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Abstract
In the study of reaction networks and the polynomial dynamical systems that they 
generate, special classes of networks with important properties have been identi-
fied. These include reversible, weakly reversible, and, more recently, endotactic net-
works. While some inclusions between these network types are clear, such as the 
fact that all reversible networks are weakly reversible, other relationships are more 
complicated. Adding to this complexity is the possibility that inclusions be at the 
level of the dynamical systems generated by the networks rather than at the level of 
the networks themselves. We completely characterize the inclusions between revers-
ible, weakly reversible, endotactic, and strongly endotactic network, as well as other 
less well studied network types. In particular, we show that every strongly endotac-
tic network in two dimensions can be generated by an extremally weakly reversible 
network. We also introduce a new class of source-only networks, which is a compu-
tationally convenient property for networks to have, and show how this class relates 
to the above mentioned network types.
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1  Introduction

Chemical reaction networks model the behavior of sets of reactants, usually termed 
species, that interact at specified rates to form sets of products. Under simplifying 
assumptions such as (i) a well-mixed reaction vessel, (ii) a sufficiently large number 
of reactants, and (iii) mass action kinetics, the dynamics of the concentrations of the 
species can be modeled by a system of autonomous polynomial ordinary differential 
equations. Such systems are known as mass action systems.

With the increased recent interest in systems biology, significant attention has 
been given to the question of how dynamical properties of a mass action system can 
be inferred from the structure of the network of interactions that it models. In par-
ticular, it is of great interest to identify network structures that inform the dynamics 
regardless of the choice of parameters for the model (which are often unknown, or 
only known up to order of magnitude). This is not a trivial endeavor, as kinetic sys-
tems based on reaction networks are known to permit a wide variety of dynamical 
behaviors, including asymptotic convergence to a unique steady state [47], multista-
tionarity [28, 29], periodicity and Hopf bifurcations [62, 63], and chaotic behavior 
[36]. Nevertheless, structural properties that have strong implications for the corre-
sponding dynamical systems have been found. See B.L. Clarke, Stability of complex 
reaction networks [22] for a thorough description of the classical problems and the 
connections between structural properties and stability of a network.

In the papers [38, 46, 47], Feinberg, Horn, and Jackson introduced the now-classi-
cal notion of network deficiency and proved that weak reversibility and a deficiency 
of zero suffice for characterizing the steady state and local convergence properties 
of the corresponding mass action system. Moreover, their results hold regardless 
of the choice of parameters. These papers are commonly credited as providing the 
framework for so-called chemical reaction network theory [37, 39–41, 58]. Chemi-
cal reaction network theory remains an active area of research to date, with a focus 
on both deterministic [3–6, 14, 17, 23, 27, 31, 35, 43, 51, 64] and stochastic models 
[1, 2, 6–13, 15, 21].

We note that there are other methods in the literature that focus on the network 
structure of chemical interactions. This includes work related to the discovery of 
new reactions [44], and on the understanding of the quantum physical and energetic 
properties of chemical reaction paths [53–55]. However, in the present work we 
focus on abstract mathematical models of chemical reaction networks defined as in 
the works of Feinberg, Horn, Jackson, and Clarke [22, 38, 46, 47] and do not con-
sider mechanisms beyond the assumption of mass action.

Chemical reaction network theory can be applied either through direct knowl-
edge or hypothesis of a network of interactions, or by constructing such a network 
from a system of ordinary differential equations with polynomial right hand sides. 
In either case, the network in question may have no special properties that can be 
used to draw conclusions. However, considering dynamical equivalence may allow 
the application of a result that is not obviously relevant [30, 34, 49, 60]. Dynamical 
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equivalence concerns the case of two distinct chemical reaction networks taken with 
mass action kinetics having identical governing systems of differential equations. 
It is simple to observe that not all dynamically equivalent network representations 
share the same structural properties. For example, consider the network

This network is not weakly reversible (see Sect. 2.3). Under mass action kinetics, 
however, we may easily check that the network

generates exactly the same differential equation, ẋ = k2 − k1x
2 , and therefore is 

a dynamically equivalent representation. This network, however, is reversible and 
therefore weakly reversible. Thus, existing theory may be used to immediately char-
acterize the long-time behavior of the dynamical system that is associated with both 
systems.

In the simple example introduced above, the notion of dynamical equivalence 
allowed us to make a conclusion about the long term behavior of a dynamical sys-
tem associated with a network that did not appear to fit the hypothesis of the classi-
cal theorems of chemical reaction network theory. Furthermore, any model develop-
ment and fitting from data must account for dynamical equivalence [32, 34]. The 
notion of dynamical equivalence therefore plays an essential role in the study of 
mass action reaction networks. We therefore ask the following question:

Question 1  Are there easily checkable (geometric) conditions under which two net-
works are dynamically equivalent (in that they generate the same system of differen-
tial equations)?

A recent addition to the class of networks for which results can be obtained is 
the class of endotactic networks, which include reversible and weakly reversible 
networks as subclasses. Endotactic networks were first introduced in Craciun et al. 
[33] and, roughly speaking, a network is endotactic if the reactions of the network 
are “inward-pointing” in relation to the convex hull of the source nodes when the 
network is embedded in ℝd

≥0
 . See Definition 5 for a precise formulation. The deter-

ministic dynamical systems corresponding to endotactic networks are conjectured 
to have positive solutions which are bounded and strictly positive for all time under 
mild conditions on the reaction kinetics [33]. This conjecture is known to be true in 
special cases, including when the network’s stoichiometric subspace is two-dimen-
sional or less [57] and when the network satisfies an additional condition to make it 
strongly endotactic [6, 42].

What is not known is exactly how endotactic networks fit into the hierarchy of 
well-studied network classifications such as reversible networks, weakly reversible 
networks, single linkage class networks, networks with a single terminal linkage 
class, and consistent networks. This is a non-trivial question in the context of mass 
action kinetics given recent work on dynamical equivalence. In fact there are many 

(1)

(2)
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endotactic networks, including that shown in Eq. 1 for which we can find a dynami-
cally equivalent weakly reversible network. We therefore ask the following question:

Question 2  Given the flexibility afforded by dynamical equivalence, how closely 
related are endotactic networks to the well-studied classifications of reversible, 
weakly reversible, and consistent networks?

Additionally, we introduce the notion of “source-only networks” and show how 
endotactic and strongly endotactic networks relate to this class of networks.

To answer both questions, we introduce a general framework in which to con-
sider dynamical equivalence, including defining a reaction network as an embedded 
graph, called a Euclidean embedded graph (E-graph). This definition is equivalent 
to the classical definition found in the literature, notably Feinberg [37], in the sense 
that it models the same dynamical system.

In this paper, we show that, although significant overlaps exists, endotacticity is 
indeed distinct from weak reversibility. Figures 2, 4, 5 give examples of endotactic 
and even strongly endotactic networks which cannot be realized as weakly reversible 
networks. We characterize overlap between these types of networks by analyzing 
the notion of “dynamical equivalence” (Definitions 7, 8, 11) under which distinct 
networks may give rise to the same dynamical systems. We also give checkable con-
ditions for dynamical equivalence (Theorem 2). We show that in two dimensions, 
strong endotacticity is equivalent to weak reversibility on an important subset of 
the nodes of the network (Theorem 5), but Fig. 5 gives a counterexample in three 
dimensions.

Figure 8 summarizes our results by giving a succinct summary of the relation-
ships between classifications of networks. Moreover, Fig. 8 is complete in the sense 
that any additional paths would be false.

2 � Background

In this section, we introduce background notation and results related to chemical 
reaction network theory and mass action systems, in particular.

2.1 � Chemical reaction networks

Classically, a reaction network has been defined as below [37]:

Definition 1  A chemical reaction network is a triple of finite sets (S,C,R) where: 

1.	 The species set S = {X1,… ,Xd} consists of the basic species/reactants capable 
of undergoing chemical change.

2.	 The complex set C = {C1,… ,Cn} consists of linear combinations of species of 
the form 
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The constants yij ∈ ℝ≥0 are called stoichiometric coefficients and determine 
the multiplicity of each species within each complex. We define the complex 
support vectors yi = (yi1, yi2,… , yid) and assume that each complex is stoichio-
metrically distinct, i.e. yi ≠ yj for i ≠ j . For simplicity, we will allow the support 
vector yi to represent the complex Ci.

