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Abstract. The electric field plays an important role in ferroelectric phase transition. There have
been numerous phase field formulations attempting to account for electrostatic interactions subject
to different boundary conditions. In this paper, we develop new variational forms of the phase field
electrostatic energy and the relaxation dynamics of the polarization vector that involves a hybrid
representation in both real and Fourier variables. The new formulations avoid ambiguities appearing
in earlier studies and lead to much more effective ways to perform variational studies and numerical
simulations. Computations of phase transition and polarization switching in a single domain by
applying the new formulations are provided as illustrative examples.
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1. Introduction. Ferroelectrics, first discovered in the 20th century, are materi-
als possessing a spontaneous polarization that can be switched between energetically
equivalent states in a single crystal by an electric field [7, 21]. The formation of domain
structures when the temperature is cooled through the ferroelectric transition temper-
ature (known as the Curie temperature) is a common feature of ferroelectric materials
[20]. For example, from a cubic to tetragonal transformation in ferroelectrics, there
are six possible domains separated by the so-called domain walls, with the polariza-
tion along or opposite to the [100], [010], and [001] directions of the cubic paraelectric
phase [3]. The ferroelectric phase transition not only depends on domain wall mo-
tion but also is influenced by defects such as dislocations and preexisting domains
as well as the electrostatic field [6, 26]. Thus, a fundamental understanding of the
stability of domains and their responses to the external electric field and electrostatic
interactions is critical for many applications of ferroelectrics. In particular, ferroelec-
tric thin films have been extensively studied both theoretically and experimentally
[2, 5, 12, 14, 22, 23, 25, 34] owing to their many potential applications in electronic
and optical devices, including data storage, sensors, nonvolatile memories, thin film
capacitors, etc. [7, 8, 15].

Recently, phase field method has been successfully applied to predict the tempo-
ral domain evolution during a ferroelectric transition, offering a powerful approach
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to characterize the detailed domain structures in three-dimensional (3D) ferroelec-
tric thin films without any a priori assumptions with regard to the possible domain
structures [19, 29]. The phase field method is able to predict not only the domain
structures and the volume fractions of different orientation domains under the effect
of applied external condition, such as the substrate constraint and electrostatic inter-
actions, but also the detailed polarization switching during a ferroelectric transition
[1, 6, 19, 26, 27, 29]. The phase field model of a ferroelectric thin film is briefly
reviewed in section 2.

When using a phase field approach to model the ferroelectric thin film phase
transition, the system usually involves both the polarization distributions, which are
the main phase field variables to depict the polarization of ferroelectric materials,
and the electrostatic potential that incorporates the electrostatic interactions. As a
popular practice, their relation is described by the electrostatic equilibrium equation
that can be derived from the Maxwell’s equation. This implies that the electrostatic
field is in its equilibrium state for a given polarization field and there is no free charge
inside the film. Making use of this observation, the electrostatic potential could be
acquired by solving the electrostatic equilibrium equation when given a polarization
distribution during the ferroelectric phase transition. In this way the electrostatic
energy and the electrostatic force could also be obtained [19].

We present new variational formulations for the phase field model involving elec-
trostatic contributions under the no free charge assumption and with periodicity in
directions parallel to the film. In section 3, the formulations are derived for the cases
involving different boundary conditions (BCs) in the direction perpendicular to the
film. By expressing the energy and forces in terms of the polarization distribution
only and the electrostatic interactions implicitly accounted for, the new formulations
avoid imposing additional constraints for energy minimization and temporal evolution
and eliminate ambiguities that may surface in the previous formulations involving La-
grange multipliers. The analytically and explicitly formulated systems involve hybrid
real space and Fourier space representations that are convenient to use in studies of
energy landscape and relaxation dynamics. As an illustration, we present 3D numer-
ical simulations of the phase transition and the polarization switching pathway in the
cubic thin film of lead titanate (PbTiO3) based on the new formulations in section 4.
Some conclusions are given in section 5.

