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Abstract

In the study of reaction networks and the polynomial dynamical systems that they
generate, special classes of networks with important properties have been identi-
fied. These include reversible, weakly reversible, and, more recently, endotactic net-
works. While some inclusions between these network types are clear, such as the
fact that all reversible networks are weakly reversible, other relationships are more
complicated. Adding to this complexity is the possibility that inclusions be at the
level of the dynamical systems generated by the networks rather than at the level of
the networks themselves. We completely characterize the inclusions between revers-
ible, weakly reversible, endotactic, and strongly endotactic network, as well as other
less well studied network types. In particular, we show that every strongly endotac-
tic network in two dimensions can be generated by an extremally weakly reversible
network. We also introduce a new class of source-only networks, which is a compu-
tationally convenient property for networks to have, and show how this class relates
to the above mentioned network types.
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1 Introduction

Chemical reaction networks model the behavior of sets of reactants, usually termed
species, that interact at specified rates to form sets of products. Under simplifying
assumptions such as (i) a well-mixed reaction vessel, (ii) a sufficiently large number
of reactants, and (iii) mass action kinetics, the dynamics of the concentrations of the
species can be modeled by a system of autonomous polynomial ordinary differential
equations. Such systems are known as mass action systems.

With the increased recent interest in systems biology, significant attention has
been given to the question of how dynamical properties of a mass action system can
be inferred from the structure of the network of interactions that it models. In par-
ticular, it is of great interest to identify network structures that inform the dynamics
regardless of the choice of parameters for the model (which are often unknown, or
only known up to order of magnitude). This is not a trivial endeavor, as kinetic sys-
tems based on reaction networks are known to permit a wide variety of dynamical
behaviors, including asymptotic convergence to a unique steady state [47], multista-
tionarity [28, 29], periodicity and Hopf bifurcations [62, 63], and chaotic behavior
[36]. Nevertheless, structural properties that have strong implications for the corre-
sponding dynamical systems have been found. See B.L. Clarke, Stability of complex
reaction networks [22] for a thorough description of the classical problems and the
connections between structural properties and stability of a network.

In the papers [38, 46, 47], Feinberg, Horn, and Jackson introduced the now-classi-
cal notion of network deficiency and proved that weak reversibility and a deficiency
of zero suffice for characterizing the steady state and local convergence properties
of the corresponding mass action system. Moreover, their results hold regardless
of the choice of parameters. These papers are commonly credited as providing the
framework for so-called chemical reaction network theory [37, 39—41, 58]. Chemi-
cal reaction network theory remains an active area of research to date, with a focus
on both deterministic [3-6, 14, 17, 23, 27, 31, 35, 43, 51, 64] and stochastic models
[1,2,6-13, 15, 21].

We note that there are other methods in the literature that focus on the network
structure of chemical interactions. This includes work related to the discovery of
new reactions [44], and on the understanding of the quantum physical and energetic
properties of chemical reaction paths [53-55]. However, in the present work we
focus on abstract mathematical models of chemical reaction networks defined as in
the works of Feinberg, Horn, Jackson, and Clarke [22, 38, 46, 47] and do not con-
sider mechanisms beyond the assumption of mass action.

Chemical reaction network theory can be applied either through direct knowl-
edge or hypothesis of a network of interactions, or by constructing such a network
from a system of ordinary differential equations with polynomial right hand sides.
In either case, the network in question may have no special properties that can be
used to draw conclusions. However, considering dynamical equivalence may allow
the application of a result that is not obviously relevant [30, 34, 49, 60]. Dynamical
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equivalence concerns the case of two distinct chemical reaction networks taken with
mass action kinetics having identical governing systems of differential equations.
It is simple to observe that not all dynamically equivalent network representations
share the same structural properties. For example, consider the network

k
0 x 2 ox. (1

This network is not weakly reversible (see Sect. 2.3). Under mass action kinetics,
however, we may easily check that the network

ki /2

0——=2X )

kz/z
generates exactly the same differential equation, & = k, — k;x?, and therefore is
a dynamically equivalent representation. This network, however, is reversible and
therefore weakly reversible. Thus, existing theory may be used to immediately char-
acterize the long-time behavior of the dynamical system that is associated with both
systems.

In the simple example introduced above, the notion of dynamical equivalence
allowed us to make a conclusion about the long term behavior of a dynamical sys-
tem associated with a network that did not appear to fit the hypothesis of the classi-
cal theorems of chemical reaction network theory. Furthermore, any model develop-
ment and fitting from data must account for dynamical equivalence [32, 34]. The
notion of dynamical equivalence therefore plays an essential role in the study of
mass action reaction networks. We therefore ask the following question:

Question 1 Are there easily checkable (geometric) conditions under which two net-
works are dynamically equivalent (in that they generate the same system of differen-
tial equations)?

A recent addition to the class of networks for which results can be obtained is
the class of endotactic networks, which include reversible and weakly reversible
networks as subclasses. Endotactic networks were first introduced in Craciun et al.
[33] and, roughly speaking, a network is endotactic if the reactions of the network
are “inward-pointing” in relation to the convex hull of the source nodes when the
network is embedded in Rio. See Definition 5 for a precise formulation. The deter-
ministic dynamical systems corresponding to endotactic networks are conjectured
to have positive solutions which are bounded and strictly positive for all time under
mild conditions on the reaction kinetics [33]. This conjecture is known to be true in
special cases, including when the network’s stoichiometric subspace is two-dimen-
sional or less [57] and when the network satisfies an additional condition to make it
strongly endotactic [6, 42].

What is not known is exactly how endotactic networks fit into the hierarchy of
well-studied network classifications such as reversible networks, weakly reversible
networks, single linkage class networks, networks with a single terminal linkage
class, and consistent networks. This is a non-trivial question in the context of mass
action kinetics given recent work on dynamical equivalence. In fact there are many
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endotactic networks, including that shown in Eq. 1 for which we can find a dynami-
cally equivalent weakly reversible network. We therefore ask the following question:

Question 2 Given the flexibility afforded by dynamical equivalence, how closely
related are endotactic networks to the well-studied classifications of reversible,
weakly reversible, and consistent networks?

Additionally, we introduce the notion of “source-only networks” and show how
endotactic and strongly endotactic networks relate to this class of networks.

To answer both questions, we introduce a general framework in which to con-
sider dynamical equivalence, including defining a reaction network as an embedded
graph, called a Euclidean embedded graph (E-graph). This definition is equivalent
to the classical definition found in the literature, notably Feinberg [37], in the sense
that it models the same dynamical system.

In this paper, we show that, although significant overlaps exists, endotacticity is
indeed distinct from weak reversibility. Figures 2, 4, 5 give examples of endotactic
and even strongly endotactic networks which cannot be realized as weakly reversible
networks. We characterize overlap between these types of networks by analyzing
the notion of “dynamical equivalence” (Definitions 7, 8, 11) under which distinct
networks may give rise to the same dynamical systems. We also give checkable con-
ditions for dynamical equivalence (Theorem 2). We show that in two dimensions,
strong endotacticity is equivalent to weak reversibility on an important subset of
the nodes of the network (Theorem 5), but Fig. 5 gives a counterexample in three
dimensions.

Figure 8 summarizes our results by giving a succinct summary of the relation-
ships between classifications of networks. Moreover, Fig. 8 is complete in the sense
that any additional paths would be false.

2 Background

In this section, we introduce background notation and results related to chemical
reaction network theory and mass action systems, in particular.

