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Abstract
Shortage of gasoline is a common phenomenon during onset of forecasted disasters
like hurricanes. Prediction of future gasoline shortage can guide agencies in pushing
supplies to the correct regions and mitigating the shortage. We demonstrate how to
incorporate social media data into gasoline supply decision making.We develop a sys-
tematic approach to examine social media posts like tweets and sense future gasoline
shortage. We build a four-stage shortage prediction methodology. In the first stage,
we filter out tweets related to gasoline. In the second stage, we use an SVM-based
tweet classifier to classify tweets about the gasoline shortage, using unigrams and
topics identified using topic modeling techniques as our features. In the third stage,
we predict the number of future tweets about gasoline shortage using a hybrid loss
function, which is built to combine ARIMA and Poisson regression methods. In the
fourth stage, we employ Poisson regression to predict shortage using the number of
tweets predicted in the third stage. To validate the methodology, we develop a case
study that predicts the shortage of gasoline, using tweets generated in Florida dur-
ing the onset and post landfall of Hurricane Irma. We compare the predictions to the
ground truth about gasoline shortage during Irma, and the results are very accurate
based on commonly used error estimates.

Keywords Social media analytics · Gasoline shortage prediction modeling · Disaster
management · Hybrid loss function · Hurricane Irma

B Rajan Batta
batta@buffalo.edu

Abhinav Khare
abhinavk@buffalo.edu

Qing He
qinghe@buffalo.edu

1 Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260,
USA

2 Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo,
NY 14260, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-019-00559-8&domain=pdf


A. Khare et al.

1 Introduction

Shortage of essential supplies, like food, water and fuel, is a common problem in
disasters like Hurricanes. There is a surge in demand as people panic-buy and hoard
supplies in preparation for evacuation to safer areas or for staying indoors for long
periods (Flood 2017). Price gouging of commodities is also observed (Fessenden
2017). These shortages continue on for a few days beyond the disaster. It is imperative
that the demand of essential commodities is satisfied in a timely fashion, both pre- and
post-disaster to mitigate losses. An accurate prediction of the surges in demand and
subsequent shortages could help the authorities and the first responders plan better.
It would give time to arrange for the additional supplies and infrastructure for pre-
positioning, re-positioning and directing supplies in the impacted area. For instance, in
the case of Hurricane Irma in Florida, the gasoline demand surged by 150 percent and
distribution became the main limitation for fuel deliveries and shortages (Fdot 2017).
Florida had sufficient fuel available at the ports but did not have enough carriers and
drivers to transport the extra fuel from the ports to the gas stations. Additional drivers
and carriers were brought in later from Arizona. If the shortage in the affected areas
could have been predicted more drivers and carries could have been planned for in
advance (Fdot 2017). To solve this prediction problem, in our work, we turn to a
non-traditional prediction approach with social media data.

Recently, social media is transforming the way people communicate not only in
daily lives, but also during disasters. There is a surge in usage of social media during
an emergency in the affected regions. Nowadays, many people are willing to share
the disaster information through social media. One evidence is given in Table 1 which
contains top five disasters (by type) discussed in tweets. We collected these tweets
from four major metropolitan areas during the year 2015. More than 180,000 tweets
are found to discuss top five types of disasters, collected from four major US cities in
2015 only. Public uses social media to communicate, seek information, raise concerns
and express sentiments, and responders use it to plan and communicate important
messages to the public (Lachlan et al. 2014; Liu et al. 2016; Panagiotopoulos et al.

Table 1 Top five disasters by tweet distribution in five metropolitan areas in 2015

Disaster type Num. of tweets Percentage (%) Related keywords

Earthquake 114,428 53.91 haiti, nepal, america, ene, california, julian
california, wnw, japan, ssw, united states,
earthquake, ese, magnitude, italy

Hurricane 29,098 13.71 wind, united states, atlantic ocean, alcohol,
europe, work, rain, hit, school, america,
people, storm

Drought 17,114 8.06 california, louisiana, lips, sacrifice, last year,
COP21, poor people, lush, boreal forests,
syria, ethiopia, maryland

Tornado 14,398 6.78 western, working, stay, phone, california,
area warning, basement, work, county,
canada, shelter, rotation

123



Predicting gasoline shortage during disasters using social…

2016; van Gorp et al. 2015). As a result, there is a keen interest in employing social
media for disaster management. For example, social media has been used to build a
mass communication channel, in order to inform large numbers of stakeholders at once
(Ki and Nekmat 2014; Stříteskỳ et al. 2015; Utz et al. 2013). Social media can also
aid in decision support systems and emergency management processes by utilizing
the enormous amounts of real-time data it generates (Gaynor et al. 2005; Boulos
et al. 2011). Consequently, multiple social media data analysis techniques have been
developed in the context of a disaster, ranging from tools for event detection, prediction
and warning; impact assessment; situation awareness; disaster tracking; and response
planning.

However, there is scant literature exploiting social media data for detection and pre-
diction of demand and shortage of essential commodities. We aim to fill this research
gap by focusing on using social media data to predict the shortage of gasoline 1day in
advance (everyday) during the onset and post landfall of foreseen disasters like hurri-
canes. Our motivation comes from the fact that people have been found to use Twitter
to tweet about shortages and needs during a disaster (Stowe et al. 2016; Tien Nguyen
et al. 2016). For instance, during gasoline shortage in Florida in the onset of Irma, the
following kinds of tweets were observed:

“The shelters are full, there is no gas. Tornados could happen, and storm surge
is predicted. So what are people supposed to do? Irma”

“Insane..95 percent of Florida trying to leave at one time. Roads r slammed. No
gas. No hotels available. Scared to see my neighborhood after irma”

“Gas stations out of gas, water shelves empty, stores and airports closed. Stocked
up on food and wine, waiting on irma”

The natural question that arises in such a scenario is if Twitter posts be used to
sense current shortage and forecast future shortages? There are two main challenges
related to this question:

– Challenge C1—how to identify tweets about shortageSocialmedia data, especially
from twitter, is difficult to process and classify as it is unstructured, noisy and
contains a plethora of information (large number of tweets). Also, a single tweet
contains a maximum of 140 characters, is informal and contains abbreviations
and spelling mistakes. Interpreting the semantics of such a short message and
classifying it is a hard problem. There are methods in the literature that have
classified tweets generated during crisis into caution/advise, information source,
people, casualties and damage (Imran et al. 2013), pre-disaster or post-disaster
(tweet4act) (Chowdhury et al. 2013), tweets reporting casualty or damage (Tweedr)
(Ashktorab et al. 2014), information, preparation and movement (Stowe et al.
2016). However, classifying tweets for a specific problem like identifying gasoline
shortage has never been done. Identifying important features for this classification
task is a novel and unique question. If these issues are resolved, then one can
identify tweets about gasoline shortage and treat them as sensors for shortage.

– Challenge C2—forecasting the spatiotemporal shortage from tweets The spa-
tiotemporal distribution of tweets about shortage is not equivalent to the spa-
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tiotemporal shortage distribution. Spatial and temporal lag between the origin of
the shortage and the tweet about shortage is an uncertain quantity. This makes
forecasting shortages using tweets a challenging problem.

To address challenge C1, we developed a tweet classifier that uses unigrams and
latent topics (identified by topic modeling techniques) as features to identify tweets
about gasoline shortage. Analysis of the identified tweets shows us that the number of
tweets about shortage (in a day, in a city) predicts the number of stations out of gasoline.
A detailed analysis of the spatiotemporal dynamics of the arrival of shortage tweets
shows us that the arrival of tweets in a city follows a Poisson distribution. Using these
two insights, we tackle challenge C2, as follows. We develop a regression model with
a unique hybrid loss function (HLF that combines the properties of Poisson regression
and time-series-based ARIMA models) to predict the number of future tweets in a
city. A separate Poisson regression model is used to predict the amount of shortage
from the predicted number of tweets.

Our contributions can be summarized as follows:

– Building of a classifier that identifies tweets about gasoline shortage from the
corpus of all the tweets generated in the affected area.

– Discovering that the arrival of tweets about gasoline shortage follows a Poisson
distribution.

– Developing a hybrid loss function method (HLF) that forecasts the number of
tweets about gasoline shortage.