2. Phase field model of a ferroelectric thin film. In the phase field ap-
proach, a ferroelectric domain structure in a thin film is often described by the pri-
mary order parameter P(x) = (P, Py, P3), depicting the local spatial distribution of
polarization in the 3D space, where & = (x,y, z) are the Cartesian coordinates. The
temporal evolution of the polarization vector P is described by the time-dependent
Ginzburg-Landau (TDGL) equations

OP;(x, t) SF

(2.1) ot oBi(z,t)

i=1,2,3,

where F' is the total free energy of the system and 7 is the kinetic coefficient related to
domain wall mobility. §F/0P;(x,t) is the thermodynamic driving force for the spatial
and temporal evolution of P;(x,t). The total free energy density includes three parts:
the ferroelectric bulk free energy density fpuix(P), the domain wall energy density
fwat(P), and the electrostatic energy density fe;o(P, E). To present the free energy,
we largely follow the phase field formulations given in [1, 6, 19, 20]. There were many
other similar formulations used in studies on, e.g., domain wall interactions with line
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charge defects [24], domain switching and the nucleation of domains under combined
electromechanical BCs [34], and reduction to lower-dimensional models for thin films
[12].
First, the bulk free and domain wall energy densities are described, respectively,
using the expressions [20]
(2.2)
foutk(P) = a1 (P + P3 + P3) + ar1 (P} + Py + Py)
+ a19(PEP} + PP} + PEPE) + aun1 (PP + P§ + P9)
+a112[Py (PE + P3) + Py (PE + P§) + Py (P? + P3)] + awss (PP PY)
and
1
fwan(P; ) = §G11(P12,1 + P5y+ PJ3) + Gia(PriPag + PiiPss+ PaoPsg)
1
(2.3) + §G44[(P1,2 + P1)>+ (Prsg+ Psi1)* 4 (Po3 + P3 )’
1
+5Gul(Pro = Pon)® + (Prs — Paa)” + (Pog — Pso)’),

where aq, ay1, a2, 111, 112, 123 are the Landau expansion coefficients and G11,
G12, Gaa, G, are the domain wall energy coefficients, and here a comma in the
subscript stands for spatial differentiation, e.g., P, ; = 0F;/0x;,4,j5 = 1,2,3, with
(21,9, 23) denoting the Cartesian coordinates (z,y, z), respectively.

In this paper, we focus on the electrostatic energy and ignore possible surface and
elastic energy contributions to the free energy. These simplifications are mainly for
the purpose of illustration. In fact, we note that some detailed calculations of the
elastic energy have been provided in the literature; see the case with periodic BCs
[17] and the case where the substrate constraints are present [20].

The strategy proposed in this work is in a similar spirit to the microelasticity
formulation developed in [17] that utilized an analytical formulation based on the
Fourier representation under the spatial periodicity assumption. For the thin film,
periodicities are assumed only along the film directions, while the other (nonperiodic)
BCs are often necessary in the direction normal to film. Thus, we propose to adopt
a hybrid Fourier and real space representation. Although the discussion in this work
is limited to this special case, the extension and effective integration of hybrid for-
mulations to more general cases involving additional energetic contributions can be
expected and will be explored in subsequent works.

To begin our technical derivations, we recall Gauss’s law for dielectrics: V- D =
ps. Here py is the free charge density and D = e¢E + P is the electric displacement,
where EE = —V ¢ is the electric field with the electric potential ¢ and € is the dielectric
permittivity [13]. In the existing literature [1, 6, 26, 29], the electric energy in phase
field models for dielectric systems has taken various mathematical forms that corre-
spond to two different cases of the physical systems, namely, py = 0 or py # 0. In the
presence of free charges [1, 19], i.e., py # 0, we suppose that the dielectric material
brings in the free charge over time. If only the incremental free charges contribute
the work to the electric energy, the energy density can be described by

(2.4) fele = —%E D= —%(E . P+ € E]?).