2.1 Chemical reaction networks

Classically, a reaction network has been defined as below [37]:

Definition 1 A chemical reaction network is a triple of finite sets (., €, %) where:

1. The species set .= {X|, ..., X,} consists of the basic species/reactants capable
of undergoing chemical change.

2. The complex set €= {C|, ..., C,} consists of linear combinations of species of
the form
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d
Cl:zylj}(]’ l:1,,n
J=1

The constants y; € Ry are called stoichiometric coefficients and determine
the multiplicity of each species within each complex. We define the complex
support vectors y; = (¥;1,Yjs --- » Vig) and assume that each complex is stoichio-
metrically distinct, i.e. y; # y; for i # j. For simplicity, we will allow the support
vector y; to represent the complex C;.

3. The reaction set # = {R,, ..., R, } consists of elementary reactions of the form

Rk . yﬂ(k)_)yp/(k)’ k=l,...,r

where p(k) = i if y; is the reactant complex of the k" reaction, and p’(k) = j if Y
is the product complex of the k" reaction. We require that p(k) # p’ (k) for each
k =1, ...,r. Reactions may alternatively be represented as ordered pairs of com-
plexes, e.g. R, = (y;,y,) if y; — y; is in the network.

We present the preceding classical definition (Definition 1) in order to connect
our results to the bulk of the literature in chemical reaction network theory. In
some recent work (see [19, 20, 24-26]), chemical reaction networks have been
defined in terms of a Euclidean Embedded Graph (E-graph). In this paper, we
prefer to use this newer formulation, given below in Definition 3, due to its con-
venient geometric properties.

Definition 2 A Euclidean embedded graph (E-graph) & = (¥, &) is a finite directed
graph whose nodes 7 are distinct elements of a finite set ¥ € R,

It is convenient to define for each edge e € & a source vector s(e) € Y, the
label of the source node of e, the rarget vector t(e) € Y, the label of the target
node, and the reaction vector v(e) = t(e) — s(e). We may regard s(e) as the source
complex of some reaction while #(e) is the product complex of that same reaction.

Now we define a chemical reaction network to simply be an E-graph for which
a set of simple conditions hold.

Definition 3 A reaction network is a Euclidean embedded graph, (7; &), whose
nodes ¥ are labeled with distinct elements of a finite set Y C IR‘iO, and for which the
following conditions hold: -

L V#6;
2. foreach y € ¥ there exists e € & for which #(e) = y or s(e) = y;
3. t(e) # s(e) for each e € &. That is, we never have v(e) = 0.

Definitions 1, 3 of a chemical reaction network are equivalent in the following

sense: if we regard the set .7 as the standard basis in R, then the set of vertices
¥ and edges & in Definition 3 can be chosen to be the set of complexes ¥ and
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reactions % in Definition 1. It is most common to assume that ¥ C Zio. Further,
it is convenient to enumerate the elements of &, so that &= {e,, ..., ¢ 4}.

2.2 Mass action systems

In this paper, we will focus on dynamical systems that are generated by reaction net-
works according to mass action kinetics [37, 47]. We will denote the vector whose
ith component gives the concentration of the ith species at time ¢ by x(¢) € IRZO. As
is usual, we will often drop the ¢ in the notation and simply denote the concentration
by x. Also, for two vectors u,v € R?_, we will denote

= uvi
ll i

i=1

>0’

where we take 0° = 1. A system is said to have mass action kinetics if the rate asso-
ciated to reaction i is

kx5
1

for some constant k; > 0, called the rate constant of the reaction. That is, the rate
of each reaction is assumed to be proportional to the product of the concentrations
of the constituent reactants, counted according to multiplicity. For example, a reac-
tion of the form X; + X, — --- would have rate equal to kx,x, for some k£ > 0, and a
reaction of the form X; + 2X, — --- would have rate equal to kx,xZ, for some k > 0.
Other common kinetic assumptions, especially in systems biology, are Michaelis-
Menten kinetics [56] and Hill kinetics [45]. Since reaction i pushes the system in the
direction v(e;), we have the following.

Definition 4 Given a reaction network ¢ = (¥, &) as in Definition 3 and, after enu-
merating &, a choice of rate constants % = {ki, ... ,k| 4 } € Ry, we say that ¢ gen-
erates the dynamical system (%)

dx d
= = D kx ve,). A3)
i=1

We will use the notation fy (X) to refer to the right hand side of the dynamical
system in Eq 3. It is clear from Eq. 3 that every mass action system has the proper-
ties that = € S = Span{v(e)|e € &}. Consequently, solutions of Eq. 3 are restricted
to stalchlometrlc compatibility classes (X, + S) N [R 0 [61].

As we noted in the introduction, different Euclidean embedded graphs (combined
with choices of rate constants) can generate the same polynomial dynamical system.

2.3 Network classifications

A key feature of chemical reaction network theory is the attempt to relate dynami-
cal properties of kinetic systems, and in particular mass action systems, to structural

@ Springer



Journal of Mathematical Chemistry

properties of the underlying reaction graphs. We therefore introduce the following
foundational structural properties of chemical reaction networks.

Definition 5 Consider a reaction network ¢ = (¥, &), where & has been enumerated.
The graph ¢ is said to be:

1. Consistent if there is some choice of a;,a,,...,q,4 € R, such that
0= Z,li ay(e,).

2. Weakly reversible if each connected component of the graph is strongly con-
nected, or, equivalently, each edge e € & is contained in a cycle.

3. Endotactic if, for every w € R? and every e; € &, w - v(e;) < 0 implies that there
exists e; € & such thatw - (s(e;) — s(e;)) < 0 and w - v(e;) > 0.

4. Strongly endotactic if, for every w € R? and every e; € &, w - v(e;) < 0 implies
that there exists e; € & such that w - (s(¢;) — s(e;)) < 0 and w - v(e;) > 0 and fur-
thermore w - (s(e;) — s(e,)) < Oforall e, € &.

Consistency is closely related to a mass action system’s capacity to admit positive
steady states [16]. Weak reversibility was introduced as a generalization of revers-
ibility in Horn and Jackson [47]. Endotactic networks were introduced as a generali-
zation to weak reversibility in Craciun et al. [33], where it is shown that any weakly
reversible network is endotactic.

Remark 1 Notice that consistency is a necessary but not sufficient condition on the
network structure for the corresponding mass action system to admit positive steady
states. For example, consider the network §§ «— X — 2X. This network is con-
sistent, which can be observed by se]lecting Jate constants a; = a, = 1. However, if
the rate constants are selected as f «— X — 2X, then the generated dynamics are
X = x, which has solution x(¢) = x(0)e’, and there is no positive steady state. O

Remark2 Weak reversibility may also be understood using Definition 3 as the prop-
erty that every edge in ¢ is in a directed cycle. This is distinct, but similar, to the
stronger requirement of reversibility, i.e. that for every edge e there is some edge e*
such that s(e) = t(e*) and #(¢) = s(e*). For instance, the network

X —\J”ﬁ +X
X
is not reversible, since there is no reaction X; + X, — X,, but is weakly reversible

since there is a path from X, + X, to X, through X. O

Remark 3 Intuitively, a Euclidean embedded graph is endotactic if no reaction
“points outward.” This can be tested using the so-called “parallel sweep test” (see
Craciun et al. [33]). In Fig. 1a, we can tell that the network is endotactic because any
direction w which is not perpendicular to the two reactions has the property that if
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€2
€1 €1
€2
s(ez) =t(e1) = (1,0) €3
(@) (b)

Fig. 1 Two systems which have the same dynamics when every rate constant is taken to be 1. Notice that
v(e,) in (a) is in the positive cone formed by v(e,) and v(e;) in (b), and that all of these edges have the
same source vector, (1, 0)

w-v(e;) <Othenw - (s(e;) —s(e;)) =w-v(e;) <Oandw - v(e,) =w- (—v(e;)) > 0.
In Fig. 1b, we can see from w = (—1, —1) that this is not endotactic. We have that
w-v(e;) <0, but w-(s(e;)—s(e))=w-v(e;) =0, and while w-v(e;) >0,
w - (s(ey) —s(e3)) =0. O

The properties above are intrinsically properties of E-graphs. However, we can
define the same notions for dynamical systems using the relationship between
E-graphs and dynamical systems established in Definition 4.

