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Abstract

We propose a new approach to study the long time dynamics of the wave kinetic equation in the statistical
description of acoustic turbulence. The approach is based on rewriting the discrete version of the wave
kinetic equation in the form of a chemical reaction network, then employing techniques used to study the
Global Attractor Conjecture to investigate the long time dynamics of the newly obtained chemical system.
We show that the solution of the chemical system converges to an equilibrium exponentially in time. In
addition, a resonance broadening modification of the acoustic wave kinetic equation is also studied with
the same technique. For the near-resonance equation, if the resonance broadening frequency is larger than
a threshold, the solution of the system goes to infinity as time evolves.
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1. Introduction

Describing the behavior of a spatially homogeneous field of random, weakly interacting dis-
persive waves, the theory of wave turbulence has been very successful in explaining the processes
of spectral energy transfer in several areas of modern science, such as oceanography, plas-
mas, planetary waves, acoustic turbulence etc. [63]. The central ingredient of the theory is the
derivation of the kinetic-wave equations, which describe the spectral energy transfer via n-wave
resonant processes, and which are in one to one correspondence with the spectral moments [42].
Without making a priori assumptions on the statistics of the processes, these equations are closed.
An important feature of these equations is that their exact equilibrium solutions have constant
spectral fluxes of one of the conserved energy densities and the number density.

The derivation of kinetic equations to describe how weakly interacting waves share their en-
ergies in anharmonic crystal lattices in solid state physics go back to Peierls, in the early 30’s
[46,47]. Indeed, to our knowledge, Peirels’ model is the first wave turbulence kinetic equation
derived. The modern theory has been then developed based on the pioneering works of Hassel-
mann [31], Benney and Saffmann [8], Kadomtsev [37], Zakharov [63], Benney and Newell [7].
A great breakthough in the theory is the discovery of the Zakharov-Kolmogorov solution [61,62]
by using the scaling symmetries of the dispersion relation and the coupling coefficient via the
Zakharov transformation [61-63].

In [39], the authors develop expressions for the nonlinear wave damping and frequency cor-
rection of a field of random, spatially homogeneous, acoustic waves. They derived the 3-wave
kinetic equation of acoustic waves, describing the evolution of the density distribution function
f of the waves, in which the distribution f (¢, p) is a function of time ¢ and wave number p. If
we denote

fi=f@ py), =1 p2), f5=f{, p3),

then f satisfies

afi
E_Q[fl]’ ey
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where

Olfil:= /Vpl,pz,p36(pl — P2 — p3)8(wp, — wp, —wp) 213 — f1(f2+ f3)ldp2dps
]Ré

- Zpr],pz,p35(p2 = P1 = p3)8(wp, —wp, — wp)f1f3 = f2(f1 + f3)ldp2dps.
RO6
2)
The collision kernels Vp, p,,p; = 0 are radially symmetric, and symmetric with respect to the
permutation of pi, pa, p3:

Voi.pa.ps = M pillp21lp3l,

where |p| denotes the length of the vector p, and A is a positive constant that we can assume
without loss of generality to be 1. In the case of acoustic waves, the dispersion relation w, =
w(p) is given by the phonon dispersion law:

w(p)=|pl. 3)

In this paper, besides the exact resonance equation (1), we also consider the following near-
resonance turbulence kinetic equation for acoustic waves

i _ Nr
o =2 LAl 4)
where
oM = / Voroslafs = fifa+ £9)1dpadps
{P1=p2+p3,lop —0p, —0p <A}
(5)
-2 / Voi.p.psl 1.3 = f2(f1 + f3)]dpadps3.

{P2:P1+P3,|wp2—wp1 —Wps <A}

Indeed, equation (1) has an explicit expression for the Kolmogorov-type spectrum of acoustic
turbulence which is just a stationary solution of the equation [39]. Such a solution has not been
found for the resonance broadening equation (4). In the current paper, we are interested in a dif-
ferent mathematical question on the time-dependent solutions rather than the stationary solution.

In general, the 3-wave kinetic equation plays an important role in the theory of weak turbu-
lence, and has been rigorously studied in [43] for capillary waves, in [1,14,19,24] for the phonon
interactions in anharmonic crystal lattices, in [58] for acoustic waves, and in [24] for stratified
flows in the ocean.

