
LiveDeep: Online Viewport Prediction for Live Virtual Reality Streaming

Using Lifelong Deep Learning

Xianglong Feng*

Rutgers University

Yao Liu†

SUNY Binghamton

Sheng Wei‡

Rutgers University

ABSTRACT

Live virtual reality (VR) streaming has become a popular and trend-
ing video application in the consumer market providing users with
360-degree, immersive viewing experiences. To provide premium
quality of experience, VR streaming faces unique challenges due
to the significantly increased bandwidth consumption. To address
the bandwidth challenge, VR video viewport prediction has been
proposed as a viable solution, which predicts and streams only the
user’s viewport of interest with high quality to the VR device. How-
ever, most of the existing viewport prediction approaches target only
the video-on-demand (VOD) use cases, requiring offline process-
ing of the historical video and/or user data that are not available
in the live streaming scenario. In this work, we develop a novel
viewport prediction approach for live VR streaming, which only
requires video content and user data in the current viewing session.
To address the challenges of insufficient training data and real-time
processing, we propose a live VR-specific deep learning mechanism,
namely LiveDeep, to create the online viewport prediction model and
conduct real-time inference. LiveDeep employs a hybrid approach
to address the unique challenges in live VR streaming, involving
(1) an alternate online data collection, labeling, training, and infer-
ence schedule with controlled feedback loop to accommodate for the
sparse training data; and (2) a mixture of hybrid neural network mod-
els to accommodate for the inaccuracy caused by a single model. We
evaluate LiveDeep using 48 users and 14 VR videos of various types
obtained from a public VR user head movement dataset. The results
indicate around 90% prediction accuracy, around 40% bandwidth
savings, and premium processing time, which meets the bandwidth
and real-time requirements of live VR streaming.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality;

1 INTRODUCTION

Recently, virtual reality (VR) video streaming (a.k.a., 360-degree
video streaming) has become a popular video application in the
consumer video market, with the rapid growth of mobile head
mounted display (HMD) devices [19]. Many VR device manu-
facturers (e.g., HTC [39] and Oculus [28]) have released affordable
and practical HMDs to the market. Many video content providers
(e.g., YouTube [7], National Geography [35], and CNN [25]) have
provided high-definition VR video content for streaming to mobile
HMDs over wireless (e.g., WiFi or cellular) networks. More im-
portantly, VR streaming has started its initial deployment for live
broadcast events, such as sports games [31] and breaking news [1],
providing instant immersive experiences to the end users. Differ-
ent from traditional video streaming, in VR streaming users have
the freedom of selecting the video viewports (i.e., the portion of

*e-mail: xf56@scarletmail.rutgers.edu
†e-mail: yaoliu@binghamton.edu
‡e-mail: sheng.wei@rutgers.edu

the video to watch) from a 360-degree sphere using natural head
movements, similar to the viewing experience in the physical world.

Given the demands of high resolution and high frame rate in VR
streaming to ensure user’s quality of experience (QoE), the VR video
content is typically huge in size and thus poses significant challenges
in the network bandwidth consumption [8, 14]. Even if a single or
small number of VR video viewing sessions can be supported by
the state-of-the-art high bandwidth networks, the nature of the video
streaming services that could involve millions of concurrent viewing
sessions would create significant capacity challenges in both the
backbone and edge networks. Such challenges would eventually
be converted to degraded QoE towards the user end, significantly
blocking the wider deployment of premium VR experiences.

The potential solution to the bandwidth challenge of VR stream-
ing leverages the fact that the user can only watch an around 90-
degree viewport at any point of time, leaving the rest (more than
80%) of the video content in the 360-degree frame unnecessary to
be delivered to the mobile HMD. One example solution is selec-
tive streaming [38], which proposes to stream the portion of video
that the user is more likely to watch in high resolution, while the
rest of the video is delivered in low resolution. However, the im-
plementation of such solution requires accurate prior knowledge
about the user’s viewport of each individual frame, which is typ-
ically hard to obtain since the viewport is completely controlled
by the end user. Therefore, the state-of-the-art research focuses
on predicting user’s viewport using a variety of methods, such as
trajectory-based learning and inference based on the individual user’s
historical head movements [3, 4, 17, 23, 26, 27, 29, 30] and heat map
analysis of the popular video content/viewport based on multiple
users’ historical viewing behavior [2, 21, 32]. However, notably,
both categories of methods require historical user and/or video data
to build the prediction model. This requirement can be achieved
in most of the video-on-demand (VOD) streaming use cases (i.e.,
pre-recorded video content) but infeasible in live VR streaming (i.e.,
live-generated video content) where the video content is generated
and viewed for the first time. Looking through the video streaming
industry, the live streaming service has been a very popular and
attractive use case [34]. However, the state-of-the-art viewport pre-
diction techniques have not yet caught up with such demand in the
applications.

We develop a novel viewport prediction approach targeting the
unaddressed live VR streaming scenario. In our preliminary work-
in-progress poster paper [10], we explored the feasibility of using a
single convolutional neural network (CNN) model for live viewport
prediction and identified the limitations of the simple CNN structure.
In this paper, we aim to improve the performance of prediction by
employing an alternate and hybrid deep learning approach involving
both CNN and long short-term memory (LSTM) models. In par-
ticular, we target three specific live VR streaming characteristics,
which do not exist in VOD videos and would fail the state-of-the-art
VOD-oriented viewport prediction approaches: (1) Online video
generation: video content is generated on the fly with no trace of
previous videos that can be used to train a prediction model; (2) no
historical user data: we cannot predict the viewport based on this or
other users’ past head movement trajectories for the current video, as
they simply do not exist; and (3) real-time: viewport prediction itself

800

2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)

2642-5254/20/$31.00 ©2020 IEEE
DOI 10.1109/VR46266.2020.00104

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

should not incur significant processing delay that would compromise
the live streaming latency [40].