Definition 6 We will call a dynamical system % =f(x):

1. Consistent if % = f(x) can only be generated by a consistent Euclidean embedded
graph;

2. Weakly reversible if ‘{’1—’: = f(x) can be generated by some weakly reversible
Euclidean embedded graph ¥;

3. Endotactic if % = f(x) can be generated by some endotactic Euclidean embedded
graph ¢;

4. Strongly endotactic if % = f(x) can be generated by some strongly endotactic
Euclidean embedded graph ¢.

Remark 4 In Definition 6 part 1., we have that if a dynamical system is consistent,
then every graph which generates the system must be consistent. This is in contrast
to parts 2., 3. and 4. of this definition. This is because any polynomial dynamical sys-
tem can be generated by some consistent network. To see this, we simply add a set
of edgesej, ..., e; which share a source s* to some graph ¢ = (¥, &) which generates
the system, requiring that the cone generated by v(e7), ..., v(e}) is equal to the span
of the original reaction vectors. This implies that 0 € Cone({v(e’l“), ,v(e;‘)}) and so
the new graph also generates the polynomial. Also, for any choice of ay, ..., a,4 > 0,
we have chosen the v(el’.‘) such that — Zlfl ayv(e;) € Cone({v(e’i‘), ,v(e;)}), and
furthermore is in the relative interior of that cone. Therefore, there is a choice of

@ Springer



Journal of Mathematical Chemistry

by,...,b, > 0 such that 3 by(e}) = — Zlfl ay(e;) and so the new graph is con-
sistent. O

2.4 Dynamical equivalence

As already noted, it is well known that the dynamical representations of mass
action systems (i.e., Eq. 3) are not uniquely determined by the network structure.
For another example, consider the following networks, whose E-graphs are shown
in Fig. 1:

1
X <_1—>X2 4)
and
Xi+X
L
X — X (5)
™S

It can be easily seen that Eqs. 4, 5 are both governed by the mass action dynamics
X, = =X, = —x| + x,. We therefore introduce the following definition [34].

Definition 7 Consider two chemical reaction networks ¥ = (¥, &) and ¥ = (¥, &),
combined with rate constants J#'={k; |i=1,...,r} and H = {I~<,- li=1,...,7},
respectively. We will say that the mass action systems (%) and ?(53) are
dynamically equivalent if the generated functions fy 4 and fy 3 coincide (i.e.
SanX) = fa.0(x), for all x).

We can see that the dynamical systems (%) and f?(,/:i’) associated with Eqgs. 4,
5 are dynamically equivalent. We may furthermore observe that ¢ and & fail to
share the same structural properties: ¢ is weakly reversible while ¢ is not. As in
Remark 3, we can also easily verify that ¢ is endotactic, while @ is not (see Fig. 1).
Notice, however, that in the classifications given in Definition 6, the polynomial
dynamical system is said to be weakly reversible (and endotactic) because the net-
work & = (¥, &) is. This example shows that it is possible for a mass action system
to behave as though the generating network has a particular desirable network prop-
erty, even when the generating network does not itself have it. We might therefore
say that the known generating E-graph behaves as though it has that property for
some (or perhaps even all) choices of rate constants.

In order to formalize this notion, we inspect the case of E-graphs which may gen-
erate the same polynomial dynamical system.

Definition 8 Let ¢, and %, be Euclidean embedded graphs. We say that ¢, and %,
have the capacity for dynamical equivalence, and write ¢, N %,, if there exists a
system ‘;—’t‘ = f(x) that can be generated by both ¢, and %, (i.e. there exists %] and .7,
such that fgl(_%/l)(x) =f%(%)(x) = f(x), for all x).
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Definition 9 Let ¢ be a Euclidean embedded graph. We say that ¢ has the capac-
ity for weak reversibility if there exists a weakly reversible Euclidean embedded
graph & such that ¥ &. Likewise, we say that ¢ has the capacity to be endotactic
(strongly endotactic) if there exists some endotactic (strongly endotactic) Euclid-
ean embedded graph ¢ such that ¥ .

The following theorem asserts that the above definitions are meaningful. In
particular, it shows that there are networks which can generate weakly reversible
(respectively, endotactic) networks which are not themselves weakly reversible
(respectively, endotactic).

Theorem 1 The following inclusions hold and are strict.

1. The set of networks with the capacity for weak reversibility contains the set of
weakly reversible networks.

2. The set of networks with the capacity to be endotactic contains the set of endo-
tactic networks.

Proof That these inclusions hold follows directly from the definitions. We now sim-
ply need to demonstrate that the reverse inclusion does not hold.
Consider the network ¢, below

k
X3 —3>X1 +X; .

k4l Tkl (6)
k

0 (72 X
The network ¥ is neither weakly reversible nor endotactic. However, if (and only if)
k, = k, and k5 = k,, then the generated mass action system may also be generated by
the weakly reversible and endotactic network ¢ with correctly chosen rate constants:

ky
Xi—X. @)
k3

Therefore, 4N %, completing the proof. O

Notice that we may also define the notion of having the capacity to be consist-
ent in the same way. However, by Remark 4 we see that every E-graph has the
capacity to be consistent.

We are interested in the stronger case in which every system generated by an
E-graph can also be generated by another E-graph with a desired property. We
therefore define the following.

Definition 10 Let ¢ be a Euclidean embedded graph. We say that ¢ is effectively
weakly reversible if every dynamical system generated by ¢ is weakly reversible.
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Likewise, we say that ¢ is effectively endotactic (strongly endotactic) if every pol-
ynomial dynamical system generated by ¢ is endotactic (strongly endotactic).

It is possible for a network to be effectively weakly reversible, but not weakly
reversible as the example Eq. 1, given in the introduction, demonstrates.

In order to show that a network is effectively weakly reversible or effectively
endotactic, it is of course helpful to characterize when one network can generate
any system that can be generated by some other system.

Definition 11 Let ¢, and %, be Euclidean embedded graphs. We say that ¢
includes the dynamics of %,, and write ¥, C ¢, if any system ‘2—’: = f(x) gener-
ated by ¢, can also be generated by ¥, (i.e., for any %, there is some %] such that
fgl(%)(x) =f%(%)(x) for all x).

We have already encountered several examples of Definition 11 in this manu-
script. For example, the network shown in Eq. 5 and Fig. 1b contains the dynam-
ics of the network shown in Eq. 4 and Fig. la. In Fig. 1, it is noted that these net-
works generate the same dynamical system when every rate constant is taken to
be 1. Now, note that for any choice of rate constants k; for edge e, and k, for edge
e, chosen to generate a dynamical system using the network shown in Fig. la, we
can generate the same network using Fig. 1b by choosing k, = k, for edge e,, and
k, = ky = k, for edges e, and e,

An obvious sufficient condition for a network ¢ to be effectively weakly
reversible is then that there exists some weakly reversible & such that ¥C ¥.

3 Main results

In this section, we prove the main correspondences of this paper. In the first sub-
section, we address Question 1. We then apply this result in the subsequent sub-
sections in order to investigate Question 2.