It is the goal of our work to make the connection between equations (1), (4) and chemical
reaction systems. Understanding the qualitative behavior of deterministically modeled chemical
reaction systems has been a subject of great interests during the past four decades [60]. The main
questions include the existence of positive equilibria, stability properties of equilibria, and the
non-extinction, or persistence, of species [2-5,16,22,23,28,33,60]. Used to describe an important
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class of chemical kinetics, toric dynamical systems or complex-balanced systems [16,34] are
among the most important models of chemical reaction systems. First introduced by Boltzmann
[10] for modeling collisions in kinetic gas theory, the complex-balanced condition was used by
Horn and Jackson [21,30,32,34,60] to show that a complex-balanced system has a unique locally
stable equilibrium within each linear invariant subspace. Later on, the name “toric dynamical
system” was proposed in [16] to underline the tight connection to the algebraic study of toric va-
rieties. The Global Attractor Conjecture, the most important problem for toric dynamic systems,
states that the complex balanced equilibrium of each system is also a globally attracting point
within each linear invariant subspace. The Global Attractor Conjecture has been proved in [18]
for small dimensional systems, and a solution has been proposed in [15] for the general case.

In this paper, we discover, for the first time, the connection between the wave kinetic equation
(1) and chemical reaction networks. We prove that the discrete version of (1) can be associated
with a chemical reaction network which takes the form

Ay, + Ay, —> Ag
Ag, + Ax, — 2Ax, + Ay,

and will be described in detail in Section 2.3. As a consequence, techniques that have been used
to study the Global Attractor Conjecture in chemical reaction network theory can be applied to
study the long time behavior of the wave kinetic equation (1). We prove that as time evolves, the
solution of the discrete version of (1) converges to a steady state exponentially in time.

The Dirac-delta functions in (1) imply that the spectral energy transfer occurs on the resonant
manifold, which is a set of wave vectors p, p1, ps satisfying

P=pL+p, @p=wp +op. (6)

However, in related systems, it is shown that exact resonances with w, = w,, + wp, do not
capture some important physical effects [6,27,29,48,59]. Therefore one needs to include more
physics by adding near-resonant interactions [9,13,35,38-41,52-55], which satisfy

P=p1+p2, |op—wp —wp| <A, @)

where A is the resonance broadening frequency.
By extending the chemical reaction network approach used to study the discrete versions of
(1) and (4), we prove that:

e There exists a positive constant Ag such that when 0 < A < Ay, the solution of the discrete
version of (4) converges to a unique equilibrium exponential having the form |p|~! in time,
similar to the exact resonance case, which is the same as the equilibrium solution of the exact
resonance case. Note that when A = 0 the equation (4) becomes (1).

e There exists a positive constant A such that when A > Ay, the solution of the discrete
version of (4) exits any compact set as ¢ tends to infinity.

Besides the 3-wave kinetic equation, the rigorous study of 4-wave kinetic equation is a very
important subject (see [11,12,20,25,26] and references therein). Finally, we note that wave-
turbulence kinetic equations have very similar form with the quantum Boltzmann equations,
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used to describe the evolution of diluted bose gases at high and low temperature. We refer to the
book [49] or the papers [36,44,45,50,51,56,57] and the references therein for more discussions
on the latter topic.

The plan of our paper is the following:

e In section 2, we show that the discrete version of equation (1) can be rewritten as a chemical
reaction network. By using an approach inspired by the theory of toric dynamical system,
we prove in Theorem 2 that the solution of the discrete version of (1) converges to the
equilibrium exponentially in time.

e In section 3, we generalize Theorem 2 to the near resonance case (4). We prove that de-
pending on the resonance broadening frequency A, the solution of the discrete version of the
equation may converge to the equilibrium exponentially or go to infinity as time evolves.

2. A reaction network approach to the exact resonance equation
2.1. The dynamical system associated with the exact resonance equation

Let us consider the discrete version of (1), which is described below.
Let L denote the lattice of integer points

Lr={peZ’ |pl <R}

The discrete version of the quantum Boltzmann equation (1) reads

I = Z Vor,pa.ps s Fos = Fou (Fpa 4 Fs)]
p2.p3€Lp,
() pa)o(ps)=0
o (p1)—o(p2)—o(p3)=
(®)
-2 Z Vor.paops Lo or = Fos (For + Fo) ]
p2.p3€LR,
p1+p2—p3=0,

o(p1)+w(p2)—w(p3)=0

for all p; in Lg, where w(p) is defined in (3).