Due to the aforementioned live VR streaming characteristics, we
cannot adopt the traditional “train-and-then-predict” workflow for
viewport prediction. Instead, we explore the possibility of building
an online agent to learn the preference of the video content while
the user is watching the video and predict the user viewport for the
upcoming video segments. Corresponding to the aforementioned
characteristics, we develop a novel online viewport prediction mech-
anism targeting live VR streaming, namely LiveDeep, which follows
three design principles:

• Online. The prediction model should be generated online to
accommodate for the live video content generated on-the-fly and
the associated user preference;

• Lifelong. The prediction model should be updated periodically,
for the entire video viewing session, to accommodate for the
potential changes in either the video content or the user preference;
and

• Real-time. The processing delay caused by the viewport predic-
tion algorithm should not compromise the desired frame rate and
live streaming latency.

To realize these design principles in the development of LiveDeep,
we employ CNN for extracting the features in the video content and
mapping them to the user preference of viewports. To accommodate
for the unique live streaming challenges and the aforementioned
principles, we customize the traditional CNN workflow from three
aspects. First, following the online principle, we collect and la-
bel the training data at runtime during the video streaming session,
as neither the video content nor the user’s viewing preference is
available before the streaming starts. Second, following the lifelong
principle, we conduct inference (based on the current video segment)
and training (based on the previous video segments) in an alternate
and iterative manner to continuously update the model during the
entire video session. Such lifelong learning mechanism provides
the opportunity for the deep learning model to accommodate for
dramatic changes in either the video scene or the user viewing pref-
erence, both of which are very likely to occur due to the highly
interactive nature of live VR streaming. Third, following the real-
time principle, we employ a subsampling method to select a small
number of representative video frames to run the viewport predic-
tion algorithm, which achieves acceptable processing delay without
compromising the prediction accuracy.

In summary, the major contribution of the paper is to develop
a novel viewport prediction mechanism for live VR streaming in
order to reduce the bandwidth consumption. Given that there is no
historical user or video data to build the prediction model, we pro-
pose a hybrid deep learning approach following the online, lifelong,
and real-time principles determined by the unique requirements of
live VR streaming. To the best of our knowledge, this is the first
deep learning-based viewport prediction mechanism targeting the
challenging live VR streaming scenario.

2 RELATED WORK

Viewport prediction has become a trending research topic with the
increasing popularity of VR streaming applications in the past few
years. Many viewport prediction mechanisms have been proposed [2–
4,9,17,21,24,26,27,29,30,32,42,43], which can be divided into two
categories: (1) prediction approaches for VOD VR streaming that
require historical video or user data; and (2) prediction approaches
for live VR streaming using user trajectory or video motion in the
current viewing session. While the approaches in category (2) can
be applied to live VR streaming, the existing approaches rely on
strong assumptions about user behavior and video content and thus
have their limitations in achieving accurate prediction outcomes.

2.1 Viewport prediction for VOD VR streaming

Most of the existing viewport prediction approaches target the VOD
VR streaming scenario, in which the video has already been gen-
erated and watched by a large number of users in the past. In this
case, sufficient historical user and video data are available to build
the viewport prediction model for new users. This line of research
originated from saliency detection in images and videos. Borji et
al. [5] provided a comprehensive review of the existing saliency
detection mechanisms, and a large number of works [6, 13, 15, 18]
have been conducted over the years to use either the bottom-up or
the top-down method to train the prediction model. For viewport
prediction in VOD VR streaming, several works proposed to collect
historical user viewport traces for the target video and generate a
heat map for predicting the future viewports of new users watch-
ing the same video [2, 21, 32]. Several other works [9, 24, 42, 43]
employed machine learning to analyze the relationship between the
video content and the user viewing behavior.

In summary, this category of work focuses on building a map
between the user behavior and the video content using historical user
and video data. Although the existing approaches are effective in
their specific application scenarios of VOD streaming, they cannot
be applied to the live video streaming scenario because the required
historical data is unavailable.

2.2 Viewport prediction for live VR streaming

Recently, several viewport prediction approaches that do not rely
on historical user or video data have been proposed. For example,
user trajectory-based approaches [3, 4, 17, 26, 27, 29, 30] employ
real-time head movement data to predict the future viewports, as-
suming that user’s current head moving pattern (i.e., direction and
speed) would sustain for a reasonably long period of time (i.e., at
least a few seconds). In particular, existing approaches leverage
linear regression [29] or LSTM [24] to accomplish the training and
prediction tasks. More recently, Feng et al. [12] proposed to detect
object motions in live VR video for viewport prediction, given the
assumption that users are likely to watch the portions of the VR
video that contain moving objects.

Trajectory and motion-based approaches do not require historical
user or video data and thus could be applied to live VR streaming.
However, both approaches have limitations in terms of prediction
accuracy due to the strong assumptions regarding the user’s view-
ports of interest at runtime. First, trajectory-based approaches could
be effective only if the user does not dramatically change his/her
head movement direction/speed. While this is possible for a short
time span (i.e., < 1 second), the head movement direction/speed
could hardly hold for a longer period of time (i.e., a few seconds)
that is required by the state-of-the-art streaming standard, e.g., the
typical segment duration in DASH [37]. Second, motion-detection-
based approaches could only work with videos that have clear and
easy-to-distinguish foreground and background boundaries due to
the limitations of the motion detection algorithm. As a result, it has
been shown that the prediction accuracy would dramatically drop
under the scenario of moving cameras/background which, unfortu-
nately, is a very common use case in many VR videos especially the
live broadcasting targeted by this work.