We will frequently require the following known results [52].

Lemma 1 (Farkas’ Lemma) Let {v;}, i = 1, ..., m, denote a family of vectors in R".
Then, for any b € R”" exactly one of the following is true:

[

m
1. There exist constants A; > 0,i=1,...,m, such that b = z Av:; or

i=1
2. Thereis avectorw € R" such thatw -v; >0fori=1,...,m,andw -b <0.

Lemma 2 (Stiemke’s Theorem) Let {v;},i=1,...,m, denote a family of vectors in
R"™. Then exactly one of the following is true:
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m
1. There exist constants A, € R_,,i =1, ...,m, so that Av. =0; or
i >0 i

i=1
2. There exists a vectorw € R"so thatw -v; £ 0,i =1, ...,m, with the inequality
strict for at least one iy € {1, ..., m}.

3.1 A condition for dynamical equivalence

Here, we provide necessary and sufficient conditions under which one network con-
tains the dynamics of another. Furthermore, as a corollary we provide necessary
and sufficient conditions under which two networks have the capacity for dynamical
equivalence. These conditions are geometric in nature and easily checkable.

The appearance of the source complexes s(e) as exponents in Eq. 3 suggests that
we need to consider this subset of the complexes. We will also need the notion of a
cone. Given a finite set of vectors S C R? we define the set K = Cone(S), the cone
generated by S, as the closed, convex set of all finite, nonnegative linear combina-
tions of the elements of S [18]. We denote the interior of a cone K = Cone(S) rela-
tive to the span of S (i.e. the relative interior of K) by Rellnt(K).

If 4 = (¥, &) is a Euclidean embedded graph, let .#%,, = {s(e)|e € &} be the source
complexes/vectors of ¢, and for s € .76, let V¥(s) = Cone({v(e;)|s(¢;) = 5, ¢; € &))
be the cone generated by those reaction vectors with source vector equal to s. If a
vector s & .76, we define V¥(s) = {0}.

Theorem 2 &, T 9, if and only if (i) /6, C /6y, and (ii) for every s € Sy,
Rellnt(V*(s)) C Rellnt(V* (s)),
where we take V¥(s) = {0} if s & .S6,.

by
Proof We begin by proving that (i) ﬁﬁndl (ii) imply that %, C %,. Let J# € R|>o/2|~ We
must show that there exists %' € R>:‘ such that

Faiy =F a0y

We use superscript 1 or 2 to differentiate edges, source vectors, and reaction vectors
of ¢, and %,, respectively. Note that for any choice of ' and .7 we have

f%(%z)(x) _f%l(tl/‘)(x) = Z kezxs(eZ)v(eZ)_ Z ke]Xs(el)v(el).

e2€by, eledy,

We wish to rewrite these sums in terms of the source complexes, which we enumer-
ate via

‘%ﬁIU‘%L%:%f] ={51,S2,...,S|y(6»%|}.
Then, for each s,€.5%, we let m;= [{e! € by, Is(e') =s;}|, and
n;=|{e* € by, |s(e?) = 5,}| be the number of edges out of complex s, for networks
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¢, and ¥, respectively. Furthermore, let {kf.j} = {k,|s(e’) =s;}, and
{vfj} = {v(e")|s(e') =s,}, I = 1,2, where the sizes of the sets are m; and n, for £ = 1
and £ = 2, respectively. Then

Fag,00)X) = f g0 (X) = 2 X" Zki 3_ Z X Zk;";

§,€5Cy, j=1 ;€.

Then, because .7, C 6,

Fa0m® ~Fgom® = XS’(Z’%% s Zk;";>

S,-Eylé)gyz Jj=1 J=1

— Z x5i Z klyl.
i

5, €56y \SCy, =1
We have that 0 € Rellnt(V¥i(s))) if s; € %g \%w, so we can choose .7 with

k1 > 0 so that each term of the second sum is 0 Furthermore, for each s; € %w,

n m;

3 Sk = - B

J=1 J=1

where w € Rel]nt(V%(si)). Because of condition (ii) we may also conclude that
w € Rellnt(V% (s;)). Hence, we can choose kl.l. > 0 so that

w— Z‘klvl =0.

With these choice of parameters we have fy 2 =fq4 Ay
. . 2 . A . . .

Next, we show that ¢, C ¢, imply (i) and (ii) hold. First, if there is some source
s; € SCy buts; & Sy, then for general choice J# there will be a monomial x* in
f(p( ) Which cannot appear in f@ (- Therefore, (i) must hold.

Next, in order to find a contradiction suppose, that for some s; € %ﬁ there is a
vector w € RelInt(V%(s,)) but w & RelInt(V*(s,)), so that (ii) does not hold. Then,
since w € Rellnt(V%: (s;)), there is a choice J# so that [y V) contains a term of the
form

2,2
Zku i W

J=1

&, . s
Then, for any choice of e [RL(‘;‘ | the function f%( %z)(x) — fg] ( %)(x) will include
the term
i 1,1 S;
<w - 21 kijvij>x .
i=
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Because w & Rellnt(V¥ (s;)), this term is non-zero for any x # 0. Moreover, no other
term could cancel it since no other monomials of the form x* can appear. Thus,
Fy X)) #fy )(X). Since this conclusion holds for any choice of A, we con-
clude that we do not have ¥, C ¢, which is a contradiction. O

Remark 5 For any edge e of a network ¢, we may generate a new network ¢, by
removing e and adding edges e,,...,e; such that s(e;) = --- =s(e;) = s(e) and
v(e) € Rellnt(Cone({v(e,), ...,v(ey)})). Then, Theorem 2 implies that ¢, contains
the dynamics of . We often refer to this as “splitting” the reaction vector v(e). O

Theorem 2 shows when the dynamical systems generated from one network
are contained within those generated by another. It is reminiscent of Theorem 4.4
of [34], which gives conditions for when the two sets of dynamical systems inter-
sect (i.e., when they have the capacity for dynamical equivalence). Moreover, their
proofs are similar. However, a missing case in the proof of Theorem 4.4 of [34]
was noted by Gabor Szederkényi in [59]. A complete statement and proof of Theo-
rem 4.4 of [34] appear below.

Theorem 3 (Complete version of Theorem 4.4 of [34]) Under the mass-action kinet-
ics assumption, two chemical reaction networks represented by the graphs ¢, and 4,
have the capacity for dynamical equivalence, i.e., 4, N'Y,, if and only if for every
s €E %% U %%

RelInt(V*(s)) N Rellnt(V* (s)) # @
where we take VY(s) = 0 if s & .76,

Proof We begin by showing that the above conditions imply that ¢, and %, have the
capacity for dynamical equivalence. We enumerate the set .76, U .76, and for
each s; in that set, we choose

w, € Rellnt(V*(s)) N Rellnt(V? (s)).

Let

fx) = Z x\iw;.

Then both ¥, and ¥, generate f and we conclude that ¢4, N %,.
Next suppose that ¢, and %, have the capacity for dynamical equivalence. Hence,
by Definition 8, there exists some polynomial

fo =Y kxw,, ®)
i=1

with s; # s; for i # j, that can be generated by both ¢, and %,. Let 7= {s,,...,s,
and note that 7 C ¢, U %%, . For any s € (Y6, U.C,)\ 7, implying no
term in the polynomial corresponds with s, we immediately have that
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0 € Rellnt(V%(s)) N Rellnt(V% (s)),
as desired. Furthermore, for each s; € .7, we have
@ # {aw, : @ > 0} C Rellnt(V*(s;)) N Rellnt(V* (s;))

where containment follows by the fact that each of ¢, and ¥, generated f in Eq. 8.
Thus, we have shown the condition holds for all s € 6y, U .6, and the proof is
complete. O

3.2 Endotactic networks
We turn to our study of endotactic and strongly endotactic networks.

Lemma 3 Let 9= (¥, &) and G = (¥, &) be reaction networks such that YT 4. If 4
is endotactic, then ¢ is endotactic. Moreover, if 9 is strongly endotactic, then 9 is
strongly endotactic.