– Developing a four-stage gasoline shortage prediction methodology which takes
tweets generated on a day in an affected city as input and generates the number of
stations that will be out of gas on the next day as the output.

– Model validationwith a case studybasedonHurricane Irma,which contains around
1 million tweets, hurricane path data and ground truth about gasoline shortage.

The paper is organized as follows. Section 2 describes the related works, which is
followed by the presentation of the details of our methodology in Sect. 3. Section 4
explains the application of our methodology in the case of gasoline shortage in Florida
during Hurricane Irma in 2017 and presents our numerical results. Section 5 provides
our conclusions and our future suggestions for improvement.

2 Related work

There is a surge in the use of socialmedia during crisis as stated in Sect. 1. Socialmedia
Web sites like Facebook and Twitter have started playing a major role in disaster man-
agement such as post Japan Tsunami in 2011 (Kaigo 2012) andUSHurricane Sandy in
2012 (Hughes et al. 2014). Other Internet-based social applications like Waze (Waze
2017) and GasBuddy (Gasbuddy 2017b) have also set up special-purpose services to
allow individuals to participate and report the availability of various resources (e.g., gas
stations) via the Web or smartphones. These services were used by a large population
after Hurricane Irma and Sandy. Apart from these cases of direct applications of social
media during disasters, surveys by Imran et al. (2013) and Nazer et al. (2017) provide
evidence that there has also been an uptick in research interest in the development of

123



Predicting gasoline shortage during disasters using social…

social media data analysis techniques in the context of disaster management. These
techniques can be categorized into: (1) data extraction and filtering, (2) event detec-
tion and impact assessment and (3) response planning and relief delivery (Nazer et al.
2017). Some papers address multiple issues that cross these boundaries. However, for
ease of reading, we have categorized them as indicated above.
Data extraction and filtering Social media data are gigantic, noisy and unreliable.
To obtain the posts that contain relevant information, posts are either extracted on
the basis of important keywords (Imran et al. 2013; Starbird and Stamberger 2010;
Olteanu et al. 2014) or using geo-location (Morstatter et al. 2014; Cheng et al. 2010;
Han et al. 2013; Schulz et al. 2013). The posts extracted using the aforementioned
techniques often contain rumors and spam and cannot be trusted as pointed out by
Mendoza et al. (2010). Although rumor and spam detection is a hard problem, few
methods have been successful in particular cases in recent times (Gupta et al. 2013;
Sampson et al. 2015).
Event detection and impact assessment Twitter has been shown to have a potential for
earthquake detection and act as an early warning system by using tweets as sensors.
(Sakaki et al. 2010; Faulkner et al. 2011). Apart from this, there are some event
detection and impact assessment methods that include sentiment analysis methods
(Beigi et al. 2016; Caragea et al. 2014) and language change methods (Atefeh and
Khreich 2015; Cordeiro and Gama 2016).
Response planning and relief delivery Response planning requires situation aware-
ness for which there are classifiers that classify posts into caution/advise, information
source, people, casualties and damage (Imran et al. 2013), pre-disaster or post-disaster
(tweet4act) (Chowdhury et al. 2013), tweets reporting casualty or damage (Tweedr)
(Ashktorab et al. 2014), information, preparation, movement etc. (Stowe et al. 2016),
into user-defined categories (AIDR) (Imran et al. 2014). For response delivery, there
are tools crowdsourcing communities likeDigital Volunteers (translation of posts, geo-
tagging, building maps of damaged region) and OpenStreetMap [OSM, for volunteer
to build maps for response used effectively in Haiti earthquake (Zook et al. 2010)].
When it comes to data-driven relief delivery tools, there is Ushahidi (2017) which
is a platform that maps information from different sources like Twitter, RSS feed,
SMSs, manual comma-separated files to a singular map of the affected area. AIDR
(Imran et al. 2014) is an end-to-end data pipeline that extracts and classifies tweets
for responders to assess and respond to the situation on the ground. TweetTracker is
a system that tracks, analyzes and understands tweets related to specific topics. It has
many functionalities and can use data from multiple social media Web site. However,
it has a special module for disaster relief. It detects request for help tweets using a
classifier based on n-grams and tweet meta-data and shows geo-location of tweet on
the map if available (Kumar et al. 2011).

Aside from the papers cited above, we identified a paper by Gu et al. (2014) which
is closest to our work, and hence presented separately. Their paper develops a method-
ology for sensing demands of essential commodities like food, water and gasoline
using data extrapolation in participatory sensing applications. Participatory sensing
technologies include sources that measure the state of the point of interest and report
it at a later time (e.g., on getting access to WiFi). Their paper argues that data extrapo-
lation algorithms that rely predominantly on spatial correlations or predominantly on
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temporal correlations tend not to work consistently well, as the relative importance
weights of temporal versus spatial correlations change significantly between periods
of calm and periods of change post a disaster. Therefore, they develop a hybrid pre-
dictions algorithm combining spatial and temporal prediction methods which predicts
the status of point-of-interest (POI) sites, when collected data are incomplete. Their
methodology combines spatial and temporal extrapolations method for shortage pre-
diction. We tackle this issue by combining temporal extrapolations with predictions
using other factors related to the disaster (like hurricane path, days from arrival) to
improve the accuracy of shortage prediction. For this, we fuse the ARIMA method
with Poisson regression method using a hybrid loss function. As far as application is
concerned, their methodology does a fine grain prediction at the level of POI and our
methodology is suitable for making predictions at a city level.

As evident, the literature on social media data-driven disaster management is plen-
tiful. However, there is limited literature that proposes to use social media assessing
the demand and shortage of essential commodities in the affected population during a
disaster. Our work addresses this research gap. Our methodology provides a means to
assess shortage of commodities and can be used to prepare, preposition and redirect
supplies before a disaster.

3 Data description

Our dataset had roughly one million tweets from Florida during the period September
6–15, 2017. The data covered a data frame in R with 1,048,575 rows and 41 columns
that include TWEET ID, TWEET TEXT, USER ID, DATE, HASHTAG, LATITUDE and
LONGITUDE. Summary statistics of the tweet data is given in Table 2.

Apart from the Twitter data, we also collected ground-truth data about gas shortage
fromGasbuddy Application (Gasbuddy 2017a) and details and predictions of the Hur-
ricane path from the National Hurricane Center Web site (National Hurricane Centre
2017). Table 3 represents a small sample of the datawe collected and tabulated for each
major city. We collected these data for eight cities, namely Gainesville, Jacksonville,
Miami, Orlando, Tallahassee, Tampa, Naples and West Palm Beach, for the period of

Table 2 Summary statistics of tweet data

Summary statistic Values

Number of tweets collected 1,048,575

Number of unique twitter users 111,801

Period of data collection September 6–15, 2017

Date of Irma landfall in Florida September 9, 2017

Number of tweets prior to Irma landfall in Florida 456,530

Number of tweets during Irma in Florida 151,792

Number of tweets post Irma in Florida 440,253

Number of gas-related tweets before landfall 2,805
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Table 3 Gas shortage and hurricane prediction for different cities in Florida

City Date Proportion of
gas stations
without gas

On hurri-
cane path

Inside
3-day
cone

Inside
5-day
cone

Days to
arrival

Watch/
warning

Wind
speeds
(mph)

Gainesville 09/07/17 0.58 y n y 4 n 175

Jacksonville 09/08/17 0.31 n y y 3 n 155

Miami 09/07/17 0.42 y y y 3 Watch 175

Orlando 09/08/17 0.35 y y y 3 Watch 155

Tallahassee 09/08/17 0.46 n n y 3 n 155

Tampa 09/06/17 0.3 n n y 5 n 185

Naples 09/07/17 0.54 n y y 3 Watch 175

September 6–15, 2017 (dates when shortage was observed). These cities were selected
because they were the ones that experienced significant gas shortages during the onset
of Hurricane Irma (Gasbuddy 2017a). For each date and city, we determined whether
the city was predicted to be on the hurricane path, whether it was inside the hurricane
3-day or 5-day cone, the number of days to arrival of the hurricane, whether there were
any hurricane/thunderstorm warning and watches from National Hurricane Center in
the city on that date, the maximum sustained wind speed, and population of the city,
the number of gas stations in the city and proportion of gasoline stations without gaso-
line. The idea behind collection of these attributes is that these variables also drive
panic-buying behavior causing shortage and also influence the tweeting behavior of
the people. Therefore, they are potential predictors of gasoline shortage and tweeting
behavior of people in the models.