2.3 Discussion and summary

To summarize, although there have been a large number of viewport
prediction approaches developed in the community, they either only
work with the VOD scenario where historical user or video data is
available, or have limitations in the supported types of videos and
users, leaving a significant gap in effectively supporting bandwidth-
efficient live VR streaming. In this paper we aim to bridge this gap
by developing LiveDeep, a novel viewport prediction mechanism
targeting the live VR streaming scenario based on online and lifelong

801

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Overall viewport prediction architecture of LiveDeep.

deep learning, which supports generic VR videos and users without
the limiting assumptions in the state-of-the-art approaches.

3 OUR PROPOSED METHOD: LIVEDEEP

3.1 The LiveDeep framework

The primary goal of LiveDeep is to achieve effective viewport predic-
tion for live VR streaming, following the three design principles (i.e.,
online, lifelong, and real-time) abstracted from the live streaming
requirements. Figure 1 shows the overall architecture of LiveDeep.
The prediction workflow begins with data collection and ends with
viewport prediction, which is repeated for each segment with the
user feedback loop to update the model.

The data collection step follows the live VR streaming pipeline,
in which we subsample the video frames from each segment for
processing due to the consideration of the real-time requirement.
Each frame is then uniformly segmented into small sub-images as
input to the CNN training. Then, in the viewport prediction step, we
combine the CNN model with an LSTM model to predict the user
viewport for an improved perception of user preference, leveraging
the CNN model for analyzing video content and the LSTM model
for the perception of the user trajectory. The video segment with
the predicted viewport will be watched by the user first and, then,
the user feedback (i.e., the actual head orientation data) is collected
to calculate the loss value and update the CNN and LSTM models
accordingly.

3.2 Training image collection

In a live VR streaming system, a live packager would partition the
360-degree video into small segments following the DASH stan-
dard [37]. Leveraging the video segments, we refine our video
processing pipeline and treat each video segment as the basic pro-
cessing unit, within which we train the LiveDeep model and predict
the user viewport. Considering the potential processing delay intro-
duced by the huge amount of video frames in each segment, as well
as the similarity of video content between adjacent frames, we uni-
formly subsample all the frames in each video segment to k frames.
Instead of using a fixed subsampling rate, we select a fixed number
(i.e., k) of frames, given that different videos may have different
frame rates. Also, we can keep the value of k small to ensure a fast
processing speed, since adjacent video frames within in the same
segment are often similar. For each of the k selected frames, we
uniformly divide the entire frame into x× y tiles, as shown in Figure
1. Therefore, in each video segment, there are k× x× y training
images. In this paper, we set x = y = 5 and k = 8. This enables us
to collect 200 images for training and inference per video segment.
The resolution of test videos we use is 1280×720, and each tile is
resized to 32×32.

In traditional supervised learning, the first step is to prepare the
training dataset. The existing viewport prediction approaches target-
ing VOD VR streaming (i.e., discussed in Section 2.1) could obtain
such dataset by collecting historical video and user data. However,
in the live VR streaming scenario, the collected training images are
not labelled due to the lack of user viewing history. As a result, we
must wait for the user feedback (i.e., the actual head movement data)
that is available only after the user has watched the corresponding
video segment. Then, based on the user feedback, we compare the
images with the center of the actual user viewport and label them as
either “interested” (i.e., if the center of the actual user viewport is
covered by the image) or “not interested” (i.e., if the center of the
actual user viewport falls outside the image.)

In the meantime, we obtain the user trace from the user head
movement data, which is defined as the trajectory of the center of
the user viewport in the video frames. To be consistent with the
subsampling of frames in each video segment, we subsample k
sequential user trace points per segment, which serve as the training
dataset for the LSTM model in the user trajectory prediction.

3.3 User viewport prediction with LiveDeep

Based on the workflow presented in Figure 1, it is obvious that for
the first prediction in the first video segment, the CNN and LSTM
models have not been trained yet. More importantly, the k× x× y
training images are unlabeled and cannot be used to train a model.
Our solution is to have the CNN model predict the user viewport
using random weights. Also, we do not incorporate the LSTM model
into the viewport prediction at this point. Once the user has watched
the video segment, the predicted results are compared with the actual
user viewport, based on which we calculate the loss value. Then, we
use the loss value to update the CNN model. In addition, we use the
user trace obtained from the actual user view as the input data for
training the LSTM model.

For the next video segment, we first use the updated CNN and
LSTM models to predict the user viewport independently. For each
model, our prediction results are based on the subsampled k frames
considering the real-time requirement. To generate the predicted
viewport for the entire video segment, we assume that adjacent
frames share similar center of viewport, and thus we use the same
prediction result for both frames. Finally, based on the prediction
results from the CNN and LSTM models, we select the union set of
tiles as the final predicted user viewport.

4 HYBRID CNN/LSTM MODEL FOR LIVE VR VIEWPORT

PREDICTION

In this section we discuss the design and implementation of the
hybrid CNN/LSTM model in LiveDeep for live viewport prediction.

802

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

Figure 2: CNN-based viewport prediction workflow.

4.1 CNN-based training and inference

In live VR streaming, the video content is generated on the fly,
and the users may have different viewing behavior given the new
video content. This may make a pre-trained prediction model fail
to achieve accurate prediction results. In LiveDeep, targeting the
live VR video streaming case, we propose to train new models by
employing online and lifelong deep learning. The models are trained
at runtime based on new user watching new videos. Figure 2 shows
the detailed CNN-based viewport prediction workflow, where the
CNN model is not trained until the user starts watching the video.
We adopt the classic deep convolutional neural network VGG [36]
as the backbone network in LiveDeep. Based on the discussion in
Section 3.2, we modify the last layer to output only two classes,
namely “interested” and “not interested”.

4.1.1 Inference and viewport generation

With k× x× y unlabeled training images in each video segment, we
employ the CNN model to infer the user’s viewport of interest. The
intuitive idea is to select images that are classified as “interested”,
and the locations of these selected images in the original frame
would indicate the potential viewport of interest. However, we find
that almost all of the images are classified as “interested” in this way
and, consequently, the whole frame is often chosen as the predicted
viewport.