Proof Let e; € & and w be such that w - v(e;) < 0. We must show that there exists
e; € & such thatw - (s(e;) —s(e;)) < Oand w - v(e;) > 0.

Because ¢YLC ¥, we know from Theorem 2 that s(e;) € 563, and
v(e;) € V"(s(e )). There then exists &; € & such that s(é;) =s(e;) and v(g;) -w <0,
sincew - v(e;) <0

ve) €VIUste)) = vep= Y, @) 420

e;ls(e;)=s(e;)

Because ¢ is endotactic, there is some ¢; such that w - (s(¢;) —s(¢;)) <0 and
v(e) w > 0. Moreover, we can choose ¢ €; so that w - (s(e) N )) is minimal over
edges satisfying v(e;) - w > 0.

We can complete the proof by proving two statements.

(1) (&) € S (the source complexes for &).
) Ifue Rellnt(V¥(s(2,)), thenu - w > 0.

Combining the above gives the existence of the necessary edge in &.

We prove (1) by showing that 0 & RelInt(VG(s(e )). Then, combined with Theo-
rem 2, s(e) € %¢ Suppose that 0 € Rellnt(VG(s(e )). Then, by Lemma 2, there
is some &, € & such that 5, = s(e) and v(é,) - w < 0. However, the minimality
of w- (s(e ) —s(€,)) over edges satlsfylng v(e ) -w > 0 then implies that there is no
edge g Wlth v(e)-w > 0andw - (s(é)w(é,)) < 0. This contradicts the condition that
@ is endotactic. i

To prove (2), let u € Rel]nt(V%(s(éi)). Then, there are 4, > 0 and ¢, € @, each
with source s(&,), for which '
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u= Z Ay(@) = ApE) + ) Av(E)).

i#k

Dotting with w yields

wew=Ap@E) w+ Y AvE) - w.
k#j

Ifu -w <0, then, because v(¢;) - w > 0, we would be forced to conclude v(¢;) - w < 0
for some i #j. Since ¥ is endotactlc this would contradict the minimality of
w - (s(¢;) —s(¢;)). Hence, we can conclude that u - w > 0. Theorem 2 implies that
there is such a u € Rellnt(V?)(s(2))).

Turning to the case of ¥ bemg strongly endotactic. The proof that ¢ is
strongly endotactic is identical except the line “...is minimal over edges satisfying
v(€;) - w > 07 is changed to “...is minimal over all edges of @ and by noting that the
source complexes of ¢ are a subset of the source complexes of ¢. O

3.3 Endotactic and source-only networks

We introduce a new concept, that of “source-only” networks, which we will dem-
onstrate is a useful framework.

Definition 12 A chemical reaction network & = (¥, &) is said to be source-only if,
for any e € &, t(e) = y implies that s(e*) = y for some ¢* € E. A mass action system
d—’: = f(x) is said to be source-only if it can be generated by a source-only E-graph.
A chemical reaction network ¢ is said to be effectively source-only if every system
generated by ¢ is source-only.

That is, a network is source-only if ¥” does not contain any nodes that are only
product nodes.

Example 1 Consider the chemical reaction network

3X, —> 3X,

k.
Y‘ ﬁz Xi +Xo —23 2X) +2Xs. )

The network can be defined by the E-graph in Fig. 2a. We can see that the network is
strongly endotactic. We next seek to represent the network as a source-only network.
To do so we must dispose of the product complex 2X, + 2X,. We see that the fourth
reaction can be split (in the sense of Remark 5) to give the following dynamically
equivalent reaction network
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(Oa 3)0 (0,3)0

(2,2)

(1,1) (1,1)

<

Y Y
a

I

(0,0) G0 (0,0 (3.0)
(@) (b)

Fig.2 Two E-graphs ¢ (a) and & (b) which have the capability of generating the same mass-action sys-
tem (i.e. 4N %). Notice that, while both networks are strongly endotactic, the network & is source-only
which the network & is not. There is, however, no weakly reversible E-graph & such that 4N &

ks X1 +X; ks

3w, M ax, (10)

T

This network can be defined by the E-graph in Fig. 2b. Thus we see that the network
(9) is effectively source-only. O

k3 0

We now prove the following.

Lemma 4 Let Y= (¥, &) be an endotactic network. Then, there is exists a source-
only network G = (¥, &) such that Y T &, and the nodes of 4 are the source nodes of
4. Therefore, every endotactic network is effectively source only.

Proof We assume ¥ = (¥, &) is endotactic and will construct a source-only network
&= (¥, &) such that ¥C ¥.

We take the nodes of our new network to be the source complexes of the origi-
nal network. That is, ¥ = S 6. Next, we define & in the following way. First, we
index the edges of & as ey, ..., ¢;. For each edge ¢; € &, if t(e;) € /6, we include
e; € &. Otherwise, let C; be the set of edges of the complete graph on %, with
source s(e;), so that {v(e*)|e* € C7'} = {s* —s(e))|s* € (FCy\ {s(ep}D}-

We next show that v(e;) € Cone({v(e*)|e* € C:}) = Cone({s™ —s(e;)|s*
€ (F6y\ {s(e)})}). If this was not the case, then by Lemma 1 there exists some
w e R? such that w - v(e;) <0 and w - (s* —s(e;)) >0 for all s* € .76,. How-
ever, if there exists any w € R4 such that w - v(e;) < 0, the condition that ¥ is
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endotactic implies that for some source s* € .7%6,,, and therefore some ¢* € Cl* with
v(e*) =s* —s(e), w - v(e*) <0, because S, = {s(e*)|e* € C7} U {s(e)}.

Let C; C C7 be the set so that Cone({v(e)|e € C;}) is minimal in over subsets of
C? in the sense of inclusion while still satisfying v(e;) € Cone({v(e)|e € C;}). There-
fore, v(e;) € Rellnt(Cone({v(e)|e € C;})). Then, we add the edges & € C; to &. By
this construction, we have for each s € .76,

Rellnt(V¥(s)) C Rellnt(V¥(s))

and we can conclude that ¥ C ¢, where & is clearly source only. a

Notice that while Lemma 4 guarantees that any endotactic dynamical system can
be generated by source-only network, this source only network is not necessarily
endotactic. The following example shows that we cannot guarantee that any endo-
tactic dynamical system can be generated by a source-only endotactic network.

Example 2 In Fig. 3a, we give an example of a strongly endotactic network ¢
such that if ¢ is source only and YC ¥, then ¢ is not endotactic. Splitting the
edge labeled e in the sense of Remark 5 requires adding a new edge e! such that
v(e!) - (1,0) < 0 and an edge e* such that v(e?) - (0, —1) < 0. Then, e' can be used
to show that the resulting network is not endotactic. Therefore, we cannot split
any edges to maintain the endotactic property. It follows that to make the network
source-only and endotactic, we must add a source node.