In this case, Griffiths [13] argued that (2.4) is valid for linear dielectrics [13], i.e., P =
o€ E, where ¢y is the vacuum permittivity and £ is called the electric susceptibility

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/26/20 to 67.243.130.218. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PHASE FIELD FORMULATION IN FERROELECTRIC THIN FILM 1593

satisfying € = eg(1 + £). Thus, (2.4) can be written as

2¢ — ¢

= 0 p?
2(e —€0)?"

(25) fele = -
which is directly expressed as a function of the polarization field P. Hence, the electric
energy and its variation can be readily obtained, similar to the bulk free energy and
its variation. In fact, we have 5F%’;(P) =— (f:;‘)g P.

Let us make a note on this case of free charges. Usually, the coefficient a; of
bulk free energy density in (2.2) has a linear temperature dependence based on the
Curie-Weiss law; i.e., oy = o(T — T¢.), « is a constant, and T, is the Curie-Weiss
temperature. By adding the electric energy from (2.5), the Curie-Weiss temperature
actually becomes TC/ =T.+ 25(2%2)27 meaning that the effect of the electric field can
let the polarization occur more easily and the ferroelectric phase be more stable with
respect to the temperature change.

On the other hand, if the electric field E or the electrostatic energy of a do-
main structure is considered to be self-electrostatic corresponding to the long-range
electrostatic interaction of spontaneous polarizations [26, 29], it is natural to assume
that the system satisfies the electrostatic equilibrium condition, i.e., py = 0; thus, the
associated electric energy density in the case of bound charges is given by

1
(2.6) fee=—5E - P.

Moreover, based on Gauss’s law, the corresponding electrostatic equilibrium condition
can be written as

(2.7) eAp =V - P.

Equation (2.7) holds in Q = (—=L/2,L/2)? x (0, h), where L specifies the period along
each of the directions parallel to the film and h specifies the film thickness.

In particular, if the electric potential ¢ at the top and bottom surfaces of the film
takes on constant values, we get

(2.8) Pla=o=c1, Bla=n = c2,

for two constants ¢; and co. We call this set of condition the constant BC, particularly
when ¢; = ¢, which is named the short-circuit BC.

We also consider the electric tip-induced BC [1] that is defined to model the
applied electric field using piezoresponse force microscopy [6]. Then the potential
distributions on the top and bottom surfaces are approximated by

(29) ¢‘Z:h = ¢top($7y); ¢|z:0 = Oa

where )
Y

(T —20)? + (y — y0)? +9*
Here (xg,yo) is the location of the tip, ¢¢ is a constant (peak of the potential), and ~
stands for the effect length scale of the potential distribution.

If the normal component of the electric displacement D is zero at that surface,
then

¢top(xa y) = ¢0

(2.10) Ds|.—0 = D3|,=r = 0 or, equivalently, (V¢ — P) -7 |,—0,r= 0,
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where 7 is the unit vector normal to the top and bottom surfaces. This set of condi-
tions is named the open-circuit BC.

Viewing the equilibrium condition in (2.7) as an elliptic equation for the electric
potential ¢, we see that conditions (2.8) and (2.9) are Dirichlet-type BCs, while (2.10)
is a Neumann-type BC. Note that in the following calculations and derivations, the
Dirichlet data c; and ¢ are not required to be constants unless specifically mentioned.
With the above relation between ¢ and polarization vector P, we can calculate the
electric potential and then obtain the electric field, the electrostatic energy, and its
variation with respect to the polarization P. The details are given in Appendices A
and B.

Meanwhile, we note that if one wants to consider the energy density for the
system in both the bound charge case and the free charge case in a unified setting, a
straightforward way is to use a linear combination of (2.4) and (2.6), i.e.,

felezf(BE'P+(175)E'D)v

for a constant S € [0,1]. For the special case where 8 = 0 or 8 = 1, we have
the specified relation between E and P described above, respectively. However, for
other values of (, it is unclear which specific relation between electric potential and
polarization vector remains applicable.