2.2. Decoupling the exact resonance equation

Observe that when py =0, Vp, p,, ps 18 also 0, and therefore,

fo=0, ©)

which implies that fy(¢) is a constant for all > 0. Moreover, f),, does not depend on fy for
all p; # 0. Therefore, without loss of generality, we can suppose that f(0) = 0, which leads to
fo(®) =0 for all ¢.

Taking into account the fact w(p) = c|p|, note that if p;, p2, p3 € L are different from 0,
and for p3 = p1 + p2 and | p3| = | p1| + | p2| (like in the second sum of (8)), then p1, p2, p3 must
be collinear and on the same side of the origin. Therefore, we infer that there exists a vector P
and k1, kp, k3 > 0, k1, k2, k3 € Z such that
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p1=kiP; pr=kP; p3=k3P, ki+k=ks.

Since L is bounded, it follows that ki, k2, k3 belong to a finite set of integer indices I =
{1,...,I}. Arguing similarly for the first sum in (8), we deduce that (8) is equivalent to the
following system for ky € I

SPr, = Z Vpiy, Pho.Pks [ [P fPky — FPiy (fPlo + fPR3)]
k kzlék361<]1’ 0
1 2 3 (10)
-2 Z Vpiy, Pho, Pks [ [Pk fPky — fPks(fPRy + [PR2)]-
k2,k3€]1,
k1+ko—k3=0

Note that the system of equations (10) shows a decoupling of the system of equations (8) along
a ray {kPy} with k > O (see Fig. 1). As a consequence, it is sufficient to study the system of
equations (10) for a fixed value of Py, instead of the system of equations (8).

If we denote fi, p, by fk, (with k1 € II) and VkllzPo,kzPo,ksPo by Vkllz,kz,kg’ with an abuse of
notation, we obtain the following new system for the ray {k; Py|k; > 0}:

fo= " D Vidakslfofis — fi (fio + fis)]

ka,k3el,
k1=ky+k:
1 2TK3 (1 1)
2 Y Vhkkslfa fio = fio (fig + fi)], Vhi €1
ko, k3€ll,
ki+ko=k3
The conservation of energy then follows
1
> kfi=0, (12)
k=1
or equivalently
1
Z k fi = const. (13)
k=1

These conservation relations also follow easily from the rewriting of equations (11) as a mass-
action system, as described in the next section. Also by abuse of notation, we denote this discrete
version of Q by

Aful= Y. Vikklfiafis = fis (fio + fir)]

ko+k3z=k;

2 Y Vikklfu fio — fio (i + fi)l-

k1+ko=k3

(14)
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2.3. The chemical reaction network associated with the exact resonance equation
For X e R" and € R” ,, we denote by X% the monomial IT7_, X",
>0 =0 i=1"%i

Definition 1. Consider a chemical reaction of the form

%
a1Ay + oAy + .+ anAp = BIAL 4+ BrAr + ...+ BuAy,

where V is a positive parameter, called reaction rate constant. Then the mass-action dynamical
system generated by this reaction is

X =VX“PB - a), (15)

Where a = (als e 9an)T3 13 = (ﬂlv Y ﬂﬂ)T3 o, IBi 2 0 and X = (Xls R Xn)T’ in Wthh Xi
is the concentration of the chemical species A;. For the case of a network that contains several
reactions

@) A+ AL + . ab AL > BIA] 4 BAL + .+ BhAL,

for 1 < j < m, its associated mass-action dynamical system is given by

X=Y v;x¥ B —a)). (16)

=1

In this section, we will show that the system (11) has the form (16) for a well-chosen set of
reactions. We will derive the system (11) from the network of chemical reactions of the form:

Ay, + Ay, —> Ay (17
Ag, + Ag, —> 2Ax, + Ag,, (18)

for all k1, ko, k3 in I such that ky + k3 = k1. If we denote by Fj the concentration of the species
Xk, we will show that, for appropriate choices of the reaction rate constants in (17) and (18), the
differential equations satisfied by Fj according the mass-action kinetics are exactly the same as
(11).