4 Methodology

As stated in Sect. 3, people tweeted extensively during the onset and landfall of Hur-
ricane Irma in Florida. Figure 1 illustrates our four-stage methodology for the task
of going from tweets generated (on a day in a city) to prediction of the number of
stations out of gas (on the subsequent day). In stage 1, we filter out tweets related
to gasoline by using keywords and regular expressions, and remove space, stop-
words, stemwords from the noisy tweets. The tweets that remain after this stage are
labeled “gasoline-related” tweets. In stage 2, we classify the gasoline-related tweets
into “gasoline shortage” tweets and “non-gasoline shortage” tweets, using a support
vector machine classifier that employs unigrams and latent topics as features. In stage
3, gasoline shortage tweets first are aggregated for each major city and then, along
with other important features about the disaster, are input into amodel with hybrid loss
function (HLF) to generate the predicted number of future gasoline shortage tweets.
In stage 4, the predicted number of future tweets, along with other features about the
disaster, is input into a Poisson regression model to predict the number of stations
without gasoline on the subsequent day. It is a rolling horizon methodology in which
the gasoline shortage and the number of tweets about the actual gas shortage are used to
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Fig. 1 Methodology

predict the number of tweets and shortage for the next day. The following subsections
explain these stages in detail.

4.1 Stage 1: tweet filtering and creation of tweet corpus and document–term
matrix

Stage 1 has two steps, tweet filtering to generate gasoline-related tweets and creation
of a tweet corpus and a document–term matrix.

4.1.1 Tweet filtering

We filtered out “gasoline-related” tweets from the compendium of tweets generated
in the affected area. We do this by keyword search in both the content and hashtags of
each tweet. In the case of gasoline, any word which has the letters “gas” as part of the
word is a possible keyword. We use regular expressions to identify these keywords.
The regular expression ĝas finds words starting with “gas” and also finds words that
contain the string “gas” (e.g., the word “nogas”). For searching tweets, we use the
regular expression //bgas to look for words in a sentence starting with “gas.” These
regular expressions are the ones used with grep() function in R. Next, we identified
the relevant keywords filtered through the regular expressions and retain the tweets
containing those keywords. Finally, we combined the tweets curated from searching
hashtags and tweets by using inner join, to account for duplicate tweets. Even after
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Table 4 A small sample of the document–term matrix

Terms
Docs can gas get got hurricaneirma irma just line station water

1195 0 2 0 0 0 0 0 0 2 0

1433 0 2 0 0 0 1 0 0 0 0

267 0 2 1 1 0 0 0 1 0 0

272 1 1 0 0 0 0 0 0 0 1

298 0 0 0 0 0 0 0 0 0 0

408 0 1 0 1 0 0 1 0 0 0

443 0 1 0 1 0 0 1 0 0 0

556 0 1 0 0 0 1 0 0 0 1

680 0 1 0 0 0 0 2 0 1 0

901 0 1 0 0 0 1 1 0 0 1

Total 1 12 1 3 0 3 5 1 3 3

this filtering, we have many tweets that are very noisy and need to be cleaned so as
to facilitate further processing. We achieved this cleaning by removing user names,
links, punctuations, tabs and general whitespaces.

4.1.2 Corpus and document–termmatrix generation

For any text mining application, there is a need for a framework of managing and
manipulating heterogeneous text documents. (In our case, it is tweets.) The conceptual
entity which provides this functionality is a text corpus which is a collection of the
text documents being analyzed. According to Meyer et al., “It represents a collection
of text documents and can be interpreted as a database for texts. Its elements are
TextDocuments holding the actual texts and local meta-data” (Meyer et al. 2008).
In our application, a text corpus (tweet corpus) is created using the tm package in
R (Feinerer 2008). We note that, in our case, one tweet is equivalent to one text
document of the corpus. From the corpus, stopwords (common words which have
little or no value in classification, e.g., “the,” “and” and “a”), cursewords and numbers
are removed. Words are reduced to their stemwords, e.g., words like “going” and
“gone” are converted to “go.” Next, a term–document matrix is exported from the
tweet corpus. Table 4 shows a sample from the term–document matrix of our case
study. The document ID (Tweet ID) represent rows and terms/words represent the
columns. The matrix elements are term frequencies. For instance, the term “gas” has
been used twice in the tweet with Tweet Id = 1195.

4.2 Stage 2: classification to identify gasoline shortage tweets

To classify the tweets as “gasoline shortage,” first, they are manually annotated. Next,
a SVM classifier is trained on a training set that classifies tweets using two kinds
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of features: unigrams and abstract topics. In the following subsections, we describe
unigrams and latent topics in depth.

4.2.1 Finding important unigrams

In the field of computational linguistics, an n-gram is a sequence of n items (phonemes,
syllables, letters, words or base pairs depending on application) from a given sample
of text or speech. An n-gram of size one is called a unigram. In case of classification
of text or documents, generally, words are treated as unigrams. In our application of
tweet classification, we consider a word of the tweet as a unigram. We use unigrams
as features as they have predicted power for the classification task. For instance, if a
tweet contains words like “gas,” “gasoline,” “shortage,” “no,” “long,” “line,” it is likely
the tweet is about “gasoline shortage.”

However, all the unigrams present in a tweet do not have predictive power. Hence, it
is important to remove the less important terms in a tweet. There are two knownways in
text mining to do this, using the measure of term frequency (tf) or the measure of term
frequency–inverse document frequency (tf–idf). The number of times a term occurs in
a document/tweet is called its tf. The elements of the document–termmatrix in Table 4
are tfs. On the other hand, inverse document frequency (idf) is a measure of howmuch
information the word provides, i.e., if it is common or rare across all documents. It
is the logarithmically scaled inverse fraction of the documents that contain the word
(obtained by dividing the total number of documents by the number of documents
containing the term). So a high term frequency–inverse document frequency (tf–idf)
is reached by a high term frequency (in the given document) and a low document
frequency of the term in thewhole collection of documents. In our case study,we found
that using tf provided us better classification accuracy than tf–idf. This is because terms
like “gas,” which were very common across all documents, have small tf–idf values.

We now present the process of filtering using tf. Suppose we define important
unigrams as words that have been used at least ten times in the tweet corpus. This
value “10” is our threshold. Suppose Table 4 shows the term–document matrix we
exported from the corpus. Each element in the matrix is the tf of the term (represented
by the column) in the tweet (represented by the row). Last row in Table 4 shows the
total usage of each term in the matrix (sum of term frequency). Recall, we chose
threshold to be 10. Now, “gas” is the only important unigram as it is used 12 times in
the matrix. However, if we reduce the threshold to 3, the important unigrams are “got”,
“gas”, “irma”, “just”, “station” and “water.” As the threshold increases, the number
of important unigrams decreases.

4.2.2 Finding important topics

The other set of features is abstract topics that exist in the “gasoline shortage” tweet
corpus. For example, in multiple instances, people were tweeting “to inquire which
gasoline stations had gas.” In another topic, people were “complaining about long
lines at the gas stations.” These topics, if identified, could have high predictive power
and could be used as features for predicting tweets about gasoline shortage. Therefore,
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in our methodology, we use topic models to identify hidden and abstract topics in our
tweets.

An empirical comparison by Lee et al. shows the advantages and limitations of
four different topic models, namely latent semantic analysis (LSA), probabilistic
latent semantic analysis (PLSA), latent Dirichlet allocation (LDA) and correlated
topic models (CTM) (Lee et al. 2010). Their comparison showed that LDA and CTM
outperformed the other two techniques. LSA works well for unique and distinctive
topics, and PLSA works well in identifying a single topic in document. Therefore, we
modeled our tweets using LDA and CTM. LDA is a Bayesian mixture model which
assumes that topics are not correlated (Blei et al. 2003). CTM eliminates the correla-
tion assumption in LDA (Blei et al. 2007). We used the R package “topicmodels” for
the implementation of LDA and CTM (Hornik and Grün 2011).