3.	 The reaction set R = {R1,… ,Rr} consists of elementary reactions of the form 

where �(k) = i if yi is the reactant complex of the kth reaction, and ��(k) = j if yj 
is the product complex of the kth reaction. We require that �(k) ≠ ��(k) for each 
k = 1,… , r . Reactions may alternatively be represented as ordered pairs of com-
plexes, e.g. Rk = (yi, yj) if yi → yj is in the network.

We present the preceding classical definition (Definition 1) in order to connect 
our results to the bulk of the literature in chemical reaction network theory. In 
some recent work (see [19, 20, 24–26]), chemical reaction networks have been 
defined in terms of a Euclidean Embedded Graph (E-graph). In this paper, we 
prefer to use this newer formulation, given below in Definition 3, due to its con-
venient geometric properties.

Definition 2  A Euclidean embedded graph (E-graph) G = (V,E) is a finite directed 
graph whose nodes V  are distinct elements of a finite set Y ⊂ ℝ

d.

It is convenient to define for each edge e ∈ E  a source vector s(e) ∈ Y  , the 
label of the source node of e, the target vector t(e) ∈ Y  , the label of the target 
node, and the reaction vector v(e) = t(e) − s(e) . We may regard s(e) as the source 
complex of some reaction while t(e) is the product complex of that same reaction.

Now we define a chemical reaction network to simply be an E-graph for which 
a set of simple conditions hold.

Definition 3  A reaction network is a Euclidean embedded graph, (V,E) , whose 
nodes V  are labeled with distinct elements of a finite set Y ⊂ ℝ

d
≥0

 , and for which the 
following conditions hold: 

1.	 V ≠ ∅;
2.	 for each y ∈ V  there exists e ∈ E  for which t(e) = y or s(e) = y;
3.	 t(e) ≠ s(e) for each e ∈ E  . That is, we never have v(e) = 0.

Definitions 1, 3 of a chemical reaction network are equivalent in the following 
sense: if we regard the set S  as the standard basis in ℝd , then the set of vertices 
V  and edges E  in Definition 3 can be chosen to be the set of complexes C  and 

Ci =

d∑

j=1

yijXj, i = 1,… , n.

Rk ∶ y�(k) ⟶ y��(k), k = 1,… , r
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reactions R in Definition 1. It is most common to assume that Y ⊂ ℤ
d
≥0

 . Further, 
it is convenient to enumerate the elements of E  , so that E = {e1,… , e|E|}.

2.2 � Mass action systems

In this paper, we will focus on dynamical systems that are generated by reaction net-
works according to mass action kinetics [37, 47]. We will denote the vector whose 
ith component gives the concentration of the ith species at time t by �(t) ∈ ℝ

d
≥0

 . As 
is usual, we will often drop the t in the notation and simply denote the concentration 
by �. Also, for two vectors u, v ∈ ℝ

d
≥0
, we will denote

where we take 00 = 1 . A system is said to have mass action kinetics if the rate asso-
ciated to reaction i is

for some constant ki > 0 , called the rate constant of the reaction. That is, the rate 
of each reaction is assumed to be proportional to the product of the concentrations 
of the constituent reactants, counted according to multiplicity. For example, a reac-
tion of the form X1 + X2 → ⋯ would have rate equal to k�1�2 for some k > 0 , and a 
reaction of the form X1 + 2X2 → ⋯ would have rate equal to k̃�1�22 , for some k̃ > 0 . 
Other common kinetic assumptions, especially in systems biology, are Michaelis-
Menten kinetics [56] and Hill kinetics [45]. Since reaction i pushes the system in the 
direction v(ei) , we have the following.

Definition 4  Given a reaction network G = (V,E) as in Definition 3 and, after enu-
merating E  , a choice of rate constants K = {k1,… , k|E|} ⊂ ℝ>0 , we say that G  gen-
erates the dynamical system G(K)

We will use the notation fG(K)(�) to refer to the right hand side of the dynamical 
system in Eq. 3. It is clear from Eq. 3 that every mass action system has the proper-
ties that d�

dt
∈ S = Span{v(e)|e ∈ E} . Consequently, solutions of Eq. 3 are restricted 

to stoichiometric compatibility classes (�0 + S) ∩ℝ
d
≥0

 [61].
As we noted in the introduction, different Euclidean embedded graphs (combined 

with choices of rate constants) can generate the same polynomial dynamical system.

2.3 � Network classifications

A key feature of chemical reaction network theory is the attempt to relate dynami-
cal properties of kinetic systems, and in particular mass action systems, to structural 

uv =

d∏

i=1

u
vi
i

ki�
s(ei)

(3)d�

dt
=

|E|∑

i=1

ki�
s(ei)v(ei).
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properties of the underlying reaction graphs. We therefore introduce the following 
foundational structural properties of chemical reaction networks.

Definition 5  Consider a reaction network G = (V,E) , where E  has been enumerated. 
The graph G  is said to be: 

1.	 Consistent if there is some choice of a1, a2,… , a|E| ∈ ℝ>0 such that 
0 =

∑�E�
i=1

aiv(ei).
2.	 Weakly reversible if each connected component of the graph is strongly con-

nected, or, equivalently, each edge e ∈ E  is contained in a cycle.
3.	 Endotactic if, for every w ∈ ℝ

d and every ei ∈ E  , w ⋅ v(ei) < 0 implies that there 
exists ej ∈ E  such that w ⋅ (s(ej) − s(ei)) < 0 and w ⋅ v(ej) > 0.

4.	 Strongly endotactic if, for every w ∈ ℝ
d and every ei ∈ E  , w ⋅ v(ei) < 0 implies 

that there exists ej ∈ E  such that w ⋅ (s(ej) − s(ei)) < 0 and w ⋅ v(ej) > 0 and fur-
thermore w ⋅ (s(ej) − s(ek)) ≤ 0 for all ek ∈ E .

Consistency is closely related to a mass action system’s capacity to admit positive 
steady states [16]. Weak reversibility was introduced as a generalization of revers-
ibility in Horn and Jackson [47]. Endotactic networks were introduced as a generali-
zation to weak reversibility in Craciun et al. [33], where it is shown that any weakly 
reversible network is endotactic.

Remark 1  Notice that consistency is a necessary but not sufficient condition on the 
network structure for the corresponding mass action system to admit positive steady 
states. For example, consider the network ∅ ⟵ X ⟶ 2X . This network is con-
sistent, which can be observed by selecting rate constants a1 = a2 = 1 . However, if 
the rate constants are selected as ∅

1

⟵ X
2

⟶ 2X , then the generated dynamics are 
ẋ = x , which has solution x(t) = x(0)et , and there is no positive steady state. 	�  ◻

Remark 2  Weak reversibility may also be understood using Definition 3 as the prop-
erty that every edge in G  is in a directed cycle. This is distinct, but similar, to the 
stronger requirement of reversibility, i.e. that for every edge e there is some edge e∗ 
such that s(e) = t(e∗) and t(e) = s(e∗) . For instance, the network

is not reversible, since there is no reaction X1 + X2 → X2 , but is weakly reversible 
since there is a path from X1 + X2 to X2 through X1 . 	�  ◻

Remark 3  Intuitively, a Euclidean embedded graph is endotactic if no reaction 
“points outward.” This can be tested using the so-called “parallel sweep test” (see 
Craciun et al. [33]). In Fig. 1a, we can tell that the network is endotactic because any 
direction w which is not perpendicular to the two reactions has the property that if 
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w ⋅ v(e1) < 0 then w ⋅ (s(e2) − s(e1)) = w ⋅ v(e1) < 0 and w ⋅ v(e2) = w ⋅ (−v(e1)) > 0 . 
In Fig. 1b, we can see from w = (−1,−1) that this is not endotactic. We have that 
w ⋅ v(e2) < 0 , but w ⋅ (s(e1) − s(e2)) = w ⋅ v(e1) = 0 , and while w ⋅ v(e3) > 0 , 
w ⋅ (s(e2) − s(e3)) = 0 . 	�  ◻

The properties above are intrinsically properties of E-graphs. However, we can 
define the same notions for dynamical systems using the relationship between 
E-graphs and dynamical systems established in Definition 4.

Definition 6  We will call a dynamical system d�
dt

= f (�) : 

1.	 Consistent if d�
dt

= f (�) can only be generated by a consistent Euclidean embedded 
graph;

2.	 Weakly reversible if d�
dt

= f (�) can be generated by some weakly reversible 
Euclidean embedded graph G ;

3.	 Endotactic if d�
dt

= f (�) can be generated by some endotactic Euclidean embedded 
graph G ;

4.	 Strongly endotactic if d�
dt

= f (�) can be generated by some strongly endotactic 
Euclidean embedded graph G .