Consider again the node labeled e in Fig. 3a. To make the network source-only
without splitting any edges, we must add source node at some point s* = s(e) + av(e)
for & > 0. To maintain the endotactic property and insure that the new network ¢

e

®
I
e<+——6— 6
¢et+— 06— >0

e

(a) (b)

Fig.3 a A strongly endotactic network ¢ such that if & is source only and ¥C ¥, then & is not endotac-
tic. b An example of a network ¢ constructed as in the proof of Lemma 4 such that ¢ is source only and
A

@ Springer



Journal of Mathematical Chemistry

contains the dynamics of ¢, we must add edges with source s* such that 0 € VG(s*).
However, this requires either adding a new node which is only a target or adding a
vector e' such that v(e') - (1,0) < 0 which can be used to show the resulting network
is not endotactic. To make this target into a source, we have the same requirements.
We conclude that there is no way to construct endotactic and source-only % such
that ¥C 9. O

Notice that the set of monomials {x%} of a generated polynomial fg 4 corre-
sponds to a subset of the source complexes .#%,, and including (but not limited
to) the set of sources s € .#%,, that have 0 ¢ Rellnt(V¥(s)). To limit networks that
must be considered given a polynomial, we wish to exclude sources from a net-
work which do not appear as monomials. For the case of weakly reversible sys-
tems, the following theorem allows us to do this (see also Theorem 4.8 in [30]).

Theorem 4 If a polynomial dynamical system % = f(x) is weakly reversible, then it
is generated by a weakly reversible network that has as its sources the exponent vec-
tors of the monomials of f.

Proof Let ¥ = (¥, &) be a weakly reversible network which generates f(x). If there
is a node s* = s(e), e € & such that the monomial x* does not appear in f, we first
introduce a term 0x*" in f. It is now convenient to order such nodes ST585, Sy

R e
Consider first s We index the edges e € & such that s(e) = s as el, . e . Because

the coefficient of the monomial x*! in fis 0, the vectors v(e) and rate constants k,
must satisfy Y e‘;v(Lel.) = 0. For any edge e' which has #(e") = 5%, we have in fa
term of the form kx5 y(eh). We let

so that kt = > kl,

)4
Z o) = o5— k Zlm(e)_
i=1 !

i=1"e; i=1

and finally
p ~
k'vie) = kv(eh.
i=1
Then, we can write

P 14 14
kv = Y kv + Y kav(e)) = Y ka((eh) +v(e)).

i=1 i=1 i=1

Therefore, we can replace the term kTx* @ v(e") in f with
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P
D ko (v(e?) + v(e] xS,
=1

This implies that f is generated by a network which is built from ¢ in the following
way:

1. All of the edges e which have s(e) = s* or #(e) = s* are removed. Let E| be the
edges with s(e) = s* and let E, be the edges with t(e) = s*.

2. [Edges are added from each source node of an edge in E, to each target node of an
edgein E,.

The resulting network is weakly reversible because ¢ was weakly reversible, and
the only paths removed consisted of an edge in E, followed by an edge in E,. These
were then replaced with a single edge (or no edge if the path went from a node to
itself). We now have a network which is weakly reversible and generates f(x), but
does not include s7 as a source. We then simply repeat the argument for s7, ..., s} to
eliminate all nodes that do not appear as non-zero terms in f(x). O

The class of source-only networks is useful because they provide an upper bound
on the networks we must consider when we attempt to represent polynomial dynam-
ical systems using various kinds of networks. Furthermore, Theorem 4 shows that in
some cases one need only consider networks without adding new nodes. Therefore,
source-only representations of networks provide finite descriptions of reversible,
weakly reversible, and endotactic networks, which is useful in computations. For
example, in [30], it is shown that to find a complex balanced realization of a poly-
nomial system, one need only consider the complexes that appear as exponent vec-
tors. Furthermore, knowing that one can write a network as a source-only network
is important in dynamical equivalence and network translation-based computational
methods. In these settings, it is often required to know the number and/or stoichiom-
etry of required complexes [48, 50].

3.4 Endotactic and consistent networks
We continue with results related to endotactic networks.
Lemma5 Every endotactic network is consistent.

Proof Suppose, in order to find a contradiction, that there is a network (¥; &) that
is endotactic but not consistent. Since the network is not consistent, there does not
exist a set of constants 4, > 0 for which

Z Av(e) = 0.
el

It follows that condition 1. of Lemma 2 is not satisfied, so that condition 2. must be
satisfied. That is, there is aw € R? such that w - v(e) < 0, with at least one inequality
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strict. It follows immediately from the definition of endotactic in Definition 5 that
the network is not endotactic, which is a contradiction. It follows that every endotac-
tic network is consistent. O

3.5 Endotactic and weakly reversible networks

We have seen that every endotactic network may be represented in a dynamically
equivalent form as a source-only network. Since weakly reversible networks are
source-only by definition, it is tempting to suppose that every endotactic network is
effectively weakly reversible. However, this is not the case, as we will show. In this
section, we introduce the concept of extremal reactions which helps to bridge the
gap between endotactic and weakly reversible networks.

Considering Example 1 again, we see that this network is endotactic and effec-
tively source-only, but that it is not weakly reversible. In order to make it weakly
reversible, we must be able to reconfigure the other reactions so that X, + X, is also
the product of some reaction. We observe, however, that we cannot “split” any of
the other three reactions as they lie on the outer hull of the source complexes. For
instance, to split 3X; — 3X, to connect to X; + X,, we must necessarily introduce a
balancing reaction which points away from the convex hull of the source complexes,
and therefore introduces a strictly product complex. This network, therefore, is not
effectively weakly reversible.

We can quickly identify that the reason there is no weakly reversible dynamically
equivalent network is that there is a complex in the interior of the convex hull of the
complexes which cannot be reached. In this example, however, we might observe
that the restriction of the network to just the boundary complexes 3X,, 3X,, and ¢
is weakly reversible. This is perhaps not surprising; after all, we observed that the
reactions which could not be “split” were exactly those which were on the boundary
of the convex hull. We therefore introduce the following.

Definition 13 Consider a chemical reaction network ¥ = (¥, &). We define the
extreme source complexes &6, C .#%,, to be the set of source nodes s(e) which
are on the border of the convex hull of .7%;,. The extremal reaction set &€, is
defined to be the set {e € &]s(e) € £}, and we define &%, to be the subset of ¥
that are the sources and/or targets of the edges in &&,. Then the network ¢ is said
to be extremally weakly reversible if the reduced network (£7, £&;,) is weakly
reversible.

A mass action system is said to be extremally weakly reversible if it is gener-
ated by an extremally weakly reversible E-graph. A chemical reaction network ¥ is
said to be effectively extremally weakly reversible if any system generated by ¢ is
extremally weakly reversible.

It is clear that for Example 1 we have that 6, = &%, = {3X,,3X,,0} and that

(&Y, 66,) is weakly reversible. Hence, the original network is extremally weakly
reversible.
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Fig.4 E-graph defining the
network Eq. 11. Although the
network is source-only and
endotactic, it does not permit

a strongly endotactic, weakly
reversible, or extremally weakly
reversible representation

Fig.5 Three-dimensional
E-graph defining a network.
Although the network is source-
only and strongly endotactic,

it does not permit a weakly
reversible or extremally weakly
reversible representation

(1’3)0 0(273)

(3,2)

Lo 20

3

We wish to determine how robust this property is among endotactic networks.

Consider the following example.