Since LDA and CTM are Bayesian models, we need to use Bayesian inference for
parameter estimation. For estimation of CTM parameters, the package “topicmodels”
uses the variational expectation minimization (VEM) algorithm, while for LDA both
VEM and Gibbs sampling are available (Hornik and Grün 2011). This package cur-
rently provides an interface to the code for fitting an LDA model and a CTM with the
VEM algorithm as implemented by Hoffman et al. (2010) and to the code for fitting
an LDA topic model with Gibbs sampling written by Phan et al. (2008). Both VEM
and Gibbs sampling provide approximate estimates. VEM is a deterministic method
that converges faster but has higher bias in its estimate (Wainwright et al. 2008).
Gibbs sampling is a Markov chain Monte Carlo sampling method (stochastic) which
is computationally expensive but its bias and variance approach zero as you drawmore
samples (Geman and Geman 1987). The parameter α in LDA model is estimated by
default in both VEM andGibbs samplingmethods of topicmodels package. Its starting
value is kept at 50/k, where k is the number of topics, as suggested by Griffiths et al.
(2004). However, there is an option of fixing the value of α as 50/k.

To find the best model, first, the document–term matrix was divided into training
and testing sets in the ratio of 70:30. Next, the following four kinds of models were
estimated using the training set:

1. LDA 1 (estimation using VEM),
2. LDA 2 (estimation using VEM with a fixed α parameter),
3. LDA 3 (estimation using Gibbs sampling),
4. CTM.

In addition to finding the best topic modeling paradigm, the hyperparameter “num-
ber of topics,” k, in the tweet corpus is determined. This is done by training each of
the above models (LDA 1 through CTM) for 11 values of k ( 2, 4, 5, 8, 10, 12, 15,
20, 40, 50, 100). In all, 44 models were trained (11 for each modeling paradigm). The
performance of each of these models is evaluated on the independent test set using the
measure of perplexity. The perplexity is often used to evaluate the language models
on held-out data and was also used in a seminal paper on LDA (Blei et al. 2003).
Information theory uses geometric mean per-word likelihood to measure how well a
probability distribution or probability model predicts a sample and in topic models
(Hornik and Grün 2011), where a smaller perplexity indicates a better model fit. In
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Sect. 5, we show which model was best suited for modeling our tweet corpus. The
topics determined by the best model are used as features in the SVM classifier.

4.2.3 Model selection

In the previous two subsections, we explained how to filter out important unigrams
and topics. In this subsection, we explain how model selection was performed (i.e.,
selecting the best set of unigrams and topics for classification). We used the standard
technique in which we divided our tweet data into training and testing datasets. We
trained multiple models with different sets of unigrams and topics and measured their
performance using the F1 score measure. F1 score is the harmonic mean of precision
and recall. In binary classification, “precision” is the number of true positives divided
by the total number of true and false positives. In our application, it measures the
fraction of tweets that were correctly classified as gasoline shortage tweets. “Recall”,
also known as “specificity,” is defined as the number of true positives divided by the
sum of true positives and false negatives. In our application, it measures the fraction
of tweets that are correctly classified out of the tweets which were originally about
gasoline shortage. In most classification problems, there is often a trade-off between
“precision” and “recall.” When one tries to increase precision, “recall” decreases and
vice versa. Since F1 score is the harmonic mean of both, it achieves a high value only
when both “precision” and “recall” are reasonably high. Therefore, in our case study in
Sect. 5 we compare the F1 score of different classifiers with different sets of unigrams
and topics to find the best classifier for our application.

4.3 Stage 3: forecasting gasoline shortage tweets using a hybrid loss function
(HLF)

In this stage, we aggregate the number of tweets about gasoline shortage for each
city. Upon a Poisson regression analysis, we found that using gasoline shortage tweets
identified in the previous stage shows us that the number of tweets about shortage (in a
day, in a city) is a good predictor of the amount of shortage, i.e., the number of stations
out of gasoline. Table 8 in our case study shows that the number of tweets along with
other variables is statistically significant predictors of the number of stations out of
gas. We can use this methodology to predict future shortage if we could forecast the
number of tweets about gasoline shortage. This motivates the need to forecast the
number of tweets about gasoline shortage.

We explored three methods to forecast the tweets, namely (a) a Poisson regression
model, (b) time-series models like ARIMA and SARIMA and (c) regression model
with hybrid loss function that we developed to combine the properties and results of the
Poisson regression and time-series models. In the following subsections, we explain
the motivation and details of the three methods. The results of the model selection
(for each type of method) on the Irma data are discussed in Sect. 5. Furthermore,
in Sect. 4.3.4, the model we describe the model selection methodology meant for
selecting the best procedure among the three.
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4.3.1 Poisson regression model

We analyzed the hourly and daily arrival of tweets in all the cities and found the
distributions to be Poisson. The details of this analysis are given in Sect. 5. Thus,
Poisson regressionwas a candidatemethod. The results in Table 8 confirm that Poisson
regression allows us to conclude that the “number of tweets” and other variables (about
hurricane path) can be used to predict the number of stations out of gas. This motivated
us to explore that whether the number of tweets on the next day could be predicted
using Poisson regression and variables like number of stations out of gas. We detail
these results in Sect. 5.

We had access to multiple variables that could be used for features. These variables
are listed in Sect. 3. Therefore, for model selection, we used the AIC and pseudo-R2

(pseudo-R2 = 1—null deviance/residual deviance) which are measures of model fit.
Equation (1) describes the selected Poisson regression model. Y is the dependent vari-
able, namely the Number of Tweets about gasoline shortage in a city on the next day,
followed by all the independent variables, namely x1: the average gasoline shortage
one day prior, x2: the number of gas stations in the city, x3: a binary variable equal
to 1 if the city is in the path of the Hurricane or else equal to 0, x4: a binary variable
is equal to 1 if the city is inside the 3-day cone (i.e., within 3 days from potential
hurricane strike) or else equal to 0, x5: the number of days to the arrival of the hur-
ricane in the city, x6: a categorical variable for watches or warning issued in the city
and x7: the maximum sustained wind speed of the hurricane in mph. In the Poisson
regression model, the logarithm of the expected values of number of tweets about
gasoline shortage is modeled to vary linearly with the independent variable described
above. It is solved by minimizing Eq. (2) which is the negative of the log likelihood
function. (Negative of the log likelihood is a convex function, so gradient methods can
be applied for minimization.) In Eq. (2), θ is the vector of all β’s and X is a vector of
all independent variables.

log(E(Y )|x) = β0 + β1x1 + β2x2 . . . β7x7 (1)

−L(θ, Y , X) = eθT X − Y θT X (2)

4.3.2 Time-series models

Natural candidates for forecasting gasoline shortage tweets are time-series models like
ARIMA and SARIMA (Brockwell et al. 2002). We now provide some background
for these models. The autoregressive integrated moving average (ARIMA) model is
a generalization of an autoregressive moving average (ARMA) model. The differ-
ence is that ARMA is used when the time series is known to be stationary, whereas
ARIMA is used when the data show evidence of non-stationarity. ARMA models
provides a description of a (weakly) stationary stochastic process in terms of two
polynomials, one for the autoregression (AR) and the other for the moving average
(MA) (Box et al. 2015). ARIMA involves an initial differencing step to eliminate the
non-stationarity (Brockwell et al. 2002). We used the augmented Dickey–Fuller test
(Said and Dickey 1984) to test stationarity (see Sect. 5). Our results showed that the
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times series of the number of tweets (in 1h) for a number of cities in Florida were
stationary. For other cities, a differencing operation made the series stationary. There-
fore, ARIMA models were suitable for modeling the time series of the tweets. Miami
data also needed seasonality adjustment (24-h seasonality), and hence, SARIMA, a
version of ARIMA that models seasonality, was employed to analyze and fit theMiami
data.

Equation (3) is an autoregressive model, AR(p), in which Yt is the number of
tweets at hour t , φ’s are parameters, c is a constant and the random variable εt is white
noise. Equation (4) is a moving averages model, MA(q), in which the new termμ is an
expectation of YT (assumed as zero inmost cases) and ρ’s are the parameters. Equation
(5) describes an ARMA model, ARMA(p,q), which models time series with AR(p),
MA(q) or a combination. Equation (6) simplifies Eq. (5), by using the lag operator
defined in Eq. (7). Equation (8) describes the ARIMA model, ARIMA(p,d,q), which
we use to model the times series of tweets in all cities. It introduces the differencing
operation described in Eq. (9) which helps convert non-stationary series into stationary
series.