To address the aforementioned problem, we propose a system-
atic method to determine the viewport of interest by analyzing the
output from the neural network models. Instead of checking the
classification results from the softmax function of the CNN model,
we only focus on the results that belong to the class of “interested”.
We sort the scores from the classification results and select the M
position in the sorted list as the threshold. Then, the images with
a score that is no less than the threshold will be selected as the
predicted viewport of interest. As a result, the total number of tiles
that are selected in each frame is not fixed. The locations of those
top scored images in the original frame constitute the predicted user
viewport. In this work, we set M to 0.5. By setting different ”M”
values, one can obtain different bandwidth savings with different
prediction accuracies.

As shown in Figure 2, our processing pipeline starts the inference
with a non-pre-trained model on the first video segment S0 for a
new user. The collected images from S0 are provided to the CNN
model and used to infer if the user likes the images or not. Once the
labeling is finished after the user has watched the video segment, we
compare the inference result with the labeling to calculate the loss
value, based on which we train the CNN model. Then, we leverage
the model trained based on S0 (i.e., the video content and the user
viewing behavior) to infer the user’s interest in the images from the

Table 1: Adjustment of learning rate (LR) based on loss and coverage.

Loss Value LR Coverage Rate (%) LR

< 0.2 0 0∼25 0.01

0.4∼0.2 0.001 25∼50 0.008

0.4∼0.6 0.004 50∼75 0.006

>0.6 0.006 75∼100 0.004

next segment S1. Finally, we update the model based on the user
feedback (i.e., the labeling and training) from segment S0.

4.1.2 Training procedure

Once the predicted user viewport is generated based on the top M
scored images, the user would watch the corresponding segment,
and the actual user viewport can be collected for labeling the training
data. In traditional supervised learning, the training time depends
on the acceptable minimum loss value and the epoch. In LiveDeep,
we use a high minimum loss value and a low maximum epoch value
to meet the real-time requirement.

• High acceptable loss value. During the experiment, we find that
the prediction method could achieve a high accuracy when the loss
is lower than 0.2, which is different from the common scenario of
classification applications. The reason is that we do not directly
use the classification output as the prediction result. Instead, we
only select the most likely ones from the output and thus the high
loss value as the threshold for the termination criteria of training.
We further observe that the CNN model could learn so deep that,
when the user switches to the new content, the model would spend
more time updating the “prediction skills”. As a result, by setting
the threshold as loss = 0.2, we could terminate training when the
model is well trained for the current state and make it easier for
the CNN to learn new user viewing behavior based on new user
preference and video content.

• The number of epochs. Even if the loss value is high for several
epochs during the training, we cannot keep reducing it by updating
the model with a large number of epochs because of the real-time
requirement brought by live VR streaming. Instead, we set the
maximum number of epochs as 10, which is much smaller than
that in traditional CNN applications. Consequently, the training
overhead is bounded to a fixed range.

• The batch size. Due to limited training images, in each video
segment, we set the batch size as the number of training images
(i.e., k× x× y). Therefore, the total number of iterations equals to
the number of epochs, which further reduces the training overhead.

• Dynamic learning rate. At different stages, the deep learning
method could adopt different learning rates. In LiveDeep, the
learning rate is dynamically adjusted based on both the loss value
in the previous video segment and the coverage rate in the previous
frame. (1) Loss-based: we define four levels of loss values and
set the learning rate accordingly. Table 1 shows how the learning
rate is adjusted to different levels based on loss values. If the loss
value is smaller than 0.2, we stop updating the model, as described
earlier. (2) Coverage-rate-based: similar to IoU loss [33], we
calculate how much the user’s actual viewport is covered by the
predicted user viewport (a.k.a, the coverage rate). The coverage
rate indicates how well the model works. For a low coverage
rate, we would adopt a higher learning rate. For a high coverage
rate, we could even skip the training process to reduce the timing
overhead. The learning rate adjustment is at the beginning of the
training for each video segment. The adjusted learning rates based
on different levels of coverage rate are also listed in Table 1.

803

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

Table 2: Test videos from a public dataset [41].

No. Video Name Category Content Cameras Background Outdoor Scene Frame rate

0 Cooking Performance Cooking show 1 Static None 25

1 RioVR Performance Interview talk show 1 Static None 25

2 FemaleBasketball Sport Basketball game 1 Static None 30

3 Fighting Sport Showtime boxing 2 Dynamic None 30

4 Anitta Performance Anitta dancing 1 Static None 30

5 Conan Gore Fly Performance Talkshow 2 Dynamic None 30

6 TahitiSurf Sport Surfing 1 Dynamic Included 30

7 Reloaded Performance Concert 1 Static None 30

8 VoiceToy Performance Concert 1 Static None 25

9 Front Sport Skiting 1 Dynamic Included 30

10 Falluja Documentary The fight for Falluja 1 Dynamic Included 30

11 Football Sport Football game 1 Dynamic None 25

12 Rhinos Documentary The last of the rhinos 2 Dynamic Included 30

13 Korean Performance Weekly idol dancing 2 Dynamic None 30

4.2 LSTM-based user trajectory prediction

We note that the single CNN model would have a strong “memory”
of certain video content, and it would take a long time for the model
to accept new user preference on new video content. Consequently,
the CNN model could not respond quickly to the fast switching
of user preferences. To improve the perception of the model for
frequent user preference switches, we develop a user trace-based
viewport prediction method by leveraging the LSTM [16] model to
predict the user’s trajectory in a short time.

In particular, we use the same supervised learning process as in the
original LSTM model, which is to train the model with the collected
training data first and then infer the new data in the future. We set
the size of hidden layer as 64 and use 2 hidden layers. Then, we
collect the user trace in the previous video segment, which consists
of k sample points from the k subsampled frames. The k sample
points are collected as the training data, and we assign the index of
each frame in each sample point as the timestamp. Finally, we train
the LSTM model with the collected training data and infer the user
viewport in the next video segment. The output of the LSTM model
is the indices of tiles that the LSTM predicts.