Example 3 Consider the network

k. ks
3X) 42X —— 2X, T———— X
ke

k ka
X, —— 5 X 43X, 72X, +3X,
k3

(1)

The network can also be represented by the E-graph in Fig. 4. It can be visually
checked that the network is endotactic. Furthermore, we can see that every com-
plex is an extremal complex, so that £%,, = .¥%,, and &, = &. Nevertheless, no
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reaction may be “split” while preserving the property that the network is source-
only. It follows that the network is neither effectively weakly reversible nor effec-
tively extremally weakly reversible. a

While the network in Example 3 is endotactic, it is not strongly endotactic. We
now consider whether the property of being effectively extremally weakly reversible
holds for strongly endotactic networks. Consider the following example.

Example 4 Consider the network given in the three-dimensional complex space by
Fig. 5. It can be verified by visual inspection that the network is strongly endotactic.
We also have that §6;, = .7¢,,; however we again may not “split” any reaction from
these complexes while maintaining the property of being source-only. It follows that
the network is not effectively weakly reversible. O

This example is three-dimensional. The following result considers strongly endo-
tactic networks which have a two-dimensional stoichiometric subspace.

Theorem 5 Let 4= (¥, &) be a strongly endotactic two-dimensional network with
two-dimensional stoichiometric subspace and assume that the source complexes
only reside on the boundary of the convex hull generated from the source complexes.
Then there exists a weakly reversible Euclidean embedded graph 4 such that Y€ 4.
Therefore, every two dimensional strongly endotactic network is effectively extrem-
ally weakly reversible.

Proof Let ¢ = (¥, &) be a strongly endotactic network with sources only on the con-
vex hull of source complexes. We will build & in three stages, constructing “inter-
mediate” networks ¢, and %, and finally ¢ (Fig. 6).

Consider the Euclidean embedded graph ¥, = (¥}, &}) with | = .6, and as its
edges &) all possible edges which lie along the sides of the convex hull of .76,,. ¥, is
clearly weakly reversible, and while .76y, = .76, ¢, does not necessarily contain
the dynamics of 4.

We now prove, however, that for each s & .74, we have that either
Vg(si) cv4 (s;) or v (§;) is the border of a half space which contains Vg(si). Let %;

HOD

(a) (c) @

Fig.6 The networks constructed as outlined by the proof of Theorem 5. a The initial E-graph 4. b ¢,
which includes all of the possible edges that lie along a face of the convex hull of #%. ¢ %,, which is
strongly endotactic and has 4 C %,. d ¢, which is strongly endotactic, weakly revesible, and has ¥ C ¢
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be the set such that forw € %, w - (s; — s*) < 0 for any s* € .%6,,. This set contains
some non-zero vector because s; is in the convex hull of #6,,. Letw € # ande € &
be such that s(e) = s,. Because ¢ is endotactic and w - (s; — s*) < 0, it must be that
v(e) - w > 0. If V%(s,) is pointed, then % is the dual cone to V¥ (s;) and by Lemma 1
we can conclude that V¥(s,) C V¥ (s,). If V%(s,) is a line (note that by construction
V% (s;) cannot be a ray), then #; is perpendicular to V¥ (s;). Then, we can conclude
that V¥ (s,) is the border of a half space which contains V¥(s;), and that this half
space also contains .76, because w - (s — s*) < 0 for any s* € .76,.

We next construct 4, = (¥;,4,) from ¥, such that ¢, contains the dynamics
of ¢ by modifying the edge set &;. We index the set .#%, of source complexes as
S1--- 85, and build &, by adding edges e with s(e) =, fori =1,...,|.#¢|. For
each source §; of ¥, there are three possibilities we must consider:

(a) If Rellnt(V¥(s,)) C Rellnt(V¥ (s;)), we simply include the edges e of ¢, with
s(e) = s, in &. Then, clearly Rellnt(V¥(s;)) C Rellnt(V*(s,)).

(b) If V¥ (s;) is a line and Vg(s,-) is not contained in that line, we again include
each edge e of ¢, with s(e) =s; in &,, but must also include additional edges.
We know that, in this case, V% (s;) is the border of a half space which contains
V¥(s,) and .76,,. We add an edge with source s, and a target in ¥; = .76, that
does not lie in the line V¥ (s,). Thus, V%(s,) is the appropriate half space. Then,
Rellnt(V¥(s;)) C Rellnt(V*(s))).

(¢) If V¥(s;) C aV¥i(s;), then V¥(s;) is a ray along one face of the convex hull of
S6. We then take only the edges of ¢, which lie along this ray to be edges in &,.
Then, clearly Rellnt(V¥(s,)) C Rellnt(V*(s;)) because V¥(s;) = V¥(s,).

We have now constructed ¥, = (%5, &,) such that 4 C ¢%,. Furthermore, %, is strongly
endotactic, as we now show. Let w e R? and e € &, be such that w - v(e) < 0. Let
{s*} C &, be the sources such that w - (s* —s(e;)) < 0 for all ¢; € &, and {e*} the
corresponding edges. Any edges in %, correspond to reaction vectors which do not
point out of the convex hull of .76, so we know that w - (s* — s(e)) < 0. Also, {s*}
is the same as the set of sources of ¢ which have w - (s(e;) —s*) < Oforalle; € & 1f
none of the v(e*) - w > 0, then our construction implies this is true of the edges of ¢4
as well. This contradicts the assumption that ¢ is strongly endotactic. We conclude
that &, is strongly endotactic.

It is possible that ¥, is not weakly reversible, so we finally construct & such that
V=", & C&, and both ZC %, and ¢, C ¥ hold. To complete the construction,
we must first establish the following about the structure of ¥,:

(i) For each s € .6, either V%(s) is one dimensional and intersects a (one
dimensional) face of the convex hull of .6, or V%(s) is solid (meaning it has
two-dimensional span) and (s; —s) € V%(s) for all §; € Sby.

(ii) On every face of the convex hull of .6, at least one of the following is true:
there is some s such that (s; —s) € V*%(s) for all s; € .76, (and V*%(s) is solid),
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or there is some s such that s is a corner of the convex hull of .#%, and V% (s)is a
ray pointing along an adjacent face of the convex hull of .#%,.

(iii) We may add a path from any source on some face of the convex hull of
S, to a source as in (ii) to create a network ¢ such that 4" C %, and %, C ¢".

To establish (i), suppose that we have some s and V%(s) is not one dimensional.
Then, either V%(s) = V¥ (s) or V%(s) is a half space such that V¥ (s) = aV%(s). In
either case, the convexity of the convex hull of .7, implies (i). By our construc-
tion possibility (c), if V¥(s) is one dimensional, it must intersect a (one dimen-
sional) face of the convex hull of .7%,.

To establish (ii), let w be such there is some set S C .6, with at least two dis-
tinct elements and w - (s; —s;) =0 for s;,s5; €S and w-(s; —s;) <0 for s; €S,
s; & S (i.e., wis the inward pointing normal to a one dimensional face of the convex
hull of .#6,,). ¥, is strongly endotactic, so for some s € S, there is some e € &, with
s(e) = s and v(e) - w > 0. We can conclude using fact (a) that on every face of the
convex hull of .76, at least one of the following is true: there is some s such that
(s;,—s) € V%(s) for all s; € 6, (and V%(s) is solid), or there is some s such that s
is a corner of the convex hull of .76, and V*(s) is a ray pointing along an adjacent
face of the convex hull of .74,

To establish (iii), let .7’ be a face of the convex hull of .76, and let s € . be a
source such that either (s; —s) € V%(s) for all s; € € or V%(s) is a ray pointing
along an adjacent face of the convex hull of .#6,. Let s* € .¥ be some other source
on the same face of the convex hull of .#6,. If V% (s*) is solid or a full line, then
s—s*eVh (s*), and so if " is the network with an edge added from s* to s, then
V7 (s*) = V&(s*). If V%(s*) is a ray and § — s* & V%(s*), there must be some s**
such that (s** — s*) € V¥%(s*) and either s** also has either (s;, —s") € V% (s**) for
all s; € /€ or V%(s**) is a ray pointing along an adjacent face of the convex hull
of S, or V%(s*) = —V%(s*). In the last case, (s — s**) € V%(s**), and so if ¢*
is the network to which we added edges to form a path from s* to s through s**, we
have that V¥ (s*) = V¥%(s*) and %4 (s**) = V% (s*) .