Yt = c +
p∑

i=1

φi Yt−i + εt (3)

Yt = μ + εt +
q∑

i=1

ρiεt−i (4)

Yt = εt +
q∑

i=1

ρiεt−i +
p∑

i=1

φi Yt−i (5)

(
1 −

p∑

i=1

φi Li

)
Yt =

(
1 −

q∑

i=1

ρi Li

)
εt (6)

LYt = Yt−1 (7)(
1 −

p∑

i=1

φi Li

)
(1 − L)dYt =

(
1 −

q∑

i=1

ρi Li

)
εt (8)

Y d=1
t = Yt − Yt−1 (9)

For model selection in each city, we used the Box–Jenkins methodology (Box et al.
2015), which had the following four steps:

1. Model identification We ensured that the variables/differenced variables were sta-
tionary using the augmented Dickey–Fuller test. Seasonality was identified if
present (seasonally differencing it, if necessary). Plots of the autocorrelation and
partial autocorrelation functions of the time series were used to decide which
components to use, among autoregressive, moving average, differencing and sea-
sonality.

2. Model selection Multiple ARIMA models were fit to the time series and the best
model was selected using the Akaike information criterion (AIC).

3. Parameter estimation This was done using maximum likelihood estimation.
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4. Model checkingWecheckedwhether the selectedmodel conforms to the properties
of a stationary univariate series. In particular, we check that the residuals are
uncorrelated and normally distributed using their autocorrelation functions for
several lags. We further checked they were uncorrelated using the Ljung–Box test.

4.3.3 The hybrid loss function model

Our results from both Poisson regression and time-series models reflected that there
was room to improve. Poisson regression captures variations due to the number of
stations out of gas and hurricane path variables. Time-series models capture variation
in the form of temporal covariances. Even though there is overlap in the explanation of
variance through the twomethods, it is possible that a combination of the twomethods
could potentially explain greater amount of variance in tweet data. This motivated us
to combine the two methods. In the literature, we found multiple instances where
ARIMA models were combined with other predictive algorithms. They have been
combined with linear regression (Xu et al. 2016), a variety of neural networks (Zhang
2003; Tseng et al. 2002; Cadenas and Rivera 2010) and support vector machines (Pai
and Lin 2005; Nie et al. 2012; Zhu and Wei 2013; Ni et al. 2017). However, there is
no literature that builds a hybrid of ARIMA and Poisson regression. The application
that comes closest to our work is the combination of SARIMA and SVM regression
by Ni et al. which forecasts subway passenger flow using tweets (Ni et al. 2017).

In the HLF method, we combine the properties of Poisson regression method and
ARIMAmodels usingEq. (10)which is the hybrid loss function.The function is convex
and can be optimized using anygradientmethods.Weused the gradient descentmethod
for the optimization using the gradients in Eqs. (11) and (12). In these equations,
θ is the vector of parameters for the model, X train is the matrix of the values of
the independent variables in the training data [independent variables described in
Eq. (1)], X test is the matrix of the values of the independent variables in the test
data, Ytrain is vector of values of dependent variables in the training data [Y is the
number of tweets about gasoline shortage on the next day as described in Eq. (1)],
Yts is the vector of the values of the independent variables predicted by time-series
methods on the test data, Y

′
is the vector of values of the dependent variables to

be predicted by the combined method entered as a parameter of the loss function.
eθT X − Y θT X is the negative of the log likelihood function for Poisson regression.
Since this is a convex function, the weighted sum of the terms Ytrainθ

T X train, eθT X test −
Y

′
θT X test and (Y

′ − Yts)
2 is also a convex function. The role of term eθT X train −

Ytrainθ
T X train in the loss function is to find the best θ for that minimizes the negative

of the log likelihood function of Poisson regression. The term eθT X test − Y
′
θT X test

minimizes the negative of the maximum likelihood function containing the prediction
from Poisson regression method, θT X test. The term (Y

′ − Yts)
2 in the loss function

minimizes the sum of squared error between the prediction from HLF and (Y
′
) the

prediction from ARIMAmethods (Yts). Hence, when we minimize the HLF, the terms
Λ1(eθT X test −Y

′
θT X test)+Λ2(Y

′ −Yts)
2 find the Y

′
that includes the affect of ARIMA

models into the and Poisson regression predictions. Here, the hyperparameters Λ1
and Λ2 are also used as regularization terms (to control bias and variance) and to
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control the weight of time-series model and Poisson regression model in the HLF
method.

− L(θ, Y
′
) = eθT X train − Ytrainθ

T X train + Λ1(e
θT X test

−Y
′
θT X test) + Λ2(Y

′ − Yts)
2 (10)

−∂L(θ, Y
′
)

∂θ
= (eθT .X train − Ytrain)X train + Λ1(e

θT X test − Y
′
)X train (11)

−∂L(θ, Y
′
)

∂Y ′ = Λ1θ
T X train + 2Λ2(Y

′ − Yts) (12)

The features used in the HLF method are the same as Poisson regression method as
described in Eq. (1). To determine the hyperparameters Λ1 and Λ2, cross-validation
method is used with a training and testing set. The values of Λ1 and Λ2 are varied,
and the performance of the resultant models is measured on the test set and compared.

4.3.4 Model selection

To select the best model for a city, the performance of the selected Poisson regression
model, ARIMAmodel and HLFmodel is measured on a testing dataset. The measures
of mean absolute percentage error (MAPE) and root mean squared error (RMSE) are
compared. It must be noted that the training and testing data used in model selection
of individual methods do not overlap with the testing data for the model selection
between the three methods.

4.4 Stage 4: prediction of the gasoline shortage using the forecasted tweets

In stage 4, the number of tweets predicted in the previous stage is a predictor of the
number of gasoline stations out of gas alongwith other features.Model selection in this
stage was done using cross-validation. The data are divided into training and testing
sets. Multiples models are estimated using the training data, and their performance
is evaluated on the test data using MAPE and RMSE. Equation (13) describes the
selected Poisson regression model. N is the dependent variable for the number of gas
stations out of gas the next day, followed by all the independent variables namely, z1:
the population of the city, z2: the number of gas stations, z3: the number of gasoline
shortage tweets on the next day (predicted in stage 3), z4: days to arrival of the hurricane
to the city and z5: a categorical variable for watches or warning issued in the city.

log(E(N )|z) = α0 + α1z1 + α2z2 . . . α5z5 (13)

5 Case study

In this section, we describe the application of our methodology to predict the gasoline
shortage in Florida during Hurricane Irma. While the landfall of Irma in Florida hap-
pened on the September 10, 2017, the shortage of gasoline in Florida was observed
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Fig. 2 Word cloud of most
frequent words in the tweet
corpus of gas-related tweets

in multiple cities in the period September 6–15, 2017 (i.e., during onset and beyond
landfall). The Web site Gasbuddy has the data about the percentage of gas stations out
of gasoline on all these dates in all major cities of Florida (Gasbuddy 2017a). We use
this data as ground truth about shortage to validate our findings.

We accessed more than 1 million tweets from Florida during this period, and the
details of the tweet data are presented in Sect. 3. The National Hurricane Center
(National Hurricane Centre 2017) Web site provided the data about the Hurricane
path which we used as features and predictors in our model.

In stage 1,wefiltered out gasoline-related tweets from the corpus of 1million tweets.
For this, we combined the tweets curated from hashtag and tweet search to filter down
to 4070 relevant gasoline-related tweet. The hashtags and words that we found using
the regular expressions included gasoline, gas, gasinmiami, gaspricefixing, gasstation,
gasservice, gastateparks, gasshortage, gasoil, gastation, gaswaste, nogas, outofgas,
findgas. We also applied the data cleaning procedure described in Sect. 4.1.

In stage 2, for tweet classification, we labeled the 4070 gasoline-related tweets.
Out of the 4070 gasoline-related tweets, 2594 were gasoline shortage tweets. For
classification, we extracted important unigrams on the basis of “term frequency” as
described in Sect. 4.2.1.Wefiltered out 937 unigramswith “sumof term” frequency set
to 5 in the dtm (threshold). These were the candidate features for our SVM classifier.
Figure 2 shows a wordcloud of the top 50 unigrams in the tweet corpus by term
frequency.