Remark 4  In Definition 6 part 1., we have that if a dynamical system is consistent, 
then every graph which generates the system must be consistent. This is in contrast 
to parts 2., 3. and 4. of this definition. This is because any polynomial dynamical sys-
tem can be generated by some consistent network. To see this, we simply add a set 
of edges e∗

1
,… , e∗

p
 which share a source s∗ to some graph G = (V,E) which generates 

the system, requiring that the cone generated by v(e∗
1
),… , v(e∗

p
) is equal to the span 

of the original reaction vectors. This implies that 0 ∈ Cone({v(e∗
1
),… , v(e∗

p
)}) and so 

the new graph also generates the polynomial. Also, for any choice of a1,… , a|E| > 0 , 
we have chosen the v(e∗

i
) such that −

∑�E�
i=1

aiv(ei) ∈ Cone({v(e∗
1
),… , v(e∗

p
)}) , and 

furthermore is in the relative interior of that cone. Therefore, there is a choice of 

(a) (b)

Fig. 1   Two systems which have the same dynamics when every rate constant is taken to be 1. Notice that 
v(e2) in (a) is in the positive cone formed by v(e2) and v(e3) in (b), and that all of these edges have the 
same source vector, (1, 0)
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b1,… , bp > 0 such that 
∑p

i=1
biv(e

∗
i
) = −

∑�E�
i=1

aiv(ei) and so the new graph is con-
sistent. 	�  ◻

2.4 � Dynamical equivalence

As already noted, it is well known that the dynamical representations of mass 
action systems (i.e., Eq.  3) are not uniquely determined by the network structure. 
For another example, consider the following networks, whose E-graphs are shown 
in Fig. 1:

and

It can be easily seen that Eqs. 4, 5 are both governed by the mass action dynamics 
ẋ1 = −ẋ2 = −x1 + x2 . We therefore introduce the following definition [34].

Definition 7  Consider two chemical reaction networks G = (V,E) and G̃ = (Ṽ, Ẽ) , 
combined with rate constants K = {ki | i = 1,… , r} and K̃ = {k̃i | i = 1,… , r̃} , 
respectively. We will say that the mass action systems G(K) and G̃(K̃) are 
dynamically equivalent if the generated functions fG(K) and f G̃(K̃) coincide (i.e. 
fG(K)(�) = f G̃(K̃)(�) , for all �).

We can see that the dynamical systems G(K) and G̃(K̃) associated with Eqs. 4, 
5 are dynamically equivalent. We may furthermore observe that G  and G̃  fail to 
share the same structural properties: G  is weakly reversible while G̃  is not. As in 
Remark 3, we can also easily verify that G  is endotactic, while G̃  is not (see Fig. 1). 
Notice, however, that in the classifications given in Definition  6, the polynomial 
dynamical system is said to be weakly reversible (and endotactic) because the net-
work G = (V,E) is. This example shows that it is possible for a mass action system 
to behave as though the generating network has a particular desirable network prop-
erty, even when the generating network does not itself have it. We might therefore 
say that the known generating E-graph behaves as though it has that property for 
some (or perhaps even all) choices of rate constants.

In order to formalize this notion, we inspect the case of E-graphs which may gen-
erate the same polynomial dynamical system.

Definition 8  Let G1 and G2 be Euclidean embedded graphs. We say that G1 and G2 
have the capacity for dynamical equivalence, and write G1 ⊓ G2 , if there exists a 
system d�

dt
= f (�) that can be generated by both G1 and G2 (i.e. there exists K1 and K2 

such that fG1(K1)
(�) = fG2(K2)

(�) = f (�) , for all �).

(4)

(5)



	 Journal of Mathematical Chemistry

1 3

Definition 9  Let G  be a Euclidean embedded graph. We say that G  has the capac-
ity for weak reversibility if there exists a weakly reversible Euclidean embedded 
graph G̃  such that G ⊓ G̃  . Likewise, we say that G  has the capacity to be endotactic 
(strongly endotactic) if there exists some endotactic (strongly endotactic) Euclid-
ean embedded graph G̃  such that G ⊓ G̃ .

The following theorem asserts that the above definitions are meaningful. In 
particular, it shows that there are networks which can generate weakly reversible 
(respectively, endotactic) networks which are not themselves weakly reversible 
(respectively, endotactic).

Theorem 1  The following inclusions hold and are strict. 

1.	 The set of networks with the capacity for weak reversibility contains the set of 
weakly reversible networks.

2.	 The set of networks with the capacity to be endotactic contains the set of endo-
tactic networks.

Proof  That these inclusions hold follows directly from the definitions. We now sim-
ply need to demonstrate that the reverse inclusion does not hold.

Consider the network G  , below

The network G  is neither weakly reversible nor endotactic. However, if (and only if) 
k1 = k2 and k3 = k4 , then the generated mass action system may also be generated by 
the weakly reversible and endotactic network G̃  with correctly chosen rate constants:

Therefore, G ⊓ G̃  , completing the proof. 	�  ◻

Notice that we may also define the notion of having the capacity to be consist-
ent in the same way. However, by Remark 4 we see that every E-graph has the 
capacity to be consistent.

We are interested in the stronger case in which every system generated by an 
E-graph can also be generated by another E-graph with a desired property. We 
therefore define the following.

Definition 10  Let G  be a Euclidean embedded graph. We say that G  is effectively 
weakly reversible if every dynamical system generated by G  is weakly reversible. 

(6)

(7)
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Likewise, we say that G  is effectively endotactic (strongly endotactic) if every pol-
ynomial dynamical system generated by G  is endotactic (strongly endotactic).

It is possible for a network to be effectively weakly reversible, but not weakly 
reversible as the example Eq. 1, given in the introduction, demonstrates.

In order to show that a network is effectively weakly reversible or effectively 
endotactic, it is of course helpful to characterize when one network can generate 
any system that can be generated by some other system.

Definition 11  Let G1 and G2 be Euclidean embedded graphs. We say that G1 
includes the dynamics of G2 , and write G2 ⊑ G1 , if any system d�

dt
= f (�) gener-

ated by G2 can also be generated by G1 (i.e., for any K2 there is some K1 such that 
fG1(K1)

(�) = fG2(K2)
(�) for all �).

We have already encountered several examples of Definition 11 in this manu-
script. For example, the network shown in Eq. 5 and Fig. 1b contains the dynam-
ics of the network shown in Eq. 4 and Fig. 1a. In Fig. 1, it is noted that these net-
works generate the same dynamical system when every rate constant is taken to 
be 1. Now, note that for any choice of rate constants k1 for edge e1 and k2 for edge 
e2 chosen to generate a dynamical system using the network shown in Fig. 1a, we 
can generate the same network using Fig. 1b by choosing k̃1 = k1 for edge e1 , and 
k̃2 = k̃3 = k2 for edges e2 and e3.

An obvious sufficient condition for a network G  to be effectively weakly 
reversible is then that there exists some weakly reversible G̃  such that G ⊑ G̃ .

3 � Main results

In this section, we prove the main correspondences of this paper. In the first sub-
section, we address Question 1. We then apply this result in the subsequent sub-
sections in order to investigate Question 2.

We will frequently require the following known results [52].

Lemma 1  (Farkas’ Lemma) Let {vi} , i = 1,… ,m , denote a family of vectors in ℝn . 
Then, for any b ∈ ℝ

n exactly one of the following is true: 

1.	 There exist constants �i ≥ 0 , i = 1,… ,m , such that b =

m∑

i=1

�ivi ; or

2.	 There is a vector w ∈ ℝ
n such that w ⋅ vi ≥ 0 for i = 1,… ,m , and w ⋅ b < 0.

Lemma 2  (Stiemke’s Theorem) Let {vi} , i = 1,… ,m , denote a family of vectors in 
ℝ

n . Then exactly one of the following is true: 
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1.	 There exist constants 𝜆i ∈ ℝ>0 , i = 1,… ,m , so that 
m∑

i=1

�ivi = 0 ; or

2.	 There exists a vector w ∈ ℝ
n so that w ⋅ vi ≤ 0 , i = 1,… ,m , with the inequality 

strict for at least one i0 ∈ {1,… ,m}.

