal minor of Jacobian matrix 𝐽1(𝒙,𝒌) (and
therefore the Jacobian matrix 𝐽 (𝒙,𝒌) itself) is non-singular. Moreover,
−𝐽1 is a 𝑃0-matrix if and only if −𝐽 is a 𝑃0-matrix. A simple symbolic
calculation shows that indeed, −𝐽1(𝒙,𝒌) is a 𝑃0-matrix for any positive
𝒙 and 𝒌 (in fact, each principal minor of −𝐽1 is a polynomial in 𝒙 and
𝒌 with monomials of the same sign). Therefore det 𝐽 (𝒙∗,𝒌) ≠ 0 and
−𝐽 (𝒙∗,𝒌) is a 𝑃0-matrix for any positive steady state 𝒙∗ and any positive
𝒌. It follows by Corollary 4.5 that the network is delay stable.

Remark 5.3. Our example is a particular case of the fully open
sequestration network

𝐴𝑖 + 𝐴𝑖+1 → 0, 𝐴𝑖 ⇌ 0, 𝑖 ∈ {1,… , 𝑛}, 𝐴𝑛+1 = 𝐴1.

One can show that the general sequestration network is delay stable.
This can be proved along the same lines as above (but with substantial
extra effort), but also as an immediate application of a theorem in
our upcoming paper [21], where we prove that delay stability can be
inferred from a certain digraph derived from the network, called the
directed species-reaction graph.

Remark 5.4. While a network without positive steady states is trivially
delay stable, it turns out that the general sequestration network does
admit positive steady states for any choice of rate constants. Indeed, it
is not hard to show that the network is dynamically equivalent [34] to
a reversible network, which is known to have positive steady states for
all values of rate constants [35].

Example 5.5. Next we define a fully open network which in-
cludes sequestration reactions for each species, and also includes a
transmutation (or synthesis) reaction 𝐴1 → 𝑚𝐴𝑛 where 𝑚 ∈ N.

Following the notation in [36], we let 𝐾𝑚,𝑛(𝜏) denote the fully open
network

𝐴1 + 𝐴2 → 0

𝐴2 + 𝐴3 → 0

⋮

𝐴𝑛−1 + 𝐴𝑛 → 0

𝐴1 ←←←←←←→𝜏
𝑚𝐴𝑛

𝐴𝑖 ⇌ 0, 𝑖 ∈ {1,… , 𝑛},

where 𝜏 ≥ 0 is the delay associated to reaction 𝐴1 → 𝑚𝑋𝑛. Delay-
free networks 𝐾𝑚,𝑛(0) and more general sequestration-transmutation
networks have been analyzed in [13,16,32,36,37] for multistationarity
and bistability.

For simplicity, we let 𝑛 = 4 for our calculations below. Let 𝑥𝑖 denote
the species concentration of 𝐴𝑖 for 𝑖 = 1, 2, 3, 4. The delay mass action
system for the sequestration network 𝐾𝑚,4(𝜏) is

𝑥̇1 = −𝑘1𝑥1𝑥2 − 𝑘4𝑥1 − 𝑘5𝑥1 + 𝑘9
𝑥̇2 = −𝑘1𝑥1𝑥2 − 𝑘2𝑥2𝑥3 − 𝑘6𝑥2 + 𝑘10
𝑥̇3 = −𝑘2𝑥2𝑥3 − 𝑘3𝑥3𝑥4 − 𝑘7𝑥3 + 𝑘11
𝑥̇4 = −𝑘3𝑥3𝑥4 + 𝑚𝑘4𝑥1(𝑡 − 𝜏) − 𝑘8𝑥4 + 𝑘12

and its Jacobian matrix 𝐽 (𝒌,𝒙) with 𝜏 = 0 is

⎡

⎢

⎢

⎢

⎢

⎣

−𝑘1𝑥2 − 𝑘4 − 𝑘5 −𝑘1𝑥1 0 0
−𝑘1𝑥2 −𝑘1𝑥1 − 𝑘2𝑥3 − 𝑘6 −𝑘2𝑥2 0

0 −𝑘2𝑥3 −𝑘2𝑥2 − 𝑘3𝑥4 − 𝑘7 −𝑘3𝑥3
𝑚𝑘4 0 −𝑘3𝑥4 −𝑘3𝑥3 − 𝑘8

⎤

⎥

⎥

⎥

⎥

⎦

.

One can verify (for example, using Maple) that det(𝐽 (𝒌,𝒙)) > 0 for all
values of the rate constants 𝒌 and all positive 𝒙 (in particular for all
steady states 𝒙∗).