Next, we had to find “topics” to be used as features. For this step, we determined
the number of topics and the best topic model among the four available models (LDA
1, LDA 2, LDA 3, CTM), using the model selection technique described in Sect. 4.2.2.
We divided the document–termmatrix into a training set and a testing set in the ratio of
70:30. We estimated the model with different values of k (number of topics) using the
training set and measured their performance through the by “perplexity” value of the
test data. Table 5 shows the comparison of their performance. The lowest perplexity
value is achieved by LDA 3 models (LDA models with parameter estimation using
Gibbs sampling). Further, a choice of 12 topics achieves the lowest perplexity value.
These 12 topics became the candidate features for the SVM classifier.

Table 6 shows five abstract topics found using CTM described in Sect. 4.2.2 along
with the top five words in each of the topics. Topic 1 is about people tweeting that they
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Table 5 Perplexity measure of different topic models for different number of topics on test data

Number of topics Perplexity (CTM) Perplexity (LDA
1)

Perplexity (LDA
2)

Perplexity (LDA
3)

2 2.70E+36 618,944.7 620,294.5 656.9755

4 2.60E+36 621,846.1 631,295.4 619.1762

5 2.57E+36 622,815.2 637,068 609.0368

8 2.51E+36 625,236.7 655,194 591.0772

10 2.48E+36 626,552.5 667,867.9 583.622

12 2.45E+36 627,872.7 680,960.5 578.05

15 2.41E+36 629,781.3 701,214.6 580.2036

20 2.39E+36 632,543.1 638,136.2 584.5208

40 2.34E+36 639,615.3 663,342.7 627.7097

50 2.31E+36 639,811.1 685,070.5 651.7323

100 2.23E+36 659,971.7 800,349.3 787.987

Table 6 Topics identified by
topic modeling techniques in the
gas shortage tweet corpus

CTM

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

gas station gas gas gas

cannot gas no station price

find need station wait high

know hurricaneirma line line got

irma close miami irma irma

cannot find gasoline due to Irma. On the other hand, topic 2 is about people tweeting
that gas stations are closed and they need gas. Topic 3 is about no gasoline being there
in Miami. Topic 4 is about waiting in line for gasoline because of Irma. Lastly, topic
5 is about high gasoline prices.

We had 937 unigrams and 12 topics as candidate features for the classifier. We
performedmodel selection for the SVMclassifier as described in Sect. 4.2.3 to identify
the best set of features. To achieve this, we train multiple models with different sets of
features (on the training data) and measure the F1 score on the test data. We divided
the data into training and testing in the ratio 70:30. Next, we trained models with
number of topics equal to 5 (top 5 out of the 12) and varied the number of unigrams
on the basis of the sum of term frequency (threshold). Table 7 shows the performance
of these models on test data. The best F1 score was achieved for five words. Next,
we fixed the number of unigrams as 5 and varied the number of topics (out of the 12
candidate topics). Table 8 shows the performance of these models on test data. The
best F1 score is achieved for five topics and five unigrams. The five best unigrams
were gas, get, line, out and station.

Having classified the tweets, we studied the spatiotemporal dynamics of gasoline
shortage tweet arrival in Florida. Figure 3 is a heat map showing the spatial distribution
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Table 7 Performance of SVM using topics and unigrams (varied word frequency threshold, number of
topics = 5, training/testing = 70/30

Word frequency Number of words Precision Recall F score

5 937 0.941 0.714 0.811

6 797 0.961 0.788 0.866

7 710 0.950 0.762 0.846

10 519 0.969 0.771 0.859

20 282 0.963 0.767 0.854

50 109 0.972 0.775 0.862

100 38 0.972 0.779 0.865

350 5 0.985 0.789 0.876

Table 8 Performance of SVM
using topics and unigrams
(varied number of topics, word
frequency threshold = 350,
training/testing = 70/30

Number of topics Precision Recall F score

2 0.963 0.767 0.854

4 0.983 0.761 0.858

5 0.985 0.789 0.877

6 0.950 0.790 0.863

10 0.972 0.779 0.865

12 0.975 0.713 0.824

of gas shortage tweets in Florida in the period September 6–9, 2017. The change in
tweeting behavior is clearly visible in the heat map. Until September 8, 2017, Miami
was on the path of Hurricane and people were tweeting extensively about gasoline
shortage as they were instructed to evacuate. However, on September 9, the hurricane
changed its path and many people had evacuatedMiami for the September 10 landfall.
One can clearly see a reduction in gasoline shortage tweets in the Miami area on
September 9. Figure 4 shows the geo-location of these tweets in four major cities of
Florida. For certain tweets, a bounding box was available, shown in red, while for
others an exact location was available shown by black dots.

For studying the temporal dynamics of the tweet arrival at the city level, we
chose eight major cities in Florida, namely Tampa, Orlando, Jacksonville, Miami,
Gainesville, Tallahassee, Naples and West Palm Beach. For each city, we grouped all
the gasoline shortage tweets that came within the same hour for period of September
6–15, 2017. Figure 5 shows the frequency distribution histogram of the number of
hourly tweets about gasoline shortage in the six cities. We tested whether the arrival
of the tweets followed a Poisson distribution. For this, we calculated the mean value
for the number of tweets arriving in an hour for each city. Using these values as arrival
rates λ’s, a Poisson probability distribution was generated for each city. Next, for each
city, we performed three goodness-of-fit tests to test the distribution of number tweets
per hour against a sample generated Poisson distribution. We did the same tests for
distribution of tweets per day for each city. the We did the Chi-square test (Ch-sq),
the Kolmogorov–Smirnov test (KS) and the Cramer–von Mises criterion (VM). In the
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Fig. 3 Heat map of gas shortage tweets in Florida

Chi-square test, the p values were simulated by the Monte Carlo simulation method of
Hope (1968). (This is advised for small reference sets.) In the Kolmogorov–Smrinov
test, the p values are approximated as exact p values are not available for the two-
sample case if one-sided or in the presence of ties (Conover 1971). In addition to
the six cities, we also modeled the arrival of gasoline shortage tweets for the state of
Florida as a whole.

Table 9 shows the results for the two Chi-squared tests for each city and the state of
Florida. Assuming a significance level of 0.05 the Chi-square test fails to reject the null
hypothesis for all the cities, i.e., our observations and samples from the Poisson distri-
bution follow the same distributions. Similarly, using Von Mises criterion the arrival
of our tweets follows a Poisson distribution. KS test shows that Orlando, Tallahassee,
Jacksonville, Gainesville and West Palm Beach follow a Poisson distribution (as the
test fails to reject the null hypothesis). Therefore, we conclude that the arrival of tweets
follows a Poisson distribution. The same conclusion is drawn for the distribution of
daily arrival of tweets for each city from Table 10.

We also observe that the λ values correlate with the amount of panic in a city.
Miami, which was on the path of the hurricane initially and closest to landfall, has
the highest value of λ, at almost 3.4 tweets per hour, indicating that people wanted
to evacuate and were in desperate search for gasoline. In contrast, Jacksonville which
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Fig. 4 Tweet locations city-wise (red box = bounding box tweets, black points = exact location tweets)

was neither on the path nor close to landfall had tweeted about gasoline shortage
just 0.2 times per hour. Having observed this Poisson distribution, Poisson regression
became a candidate method for predicting number of tweets in the future along with
time-series methods.

As described in Sect. 4.3, in stage 3,we explore threemethods for forecasting tweets
about gasoline shortage : Poisson regression, time-series models, a HLF method that
combines properties of Poisson regression and time-series models. First, we fit models
of each kind usingmethodologies described in Sects. 4.3.1–4.3.3 on data for the period
September 6–9, 2017. To find the best model among the three, we forecasted tweets
about gasoline shortage for the period September 10–15, 2017, and compared it to
ground truth.