In order to describe the connection between the mass-action system given by reactions of the
form (17)-(18) and our system (11), we need to consider several cases.

Case 1: For ky + k3 = ki, ko # k3, k1, k2, k3 € I, we consider

2V, ko k3

Ak2 + Ak3 _— Ak| (19)
2V, ky ks

Ak2 + Ak] Em— 2Ak2 + Ak3, (20)

and for the reaction (19)-(20), we choose the reaction rate constants of the three reactions Ay, +
Ay = Apy, Agy + Ay — 2Ap, + Ay to be 2V, i, ;.- For example, consider the reaction (19):
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in this reaction, Ay, is created from Ay, + Ay, with the rate 2V, , i, Fk, Fi;. Therefore, the rate
of change of the species Ay, due to this reaction is 2Vy, i, k3 Fk, Fk;. For the reaction (20), Ay,
is lost with the rate —2Vy, k, ks Fk, Fi, to create 2Ay, + Ay,. Therefore the rate of change of the
species Ay, due to this reaction is —2Vy, i,,k; Fk, Fk, - By exchanging the roles of Ay, and Ay, in
(20), we obtain the rate —2Vg, i, k3 [ Fiy Fi; + Fis Fk, 1. Therefore, the total rate of change of Ay,
due to the reactions in (19)-(20) is

2V ko s | Fky Frey — Fry Fiey — Fiy Fry . (21

Case 2: For ky + k3 = ky, ko = k3, we obtain 2ky = kq, k1, ko € I, and we consider

Vi) k) k3
2Ax, — Ay 22)
2V ko k3
Ag, + Ay, —— 3Ay,. 23)

We choose the reaction rate constant of 2Ay, — Ay, to be Vi, i, k;- Also, we choose the reaction
rate constant of Ay, + Ay, — 3Ag, to be 2V, i, k;- Consider the first reaction (22): In this
reaction, Ay, is created from 2Ay, with the rate Vi, x, k, F, k22 . The rate of change of the species
Ay 18 Vi ko ko szz. For the second reaction (23): Ay, is lost with the rate =2V, k, .k, Fk, Fk; to
create 3Ag,. As a result, the rate of change of Ay, due to the reactions (22)-(23) is

Vk],kz,k3[Fk22 - 2Fk2 Fkl ] (24)

In order to compute the total rate of change of Ag,, we need the combination of (19)-(20),
(22)-(23) and

2Vk2,k1.k3
2V, k1 K3
Ay, + Ag, —— 2Ay, + Ay, (26)
which, by (21), (24), implies
Fo= Y DWikokslFioFis — Fo (Fiy + Fiy)]
ko+kz=ky,ky<k3
+ Z Vk],k2,k2[Fk2 sz - Fk] (Fk2 + sz)] (27)
2kr=k
— > WhkkslFry Fs = Fro (Fiy + Fi)l,
ki+k3=ky
which can be written as
F, = Z Vi kb [ Fiy Fiy — Fiey (Fiey + Fi)]
ko+k3=k;
(28)

-2 Z Vo k1 k3 [Frey Fiy — Frey (Fiey + Fiy)1.
k1+kz=ko



4340 M.-B. Tran et al. / J. Differential Equations 269 (2020) 4332—4352

Equation (28) shows that the system of differential equations satisfied by the concentrations Fj
is exactly the same as the system of differential equations (11) satisfied by the densities f.

2.4. A Lyapunov function inspired by the associated reaction network

The observation above is very interesting because it shows a very strong connection between
our system (11) and the reaction network model (17)-(18). As a consequence, the techniques
developed to study the Global Attractor Conjecture [15] in reaction network theory can be ap-
plied to study (11). One of the key ingredients in proving the convergence to global attractors
of detailed balanced or complex balanced reaction network models is that these networks have
a specific type of Lyapunov functions. Then our system of interest (11) may also have a similar
Lyapunov function. By using a change of variable similar to the approach in [14], we can create
a global Lyapunov function (related to Boltzmann’s original H-theorem calculations), as follows.