4.3 The hybrid CNN/LSTM model

We adopt the prediction results from both the CNN model and the
LSTM model to generate the final predicted viewport for each video
segment. During this process, we first set the prediction results
obtained by the CNN model as the main results. Then, we combine
the results from both methods as the final predicted viewport.

5 EXPERIMENTAL RESULTS

In this section, we describe our experimental results based on a
prototype system implementation of LiveDeep.

5.1 Prototype system implementation and deployment

We implement LiveDeep on a Dell workstation with two Intel Xeon
E5-2623 CPUs and one GPU of Titan X with 32G RAM. We adopt
PyTorch 1.0 to implement the CNN and LSTM modules and use
CUDA to accelerate the deep learning processing. We evaluate
LiveDeep using videos and head movement traces from a public
dataset [41], in which each video was watched by 48 users.

Figure 3 demonstrates the viewport prediction results using 4 test
videos from the dataset [41]. Figure 3 (a) shows a video captured by
a moving camera, in which the surroundings are moving along with
the camera, creating a challenging case for the viewport prediction
algorithm. Figure 3 (b) shows a video containing a single “attractive
region” captured by a single camera. In this case, the target area

seems fixed in the center and the background is static, which makes
it a relatively simple case for viewport prediction. Figure 3 (c)
demonstrates a video that contains multiple scenes, in which the
surroundings are static but the scene changes very often. Figure 3
(d) demonstrates a video with multiple “attractive regions”, which is
relatively difficult for viewport prediction due to the possible view
switches. The blue rectangles indicate the viewports predicted by
LiveDeep, and the green rectangles indicate the actual user viewports
(i.e., the ground truth). The results demonstrate that LiveDeep could
cover most regions watched by the user. Note that the final predicted
viewports are not regular shapes, but they are compliant with existing
tile-based selective streaming designs [38] for direct deployment.

Figure 3: Snapshots of viewport prediction results achieved by
LiveDeep using 4 test videos from [41]. The blue rectangles indi-
cate the viewports predicted by LiveDeep, and the green rectangles
indicate the actual user viewports (i.e., the ground truth).

5.2 Experimental setup

5.2.1 Evaluation metrics

To achieve a comprehensive evaluation on the performance of
LiveDeep, we adopt three evaluation metrics, namely prediction ac-
curacy, bandwidth usage, and processing time. First, the prediction
accuracy is an important performance factor that directly impacts
the user experience. If the prediction is incorrect, the user would
watch low quality videos according to the state-of-the-art tile-based
VR streaming designs that LiveDeep would be integrated to [38].

804

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Overall prediction accuracy (Epoch=10,VGG13) with the comparison among the four methods.

Different from the popular IoU metric for accuracy evaluation [33],
we evaluate the prediction accuracy by using a correct/incorrect
labeling method. For each frame, we compare the predicted view-
port with the actual user view and treat the prediction as “correct”
only if the actual user view is completely covered by the predicted
viewport. The prediction accuracy is then calculated by the number
of “correct” frames over the total number of frames in the video.
Second, the bandwidth reduction in VR streaming is the original
and fundamental goal of this work, but it also presents a trade-off
between bandwidth savings and prediction accuracy. Therefore, the
key issue is how well LiveDeep would balance the trade-off, which
must be evaluated using the bandwidth usage metric. Third, the pro-
cessing time evaluates the unique real-time requirement brought by
the live VR streaming system, which must be fulfilled for a smooth
live streaming experience.

5.2.2 Test Dataset

We adopt 14 test videos from the empirical user head movement
dataset for VR streaming [41], as shown in Table 2. We observe that
the videos are different in their content (i.e., sports, performance,
and documentary), number of capturing cameras (i.e., 1 or 2), back-
ground motion (i.e., static or dynamic), and whether outdoor scene is
involved. This diverse set of video features would impact the predic-
tion accuracy and thus the overall performance of LiveDeep, which
we evaluate in our experiments. More importantly, all the 14 test
videos are associated with the actual head movement traces collected
from 48 real-world users, which are included in the dataset [41]. We
adopt these head movement traces as the ground truth to evaluate
the prediction accuracy of LiveDeep.

5.2.3 Test Cases

We adopt two test cases in our evaluation to cover both the basic
single-video viewing experience and the lifelong scenario concate-
nating multiple videos of different types.

• The single-video test case. We first evaluate LiveDeep in the
scenario of 14 single videos watched by single users obtained
from the dataset [41], as summarized in Table 2. For each single
video, we follow the workflow presented in Figure 1 to iteratively
train and predict the user viewports for the continuous segments
of the video content.

• The lifelong test case. We further create a lifelong test case,
where the user continuously watches different videos (i.e., con-
catenating all the 14 test videos from the dataset [41]). This is to
reflect the real-world scenario where a user may watch different
videos either from the same channel or by switching channels.
The lifelong scenario may create unique challenges, e.g., whether

the prediction algorithm could learn new video patterns while still
keeping the “memory” of the old patterns.

5.3 Prediction accuracy

5.3.1 Single-video test case

Figure 4 shows the prediction accuracy results in the single-video
test case. We compare the performance of 4 methods, namely CNN
(i.e., only the CNN model is adopted for the viewport prediction),
LSTM (i.e., only the LSTM model is adopted), LiveDeep (i.e., the
proposed approach), and Motion (i.e., the state-of-the-art content-
based live viewport prediction approach [12]).