3. New variational formulations of electrostatic interactions. We now
focus on the case of bound charges with the electric energy density given by (2.6)
and subject to the electrostatic equilibrium condition (2.7). We note that an explicit
solution to (2.7) can be used to not only simplify the phase field energy formulation
(2.6) but also derive an explicit mathematical expression of the functional variation
of the electrostatic energy. This effectively allows us to find the explicit mathematical
expression of the total driving force,

oF _ 0 Fyuik n O0Fwal . 0Fcie
5P 6P, 6P, oP;

(3.1) i=1,2,3,

in terms of the polarization vector P. Here we use (x1,z2,23) to denote Cartesian
coordinates (x,y, z), respectively. First, the bulk and the domain wall driving forces
are given, respectively, by

0Fy,
5bpilk =201 P; + 40&11Pi3 + 2a12 P Z P]2 + 6@111‘PZ-5 + 40[112Pi3 Z Pj2
(3.2) JFi j#i
+40112P Y P4 20003 [[ P7, d5=1,2,3,
J#i J#i
and
5Fwall 0] , aQPZ
6Pl = —Gll 6 P} (G44 + G44) Z m2
! j#i I
(3.3) 22p
+(G44*G12*G44)Zama; i,j=1,2,3.
gt
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Natural Neumann-type BCs of the form

oP OP.
(Gaa+ Gla) g~ + (Gua = Gra) 3> =0,
OP. OP.
(34) (Gaa + Gla) g~ + (Gua = Gla) 5~ =0,

OP; o~y 0P\
Gna +G12(51+8m2>_0

are also implied on the top (z3 = z = 0) and bottom (x3 = z = h) surfaces. The
electrostatic driving forces, i.e., the variations of the energy given in (2.6), subject to
the electrostatic equilibrium condition (2.7) and various BCs, are given by
(3.5)

0Fue [ Vo — %Vég, Dirichlet BC, e.g., constant BC (2.8), tip BC (2.9),

5P | Vo, Neumann BC, e.g., open-circuit BC (2.10),

where ¢ is an auxiliary potential. While more detailed derivations are given in
Appendix B, we offer the main procedures on how the terms (V¢ and V) in (3.5)
are determined. Let us use (A) to denote the 2D Fourier series expansion due to the
periodicity of ¢ and P in the zi-z2 plane with (A1, A2) being the variables in the
Fourier (frequency) space.

Let us work with ¢ first for the constant and tip-induced boundary cases with
more general discussions given in Appendix A. For the constant BC of (2.8), when ¢;
and ¢y are all constants, we can take Voo = a, where a = (0,0,a)”, a = 24 with
h being the film thickness.

As for the tip-induced BC of (2.9), based on the detailed calculation of ¢ given
in Appendix B.1.2, the function ¢5 is recovered from its Fourier representation given
by

Qg)top(Al, )‘2) (6|)\\z

M(h) ),

(3.6) da( A1, Aa, 2) = —e

where étop is the Fourier expansion of the potential ¢|,—; = ¢0p on the top surface,

IA| = /A2 + A2, and M(h) = eMh — e~ IAIR,
Next, we condition the determination of ¢ when (A, A2) # (0,0), and (2.7) leads
to

2<Z5 27 5 5 8}53 A
(3.7) 92 — 22— 220 :IA1P1+I)\2P2+§:f(>\1,)\2;2)a

where I = /—1 and f = f(A1, A, z) denotes the 2D Fourier representation of the
divergence on the right-hand side in (2.7). The function ¢ is recovered from its Fourier
representation given by

(3.8) B(A1, A2, 2) = C1 (A1, Aa)elM® + Co(Ag, Ao)e™PF 4 g(Ag, Mg, 2),

where the function g = g(A1, A2, 2) is defined by

(3.9) g( A1, Ae,2) = /Z[(BIA\(zfs) _ (;IA\(zfs))f(/\17 A2, 8)] ds.
0

1
2|\e
As for the coefficients C = (C7, Cs)T under the Dirichlet BC with ¢y and ¢; being the
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top and bottom boundary data, respectively, we have