To illustrate this idea in a very simple way, we select in the system above three values k1, k2, k3
such that k1 + ko = k3, and suppose Vi, k,.k; = 1. Then this simplified “sub-system” can be
rewritten as

Fr, 0

>, Fk2 = (Flek3+Fk2Fk3_Fk1Fk2) 1 - O ) (29)

at\ 0 1
k3

which can be developed into

d ?q Fy, Fy, F; < ! + ! ! ) i 8 (30)
— k = Fytigtg|\ —+ 5 — &5 -
dt ij 1Rl Fe, Fy F, 0 1
Consider the change of variables
on(f): e
k= ex = 9 k=1 < <
P\ F log(Gr)
then we have
: + : : log(Gy, Gi,) — 1og(Gyg,)
—— t 7 — 57— = 10g8(Gy Gi,) —108(Gs ).
Fo, " Fo  Fu gk Uk, E(Uk;
We then get
d Gk] _Gk| logi(le) 1
— | Gk, | = diag| —Gy, log”(Gi,) [log(Gi, Gk,) —10g(Giy)].
dt G, ~Gi, log?(Gyy) log G log G, log G,

€29
By following the approach in [14], we construct a Lyapunov function for the system in variables
Gy given by

I
L(G) = ) _loglog(Gy),
k=1
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which, when translated back into the Fj coordinates has a very simple form:

I I
1
k=1 k k=1

In the next section, we will see that this construction does indeed give rise to a global strict
Lyapunov function for our (full) dynamical system of interest.

2.5. Convergence to equilibrium
Theorem 2. For any positive initial condition, the solution

F @) =(fp)pecy

of the discrete wave turbulence equation (8) converges to an equilibrium state f* = (f;:)peﬁR-
For each ray {k Po}i>1 there exists a positive constant p(Po) such that if p =k Py then
1
fi=
kp (Po)

Moreover, the solution f(t) of (8) converges to f* exponentially fast, in the following sense:
there exist positive constants C1, Co such that

max | f,(1) — fr] < Cre”".
peLlr

Proof. By using the decoupling and the change of variables discussed in the previous sections,
for each ray {k Pp};>1, we can reduce the study of f to F, which satisfies (28).

Step 1: The Lyapunov function. We define the function

1
L(F) = - log(Fy), (32)
k=1

and we will show that L is a Lyapunov function for (28). Indeed, we have

vL=| --- |]. (33)

By defining

=1 1], (34)
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in which the number 1 stands for the k-th coordinate, we then have

. F
F-VL= Z Vkl,kz,k[Fkl sz — Fkal — Fkaz][ek —ex, — ekz] . ..
k1+ky=k _FLI
_1
> VikokFiFi, F) [1 Lo }[ ] !
= ki kp k Lk Ok Lhky | = — 75 — &= ey — €k1 — ekz . e 35
ki+ky=k Fr  Fy Fi, _FL, (35)

>V FFy, F, [ ! : : T
= - ki ko kOkLkyChy | /7= — &= — &=
ki oek Fo Fr Fp,

<0.

In this case the vector § — o in (15) takes the form ey — ek, — ex,. Also, note that the above
inequality is strict unless

1 1 1

—_— =+ =, (36)
Fr  Fy Pl

for all k = kj + k2. Equation (36) implies that at equilibrium F;\ = p—lk, for some positive constant
p. By the conservation relation

I I
> k= Y kE
k=1 k=1

we deduce that p is unique, i.e.,

1
. »
Fr=1 ... (37)
1
ol

is the only equilibrium point that satisfies the same conservation relation as the initial condition.

Step 2: Differential inclusions and persistence.

Since the Lyapunov function L is infinite on the boundary, we conclude that the system is
persistent. Therefore, by using the existence of the globally defined strict Lyapunov function L,
and the LaSalle invariance principle, it follows that all trajectories converge to the unique positive
equilibrium F* that we discussed in Step 1.

Step 3: Exponential rate of convergence.