For the fitting the ARIMAmodels, we use the Box–Jenkins methodology described
in Sect. 4.3.2. Figure 6 shows time-series plots for four cities. For each city, in Step 1,
we work on identifying the appropriate model. The time series for Miami and Tampa
have a small negative trend for 6–9 September (72h), while Orlando and Naples did
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Fig. 5 Frequency of gas shortage tweets in the main cities of Florida

not. This is also evident in the autocorrelation (ACF) of theMiami time series in Fig. 7.
The figure also shows the ACF and PACF of its differenced version. The differenced
Miami time series does not have any trend. This is also verified by the augmented
Dickey–Fuller test according to which the time series of Miami (6–9 September)
is non-stationary (p value = 0.1). However, on differencing becomes stationary (p
value = 0.01). Seasonality can also be inferred from the ACF for Miami time series.
We tried multiple models to fit the observations seen in the ACF and PACF of the
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Table 9 Goodness-of-fit tests for arrival of tweets (hourly)

City Lambda Chi-sq p value VM p value KS test p value

Tampa 1.281915 0.1894 0.000554025 0.0006129

Miami 3.356383 0.3073 0.000729358 2.22E−16

Orlando 0.7765957 0.1064 8.96E−05 0.09341

Tallahassee 0.2925532 0.3513 6.06E−09 0.5038

Jacksonville 0.2340426 0.4963 4.86E−09 1

Gainesville 0.4787234 0.1764 1.42E−06 0.6744

West Palm Beach 1.303191 0.2044 9.10E−04 0.01205

Naples 0.462766 0.2094 1.40E−06 0.5038

Florida 10.23936 0.1989 0.000347264 3.33E−15

Table 10 Goodness-of-fit tests for arrival of tweets (daily)

City Chi-sq p value VM p value KS test p value

Tampa 0.2705 0.1220301 0.6994

Miami 0.2425 1.00E−01 3.36E−02

Orlando 0.1426 1.42E−01 0.3364

Tallahassee 0.3532 1.34E−01 0.6272

Jacksonville 0.3406 1.31E−01 0.6994

Gainesville 0.297 1.36E−01 0.6272

West Palm Beach 0.3675 1.22E−01 0.27

Naples 0.2578 1.49E−01 0.6272

Florida 0.2425 0.1001568 3.36E−02

Miami time series. Table 11 enlists the models and the AIC values they achieved.
ARIMA((4,1,2),(1,0,0))model with a period of 25h (1 day) is the best fit for theMiami
time series with the lowest AIC value. Residuals from the model are also normally
distributed and uncorrelated (from the ACF) as shown in Fig. 8. p values from the
Ljung–Box test are high, indicating that the autocorrelation between residuals is zero.
Therefore, ARIMA((4,1,2),(1,0,0)) with period of 25h was selected for forecasting
tweets about gas shortage for Miami. For the other cities, the selected models are
enlisted in Table 12.

Next, we estimated the Poisson regression models. Table 13 shows the estimation
of the Poisson regression model that had the best fit for the data from 6–9 September.
The column “Estimate” contains the maximum likelihood estimates of the regression
coefficients for each variable under. “Asymptotic z-test” is used to determine whether
the null hypothesis “that a regression coefficients is zero” can be rejected. The results
of the test for each variables which included the standard error, z-score and p value
have been tabulated. All predictors show high statistical significance for predicting the
number of future gasoline shortage tweets. Null deviance= 2121.05, residual deviance
= 473.84 and pseudo-R2 = 0.78 (calculated using null and residual deviance) show

123



A. Khare et al.

Fig. 6 Time-series plots of number of tweets about gasoline shortage in every hour in four cities

Fig. 7 Autocorrelation and partial autocorrelations for regular and differenced Miami time series
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Table 11 Different time-series models for Miami tweets data and their AIC values

Model AIC Model AIC

ARIMA(1,0,0) = AR(1) 1048.89 ARIMA(3,1,0) 1024.11

ARIMA(2,0,0) = AR(2) 1031.46 ARIMA(3,1,1) 1023.77

ARIMA(0,0,1) = MA(1) 1117.8 ARIMA((3,1,1),(1,0,0)) period =24 1012.12

ARIMA(0,0,2) = MA(2) 1095.47 ARIMA(4,1,2) 1004.52

ARIMA(3,0,0) = AR(3) 1029.65 ARIMA((4,1,3),(1,0,0)) period =25 1005.82

ARIMA(2,1,0) 1025.76 ARIMA((4,1,3),(1,0,0)) period =25 1002.79

ARIMA(2,1,1) 1022.19 ARIMA((4,1,2),(1,0,0)) period =25 1001.93

Fig. 8 Residual distribution, its ACF and p value of Ljung–Box statistic for ARIMA((4,1,3),(1,0,0)) on
Miami time series

Table 12 Time-series models
selected for various cities of
Florida

City Model selected

Miami ARIMA((4,1,2),(1,0,0))

Naples ARIMA(0,0,2)

Jacksonville ARIMA(0,0,4)

Tampa ARIMA(3,1,0)

Gainesville ARIMA(0,1,2)

West Palm Beach ARiMA(3,0,0)

Tallahassee ARIMA(1,0,0)

the model was a good fit. AIC = 707.31 is achieved which is the lowest among the
competing models. The independent variable “gas shortage” in the table signifies the
proportion of gas stations that were without gasoline on the day of the prediction. We
also explored if tweets could be forecasted 2days in advance (lag = 2 days) from the
shortage and Hurricane information. Table 14 shows our results. The results showed
that tweets can be predicted with lag = 2. However, variables like gas shortage and
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Table 13 Results of Poisson regression model with the best fit to forecast tweets about gasoline shortage
(lag = 1 day)

Estimate SE z-value p value

(Intercept) −5.632856917 1.342732525 −4.195069988 2.73E−05 ***

Gas shortage 10.05553126 1.316275539 7.639381701 2.18E−14 ***

Number of gas
stations

0.006732827 0.000395052 17.04290458 3.95E−65 ***

On hurricane
path

0.679578601 0.142605366 4.765449025 1.88E−06 ***

Inside 3-day
cone

1.308414331 0.143248048 9.133906853 6.61E−20 ***

Days to arrival −1.71048558 0.148740094 −11.49982855 1.32E−30 ***

Watches/warning −5.763048725 0.418491761 −13.77099686 3.81E−43 ***

Watches/warning −3.698064077 0.265035222 −13.95310424 3.01E−44 ***

Wind speeds 0.058446979 0.007923946 7.375993819 1.63E−13 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
Null deviance: 2121.05 on 63 degrees of freedom
Residual deviance: 473.84 on 54 degrees of freedom
AIC: 707.31

Table 14 Results of Poisson regression model with the best fit to forecast tweets about gasoline shortage
(lag = 2 days)

Estimate SE z-value p value Sig

(Intercept) 1.88E+00 1.342733 1.48E−01 < 2E−16 ***

Gas shortage 7.88E−08 1.70E−07 4.63E−01 6.43E−01

Number of gas stations 8.65E−06 2.06E−04 0.042 9.67E−01

On hurricane path 7.39E−01 9.88E−02 7.4809 7.46E−14 ***

Inside 3-day cone 1.49E+00 4.16E−01 3.571 3.55E−04 ***

Days to arrival −3.23E−01 4.51E−02 −7.162 7.95E−13 ***

Watches/warning −1.54E+00 2.01E−01 −7.681 1.58E−14 ***

Watches/warning −1.87E+01 1.72E−01 −10.895 < 2E−16 ***

Wind speeds 5.44E−03 2.69E−03 2.021 4.33E−02 *

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
Null deviance: 1021.00 on 55 degrees of freedom
Residual deviance: 561.87 on 46 degrees of freedom
AIC: 755.4

number of gas stations stopped being significant predictors. The AIC value increased
and the pseudo-R2 value dropped, indicating a worse model fit than the model with
lag = 1.

Next, we estimated the best HLF model using the gradient descent algorithm. The
features selected are the features of the model selected from the Poisson regression
method which is described in Table 13. The data from 6–9 September were used for
training data (X train and Ytrain). Data from Naples and Miami for the September 10
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Fig. 9 Predictions and ground truth about number of tweets about gasoline shortage for six cities for
September 10–15, 2017

are as testing data (X test). Yts is determined by from ARIMA model predictions for
Miami and Naples for 10 September. Λ1 = Λ1 = 1 achieves the smallest RMSE
value on the test data. The gradient descent algorithm converges to an optimum fastest
at a learning rate, ω1 = ω2 = 10−5.