The modified Jacobian matrix 𝐽 (𝒌,𝒙) defined in (7) is

⎡

⎢

⎢

⎢

⎢

⎣

−𝑘1𝑥2 − 𝑘4 − 𝑘5 𝑘1𝑥1 0 0
𝑘1𝑥2 −𝑘1𝑥1 − 𝑘2𝑥3 − 𝑘6 𝑘2𝑥2 0
0 𝑘2𝑥3 −𝑘2𝑥2 − 𝑘3𝑥4 − 𝑘7 𝑘3𝑥3

𝑚𝑘4 0 −𝑘3𝑥4 −𝑘3𝑥3 − 𝑘8

⎤

⎥

⎥

⎥

⎥

⎦

.

Clearly, the diagonal entries of 𝐽 are all negative. One can verify using
Maple that all principal minors of size three or less of −𝐽 are positive.
On the other hand, det(−𝐽 (𝒌,𝒙)) is not immediately positive, except
when

𝑚 − 1 ≤
𝑘5
𝑘4

. (9)

Therefore by Corollary 4.5, the sequestration network 𝐾𝑚,4(𝜏) is delay
stable if the inequality (9) is satisfied.

Note that (9) is always satisfied if 𝑚 = 1. In fact, 𝐾1,𝑛(𝜏) is delay sta-
ble for any 𝑛. This is an immediate application of the graph-theoretical
result in our upcoming paper [21].

Example 5.6. We conclude with an example that is not delay
stable [38]: the detoxification of nitric oxide in bacteria. A toxin 𝐴1
leaks into the cell but is degraded by an enzyme 𝐴2 (with intermediate
complex 𝐴3). The enzyme 𝐴2 also degrades over time. Finally, in the
presence of 𝐴1, the gene for producing 𝐴2 is promoted by an active
promoter 𝐴5 and by an inactive promoter 𝐴4. The delay mass action
system is given by

0 → 𝐴1

𝐴1 + 𝐴2 ⇌ 𝐴3

𝐴3 → 𝐴2

𝐴2 → 0

𝑛𝐴1 + 𝐴4 ⇌ 𝐴5

𝐴5 ←←←←←←←←←←←←←←←←←←←→𝜏2 ,𝜏5
𝐴2 + 𝐴5,
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where only the last reaction is delayed,2 with the enzyme 𝐴2 produced
after a delay time 𝜏2 and recovering the promoter 𝐴5 after a different
delay time 𝜏5. The two delay times of the system reflect that 𝐴2 and 𝐴5
require different amount of time before they are able to perform their
respective functions. Having two different delay times does not greatly
alter the analysis; see Remark 4.4.

In this example, −𝐽 fails to be a 𝑃0-matrix (for example the {1, 4, 5}
principal minor is negative), and therefore Theorem 4.2 does not apply.
Moreover, Theorem 4.2 also does not apply because det(𝐽 ) = 0, where
𝐽 is the Jacobian matrix of the system when 𝜏2 = 𝜏5 = 0. Indeed,
the stoichiometric subspace 𝑆 has the span of 𝒆4 + 𝒆5 as its orthogonal
complement. Thus, the ODE model has the conservation relation 𝑥4(𝑡)+
𝑥5(𝑡) = 𝑐, while the delay model has the conservation relation

𝑥4(𝑡) + 𝑥5(𝑡) + ∫

𝑡

𝑡−𝜏5
𝑘8𝑥5(𝑠) 𝑑𝑠 = 𝑐,

where 𝑘8 is the rate constant for the last reaction and 𝑐 is a constant de-
termined by the initial data (for the ODE or delay model respectively).
In fact, for some choices of rate constants and delay parameters, the
system is delay unstable and exhibits oscillations [38].

6. Discussion and conclusion

Time delays are naturally present in many biochemical and bio-
logical processes [1,8,9]. In this work we have presented a criterion
for a chemical reaction network with time delays to be delay stable,
that is, any equilibrium is (absolutely) stable for all values of the rate
constants and the delay parameters. The criterion for delay stability is
algebraic in nature and depends mainly on the signs of the principal
minors of what we call the modified Jacobian, a matrix constructed
from the Jacobian matrix. The criterion for delay stability is applicable
to reaction networks of moderate to large size, since the calculations
necessary to show delay stability can be completed using standard
symbolic software.

Some future research directions related to delay stability of reaction
networks include:

• Graph-theoretic conditions for multistationarity in reaction net-
works have been found in [16,38,39]. These conditions are closely
related to the sign of the determinant of the Jacobian matrix for
different parameter values. Similarly, the delay stability of reac-
tion networks with delays depends on the signs of the principal
minors of the modified Jacobian matrix. In an upcoming work we
will present similar graph-theoretic condition for delay stability
in reaction networks [21].