Despite the fact that the system (19)-(20) is irreversible, in this step, we will use methods that
work well for reversible systems. To this end, we will introduce a change of variable technique,
to convert (19)-(20) into the system for the reaction Ay, 4+ Ay, <> Ay,, which is indeed reversible,
but with reaction rate functions different from mass action kinetics. In other words, by converting
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the irreversible system (19)-(20) into a reversible one, we can then employ techniques originally
designed for reversible systems.
Let us start with our change of variable, which takes the following form

1
G =exp <Fk> ,

1
" In(Gy)’

then
Fy

and

_ In(Gy,) — In(Gy,Gyy)
 In(Gy,) In(Gg,) In(Gy)

_ In(Gy,) — In(G, Ggsy)
 In(Gr,) In(Gi,) In(G3)(Gy, — G, Giy)

Fi, Fry — Fi Fiy — Fi, Fig

(le - sz Gk;)

Notice that 0 < F; < oo and 1 < G < o0. Moreover,

In(Gy,) — In(Gy, Gi;)
Gk, — G, Gi,

>0,Vki,ky, k3 el.

We will now study Gy instead of F. To do this, we convert the system (28) into

Gy, ~
———— = Q[G](ky)
(In(Gy,))?
In(Gp;) — In(Gg, Gi,)
=2 V : Gr, — G, G
. Z_ ke (G (G In(Gry) (G — Gia Gy 00~ Gl Gl (38)
1+ko=k3
In(Gg,) — In(Gg, Gis)
+ Vi ko - (=G, + G, Gy,), Yk € 1.
_Z "2 In(Gry) In(Gry) In(Giy) (G, — G,y Giy) bR
k1=ky+k3
Suppose that G represents the column vector (Gq,...,G 7T Let us also denote by A, with an

abuse of notation, the vector

0

in which the only element that different from O is the k-th one.

As discussed above, we convert Fy into G. This technique allows us to changes the irre-
versible system (19)-(20) into the reversible one Ay, + Ag, <> Ag;. Let us now compute the
reaction rate functions, which is quite different from mass action kinetics
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. In(Gy;) — In(G, Gi,)

T In(Giy) In(Gry) In(G iy ) (Grs — G, Giy)
e In(Gy;) — In(G, Gi,)
T In(Gry) In(Gry) In(Giy ) (G — G, Giy)

VAkl +Ak2—>Ak3 (G) = 2Vk1, le GkQ ’

VAk3‘>Ak1+Ak2 (G) = 2Vk1 Gk}v

Vg, +Ary < Ary = 2Vi ko k3
Otherwise, if k1 = k», we write

In(Gy;) — 2In(Gy,)
In(Gy) In(Gy,)%(Gyy — G2,

In(G;) — 21In(Gy,)
In(Gx,) In(Gr,)2(Gy, — G7,)

V2Ak, — A (G) = Vi k1 ks k1 Gy

VAk3—>2Akl (G) = Vk],k|,k3 k3

V2Ak1 (—)Aks = 2Vk1 Jk1,k3 -

Using these reaction rate functions, the system (38) could be converted into

) (In(G1))?
G =diag X (39)
(In(G1))?

X3 Va4 (6) = Vi = g 4, (O] (kg = Ak, = Agy).
k1+ko=k3

Equivalently, we can also write the following equation for the new reversible system Ay, + Ay, <
A,

_ (In(G1))?
G = diag - D Voo (G) = Vi (G)] (7 = ), (40)
(n(G1)? ) yoy

where y <> y’ belongs to the set of reversible reactions
Apy + Ay <— Agy, 41

with k1 + ko = k3.

Since we have converted (19)-(20) into the reversible system Ay, 4+ Ay, <> Ag;, We can now
employ classical techniques for reversible systems, starting with the definitions of the two func-
tionals R(G) and S(G)

(In(G1))*
R(G) = diag D [Vyay (G) = Vo (G)] (3 = )

(n(G))? ) yoy

(42)
(In(G1))?

— diag D Wyoy G = Vyoy G THyny GV — ).