We observe that both LiveDeep and Motion achieved high pre-
diction accuracy (i.e., >80%) over the 14 test videos, and LiveDeep
outperforms Motion in 8 out of the 14 videos. The CNN model,
although performs well for a subset of videos and even better than
motion based method in 4 of them, would result in significantly low
prediction accuracy in Videos 6, 9, 10, and 12. According to Table
2, these videos contain outdoor scenes and thus the users are more
likely to frequently switch viewport and look around, which creates
a challenge for the single-model approaches. The LSTM method
achieves the lowest prediction accuracy among the 4 methods, which
is around 40% for all the test videos.

5.3.2 Lifelong test case

Figure 5 shows the prediction accuracy of CNN and LiveDeep over
the 14 videos in the lifelong test case. The results indicate that
the prediction accuracy of CNN varies significantly, ranging from
around 50% to 90%, while LiveDeep achieves consistently high
prediction accuracy over most of the test videos, ranging from 80%
to 90%. We further compare the prediction accuracy of LiveDeep in
the single-video and lifelong test cases, as shown in Figure 6. We
observe that LiveDeep performs equally well in the two test cases,
indicating its capability of supporting the empirical lifelong viewing
scenario with premium prediction accuracy.

5.3.3 The impact of epoch

We evaluate the performance of LiveDeep under various numbers
of epochs, which is one of the important parameters that would
impact the prediction accuracy and timing overhead of deep neural
network models. The intuition about epoch is that more epochs
would help achieve higher prediction accuracy. However, more
epochs also means longer processing time in the prediction. To
quantitatively analyze this potential tradeoff, we set 3 maximum
epoch values for the training process, namely 4, 10, and 14. The
results are shown in Table 3, including prediction accuracy (ACC)
and maximum processing time (MT) for both the CNN and the

805

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Prediction accuracy in the lifelong test case comparing CNN and LiveDeep (Epoch=10, VGG13).

Figure 6: Prediction accuracy of LiveDeep in the single-video and lifelong test cases (Epoch=10, VGG13).

LiveDeep methods. The results indicate that for most of the test
videos, the prediction accuracy of CNN would improve with more
epochs (i.e., from epoch=6 to epoch=14). On the other hand, the
accuracy of LiveDeep is consistently high (i.e., > 80%) under all the
epoch values, which implies that with LiveDeep we can achieve low
processing time by choosing smaller epoch values (e.g., 6) without
significantly impacting the prediction accuracy.

5.3.4 The impact of CNN structure

We further evaluate the impact of the CNN structure by comparing
the prediction accuracy based on AlexNet [20], VGG11, VGG13,
VGG16 and VGG19 [36], listed in ascending order of network
complexity. Table 4 shows the average prediction accuracy and the
maximum processing time over all the 14 test videos. The results
reveal that more complex networks, such as VGG, achieve higher
prediction accuracy than simpler networks, such as AlexNet. The
results also indicate that the processing time is impacted by the
complexity of the network structure and, in all the test cases, the
inference and training can be finished within 2 seconds (i.e., the
length of one video segment).

5.4 Bandwidth savings

The size of the predicted region is an important factor that deter-
mines the bandwidth savings achieved by the viewport prediction
mechanism. Figure 7 shows the boxplot of bandwidth usage, evalu-
ated by the size of the predicted region over the original 360-degree
frame for all the 14 videos and 48 users. The results show that
CNN and LiveDeep achieve similar bandwidth efficiency (around
60% of the original bandwidth) with narrow range of distributions,
indicating stable and consistent results over different types of videos.
Overall, LiveDeep outperforms CNN with better prediction accuracy
(discussed in Section 5.3). The Motion method, on the other hand,
results in a huge variance in the bandwidth usage over different
videos and users. This is because the GMM method adopted by
the Motion method [12] introduces errors when the background of

the video is dynamic. Therefore, even though the Motion method
demonstrated premium prediction accuracy (i.e., shown in Figure 4),
our proposed LiveDeep method outperforms Motion by achieving
better overall performance for both accuracy and bandwidth.

Figure 7: Average bandwidth consumption with viewport prediction
evaluated by the percentage over the original bandwidth.

Note that the reported bandwidth savings are calculated based
on the scenario of correct viewport prediction. When the viewport
prediction is incorrect, the bandwidth savings would be worse and
would depend on the recovery strategy that is orthogonal to view-
port prediction. There are typically three recovery strategies, in the
descending order of bandwidth consumption: (1) Selective stream-
ing [38], in which the tiles that are outside the predicted viewport

806

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

Table 3: Performance for different epoch (VGG13). ”ACC” stands for the accuracy (%), and ”MT” stands for maximum processing time (s).