The above arguments show that for any source s* € .76, there is a source s in
the same face of the convex hull of .#%, such that either (s, — ) € V%(s) for all
s; € /6 or V%(s) is a ray pointing along an adjacent face of the convex hull of
Sy, and furthermore that if %" is the network to which we added edges to form a
path from s* to s, then 4* C %, and %, C ¢".

We may now complete the construction of &. Recalling that ¢, is weakly revers-
ible, & is weakly reversible if & includes edges which replace any paths present in
¢, that were not included in %,. Let ¢; be any edge in &) but not in &,. Note that
t(e;) = s(e) for some ¢, € & (because V= Y, =V, = S6y,). We must add a path
of edges in & from s(e;) to s(ey), or prove that such a path is already present in &.
Let s(e;) = s. We have seen that we may add a path of edges to some source s™ in the
same of face of the convex hull of .7, as s such that one of the following is true:

(a) (s; — s*) € V%(s*) for all 5; € .76, or
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(b) s* is is a corner of the convex hull of .76, and V*%(s*) is a ray pointing along
an adjacent face of the convex hull of .7,

If (a) holds, then we can add an edge to & with source s* and target s(e;) and still
have both 4 C “,and ¥, C & , and a path from s(e;) to s(ey).

If (b) holds but (a) does not, we repeat the argument on the adjacent face of the
convex hull of sources for s*, letting s** be the new source which satisfies one of (a)
or (b). Note that V¥ (s*) is not solid, so s** # s* (otherwise (a) was originally satis-
fied). If again only (b) holds, we may continue the argument until (a) holds for some
s in a face of the convex hull of .74, or (b) holds for some s and s(e,) is in the face
of the convex hull that V¥ (s) points along.

We conclude that if & is the weakly reversible network with paths added to
replace any edges in & that are missing from &, then 4C %,. Then, Lemma 3
implies that ¢ is strongly endotactic. Furthermore, ¥C %, C 4. O

3.6 Additional examples

We now present counterexamples to various possible inclusions of network types in
the sense of dynamical equivalence. This will allow us to conclude that any arrow
added to our Fig. 8 would be false.

Example 5 Consider the E-graph shown in Fig. 7a. This network is extremally
weakly reversible, but it is not effectively weakly reversible. According to Theo-
rem 4, if there is a weakly reversible network which generates a system generated by
this network, it needs no added sources. Therefore, there must be a path from at least
one extremal source to the interior source (shown in red). However, splitting (as in
Remark 5) any extremal reaction will result in a new reaction which points out of
the convex hull of sources. The resulting network cannot be endotactic, and so is not
weakly reversible. O

Example 6 Consider the E-graph shown in Fig. 7b. This network is weakly reversi-
ble, while it is not effectively extremally weakly reversible. The extremal reaction set
consists of two irreversible reactions which form a path (labeled ¢, and e,) and one
reversible reaction pair. Again, Theorem 4 implies that if there is a weakly reversible
network generates a system generated by the extremal reaction set then it needs no
added sources. While this does allow us to reverse edge e, in Fig. 7b by splitting (as
in Remark 5) edge e,, the result is a new irreversible path into the reversible reac-
tion pair. Neither reversible reaction can be split without introducing a new reaction
which points out of the convex hull of sources. Thus, there is no weakly reversible
network which contains the dynamics of this extremal reaction set. We conclude that
the network is not effectively extremally weakly reversible. O

Example 7 Consider the E-graph shown in Fig. 7c. This network is reversible,
weakly reversible, and extremally weakly reversible, while it is not effectively
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P—r

(a) (b) (c)

(d) (e) ®

Fig.7 Collection of examples. All examples are 2-dimensional networks, with the exception of f, which
is Example 10, that is 1-dimensional. a Example 5: Extremally weakly reversible but not effectively
weakly reversible. b Example 6: Weakly reversible but not effectively extremally weakly reversible. ¢
Example 7: Reversible but not effectively strongly endotactic. d Example 8: Source only but not effec-
tively endotactic. e Example 9: Consistent but not effectively endotactic. f Example 10: Consistent but
not effectively source-only

(Reversible)

Weakly Reversible (Extremally Weakly R,eversible)

Strongly Endotactic

Endotactic

Source-Only

Fig. 8 This figure summarizes our main results on inclusions of classes of networks. Purple arrows indi-
cate an inclusion in the family of networks, which also implies inclusion in the sense of dynamical equiv-
alence. Network inclusions given by the purple arrows are strict at the level of networks and also at the
level of dynamical equivalence. Orange arrows indicate inclusion in the sense of dynamical equivalence
only (or “effective” properties). That is, an orange arrow indicates that a type of network at tail end is
effectively the type of network at the head using Lemma 4, Lemma 5, and Theorem 5. The graph is com-
plete in the sense that any additional paths would be false

strongly endotactic. No reaction present can be split (as in Remark 5) while preserv-
ing the endotactic property. By Theorem 2, any node added to create a new net-
work & must have 0 € Rellnt(V¥(s)). Therefore, any direction w which violated the
strongly endotactic conditions must still do so. a
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Example 8 Consider the E-graph shown in Fig. 7d. This network is source-
only, while it is not effectively endotactic. No reaction present can be split (as in
Remark 5) to gain the endotactic property. By Theorem 2, any node added to create
a new network & must have 0 € Rellnt(V¥(s(e))). Therefore, any direction w which
violated the endotactic conditions must still do so. O

Example 9 Consider the E-graph shown in Fig. 7e. This network is consistent. How-
ever, for generic choices of rate constants, the polynomial dynamical systems gener-
ated by this network are also generated by a network with a single irreversible reac-
tion. Hence, the network is not effectively endotactic. Note that the same is true for
the E-graph shown in Fig. 7f. O

Example 10 Consider the E-graph shown in Fig. 7f. This one-dimensional network is
consistent, but it is not effectively source-only. Any system generated by this network
has only a single term. Any other network & which also generates such a system
and contains more than one source must have additional sources which are extremal
sources. However, Theorem 2 implies that these must have 0 € Rellnt(V¥(s)), and so
must have target nodes outside of the convex hull of sources, which could therefore
not be sources. O

4 Conclusion

We have determined the extent to which different reaction networks may repre-
sent the same dynamical system when modeled with mass action kinetics. This
allows us to investigate the overlap between classes of reaction networks, in the
sense of dynamical equivalence and “effective” properties. Figure 8 provides a
summary of the relationships between classifications of networks, giving an
answer to Question 2. Furthermore, the graph in Fig. 8 is complete in the sense
that any additional arrows would be false, with the exception of arrows that are
already implied by directed paths.

Our answers to Questions 1, 2 provide a framework for the study of generic
interaction networks, and indeed systems of ODEs with polynomial right hand
sides, in the context of reaction network theory. Reaction network theory pro-
vides useful tools for the analysis of dynamical systems [28, 29, 36, 47, 62, 63],
and an answer to Question 1 provides a way to extend these results to systems for
which they are not immediately applicable. Our work on Question 2 organizes the
hierarchy of the various results in reaction network theory, allowing them to be
extended where appropriate.
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