1 —¢é1(Aq, )\2)€7|)‘|h + é2(A1, A2) — g(A1, Ag, h))

(310) C(/\l,)\Q) = W ( 61()\1,>\2)€|)“h o 62()\17>\2) +g()‘11 )\th)

where ¢; and ¢éo are the Fourier representations of ¢; and co, respectively.
For the constant BC (2.8) with ¢; and c¢p being constants, we have é (A1, A2) =
é2(A1, A2) = 0. So, (3.10) is effectively given by

02()\17>\2) = —Cl(>\1,)\2) = g()\l,)\g, h)/M(h)

Meanwhile, under the tip-induced condition (2.9), we get instead

_ 1 Grop(M, A2) — (A1, A2, h)
(311 G ) = M(h) (étopm,AQ) +g<A1,A2,h>> ‘

Finally, under the open-circuit BC (2.10), we have

1 (—133()\1, A2, 0)e” M £ Py(A1, Mg, h) — g3 (A1, Aa, h))

3.12) C(A, M) = —— (13 !
(312) G0, %) IAIM(h) \ —Ps(A1, A2,0)eM? + Py (A1, A2, h) — g3(A1, Ao, h)

where

h
(3.13) g3(A\1, A, h) = 2% / (M=) e NI=9) £(Ay, As, 5)] ds

0
denotes the value of the partial derivative of g(A1, A2, 2) with respect to the third
variable z evaluated at z = h.

It is important to highlight that as f = f(A1, A2, 2) is solely computed from the
polarization field P, so are the functions g, g3, and ¢? The numerical computations of
the integrals associated with both g and g3 are highly dependent on the discretization
of the functions and differential equations along the z direction. For illustration, here
we adopt a finite difference approximation in the z direction on a uniform grid, which
allows us to conveniently apply the composite Simpson rule based on the same grid
points without further interpolations. We leave more detailed analysis of numerical
discretization to subsequent works.

As a final note added for implementing the new variational formulations, we
remark that for Ay = Ay = 0, (3.7) should be modified. For this special case, (3.7)
can be simplified as a second-order ordinary differential equation for the real variable
z with the solution given by

$(0,0,2) = / P5(0,0,5)ds + Byz + B,
0

where the B; and By are determined by different BCs, e.g.,

1 b,
B = 7 (ég — ¢ —/ P3(0,0, s)ds) , By =2¢q, for condition (2.8),
0
h

B = % (q@top(0,0) 7/ pg(0,0,S)dS) , Ba=0, for condition (2.9),
0

By =By =0, for condition (2.10).

With the derivations above, (2.1) can be numerically solved by various methods.
Although we leave detailed discussion on the numerical approximations to separate
works, illustrative examples are presented later to show the effectiveness of the new
formulations here.
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4. Illustrative examples. We now present two numerical examples of the new
variational formulations of the total energy and the driving forces by computing the
equilibria and transition states. We adopt the steepest descent gradient dynamics
(TDGL) for the former, which leads to the equilibria via temporal polarization evolu-
tion. For the latter, the transition state is the point (state) of the highest energy along
the minimum energy path (MEP) between two local equilibria, which characterizes
the morphology of the critical nucleus and the critical nucleation energy that deter-
mines the rate of a nucleation reaction [31, 30, 33]. In the last few decades, various
numerical methods have been developed for saddle points and MEP calculation, e.g.,
the dimer method and its improvements [18, 28, 32], the nudged elastic band method
[16], and the string method as well as its various improvements [9, 10, 11]. In this
paper, we adopt a simplified string method in [11] to calculate the MEP to show the
complete 180° polarization switching process described by the MEP connecting two
equilibria.