• We have found a sufficient condition for delay stability in reaction
networks. Future work will address the question of necessary
conditions for delay stability.

• The sequestration networks 𝐾𝑚,𝑛 presented in Example 5.5 have
been analyzed extensively recently [36,37]. In a subsequent work
their delay stability will be studied for any values of 𝑚 and 𝑛.

As a final remark, our analysis focused on the stability of steady
states in reaction systems with time delays. However, our main result
has implications to the study of oscillations (a common dynamical
behavior in systems with delay). Namely, if Theorem 4.2 applies, then
critical delay values (and therefore Hopf bifurcations) are precluded.
Thus our result may serve as a necessary condition for the existence of
Hopf bifurcations arising from time delays.

2 As shown, this last reaction seems to violate conservation of mass. How-
ever, this simplified model does not show the amino acids needed to produce
𝐴2; we assume that there is a high abundance of amino acids available.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Science Foundation
[DMS–1412643, DMS–1517577, DMS–1816238] and Natural Sciences
and Engineering Research Council of Canada [PGS-D]. We thank the
anonymous reviewers for their comments and suggestions.

References

[1] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge
University Press, Cambridge, 1989.

[2] H. Smith, An Introduction to Delay Differential Equations with Applications to
the Life Sciences, Springer, New York, 2011.

[3] Y. Kuang, Delay Differential Equations with Applications to Population Dynamics,
Academic Press, New York, 1993.

[4] I.R. Epstein, Differential delay equations in chemical kinetics. Some simple linear
model systems, J. Chem. Phys. 92 (1990) 1702–1712.

[5] I.R. Epstein, Y. Luo, Differential delay equations in chemical kinetics. Nonlinear-
models: The cross-shaped phase diagram and the oregonator, J. Chem. Phys. 95
(1991) 244–254.

[6] M.R. Roussel, The use of delay differential equations in chemical kinetics, J.
Phys. Chem. 100 (20) (1996) 8323–8330.

[7] G. Stepan, Retarded Dynamical Systems, Longman, Harlow, 1989.
[8] P. Smolen, D. Baxter, H. Byrne, Modeling circadian oscillations with interlocking

positive and negative feedback loops, J. Neurosci. 21 (17) (2001) 6644–6656.
[9] J. Mahaffy, Cellular control models with linked positive and negative feedback

and delays. I. The models, J. Theoret. Biol. 106 (2) (1984) 89–102.
[10] K. Cooke, Z. Grossman. Discrete delay, Distributed delay and stability switches,

J. Math. Anal. Appl. 86 (2) (1982) 592–627.
[11] J. Belair, S. Campbell, P. van den Driessche, Frustration, stability, and delay-

induced oscillations in a neural network model, SIAM J. Appl. Math. 56 (1)
(1996) 245–255.

[12] G. Lipták, K.M. Hangos, M. Pituk, G. Szederkényi, Semistability of complex
balanced kinetic systems with arbitrary time delays, Systems Control Lett. 114
(2018) 38–43.

[13] G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction
networks: I. The injectivity property, SIAM J. Appl. Math. 65 (5) (2005)
1526–1546.

[14] J. Hofbauer, J.W.-H. So, Diagonal dominance and harmless off-diagonal delays,
Proc. Amer. Math. Soc. 128 (9) (2000) 2675–2682.

[15] M. Banaji, G. Craciun, Graph theoretic approaches to injectivity in general
chemical reaction systems, Adv. Appl. Math. 44 (2010) 168–184.

[16] G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction
networks: II. The species-reaction graph, SIAM J. Appl. Math. 66 (4) (2006)
1321–1338.

[17] M. Feinberg, Lectures on chemical reaction networks, 1979, Available at https:
//crnt.osu.edu/398LecturesOnReactionNetworks.

[18] P.Y. Yu, G. Craciun, Mathematical analysis of chemical reaction systems, Isr. J.
Chem. 58 (6–7) (2018) 733–741, [Special Issue: Nonlinear Dynamics in Chemical
Reaction Engineering].

[19] C.M. Guldberg, P. Waage, Studies Concerning Affinity, C. M. Forhandlinger,
Videnskabs-Selskabet i Christiana, 1864, p. 35.

[20] F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal. 47
(1972) 81–116.

[21] G. Craciun, M. Mincheva, C. Pantea, P.Y. Yu, Graph-theoretical criteria for delay
stability of reaction systems, in preparation.

[22] H.T. Banks, D. Robbins, K.L. Sutton, Theoretical foundations for traditional and
generalized sensitivity functions for nonlinear delay differential equations, Math.
Biosci. Eng. 10 (5–6) (2013) 1301–1333.