(In(G)? ) yoy
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and

S(G) = Z [Vyey/Gy - Vy(—)y’Gy/],Hyey’(G)(y/ - Y)‘

yoy'

Next, we will follow the techniques introduced in [17] for reversible systems, by computing the
Jacobian of S at the equilibrium point G*, applied to an arbitrary vector § # 0 that belongs to
the span of the vectors y' — y

Jac(S(G* NS =Y Vyory (G (v =) # ) Hyory (GH)(y — ¥, (43)

yoy'

since V) (G*)Y — Vyeyr(G*)y/ =0 in which the inner product * is defined as
I
Z Vid
N G
Therefore

[Jac(S(G™))8] %8 = (44)
=D Vyoy (G Hyey (GHI(y — y) %811 — y) 8] <0

y(_>y’

Now, we compute the Jacobian of R at the equilibrium point G*,

96, (In(G?))>S(G*), (In(G¥))?
Jac(R(G™)) = diag + diag . Jac(S(G™))
30,(1H(G1))23(G )1 (In(G¥))?
[ (In(GY))?
= diag Jac(S(G™)),
| (n(G})?

where the second equality is due to the fact that since G* is an equilibrium we have that S(G*) =
0. Since

(In(G?))?
® :=diag
(In(G¥))?

is a diagonal matrix and J := Jac(S(G*)) is negative definite, then D1/2391/2 5 also negative
definite with respect to this inner product. Since

det(@3 — Ald) =det(®'?3D'V? — AId), VA €R,

it follows that ©1/23D1/2 and ©J have the same eigenvectors, so D is negative definite. In
other words, Jac(R(G™)) is negative definite. The exponential rate of convergence
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Gi(t) — G|~ ,1G[(t) — G|} < Cre
max{|G(t) — G|, -+, |G (1) = G7l} < Cre” ™%,

then follows from the fact that the Jacobian above is negative definite. This leads to the conclusion
of the theorem. O

Remark 3. In the proof above we could have used the Lyapunov function

L(F)=—TI!_, Fy, (45)
and all the computations remain the same.
3. A reaction network approach to the near resonance equation
3.1. The dynamical system associated to the near resonance equation

Similar as in Section 2, let us consider the discrete version of (4), which is described below.
Let L denote the lattice of integer points

Lr={peZ’ |pl <R}

The discrete version of the near-resonance equation (4) reads

fpl = Z VPI’PZvPS [fpzfp3 _fpl(fp2+fp3)]
P2:P3€LR,
p1—p2—p3=L,
lo(p1)—w(p2)—w(p3)|<A 6
-2 2 Vpr.p2ps [ o1 o = Fos(Fpr + f)]
P2, p3€LR,
P1+p2—p3=0,

lo(pD)+w(p2)—w(p3)|<A

for all p; in Lg.
Since Lg contains a finite number of grid points, then there exists a positive number A,
satisfying

Ay = min lw(p1) —w(p2) — o (p3)l 47
P1,p2.P3€LR,

p1—p2—p3=0,
lw(p1)—w(p2)—w(p3)|#0

See Fig. | for a geometric illustration of the construction of A,. The red triangle in Fig. 1 shows
an example of a triple (p1, p2, p3) such that we have p; — p» — p3=0 but |o(p1) — w(p2) —
w(p3)| # 0. Moreover, we also define

A*= min . 48
peﬁR\{o}lpl (43)
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Fig. 1. The system of equations (8) can be decoupled alongs rays, as shown in (10). Two examples of such rays are shown
in black above. The red triangle illustrates the definition of A in (47). (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

3.2. Convergence to equilibrium

Theorem 4. The solution of the discrete near resonance equation (46) has different behaviors
for different values of the resonance broadening frequency A.

o If A < Ay, where Ay is defined in (47): For any positive initial condition, the solution

J @ =) pecy

of the discrete wave turbulence equation (46) converges to an equilibrium state f* =
(f;)pEER' For each ray {k Po}i>1 there exists a positive constant p(Pp) such thatif p =k Py
then

1

~ ko(Po)’

Moreover, the solution f(t) of (46) converges to f* exponentially fast, in the following sense:
there exist positive constants C1, Co such that

Iv

max | f,(t) — f5] < Cre” . (49)
peLlr

The reason for (49) to hold is that when A < A, the resonance broadening equation be-
comes the exact resonance one.
o If2A* < A, where A* is defined in (48): For any positive initial condition, the solution

f(f) = (fp(t))pEER

of the discrete wave turbulence equation (46) exits any compact set K C (0, oo)‘LR las ¢t
tends to infinity, and moreover we have litm inf|| f(¢)|| = oo.
—00
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Proof. Step 1: The Lyapunov function. We define the function

1
L(f)y=— ) log(fp), (50)

peLr

and we will show that L is a Lyapunov function for (46). Similar as the proof of Theorem 4, we
also have

f-VL=

1 1 177
= Z Vm,pz,psfmfpzfm |: _____ j| (51)

p2tp3=pi.lIp2l+Ip3l=Ipi1lI<A
<0.