3.1 � A condition for dynamical equivalence

Here, we provide necessary and sufficient conditions under which one network con-
tains the dynamics of another. Furthermore, as a corollary we provide necessary 
and sufficient conditions under which two networks have the capacity for dynamical 
equivalence. These conditions are geometric in nature and easily checkable.

The appearance of the source complexes s(e) as exponents in Eq. 3 suggests that 
we need to consider this subset of the complexes. We will also need the notion of a 
cone. Given a finite set of vectors S ⊆ ℝ

d we define the set K = Cone(S) , the cone 
generated by S, as the closed, convex set of all finite, nonnegative linear combina-
tions of the elements of S [18]. We denote the interior of a cone K = Cone(S) rela-
tive to the span of S (i.e. the relative interior of K) by RelInt(K).

If G = (V,E) is a Euclidean embedded graph, let SCG = {s(e)|e ∈ E} be the source 
complexes/vectors of G  , and for s ∈ SCG  let VG(s) = Cone({v(ei)|s(ei) = s, ei ∈ E}) 
be the cone generated by those reaction vectors with source vector equal to s . If a 
vector s ∉ SCG  , we define VG(s) = {0}.

Theorem 2  G2 ⊑ G1 if and only if (i) SCG2
⊂ SCG1

 , and (ii) for every s ∈ SCG1

where we take VG(s) = {0} if s ∉ SCG .

Proof  We begin by proving that (i) and (ii) imply that G2 ⊑ G1 . Let K2 ∈ ℝ
|EG2 |
>0

 . We 
must show that there exists K1 ∈ ℝ

|EG1 |
>0

 such that

We use superscript 1 or 2 to differentiate edges, source vectors, and reaction vectors 
of G1 and G2 , respectively. Note that for any choice of K1 and K2 we have

We wish to rewrite these sums in terms of the source complexes, which we enumer-
ate via

Then, for each si ∈ SCG1
 we let mi = |{e1 ∈ EG1

|s(e1) = si}| , and 
ni = |{e2 ∈ EG2

|s(e2) = si}| be the number of edges out of complex si for networks 

RelInt(VG2 (s)) ⊆ RelInt(VG1 (s)),

f
G2(K

2) = f
G1(K

1).

f
G2(K

2)(�) − f
G1(K

1)(�) =
∑

e2∈EG2

ke2�
s(e2)v(e2) −

∑

e1∈EG1

ke1�
s(e1)v(e1).

SCG1
∪SCG2

= SCG1
= {s1, s2,… , s|SCG1

|}.
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G1 and G2 , respectively. Furthermore, let {kl
ij
} = {kel |s(el) = si} , and 

{vl
ij
} = {v(el)|s(el) = si} , l = 1, 2 , where the sizes of the sets are mi and ni for � = 1 

and � = 2 , respectively. Then

Then, because SCG2
⊆ SCG1

,

We have that 0 ∈ RelInt(VG1 (si)) if si ∈ SCG1
⧵SCG2

 , so we can choose K1 with 
k1
ij
> 0 so that each term of the second sum is 0 . Furthermore, for each si ∈ SCG2

,

where w ∈ RelInt(VG2 (si)) . Because of condition (ii) we may also conclude that 
w ∈ RelInt(VG1 (si)) . Hence, we can choose k1

ij
> 0 so that

With these choice of parameters we have f
G2(K

2) = f
G1(K

1).
Next, we show that G2 ⊑ G1 imply (i) and (ii) hold. First, if there is some source 

si ∈ SCG2
 but si ∉ SCG1

 , then for general choice K2 there will be a monomial �si in 
f
G2(K

2) which cannot appear in f
G1(K

1) . Therefore, (i) must hold.
Next, in order to find a contradiction suppose, that for some si ∈ SCG1

 there is a 
vector w ∈ RelInt(VG2 (si)) but w ∉ RelInt(VG1 (si)) , so that (ii) does not hold. Then, 
since w ∈ RelInt(VG2 (si)) , there is a choice K2 so that f

G2(K
2) contains a term of the 

form

Then, for any choice of K1 ∈ ℝ
|EG1 |
>0

 the function f
G2(K

2)(�) − f
G1(K

1)(�) will include 
the term

f
G2(K

2)(�) − f
G1(K

1)(�) =
∑

si∈SCG2

�
si

ni∑

j=1

k2
ij
v2
ij
−

∑

si∈SCG1

�
si

mi∑

j=1

k1
ij
v1
ij
.

f
G2(K

2)(�) − f
G1(K

1)(�) =
∑

si∈SCG2

�
si

(
ni∑

j=1

k2
ij
v2
ij
−

mi∑

j=1

k1
ij
v1
ij

)

−
∑

si∈SCG1
⧵SCG2

�
si

mi∑

j=1

k1
ij
v1
ij
.

ni∑

j=1

k2
ij
v2
ij
−

mi∑

j=1

k1
ij
v1
ij
= w −

mi∑

j=1

k1
ij
v1
ij
,

w −

mi∑

j=1

k1
ij
v1
ij
= 0.

�
si

ni∑

j=1

k2
ij
v2
ij
= �

siw.

(
w −

mi∑

j=1

k1
ij
v1
ij

)
�
si .
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Because w ∉ RelInt(VG1 (si)) , this term is non-zero for any � ≠ 0 . Moreover, no other 
term could cancel it since no other monomials of the form �si can appear. Thus, 
f
G2(K

2)(�) ≠ f
G1(K

1)(�) . Since this conclusion holds for any choice of K1 , we con-
clude that we do not have G2 ⊑ G1 , which is a contradiction. 	�  ◻

Remark 5  For any edge e of a network G  , we may generate a new network Ge by 
removing e and adding edges e1,… , ed such that s(e1) = ⋯ = s(ed) = s(e) and 
v(e) ∈ RelInt(Cone({v(e1),… , v(ed)})) . Then, Theorem  2 implies that Ge contains 
the dynamics of G  . We often refer to this as “splitting” the reaction vector v(e) . 	�  ◻

Theorem  2 shows when the dynamical systems generated from one network 
are contained within those generated by another. It is reminiscent of Theorem 4.4 
of [34], which gives conditions for when the two sets of dynamical systems inter-
sect (i.e., when they have the capacity for dynamical equivalence). Moreover, their 
proofs are similar. However, a missing case in the proof of Theorem  4.4 of [34] 
was noted by Gábor Szederkényi in [59]. A complete statement and proof of Theo-
rem 4.4 of [34] appear below.

Theorem 3  (Complete version of Theorem 4.4 of [34]) Under the mass-action kinet-
ics assumption, two chemical reaction networks represented by the graphs G1 and G2 
have the capacity for dynamical equivalence, i.e., G1 ⊓ G2 , if and only if for every 
s ∈ SCG1

∪SCG2

where we take VG(s) = 0 if s ∉ SCG .

Proof  We begin by showing that the above conditions imply that G1 and G2 have the 
capacity for dynamical equivalence. We enumerate the set SCG1

∪SCG2
 , and for 

each si in that set, we choose

Let

Then both G1 and G2 generate f and we conclude that G1 ⊓ G2.
Next suppose that G1 and G2 have the capacity for dynamical equivalence. Hence, 

by Definition 8, there exists some polynomial

with si ≠ sj for i ≠ j , that can be generated by both G1 and G2 . Let T = {s1,… , sn} 
and note that T ⊂ SCG1

∪SCG2
 . For any s ∈ (SCG1

∪SCG2
) ⧵T  , implying no 

term in the polynomial corresponds with s , we immediately have that

RelInt(VG2(s)) ∩ RelInt(VG1 (s)) ≠ �

wi ∈ RelInt(VG2(s)) ∩ RelInt(VG1 (s)).

f (�) =
∑

i

�
siwi.

(8)f (�) =

n∑

i=1

ki�
siwi,
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as desired. Furthermore, for each si ∈ T  , we have

where containment follows by the fact that each of G1 and G2 generated f in Eq. 8. 
Thus, we have shown the condition holds for all s ∈ SCG1

∪SCG2
 and the proof is 

complete. 	�  ◻

3.2 � Endotactic networks

We turn to our study of endotactic and strongly endotactic networks.

Lemma 3  Let G = (V,E) and G̃ = (Ṽ, Ẽ) be reaction networks such that G ⊑ G̃  . If G̃  
is endotactic, then G  is endotactic. Moreover, if G̃  is strongly endotactic, then G  is 
strongly endotactic.