4.1. Numerical results. We take the lead titanate (PbTiO3) thin film as an
example. The simulations are done on 3D computational domain of the size 64Ax x
64Ax x 64Ax with the parameter Az = 1.0 nm referring to a uniform grid spacing
in all three coordinate directions. The coefficients of the bulk free energy are exactly
taken from [20]. Here the vacuum permittivity ¢ = 8.85 x 1072Fm~!, and the
dielectric permittivity € = 100¢y. The isotropic domain wall energy coefficients are
taken to be G11/G110 = ﬁ, Glg/GHo = 07 and G44/G110 = GZA/Gllo = ﬁ,
where G119 is related to the magnitude of grid spacing Az via Az = \/G119/ap and
ap = 1.7252 x 108C~'m?2N.

To simulate the temporal polarization change of the domain or the ferroelectric
phase transition in the presence of an electric field, the relaxation system equation
(2.1) is solved by using the semi-implicit Fourier spectral method with periodic BCs in
the 21 and x axis along the film plane [4]. We compute several phase transitions by
applying our newly derived electrostatic energy variation with different BCs in (3.5).
In the figures presented here, different colors (red and blue) are used to represent
the equivalent polarization magnitude and the corresponding polarization direction,
ie., P=1(0,0,1) and P = (0,0,—1), respectively. The gradual change from the blue
color to the red color represents the local dipole polarization magnitude and change
in direction from —1 to 1 or vice versa.

Figure 1 shows the numerical simulation of the ferroelectric phase transition
started from a random domain distribution to an equilibrium in the presence of an
electric field. In the example, the electric field in the form of (2.6) is used with the
constant BC (2.8). After nondimensionalization, the constant BC is used so that the
electric potential is 0 on the top surface (¢[.—, = 0) and 10 on the bottom surface
(¢.—0 = 10). From the result, the random domains gradually disappear under a large
enough electric potential during the evolution, and the final polarization domain is
formed to minimize the electric effect.

Figure 2 shows the ferroelectric phase transition started from a tip-induced—like
domain configuration to an equilibrium in the presence of an electric field. Figure 2A
shows the sliced view (at y = 0) of the initial polarization state of Figure 2B in the X-Z
plane, and the scale and direction of black arrows illustrate the local dipole magnitude
and direction of each unit cell in the X-Z plane. In this case, the electric field is in the
form of (2.6) with the tip-induced BC (2.9). The tip-induced electric potential is zero
on the bottom surface of the film and satisfies the distribution ¢sop(z,y) = —#yz“
on the top surface, i.e., o = =2, v = 1, and (xo,yo) = (0,0). While the electric field
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: N=0 N=30

N=120

Fi1c. 1. Ferroelectric phase transition from an initial random polarization distribution to an
equilibrium under the constant BC. A-F: The simulated domain changes in the 3D configuration
space at different iteration steps, e.g., N =0, 30, and 150, respectively.

N=90 N=150

>

>
Z-Axis

1 X-Axis N=0 N=200

600 800

FiG. 2. Ferroelectric phase transition from an initial polarization distribution to an equilibrium
under the tip-induced BC. A: The sliced view (at y = 0) of the initial polarization state of the ferro-
electric domain in the X-Z plane (blue and red-shade plane in the schematic). B-F: The simulated
domain changes in the 3D configuration space at different iteration steps, e.g., N = 0,200, and 800,
respectively.

N=400

effect may generate a local polarization switching, numerical simulation shows that it
cannot induce a complete polarization switching if the initial domain (nucleus) is not
large enough or the electric field is not strong enough.

Next, we apply the simplified string method to compute the complete process
of 180° polarization switching from P = (0,0,—1) to P = (0,0,1) with the new
variational form. In Figure 3, we plot the MEP of the total polarization switching
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Images on the string
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Fic. 3. Computed MEP shows the ribbon-like 180° polarization switching process under the
constant BC. A: The MEP of polarization switching connecting the initial polarization state (B)
with the final polarization state (E) by passing through the critical nucleus (C). B: The initial steady
polarization state (P = (0,0,—1)). C: A ribbon-like critical nucleus corresponding to the point with
the highest energy on the MEP. C1: Sliced view of the critical nucleus (at y = 0) showing the domain
pattern in the X-Z plane. D: An intermediate state after passing the critical nucleus, corresponding
to the point D on the MEP. E: The final steady polarization state (P = (0,0,1)).