Video

Epoch=6 Epoch=10 Epoch=14

CNN LiveDeep CNN LiveDeep CNN LiveDeep

ACC MT ACC MT ACC MT ACC MT ACC MT ACC MT

0 Cooking Battle 70.7 0.7 93.7 0.8 91.4 1.0 93.1 1.1 92.5 1.5 99.2 1.6

1 RioVR 98.4 0.6 98.6 0.7 98.0 1.0 97.7 1.1 96.8 1.4 98.3 1.6

2 FemaleBasketball 97.3 0.7 98.3 0.8 98.1 1.0 98.7 1.1 98.8 1.5 99.7 1.6

3 Fighting 76.9 0.7 97.3 0.8 89.6 1.0 96.3 1.1 83.5 1.5 97.3 1.6

4 Anitta 87.5 0.7 95.8 0.8 67.4 1.0 95.3 1.1 94.8 1.5 97.6 1.7

5 Conan Gore Fly 41.7 0.8 81.5 0.9 59.3 1.0 87.1 1.1 59.5 1.5 97.4 1.6

6 TahitiSurf 33.0 0.7 84.9 0.8 43.0 1.1 84.9 1.3 59.2 1.5 97.3 1.6

7 Reloaded 90.3 0.7 97.4 0.8 92.7 1.0 96.4 1.1 96.8 1.5 98.4 1.6

8 VoiceToy 90.6 0.7 98.3 0.8 91.5 1.0 97.9 1.1 93.2 1.4 98.4 1.5

9 Front 48.9 0.7 83.6 0.8 48.3 1.0 85.7 1.2 71.2 1.5 98.1 1.6

10 Falluja 32.8 0.8 83.5 0.9 45.9 1.1 81.9 1.3 58.5 1.5 99.3 1.6

11 Football 56.7 0.7 82.6 0.9 71.4 1.0 85.5 1.2 76.6 1.4 97.5 1.5

12 Rhinos 44.5 0.7 86.8 0.9 56.4 1.0 90.1 1.2 69.3 1.5 97.8 1.7

13 Korean 89.2 0.7 97.6 0.8 95.8 1.0 97.4 1.1 95.7 1.5 98.1 1.6

would still be streamed from the server to the client but with lower
resolution; (2) re-transmission of the video segment with correct
viewport [22]; and (3) no recovery, in which the user would watch
blank view under a wrong viewport prediction. Since the viewport
prediction accuracy of LiveDeep is very high (around 90%), the
overall bandwidth savings even considering the case of incorrect
predictions will not significantly vary from the bandwidth savings
in the case of correct prediction.

5.5 Timing overhead

To ensure a smooth viewing experience in live VR streaming, the
processing time for each video segment must be smaller than the
segment duration (i.e., 2 seconds in our experiments). Otherwise,
the processing delay would be accumulated into the end-to-end
streaming latency, and the user may experience re-buffering or frozen
frames. Therefore, we evaluate the processing time required by
LiveDeep while executing the proposed viewport prediction tasks,
the results of which are shown in Table 3 and Table 4. Table 3
indicates that the processing time would increase with the epoch
value but, even in the case of epoch=14, LiveDeep can still meet
the real-time requirement in live streaming (i.e., < 2 seconds of
maximum processing time) while achieving very high prediction
accuracy (97%-99%). Table 4 shows that increasing the complexity
of the neural network structure (e.g., from VGG11 to VGG 19) may
not necessarily improve the prediction accuracy but would incur
higher processing overhead. However, even with VGG19 LiveDeep
still achieves less than 2 seconds of maximum processing time and
thus satisfies the real-time requirement.

6 CONCLUSION AND FUTURE WORK

In this paper, we developed a novel viewport prediction approach,
namely LiveDeep, for live VR streaming. LiveDeep employs a
hybrid method to address the live streaming challenges, including
an alternate online/lifelong training and learning process, as well as
a mixture of hybrid neural network models. We evaluated LiveDeep
using 48 users and 14 VR videos of various types obtained from a
public VR user head movement dataset. The experimental results
show that LiveDeep could achieve high prediction accuracy with
premium bandwidth usage and short processing time. Through

Table 4: Performance comparison of different deep neural network
structures (epoch=10).

Network Accuracy Average Time Maximum Time

AlexNet 88.0% 0.5s 0.8s

VGG11 92.0% 0.6s 1.0s

VGG13 92.7% 0.7s 1.2s

VGG16 92.2% 0.8s 1.6s

VGG19 91.0% 1.1s 1.6s

evaluation with single-video and lifelong use cases, we demonstrate
that LiveDeep is able to maintain high prediction accuracy when the
user continuously watches different videos. The source code and
other materials of this work can be found in our LiveDeep project
repository [11].

By analyzing the prediction accuracy results and the predicted
user viewports in the test videos, we note that there are two chal-
lenging problems that are still difficult to address, which we plan
for continuing explorations in the future work. The first challenge
is the prediction for videos with huge scenes in an open field, such
as in Videos 6, 9 and 10. The scenes are also dynamically chang-
ing, which attracts more attentions from the user and results in high
probability of switching viewports. Consequently, the new video
content and the diverse user traces may compromise the prediction
accuracy of the hybrid model. The second challenge is the scenario
of frequent user switches between multiple attractive objects, such
as in Video 0 and Video 4. The user switches are hard to detect using
the LSTM model, and the attractive objects share similar patterns
but with different labels when the viewport only covers one object,
which increases the difficulty in training the CNN model.

ACKNOWLEDGMENTS

We appreciate the constructive comments provided by anonymous re-
viewers. This work was partially supported by the National Science
Foundation under awards CNS-1910085 and CNS-1618931.

807

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] ABC News, VR Virtual reality news has opened the door to boundless

possibilities allowing users to be anywhere we are at any time. 2019.

https://abcnews.go.com/VR.

[2] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang. Cub360:

Exploiting cross-users behaviors for viewport prediction in 360 video

adaptive streaming. In IEEE International Conference on Multimedia

and Expo, pp. 1–6, 2018.

[3] Y. Bao, H. Wu, A. A. Ramli, B. Wang, and X. Liu. Viewing 360

degree videos: Motion prediction and bandwidth optimization. In

International Conference on Network Protocols, pp. 1–2, 2016.

[4] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. Shooting a moving

target: Motion-prediction-based transmission for 360-degree videos.

In IEEE International Conference on Big Data, pp. 1161–1170, 2016.

[5] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li. Salient object

detection: A survey. Computational Visual Media, pp. 1–34, 2014.

[6] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand. What

do different evaluation metrics tell us about saliency models? IEEE

transactions on pattern analysis and machine intelligence, 41(3):740–

757, 2018.

[7] CNET. Watch any YouTube video in VR mode. 2016. https://www.

cnet.com/how-to/watch-any-youtube-video-in-vr-mode/.

[8] C. Dawson. VR and AR will push the limits of connectivity, 2019.

https://immersed.io/pushing-the-limits-of-connectivity/.

[9] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu.

Fixation prediction for 360◦ video streaming in head-mounted virtual

reality. In ACM Workshop on Network and Operating Systems Support

for Digital Audio and Video, pp. 67–72, 2017.