Proof  Let ei ∈ E  and w be such that w ⋅ v(ei) < 0 . We must show that there exists 
ej ∈ E  such that w ⋅ (s(ej) − s(ei)) < 0 and w ⋅ v(ej) > 0.

Because G ⊑ G̃  , we know from Theorem  2 that s(ei) ∈ SCG̃  , and 
v(ei) ∈ V G̃(s(ei)) . There then exists ẽi ∈ Ẽ  such that s(ẽi) = s(ei) and v(ẽi) ⋅ w < 0 , 
since w ⋅ v(ei) < 0

Because G̃  is endotactic, there is some ẽj such that w ⋅ (s(ẽj) − s(ẽi)) < 0 and 
v(ẽj) ⋅ w > 0 . Moreover, we can choose ẽj so that w ⋅ (s(ẽj) − s(ẽi)) is minimal over 
edges satisfying v(ẽj) ⋅ w > 0.

We can complete the proof by proving two statements. 

(1)	 s(ẽj) ∈ SCG  (the source complexes for G ).
(2)	 If u ∈ RelInt(VG(s(ẽj)) , then u ⋅ w > 0.

Combining the above gives the existence of the necessary edge in E .
We prove (1) by showing that 0 ∉ RelInt(VG̃(s(ẽj)) . Then, combined with Theo-

rem 2, s(ẽj) ∈ SCG  . Suppose that 0 ∈ RelInt(VG̃(s(ẽj)) . Then, by Lemma 2, there 
is some ẽk ∈ Ẽ  such that s(ẽk) = s(ẽj) , and v(ẽk) ⋅ w < 0 . However, the minimality 
of w ⋅ (s(ẽj) − s(ẽi)) over edges satisfying v(ẽj) ⋅ w > 0 then implies that there is no 
edge ẽl with v(ẽl) ⋅ w > 0 and w ⋅ (s(ẽl)w(ẽk)) < 0 . This contradicts the condition that 
G̃  is endotactic.

To prove (2), let u ∈ RelInt(V G̃(s(ẽj)) . Then, there are 𝜆k > 0 and ẽk ∈ G̃  , each 
with source s(ẽj) , for which

0 ∈ RelInt(VG2 (s)) ∩ RelInt(VG1(s)),

� ≠ {𝛼wi ∶ 𝛼 > 0} ⊆ RelInt(VG2 (si)) ∩ RelInt(VG1 (si))

v(ei) ∈ V G̃(s(ei)) ⇒ v(ei) =
∑

ẽi|s(ẽi)=s(ei)
𝜆iv(ẽi) 𝜆i ≥ 0
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Dotting with w yields

If u ⋅ w ≤ 0 , then, because v(ẽj) ⋅ w > 0 , we would be forced to conclude v(ẽi) ⋅ w < 0 
for some i ≠ j . Since G̃  is endotactic, this would contradict the minimality of 
w ⋅ (s(ẽj) − s(ẽi)) . Hence, we can conclude that u ⋅ w > 0 . Theorem  2 implies that 
there is such a u ∈ RelInt(VG)(s(ẽj)).

Turning to the case of G̃  being strongly endotactic. The proof that G  is 
strongly endotactic is identical except the line “...is minimal over edges satisfying 
v(ẽj) ⋅ w > 0 ” is changed to “...is minimal over all edges of G̃  ” and by noting that the 
source complexes of G  are a subset of the source complexes of G̃  . 	�  ◻

3.3 � Endotactic and source‑only networks

We introduce a new concept, that of “source-only” networks, which we will dem-
onstrate is a useful framework.

Definition 12  A chemical reaction network G = (V,E) is said to be source-only if, 
for any e ∈ E  , t(e) = y implies that s(e∗) = y for some e∗ ∈ E . A mass action system 
d�

dt
= f (�) is said to be source-only if it can be generated by a source-only E-graph. 

A chemical reaction network G  is said to be effectively source-only if every system 
generated by G  is source-only.

That is, a network is source-only if V  does not contain any nodes that are only 
product nodes.

Example 1  Consider the chemical reaction network

The network can be defined by the E-graph in Fig. 2a. We can see that the network is 
strongly endotactic. We next seek to represent the network as a source-only network. 
To do so we must dispose of the product complex 2X1 + 2X2 . We see that the fourth 
reaction can be split (in the sense of Remark 5) to give the following dynamically 
equivalent reaction network

u =
∑

k

𝜆kv(ẽk) = 𝜆jv(ẽj) +
∑

i≠k

𝜆kv(ẽk).

u ⋅ w = 𝜆jv(ẽj) ⋅ w +
∑

k≠j

𝜆kv(ẽk) ⋅ w.

(9)
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This network can be defined by the E-graph in Fig. 2b. Thus we see that the network 
(9) is effectively source-only. 	�  ◻

We now prove the following.

Lemma 4  Let G = (V,E) be an endotactic network. Then, there is exists a source-
only network G̃ = (Ṽ, Ẽ) such that G ⊑ G̃  , and the nodes of G̃  are the source nodes of 
G  . Therefore, every endotactic network is effectively source only.

Proof  We assume G = (V,E) is endotactic and will construct a source-only network 
G̃ = (Ṽ, Ẽ) such that G ⊑ G̃ .

We take the nodes of our new network to be the source complexes of the origi-
nal network. That is, Ṽ = SCG  . Next, we define Ẽ  in the following way. First, we 
index the edges of E  as e1,… , ek . For each edge ei ∈ E  , if t(ei) ∈ SCG  , we include 
ei ∈ Ẽ  . Otherwise, let C∗

i
 be the set of edges of the complete graph on SCG  with 

source s(ei) , so that {v(e∗)|e∗ ∈ C∗
i
} = {s∗ − s(ei)|s∗ ∈ (SCG ⧵ {s(ei)})}.

We next show that v(e
i
) ∈ Cone({v(e∗)|e∗ ∈ C

∗
i
}) = Cone({s∗ − s(e

i
)|s∗

∈ (SCG ⧵ {s(ei)})}) . If this was not the case, then by Lemma 1 there exists some 
w ∈ ℝ

d such that w ⋅ v(ei) < 0 and w ⋅ (s∗ − s(ei)) ≥ 0 for all s∗ ∈ SCG  . How-
ever, if there exists any w ∈ ℝ

d such that w ⋅ v(ei) < 0 , the condition that G  is 

(10)

(a) (b)

Fig. 2   Two E-graphs G  (a) and G̃  (b) which have the capability of generating the same mass-action sys-
tem (i.e. G ⊓ G̃  ). Notice that, while both networks are strongly endotactic, the network G̃  is source-only 
which the network G  is not. There is, however, no weakly reversible E-graph Ḡ  such that G ⊓ Ḡ
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endotactic implies that for some source s∗ ∈ SCG  , and therefore some e∗ ∈ C∗
i
 with 

v(e∗) = s∗ − s(ei) , w ⋅ v(e∗) < 0 , because SCG = {s(e∗)|e∗ ∈ C∗
i
} ∪ {s(ei)}.

Let Ci ⊂ C∗
i
 be the set so that Cone({v(e)|e ∈ Ci}) is minimal in over subsets of 

C∗
i
 in the sense of inclusion while still satisfying v(ei) ∈ Cone({v(e)|e ∈ Ci}) . There-

fore, v(ei) ∈ RelInt(Cone({v(e)|e ∈ Ci})) . Then, we add the edges ẽ ∈ Ci to Ẽ  . By 
this construction, we have for each s ∈ SCG ,

and we can conclude that G ⊑ G̃  , where G̃  is clearly source only. 	�  ◻

Notice that while Lemma 4 guarantees that any endotactic dynamical system can 
be generated by source-only network, this source only network is not necessarily 
endotactic. The following example shows that we cannot guarantee that any endo-
tactic dynamical system can be generated by a source-only endotactic network.

Example 2  In Fig.  3a, we give an example of a strongly endotactic network G  
such that if G̃  is source only and G ⊑ G̃  , then G̃  is not endotactic. Splitting the 
edge labeled e in the sense of Remark 5 requires adding a new edge e1 such that 
v(e1) ⋅ (1, 0) < 0 and an edge e2 such that v(e2) ⋅ (0,−1) < 0 . Then, e1 can be used 
to show that the resulting network is not endotactic. Therefore, we cannot split 
any edges to maintain the endotactic property. It follows that to make the network 
source-only and endotactic, we must add a source node.