Next, the procedure described in Sect. 4.3.4 for selecting the best model from the
three methods is employed. Prediction are made using the three methods for all the
city on the testing data (10–15 September). Figure 9 shows the comparison of the
performance of the all the three methods against the ground truth (about number of
tweets) in six cities for the dates September 10–15, 2017. In all the cities, the purple
line representing prediction by HLF method is closest to the blue line representing
ground truth. Figure 10 shows the comparison of the overall MAPE and RMSE for the
three methods. Clearly, HLF method is superior with the smallest MAPE and RMSE
values.

In stage 4, we predict the number of stations out of gasoline the next day by using
a Poisson regression (for the period September 13–15, 2017, for eight cities). To
find the model with the best fit, we use the cross-validation technique described in
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Fig. 10 MAPE and RMSE of the HLF, Poisson regression and ARIMA models)

Sect. 4.4. Data from 6–12 September are used as training data, and the data from
13–15 September are used as a testing set. Table 15 shows the estimation of the
Poisson regression model which had the best fit and achieved the lowest MAPE and
RMSE on the test set. It tabulates the maximum likelihood estimates of regression
coefficients and the standard error, z-score and p value from the z-test. All predictors
are statistically significant.Null deviance= 51,961.01, residual deviance= 689.17 and
pseudo-R2 = 0.987 show the model is a very good fit. On the test data, MAPE = 0.31
and RMSE = 9.13 are achieved. Figure 11 shows the comparison of the predictions
on the test set with the ground truth.

We also wanted to explore that howmuch information tweets provide for predicting
the shortage. For this, we trained a model without the data about number of tweets.
The results are given in Table 16. Null deviance = 51,961.01 and residual deviance
= 8758.68. Its residual deviance is larger than the original model, indicating that the
original model is a better fit. Pseudo-R2 value for this model is 0.831 as compared
to 0.987 of the original model. This means that the original model with tweet infor-
mation explains gasoline shortage 18.71 percent more than the model without tweet
information. We also verified how can shortage be predicted using tweets and hurri-
cane information from 1day prior (lag = 1 day). Table 17 shows the results. Results
show that the estimates of the coefficients are non-zero with statistical significance
which means that the variables do have some predictive power in forecasting shortage
of gasoline on the next day. However, the pseudo-R2 of the model is 0.904, 8 percent
less than 0.987 (the pseudo-R2 of the original model with lag = 0)

6 Using social media data to drive decision-makingmodels in the gas
shortage domain

In our paper, we develop a coarse grain prediction of gasoline shortage, in that it only
predicts the proportion of stations without gas in the city. If we had access to the
ground-truth data at the individual gas station level, a finer grain prediction model
that predicts gasoline shortage at individual gas station level could be validated. In the
rest of this section, we assume that gasoline shortage predictions are available at the
individual gas station level and outline the development of two key decision-making
models, one related to supply of gasoline (by authorities) and the other related to
search for gasoline (by individuals).
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Table 15 Results of Poisson regression model with the best fit to predict gasoline shortage (lag = 0 day)

Estimate SE z-value p value Sig

(Intercept) 4.255101001 0.056026652 75.94780113 0 ***

Population −1.18E−06 1.35E−07 −8.700698039 3.30E−18 ***

Number of gas
stations

0.00310295 0.000121362 25.56764236 3.50E−144 ***

Number of
tweets

0.002997528 0.000281172 10.66083059 1.55E−26 ***

Days to arrival −0.137963866 0.020294006 −6.798256761 1.06E−11 ***

Warning −0.20750846 0.049436483 −4.19747623 2.70E−05 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
Null deviance: 5961.01 on 71 degrees of freedom
Residual deviance: 689.17 on 60 degrees of freedom

Fig. 11 Predictions and ground truth about gasoline shortage for six cities for September 12–15, 2017
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Table 16 Results of Poisson regression model with the best fit to predict gasoline shortage without tweets
information (lag = 0 day)

Estimate SE z-value p value Sig

(Intercept) 3.75E+00 2.73E−02 137.37 < 2E−16 ***

Population 2.64E−07 5.28E−08 5.002 5.67E−07 ***

Number of gas stations 0.00310295 0.000121362 25.56764236 3.50E−144 ***

Days to arrival 0.2374 2.22E−02 10.714 < 2E−16 ***

Warning −1.01E−02 6.78E−04 −14.854 < 2E−16 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
(Dispersion parameter for Poisson family taken to be 1)
Null deviance: 5961.01 on 71 degrees of freedom
Residual deviance: 8758.68 on 61 degrees of freedom

Table 17 Results of Poisson regression model with the best fit to predict gasoline shortage (lag = 1 day)

Estimate SE z-value p value Sig

(Intercept) 3.64E+00 3.03E−02 120.205 < 2E−16 ***

Population −3.56E−07 6.00E−08 −5.932 2.99E−09 ***

Number of gas stations 2.83E−03 5.85E−05 48.46 < 2E−16 ***

Number of tweets 2.20E−03 2.95E−04 7.442 9.90E−14 ***

Days to arrival −2.26E−01 2.16E−02 −10.43 < 2E−16 ***

Warning 8.76E−03 7.57E−04 11.565 < 2E−16 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
(Dispersion parameter for Poisson family taken to be 1)
Null deviance: 5445.45 on 63 degrees of freedom
Residual deviance: 521.64 on 52 degrees of freedom

6.1 Supply of gasoline

Analysis ofTwitter data can yield either probabilistic inference of individual gas station
shortages or deterministic inference, depending on which set of analytical methods is
used. If gasoline shortage at individual stations is known on a probabilistic basis, the
resultant vehicle routing problem can be modeled using a prize collection methodol-
ogy, where the prize for a visiting a gas station is larger if it has a higher likelihood of a
shortage. It could also be modeled using stochastic programming methods as applied
to VRP approaches. If the gasoline shortage is known on a deterministic basis, the
vehicle routing can be modeled using traditional VRP approaches.

6.2 Search for gasoline

An individual searching for gasoline presents an interesting modeling situation,
because they start with some level of gasoline and have limited travel capability in
the search process. Also, there can be significant waiting lines at a gas station that has
gasoline and the consumer has to decide whether to wait (if they run out of gas while
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waiting they would simply push their car in line) or travel to another gas station to seek
gas. This can be modeled using a dynamic programming framework, in which each
gas station can be in a variety of states with known probability. One of these states is
the “no gas” state and the other states all have “gas” but different amounts of waiting
time to obtain the gas.

In our upcoming work, we are building a model that can estimate the probability of
gasoline shortage at an individual gas station using the spatiotemporal distribution of
gasoline shortage tweets. This will provide needed data for both the models for supply
of gasoline and search for gasoline.

7 Conclusions and future research

Our methodology helps answer two major questions. First, can social media be used
to predict gasoline shortage during disasters and, second, what is a good methodology
to make such a prediction. People tweet and use social media during emergencies.
Hence, we believe this methodology can be generalized for other applications like
predicting shortage of other commodities during and forecastable emergencies. Our
methodology produces very accurate results for the case of gasoline shortage during
Hurricane Irma in Florida in 2017. In particular, the method with HLF to predicts
the number of future gasoline shortage tweets with high accuracy. ARIMA models
successfully capture time-related covariance between number of tweets, while the
Poisson regression captures the variation in number of tweets due to gasoline shortage
and other variables that cause panic. The HLF model successfully combines these
two properties and hence achieves more accurate results. For the gasoline shortage
prediction, our model achieves MAPE = 0.31 and RMSE = 9.13.

In the future, there are several fruitful directions for future research. Our first sug-
gested future research direction stems from the recognition that although the F1 score
in the classification model is reasonably good, the recall values could be improved
by decreasing the relatively high number of false positives. We believe that this can
be improved by further analysis of stage 2 (Classification) model. Our second future
research direction stems from the fact that our method does a course grain prediction
of gasoline shortage, in that it only predicts the proportion of stations without gas in
the city. If we had access to the ground truth data at individual gas station level, a
finer grain prediction model that predicts gasoline shortage at individual gas station
level could be validated. Therefore, in our upcoming work, we are building a model
that can estimate the probability of gasoline shortage at an individual gas station using
the spatiotemporal distribution of gasoline shortage tweets. Our third future research
direction relies on successful completion of the second future research task. Once
future shortage data are available at the individual gas station level, they can be fed
into a decision-making model for gasoline delivery to gas stations to ensure adequate
supply where it is needed. This would likely be a vehicle routing type of formulation.
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