Note that the above inequality is strict unless

1 1 1

— =—+ =, (52)
VTR R

forall p; = p> + p3 and ||p2| + | p3| — |p1l] < A.

Step 2: The two cases of A.

Case 1: A < A,.

Since A < Ay, the system p; = po + p3 and || p2| + | p3| — | p1l] < A < A, becomes exactly
the system p; = p> + p3 and ||p2| + | p3| — |p1l| = 0. Therefore, equation (52) implies that at
equilibrium f* = pk, for some positive constant p. By the conservation relation

S pfh=Y pfp

PELR PELR

we deduce that p is unique and f* is the only equilibrium point that satisfies the same conserva-
tion relation as the initial condition. The same argument as in Theorem 2 can be applied and the
conclusion of Theorem 4 follows.

Case 2: 2A* < A.

Define Z,, = FL,, The equilibrium set of (51) satisfies the following system of linear equations.

Zp=Zp, +Zp;, (53)
for all p; = p2 + p3 and || p2| + |p3| — |p1ll < A. We will show that the system (53) has no

solution by contradiction.
The system (53) contains the exact resonance one as a subsystem

Zpy=Zp,+Zp,, 54

for all p1 = p» + p3 and || p2| + |p3| — |p1l| =0.
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For each ray p, we denote by e, the closet point of LR to the origin on this ray. Suppose that
p is chosen such that |e,| = A*. Let us consider all of the points of LR which is a set of the
form {ep, 2e,4, 3¢y, - - - , Je4}. On this set, the exact resonance equation (54) is the classical one

Zitje, = Zie, + Zje,
and has a unique solution
Zp,=Alpl,
where X is a positive constant.

By a similar argument, let us consider the ray —e,; then —e,, is also the closest point of LR
to the origin on this ray. Thus, we know

Zg=21ql,
where 1’ is a positive constant, for all ¢ on the ray of —e,.

Consider the vectors p; = 3ep,, p» = 4ep, and p3 = —e,,, then p; = pr + p3 and || p2|+ | p3| —
|p1ll =2A, < A. Therefore for these choices

Zp=Zp, + Zp;s,
which is equivalent to
A3lep| = rdle,| + 2 lep).
This leads to a contradiction.

Since the system (53) has no solution, for any compact set K C (0, oo)'l:R || there exists Ag >
0 such that

2
.f'Vlfz'_ V|,2,3f|f‘mf3[ _____ ]
Z p1,p2,p3Jp1Jp2 Jp 55)

p2+p3=pillp2l+ip3l=Ip1lI<A
< — Ag.

Therefore f exits any compact set K C (0, 00)£kl as ¢ tends to infinity. In particular, consider
the compact sets of the form

{x €(0.00) %" | [T xp>e0and [Ix]] < M}. (56)
peLlp
Note that the set
fx e 0.00) k| T xp =20} (57)
peLr

is a level set of the Lyapunov function L(f) (see also Remark 5 below).
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Consider now a solution f(¢) of equation (46) and some &y > O such that for f 0= f£(0) we
have Hpel}R fl(,) > £9. . .

Then, since f(¢) must exit the compact set given by (56) for any M > 0, and the Lyapunov
function property prevents it from exiting through the boundary of the form (57), it follows that
litminf||f(t)|| =o00. O

—00

Remark 5. In the proof of Theorem 4 we could also have used the Lyapunov function

L(H==[] £ (58)

peLlr

and all the computations remain the same.
4. Perspectives

The explicit expression for the Kolmogorov-type spectrum of acoustic turbulence of equation
(1) is (cf. [39])

f(p)y=Ipl=">.

An open question is if this is also a spectrum of the discrete system. In our work, we prove
that |p|~! is a global attractor for the discrete system. In a future work, we will try to compare
these two solutions. We suspect that it may be not possible to find a Lyapunov function for
| p|~3/% despite the fact that it is possible to find a Lyapunov function for |p|~!, as shown above.
Moreover, we will also plan to study the behavior of the system when A, < A <2A%.
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