Consider again the node labeled e in Fig. 3a. To make the network source-only 
without splitting any edges, we must add source node at some point s∗ = s(e) + �v(e) 
for 𝛼 > 0 . To maintain the endotactic property and insure that the new network G̃  

RelInt(VG(s)) ⊆ RelInt(V G̃(s))

(a) (b)

Fig. 3   a A strongly endotactic network G  such that if G̃  is source only and G ⊑ G̃  , then G̃  is not endotac-
tic. b An example of a network G̃  constructed as in the proof of Lemma 4 such that G̃  is source only and 
G ⊑ G̃
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contains the dynamics of G  , we must add edges with source s∗ such that 0 ∈ VG̃(s∗) . 
However, this requires either adding a new node which is only a target or adding a 
vector e1 such that v(e1) ⋅ (1, 0) < 0 which can be used to show the resulting network 
is not endotactic. To make this target into a source, we have the same requirements. 
We conclude that there is no way to construct endotactic and source-only G̃  such 
that G ⊑ G̃  . 	�  ◻

Notice that the set of monomials {�si} of a generated polynomial fG(K) corre-
sponds to a subset of the source complexes SCG  , and including (but not limited 
to) the set of sources s ∈ SCG  that have 0 ∉ RelInt(VG(s)) . To limit networks that 
must be considered given a polynomial, we wish to exclude sources from a net-
work which do not appear as monomials. For the case of weakly reversible sys-
tems, the following theorem allows us to do this (see also Theorem 4.8 in [30]).

Theorem 4  If a polynomial dynamical system d�
dt

= f (�) is weakly reversible, then it 
is generated by a weakly reversible network that has as its sources the exponent vec-
tors of the monomials of f.

Proof  Let G = (V,E) be a weakly reversible network which generates f (�) . If there 
is a node s∗ = s(e) , e ∈ E  such that the monomial �s∗ does not appear in f, we first 
introduce a term 0�s∗ in f. It is now convenient to order such nodes s∗

1
, s∗

2
,… , s∗

k
 . 

Consider first s∗
1
 . We index the edges e ∈ E  such that s(e) = s∗

1
 as e1

1
,… , e1

p
 . Because 

the coefficient of the monomial �s∗1 in f is 0, the vectors v(e) and rate constants ke 
must satisfy 

∑p

i=1
ke1

i
v(e1

i
) = 0 . For any edge e† which has t(e†) = s∗

1
 , we have in f a 

term of the form k†�s(e†)v(e†) . We let

so that k† =
∑p

i=1
k̃e1

i
,

and finally

Then, we can write

Therefore, we can replace the term k†�s(e†)v(e†) in f with

k̃e1
i
=

ke1
i∑p

j=1
ke1

j

k†

p�

i=1

k̃e1
i
v(e1

i
) =

k†∑p

i=1
ke1

i

p�

i=1

ke1
i
v(e1

i
) = 0

k†v(e†) =

p∑

i=1

k̃e1
i
v(e†).

k†v(e†) =

p∑

i=1

k̃e1
i
v(e†) +

p∑

i=1

k̃e1
i
v(e1

i
) =

p∑

i=1

k̃e1
i
(v(e†) + v(e1

i
)).
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This implies that f is generated by a network which is built from G  in the following 
way: 

1.	 All of the edges e which have s(e) = s∗ or t(e) = s∗ are removed. Let E1 be the 
edges with s(e) = s∗ and let E2 be the edges with t(e) = s∗.

2.	 Edges are added from each source node of an edge in E2 to each target node of an 
edge in E1.

The resulting network is weakly reversible because G  was weakly reversible, and 
the only paths removed consisted of an edge in E2 followed by an edge in E1 . These 
were then replaced with a single edge (or no edge if the path went from a node to 
itself). We now have a network which is weakly reversible and generates f (�) , but 
does not include s∗

1
 as a source. We then simply repeat the argument for s∗

2
,… , s∗

k
 to 

eliminate all nodes that do not appear as non-zero terms in f (�) . 	�  ◻

The class of source-only networks is useful because they provide an upper bound 
on the networks we must consider when we attempt to represent polynomial dynam-
ical systems using various kinds of networks. Furthermore, Theorem 4 shows that in 
some cases one need only consider networks without adding new nodes. Therefore, 
source-only representations of networks provide finite descriptions of reversible, 
weakly reversible, and endotactic networks, which is useful in computations. For 
example, in [30], it is shown that to find a complex balanced realization of a poly-
nomial system, one need only consider the complexes that appear as exponent vec-
tors. Furthermore, knowing that one can write a network as a source-only network 
is important in dynamical equivalence and network translation-based computational 
methods. In these settings, it is often required to know the number and/or stoichiom-
etry of required complexes [48, 50].

3.4 � Endotactic and consistent networks

We continue with results related to endotactic networks.

Lemma 5  Every endotactic network is consistent.

Proof  Suppose, in order to find a contradiction, that there is a network (V,E) that 
is endotactic but not consistent. Since the network is not consistent, there does not 
exist a set of constants 𝜆e > 0 for which

It follows that condition 1. of Lemma 2 is not satisfied, so that condition 2. must be 
satisfied. That is, there is a w ∈ ℝ

d such that w ⋅ v(e) ≤ 0 , with at least one inequality 

p∑

i=1

k̃e1
i
(v(e†) + v(e1

i
))�s(e

†)
.

∑

e∈E

�ev(e) = �.
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strict. It follows immediately from the definition of endotactic in Definition 5 that 
the network is not endotactic, which is a contradiction. It follows that every endotac-
tic network is consistent. 	�  ◻

3.5 � Endotactic and weakly reversible networks

We have seen that every endotactic network may be represented in a dynamically 
equivalent form as a source-only network. Since weakly reversible networks are 
source-only by definition, it is tempting to suppose that every endotactic network is 
effectively weakly reversible. However, this is not the case, as we will show. In this 
section, we introduce the concept of extremal reactions which helps to bridge the 
gap between endotactic and weakly reversible networks.

Considering Example 1 again, we see that this network is endotactic and effec-
tively source-only, but that it is not weakly reversible. In order to make it weakly 
reversible, we must be able to reconfigure the other reactions so that X1 + X2 is also 
the product of some reaction. We observe, however, that we cannot “split” any of 
the other three reactions as they lie on the outer hull of the source complexes. For 
instance, to split 3X1 → 3X2 to connect to X1 + X2 , we must necessarily introduce a 
balancing reaction which points away from the convex hull of the source complexes, 
and therefore introduces a strictly product complex. This network, therefore, is not 
effectively weakly reversible.

We can quickly identify that the reason there is no weakly reversible dynamically 
equivalent network is that there is a complex in the interior of the convex hull of the 
complexes which cannot be reached. In this example, however, we might observe 
that the restriction of the network to just the boundary complexes 3X1 , 3X2 , and ∅ 
is weakly reversible. This is perhaps not surprising; after all, we observed that the 
reactions which could not be “split” were exactly those which were on the boundary 
of the convex hull. We therefore introduce the following.

Definition 13  Consider a chemical reaction network G = (V,E) . We define the 
extreme source complexes ECG ⊆ SCG  to be the set of source nodes s(e) which 
are on the border of the convex hull of SCG  . The extremal reaction set EEG  is 
defined to be the set {e ∈ E|s(e) ∈ ECG} , and we define EVG  to be the subset of V  
that are the sources and/or targets of the edges in EEG  . Then the network G  is said 
to be extremally weakly reversible if the reduced network (EVG,EEG) is weakly 
reversible.

A mass action system is said to be extremally weakly reversible if it is gener-
ated by an extremally weakly reversible E-graph. A chemical reaction network G  is 
said to be effectively extremally weakly reversible if any system generated by G  is 
extremally weakly reversible.

It is clear that for Example 1 we have that ECG = EVG = {3X1, 3X2, �} and that 
(EVG,EEG) is weakly reversible. Hence, the original network is extremally weakly 
reversible.
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We wish to determine how robust this property is among endotactic networks. 
Consider the following example.

Example 3  Consider the network

The network can also be represented by the E-graph in Fig.  4. It can be visually 
checked that the network is endotactic. Furthermore, we can see that every com-
plex is an extremal complex, so that ECG = SCG  , and EEG = E  . Nevertheless, no 

(11)

Fig. 4   E-graph defining the 
network Eq. 11. Although the 
network is source-only and 
endotactic, it does not permit 
a strongly endotactic, weakly 
reversible, or extremally weakly 
reversible representation

Fig. 5   Three-dimensional 
E-graph defining a network. 
Although the network is source-
only and strongly endotactic, 
it does not permit a weakly 
reversible or extremally weakly 
reversible representation
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reaction may be “split” while preserving the property that the network is source-
only. It follows that the network is neither effectively weakly reversible nor effec-
tively extremally weakly reversible. 	�  ◻

While the network in Example 3 is endotactic, it is not strongly endotactic. We 
now consider whether the property of being effectively extremally weakly reversible 
holds for strongly endotactic networks. Consider the following example.