[10] X. Feng, Z. Bao, and S. Wei. Exploring CNN-based viewport prediction

for live virtual reality streaming. In IEEE International Conference on

Artificial Intelligence and Virtual Reality (AIVR), pp. 183–1833, 2019.

[11] X. Feng, Y. Liu, and S. Wei. Repository for Project LiveDeep, 2020.

https://github.com/hwsel/LiveDeep.

[12] X. Feng, V. Swaminathan, and S. Wei. Viewport prediction for live

360-degree mobile video streaming using user-content hybrid motion

tracking. Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, 3(2):43, 2019.

[13] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency

detection. IEEE transactions on pattern analysis and machine intelli-

gence, 34(10):1915–1926, 2011.

[14] GSMA. Cloud AR/VR Whitepaper. 2019. https://www.gsma.com/

futurenetworks/wiki/cloud-ar-vr-whitepaper/.

[15] H. Hadizadeh and I. V. Bajić. Saliency-aware video compression. IEEE

Transactions on Image Processing, 23(1):19–33, 2013.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[17] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming:

Divide and conquer. In IEEE International Symposium on Multimedia,

pp. 107–110, 2016.

[18] X. Huang, C. Shen, X. Boix, and Q. Zhao. Salicon: Reducing the

semantic gap in saliency prediction by adapting deep neural networks.

In IEEE International Conference on Computer Vision, pp. 262–270,

2015.

[19] IDC. AR/VR headsets return to growth in the first quarter as new

models and use cases restore momentum to the market, according to

IDC. 2019. https://www.idc.com/getdoc.jsp?containerId=

prUS45326719.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in Neural

Information Processing Systems, pp. 1097–1105, 2012.

[21] E. Kuzyakov, S. Chen, and R. Peng. Enhancing high-resolution 360

streaming with view prediction. Facebook Inc., 2017.

[22] C. S. Lakshmi, G. S. Kumar, and V. Venkatachalam. Survey on caching

and replication algorithm for content distribution in peer to peer net-

works. International Journal of Computer Science and Network Secu-

rity (IJCSNS), 15(10):78, 2015.

[23] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. Head tracking

for the Oculus Rift. In IEEE International Conference on Robotics and

Automation (ICRA), pp. 187–194. IEEE, 2014.

[24] C. Li, W. Zhang, Y. Liu, and Y. Wang. Very long term field of

view prediction for 360-degree video streaming. arXiv preprint

arXiv:1902.01439, 2019.

[25] L. Matney. CNN launches dedicated virtual reality journalism unit,

2017. https://techcrunch.com/2017/03/07/cnn-launches-dedicated-

virtual-reality-journalism-unit/.

[26] Mavlankar. Video Streaming with Interactive Pan/Tilt/Zoom, pp. 431–

455. Springer Berlin Heidelberg, 2010.

[27] A. Mavlankar and B. Girod. Pre-fetching based on video analysis

for interactive region-of-interest streaming of soccer sequences. In

International Conference on Image Processing, pp. 3025–3028, 2009.

[28] Oculus. VR Headsets and Equipment. 2019. https://www.oculus.

com/.

[29] S. Petrangeli, G. Simon, and V. Swaminathan. Trajectory-based view-

port prediction for 360-degree virtual reality videos. In IEEE Inter-

national Conference on Artificial Intelligence and Virtual Reality, pp.

157–160, 2018.

[30] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck. Im-

proving virtual reality streaming using HTTP/2. In ACM Multimedia

Systems Conference (MMSys), pp. 225–228, 2017.

[31] M. Przepiorkowski. VR is leading us into the next generation of sports

media., 2017. https://venturebeat.com/2018/11/16/vr-is-leading-us-

into-the-next-generation-of-sports-media/.

[32] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 video

delivery over cellular networks. In ACM Workshop on All Things

Cellular: Operations, Applications and Challenges, pp. 1–6, 2016.

[33] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and

S. Savarese. Generalized intersection over union: A metric and a

loss for bounding box regression. In IEEE Conference on Computer

Vision and Pattern Recognition, pp. 658–666, 2019.

[34] A. Robertson. Facebook now lets you live stream from inside VR.

2017. https://www.theverge.com/2017/7/12/15944120/facebook-live-

streaming-spaces-vr-social-oculus-rift.

[35] J. Shieber. National Geographic is working with

YouTube and DayDream on its latest VR series., 2018.

https://techcrunch.com/2018/12/11/national-geographic-is-working-

with-youtube-and-daydream-on-its-latest-vr-series/.

[36] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] I. Sodagar. The MPEG-DASH standard for multimedia streaming over

the internet. IEEE multimedia, 18(4):62–67, 2011.

[38] J. Son, D. Jang, and E.-S. Ryu. Implementing 360 video tiled streaming

system. In ACM Multimedia Systems Conference, pp. 521–524, 2018.

[39] TechRadar. HTC VIVE review. 2019. https://www.techradar.

com/reviews/wearables/htc-vive-1286775/review.

[40] S. Wei and V. Swaminathan. Low latency live video streaming over

HTTP 2.0. In ACM Workshop on Network and Operating System

Support on Digital Audio and Video, pp. 37:37–37:42, 2014.

[41] C. Wu, Z. Tan, Z. Wang, and S. Yang. A dataset for exploring user

behaviors in vr spherical video streaming. In Proceedings of the 8th

ACM on Multimedia Systems Conference, pp. 193–198. ACM, 2017.

[42] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang. Predicting

head movement in panoramic video: A deep reinforcement learning

approach. IEEE transactions on Pattern Analysis and Machine Intelli-

gence, 41(11):2693–2708, 2018.

[43] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze

prediction in dynamic 360 immersive videos. In IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5333–5342, 2018.

808

Authorized licensed use limited to: Rutgers University. Downloaded on July 26,2020 at 18:57:43 UTC from IEEE Xplore. Restrictions apply.