[23] M. Bodnar, The nonnegativity of solutions of delay differential equations, Appl.
Math. Lett. 13 (6) (2000) 91–95.

[24] J. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations,
Springer-Verlag, New York, 1993.

[25] R.E. Bellman, K.L. Cooke, Differential-Difference Equations, Academic Press, New
York, NY, 1963.

[26] F. Brauer, Absolute stability in delay equations, J. Differential Equations 69 (2)
(1987) 185–191.

[27] M. Fiedler, V. Pták, On matrices with non-positive off-diagonal elements and
positive principal minors, Czechoslovak Math. J. 12 (1962) 382–400.

[28] C.R. Johnson, Second, third, and fourth order 𝐷-stability, J. Res. Natl. Bur. Stand.
B 78B (1) (1974) 11–13.

6

http://refhub.elsevier.com/S0025-5564(20)30071-7/sb1
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb1
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb1
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb2
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb2
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb2
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb3
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb3
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb3
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb4
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb4
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb4
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb5
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb5
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb5
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb5
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb5
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb6
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb6
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb6
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb7
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb8
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb8
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb8
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb9
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb9
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb9
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb10
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb10
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb10
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb11
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb11
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb11
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb11
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb11
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb12
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb12
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb12
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb12
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb12
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb13
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb13
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb13
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb13
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb13
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb14
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb14
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb14
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb15
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb15
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb15
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb16
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb16
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb16
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb16
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb16
https://crnt.osu.edu/398LecturesOnReactionNetworks
https://crnt.osu.edu/398LecturesOnReactionNetworks
https://crnt.osu.edu/398LecturesOnReactionNetworks
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb18
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb18
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb18
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb18
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb18
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb19
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb19
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb19
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb20
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb20
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb20
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb22
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb22
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb22
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb22
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb22
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb23
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb23
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb23
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb24
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb24
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb24
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb25
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb25
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb25
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb26
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb26
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb26
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb27
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb27
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb27
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb28
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb28
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb28


G. Craciun, M. Mincheva, C. Pantea et al. Mathematical Biosciences 326 (2020) 108387

[29] P. Lancaster, M. Tismenetsky, The Theory of Matrices, Academic Press, New
York, 1985.

[30] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
SIAM, Philadelphia, PA, 1994.

[31] P.K. Maini, M.A. Burke, J.D. Murray, On the quasi-steady-state assumption
applied to michaelis–menten and suicide substrate reactions with diffusion, Royal
Soc. Phil. Trans: Phys. Sci. Eng. 337 (1991) 299–306.

[32] G. Craciun, B. Joshi, C. Pantea, I. Tan, Multistationarity in sequestration-
transmuitation reaction networks, in preparation.

[33] Bryan Félix, A. Shiu, Z. Woodstock, Analyzing multistationarity in chemical
reaction networks using the determinant optimization method, Appl. Math.
Comput. 287–288 (2016) 60–73.

[34] G. Craciun, C. Pantea, Identifiability of chemical reaction networks, J. Math.
Chem. 44 (2008) 244–259.

[35] B. Boros, Existence of positive steady states for weakly reversible mass-action
systems, SIAM J. Math. Anal. 51 (1) (2019) 435–449.

[36] B. Joshi, A. Shiu, A survey of methods for deciding whether a reaction network
is multistationary, Math. Model. Nat. Phenom. 10 (5) (2015) 47–67.

[37] X. Tang, J. Wang, Bistability of sequestration networks, Discrete Contin. Dyn.
Syst. Ser. B 22 (2020).

[38] M. Mincheva, M.R. Roussel, Graph-theoretic methods for the analysis of chemical
and biochemical networks. II. Oscillations in networks with delays, J. Math. Biol.
55 (2007) 87–104.

[39] M. Banaji, G. Craciun, Graph-theoretic approaches to injectivity and multiple
equilibria in systems of interacting elements, Commun. Math. Sci. 7 (4) (2009)
867–900.

7

http://refhub.elsevier.com/S0025-5564(20)30071-7/sb29
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb29
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb29
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb30
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb30
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb30
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb31
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb31
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb31
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb31
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb31
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb33
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb33
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb33
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb33
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb33
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb34
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb34
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb34
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb35
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb35
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb35
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb36
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb36
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb36
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb37
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb37
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb37
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb38
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb38
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb38
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb38
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb38
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb39
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb39
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb39
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb39
http://refhub.elsevier.com/S0025-5564(20)30071-7/sb39

	Delay stability of reaction systems
	Introduction
	Mass action systems with delay
	Linear analysis of delay reaction systems
	Main result
	Examples
	Discussion and conclusion
	Declaration of competing interest
	Acknowledgments
	References