Example 4  Consider the network given in the three-dimensional complex space by 
Fig. 5. It can be verified by visual inspection that the network is strongly endotactic. 
We also have that ECG = SEG  ; however we again may not “split” any reaction from 
these complexes while maintaining the property of being source-only. It follows that 
the network is not effectively weakly reversible. 	�  ◻

This example is three-dimensional. The following result considers strongly endo-
tactic networks which have a two-dimensional stoichiometric subspace.

Theorem  5  Let G = (V,E) be a strongly endotactic two-dimensional network with 
two-dimensional stoichiometric subspace and assume that the source complexes 
only reside on the boundary of the convex hull generated from the source complexes. 
Then there exists a weakly reversible Euclidean embedded graph G̃  such that G ⊑ G̃  . 
Therefore, every two dimensional strongly endotactic network is effectively extrem-
ally weakly reversible.

Proof  Let G = (V,E) be a strongly endotactic network with sources only on the con-
vex hull of source complexes. We will build G̃  in three stages, constructing “inter-
mediate” networks G1 and G2 , and finally G̃  (Fig. 6).

Consider the Euclidean embedded graph G1 = (V1,E1) with V1 = SCG  , and as its 
edges E1 all possible edges which lie along the sides of the convex hull of SCG  . G1 is 
clearly weakly reversible, and while SCG1

= SCG  , G1 does not necessarily contain 
the dynamics of G .

We now prove, however, that for each s ∈ SCG  , we have that either 
VG(si) ⊆ VG1(si) or VG1 (si) is the border of a half space which contains VG(si) . Let Wi 

(a) (b) (c) (d)

Fig. 6   The networks constructed as outlined by the proof of Theorem 5. a The initial E-graph G  . b G1 , 
which includes all of the possible edges that lie along a face of the convex hull of SCG  . c G2 , which is 
strongly endotactic and has G ⊑ G2 . d G̃  , which is strongly endotactic, weakly revesible, and has G ⊑ G̃
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be the set such that for w ∈ Wi , w ⋅ (si − s∗) ≤ 0 for any s∗ ∈ SCG  . This set contains 
some non-zero vector because si is in the convex hull of SCG  . Let w ∈ W  and e ∈ E  
be such that s(e) = si . Because G  is endotactic and w ⋅ (si − s∗) ≤ 0 , it must be that 
v(e) ⋅ w ≥ 0 . If VG1 (si) is pointed, then Wi is the dual cone to VG1 (si) and by Lemma 1 
we can conclude that VG(si) ⊆ VG1(si) . If VG1 (si) is a line (note that by construction 
VG1 (si) cannot be a ray), then Wi is perpendicular to VG1 (si) . Then, we can conclude 
that VG1 (si) is the border of a half space which contains VG(si) , and that this half 
space also contains SCG  , because w ⋅ (s − s∗) ≤ 0 for any s∗ ∈ SCG .

We next construct G2 = (V2,E2) from G1 such that G2 contains the dynamics 
of G  by modifying the edge set E1 . We index the set SCG  of source complexes as 
s1,… , s|SCG| and build E2 by adding edges e with s(e) = si for i = 1,… , |SCG| . For 
each source si of G1 , there are three possibilities we must consider:

(a) If RelInt(VG(si)) ⊆ RelInt(VG1(si)) , we simply include the edges e of G1 with 
s(e) = si in E2 . Then, clearly RelInt(VG(si)) ⊆ RelInt(VG2(si)).
(b) If VG1 (si) is a line and VG(si) is not contained in that line, we again include 
each edge e of G1 with s(e) = si in E2 , but must also include additional edges. 
We know that, in this case, VG1 (si) is the border of a half space which contains 
VG(si) and SCG  . We add an edge with source si and a target in V1 = SCG  that 
does not lie in the line VG1 (si) . Thus, VG2 (si) is the appropriate half space. Then, 
RelInt(VG(si)) ⊆ RelInt(VG2(si)).
(c) If VG(si) ⊂ 𝜕VG1 (si) , then VG(si) is a ray along one face of the convex hull of 
SCG  . We then take only the edges of G1 which lie along this ray to be edges in E2 . 
Then, clearly RelInt(VG(si)) ⊆ RelInt(VG2(si)) because VG(si) = VG2(si).

We have now constructed G2 = (V2,E2) such that G ⊑ G2 . Furthermore, G2 is strongly 
endotactic, as we now show. Let w ∈ ℝ

d and e ∈ E2 be such that w ⋅ v(e) < 0 . Let 
{s∗} ⊂ E2 be the sources such that w ⋅ (s∗ − s(ej)) ≤ 0 for all ej ∈ E2 , and {e∗} the 
corresponding edges. Any edges in G2 correspond to reaction vectors which do not 
point out of the convex hull of SCG  , so we know that w ⋅ (s∗ − s(e)) < 0 . Also, {s∗} 
is the same as the set of sources of G  which have w ⋅ (s(ej) − s∗) ≤ 0 for all ej ∈ E  . If 
none of the v(e∗) ⋅ w > 0 , then our construction implies this is true of the edges of G  
as well. This contradicts the assumption that G  is strongly endotactic. We conclude 
that G2 is strongly endotactic.

It is possible that G2 is not weakly reversible, so we finally construct G̃  such that 
Ṽ = V2 , E2 ⊆ Ẽ  , and both G̃ ⊑ G2 and G2 ⊑ G̃  hold. To complete the construction, 
we must first establish the following about the structure of G2:

(i) For each s ∈ SCG  , either VG2 (s) is one dimensional and intersects a (one 
dimensional) face of the convex hull of SCG  , or VG2 (s) is solid (meaning it has 
two-dimensional span) and (si − s) ∈ VG2(s) for all si ∈ SCG .
(ii) On every face of the convex hull of SCG  , at least one of the following is true: 
there is some s such that (si − s) ∈ VG2(s) for all si ∈ SCG  (and VG2 (s) is solid), 
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or there is some s such that s is a corner of the convex hull of SCG  and VG2 (s) is a 
ray pointing along an adjacent face of the convex hull of SCG .
(iii) We may add a path from any source on some face of the convex hull of 
SCG  to a source as in (ii) to create a network G∗ such that G∗

⊑ G2 and G2 ⊑ G
∗.

To establish (i), suppose that we have some s and VG2 (s) is not one dimensional. 
Then, either VG2 (s) = VG1 (s) or VG2 (s) is a half space such that VG1 (s) = �VG2 (s) . In 
either case, the convexity of the convex hull of SCG  implies (i). By our construc-
tion possibility (c), if VG2 (s) is one dimensional, it must intersect a (one dimen-
sional) face of the convex hull of SCG .

To establish (ii), let w be such there is some set S ⊂ SCG  with at least two dis-
tinct elements and w ⋅ (si − sj) = 0 for si, sj ∈ S and w ⋅ (si − sk) < 0 for si ∈ S , 
sk ∉ S (i.e., w is the inward pointing normal to a one dimensional face of the convex 
hull of SCG  ). G2 is strongly endotactic, so for some s ∈ S , there is some e ∈ E2 with 
s(e) = s and v(e) ⋅ w > 0 . We can conclude using fact (a) that on every face of the 
convex hull of SCG  , at least one of the following is true: there is some s such that 
(si − s) ∈ VG2(s) for all si ∈ SCG  (and VG2 (s) is solid), or there is some s such that s 
is a corner of the convex hull of SCG  and VG2 (s) is a ray pointing along an adjacent 
face of the convex hull of SCG .

To establish (iii), let S  be a face of the convex hull of SCG  , and let s ∈ S  be a 
source such that either (si − s) ∈ VG2(s) for all si ∈ SC  or VG2 (s) is a ray pointing 
along an adjacent face of the convex hull of SCG  . Let s∗ ∈ S  be some other source 
on the same face of the convex hull of SCG  . If VG2 (s∗) is solid or a full line, then 
s − s∗ ∈ VG2 (s∗) , and so if G∗ is the network with an edge added from s∗ to s , then 
VG

∗

(s∗) = VG2 (s∗) . If VG2 (s∗) is a ray and s − s∗ ∉ VG2 (s∗) , there must be some s∗∗ 
such that (s∗∗ − s∗) ∈ VG2(s∗) and either s∗∗ also has either (si − s∗∗) ∈ VG2 (s∗∗) for 
all si ∈ SC  or VG2 (s∗∗) is a ray pointing along an adjacent face of the convex hull 
of SCG  , or VG2 (s∗∗) = −VG2(s∗) . In the last case, (s − s∗∗) ∈ VG2 (s∗∗) , and so if G∗ 
is the network to which we added edges to form a path from s∗ to s through s∗∗ , we 
have that VG

∗

(s∗) = VG2 (s∗) and VG
∗

(s∗∗) = VG2 (s∗∗) .
The above arguments show that for any source s∗ ∈ SCG  , there is a source s in 

the same face of the convex hull of SCG  such that either (si − s) ∈ VG2(s) for all 
si ∈ SC  or VG2 (s) is a ray pointing along an adjacent face of the convex hull of 
SCG  , and furthermore that if G∗ is the network to which we added edges to form a 
path from s∗ to s , then G∗

⊑ G2 and G2 ⊑ G
∗.

We may now complete the construction of G̃  . Recalling that G1 is weakly revers-
ible, G̃  is weakly reversible if Ẽ  includes edges which replace any paths present in 
G1 that were not included in G2 . Let ej be any edge in E1 but not in E2 . Note that 
t(ej) = s(ek) for some ek ∈ Ẽ  (because Ṽ = V2 = V1 = SCG  ). We must add a path 
of edges in Ẽ  from s(ej) to s(ek) , or prove that such a path is already present in Ẽ  . 
Let s(ej) = s . We have seen that we may add a path of edges to some source s∗ in the 
same of face of the convex hull of SCG  as s such that one of the following is true:

(a) (si − s∗) ∈ VG2 (s∗) for all si ∈ SCG  , or
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(b) s∗ is is a corner of the convex hull of SCG  and VG2 (s∗) is a ray pointing along 
an adjacent face of the convex hull of SCG .

If (a) holds, then we can add an edge to Ẽ  with source s∗ and target s(ek) and still 
have both G̃ ⊑ G2 and G2 ⊑ G̃  , and a path from s(ej) to s(ek).

If (b) holds but (a) does not, we repeat the argument on the adjacent face of the 
convex hull of sources for s∗ , letting s∗∗ be the new source which satisfies one of (a) 
or (b). Note that VG2 (s∗) is not solid, so s∗∗ ≠ s∗ (otherwise (a) was originally satis-
fied). If again only (b) holds, we may continue the argument until (a) holds for some 
s in a face of the convex hull of SCG  , or (b) holds for some s and s(ek) is in the face 
of the convex hull that VG2 (s) points along.

We conclude that if G̃  is the weakly reversible network with paths added to 
replace any edges in E1 that are missing from E2 , then G̃ ⊑ G2 . Then, Lemma 3 
implies that G̃  is strongly endotactic. Furthermore, G ⊑ G2 ⊑ G̃  . 	�  ◻

3.6 � Additional examples

We now present counterexamples to various possible inclusions of network types in 
the sense of dynamical equivalence. This will allow us to conclude that any arrow 
added to our Fig. 8 would be false.

Example 5  Consider the E-graph shown in Fig.  7a. This network is extremally 
weakly reversible, but it is not effectively weakly reversible. According to Theo-
rem 4, if there is a weakly reversible network which generates a system generated by 
this network, it needs no added sources. Therefore, there must be a path from at least 
one extremal source to the interior source (shown in red). However, splitting (as in 
Remark 5) any extremal reaction will result in a new reaction which points out of 
the convex hull of sources. The resulting network cannot be endotactic, and so is not 
weakly reversible. 	�  ◻

Example 6  Consider the E-graph shown in Fig. 7b. This network is weakly reversi-
ble, while it is not effectively extremally weakly reversible. The extremal reaction set 
consists of two irreversible reactions which form a path (labeled e1 and e2 ) and one 
reversible reaction pair. Again, Theorem 4 implies that if there is a weakly reversible 
network generates a system generated by the extremal reaction set then it needs no 
added sources. While this does allow us to reverse edge e2 in Fig. 7b by splitting (as 
in Remark 5) edge e1 , the result is a new irreversible path into the reversible reac-
tion pair. Neither reversible reaction can be split without introducing a new reaction 
which points out of the convex hull of sources. Thus, there is no weakly reversible 
network which contains the dynamics of this extremal reaction set. We conclude that 
the network is not effectively extremally weakly reversible. 	�  ◻

Example 7  Consider the E-graph shown in Fig.  7c. This network is reversible, 
weakly reversible, and extremally weakly reversible, while it is not effectively 
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strongly endotactic. No reaction present can be split (as in Remark 5) while preserv-
ing the endotactic property. By Theorem  2, any node added to create a new net-
work G̃  must have 0 ∈ RelInt(V G̃(s)) . Therefore, any direction w which violated the 
strongly endotactic conditions must still do so. 	�  ◻

e1

e2

(a) (b) (c)

(d) (e) (f)

Fig. 7   Collection of examples. All examples are 2-dimensional networks, with the exception of f, which 
is Example 10, that is 1-dimensional. a Example  5: Extremally weakly reversible but not effectively 
weakly reversible.  b Example  6: Weakly reversible but not effectively extremally weakly reversible. c 
Example 7: Reversible but not effectively strongly endotactic. d Example 8: Source only but not effec-
tively endotactic. e Example 9: Consistent but not effectively endotactic. f Example 10: Consistent but 
not effectively source-only

Fig. 8   This figure summarizes our main results on inclusions of classes of networks. Purple arrows indi-
cate an inclusion in the family of networks, which also implies inclusion in the sense of dynamical equiv-
alence. Network inclusions given by the purple arrows are strict at the level of networks and also at the 
level of dynamical equivalence. Orange arrows indicate inclusion in the sense of dynamical equivalence 
only (or “effective” properties). That is, an orange arrow indicates that a type of network at tail end is 
effectively the type of network at the head using Lemma 4, Lemma 5, and Theorem 5. The graph is com-
plete in the sense that any additional paths would be false
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Example 8  Consider the E-graph shown in Fig.  7d. This network is source-
only, while it is not effectively endotactic. No reaction present can be split (as in 
Remark 5) to gain the endotactic property. By Theorem 2, any node added to create 
a new network G̃  must have 0 ∈ RelInt(V G̃(s(e))) . Therefore, any direction w which 
violated the endotactic conditions must still do so. 	�  ◻

Example 9  Consider the E-graph shown in Fig. 7e. This network is consistent. How-
ever, for generic choices of rate constants, the polynomial dynamical systems gener-
ated by this network are also generated by a network with a single irreversible reac-
tion. Hence, the network is not effectively endotactic. Note that the same is true for 
the E-graph shown in Fig. 7f. 	�  ◻

Example 10  Consider the E-graph shown in Fig. 7f. This one-dimensional network is 
consistent, but it is not effectively source-only. Any system generated by this network 
has only a single term. Any other network G̃  which also generates such a system 
and contains more than one source must have additional sources which are extremal 
sources. However, Theorem 2 implies that these must have 0 ∈ RelInt(V G̃(s)) , and so 
must have target nodes outside of the convex hull of sources, which could therefore 
not be sources. 	�  ◻

4 � Conclusion

We have determined the extent to which different reaction networks may repre-
sent the same dynamical system when modeled with mass action kinetics. This 
allows us to investigate the overlap between classes of reaction networks, in the 
sense of dynamical equivalence and “effective” properties. Figure  8 provides a 
summary of the relationships between classifications of networks, giving an 
answer to Question 2. Furthermore, the graph in Fig. 8 is complete in the sense 
that any additional arrows would be false, with the exception of arrows that are 
already implied by directed paths.

Our answers to Questions 1, 2 provide a framework for the study of generic 
interaction networks, and indeed systems of ODEs with polynomial right hand 
sides, in the context of reaction network theory. Reaction network theory pro-
vides useful tools for the analysis of dynamical systems [28, 29, 36, 47, 62, 63], 
and an answer to Question 1 provides a way to extend these results to systems for 
which they are not immediately applicable. Our work on Question 2 organizes the 
hierarchy of the various results in reaction network theory, allowing them to be 
extended where appropriate.
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