process, which corresponds to a ribbon-like pattern geometrically. In the presence
of an electric field, Figure 3C shows the configuration of the critical nucleus as a
thin polarization switching domain with a sharp interface, which gives the width of
interface 0 ~ \/G11/ap and 6 = y/Az/2 in this case. We slice the configuration of
the nucleus along y = 0 axis to show its domain pattern in the 2D X-Z plane clearly,
with the scale and direction of black arrows indicating the local dipole magnitude and
direction of each unit cell in the X-Z plane. Moreover, the width of the thin domain
gets enlarged with the increase of energy, and once the critical nucleus is formed to
overcome the energy barrier, the switched polarization domain continues to grow until
the final equilibrium state P = (0,0, 1) is achieved.

5. Conclusions/summary. With the newly formulated phase field energy in-
volving electrostatic energy contributions, the variation of the electrostatic energy
and the total free energy becomes straightforward. It eliminates the requirement to
impose constraints in the variational calculation and avoids the use of associated La-
grange multipliers. The explicitly formulated expression of the driving force makes it
convenient for numerical simulations and avoids ambiguity. It also helps to improve
simulation accuracy, as the electrostatic equilibrium equation is now given by an exact
explicit analytical solution.
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By using the new electrostatic energy variation under different BCs with suitable
electrostatic potential, we are able to accurately perform the complete phase transition
process of the 180° polarization switching and find the critical nucleus with a thin
polarization domain in 3D configuration space while demonstrating the effectiveness
of the mathematical formulation. The shapes of critical nuclei could be varied under
different electric fields and driving forces. More detailed discussions on other types of
polarization switching process will be illustrated in a later work.

Although the current work only focuses on the ferroelectric phase transition in-
volving electrostatic contributions, the other contributions, such as the elastic energy,
can be also taken into account. We expect that a similar approach can be applied to
more general phase field models for ferroelectric and ferromagnetic materials, which
will be pursued in the future.

Appendix A. Calculating the electric field under different BCs. We
have already presented the precise functional forms of the electrostatic energy given,
respectively, in (2.4) and (2.6). We now present in more detail calculating the solution
of the electrostatic equilibrium equation (2.7) subject to either (2.8) or (2.10) and the
functional variation of the energy form (2.6) under different BCs.

We first discuss how to calculate the electric field and the electric potential ¢
from the polarization field. Applying the 2D Fourier expansion on (2.7), as the ¢ and
P are periodic in the X-Y (or equivalently the x1-z3) plane, (2.7) becomes (3.7), i.e.,

L L
~ 1 2 2 A 2427 Ao
oA, A2, 2) = ﬁ/ / (x,y, 2)e  CTEETE) dady.
L L
—2 YT

For each A\; and Ag, (3.7) can be taken as an independent scalar linear ordinary
differential equation of QAS in real variable z, and we can easily find its general solution
in the form of (3.8).

By performing a 2D Fourier expansion on the electric BC, (2.8), (2.10), and (2.9),
the unknown coefficients C; = C1 (A1, A2) and Cy = C3(\1, \2) can be determined, re-
spectively. More specifically, let g(z) and g3(z) be shorthand notations of the functions
g(A1, A2, 2) and g3(A1, Ag, 2) given by (3.9) and (3.13), respectively, with f(A1, Az, 2)
being defined by (3.7). We then have the following 2x2 linear systems.

For the Dirichlet BC (including the special constant BC by (2.8)),

(A1)

Ci + Cy = ¢1(A1, A2),
CreMP 4 Che P 1 g(h) = é3(A1, Ag).

For the tip-induced BC by (2.9), we have a special case of the above, namely,

Oy +Cy =0,
(A.2) { e

CrePMh 4 Coe PP 4 g(h) = Grop(A1, A2).

For the open-circuit (Neumann) BC by (2.10), we have

(A.3)

Ci|A| = Co|A| = Ps (M1, A2, 0),
2A|(CreMP — Coe™ MY 4 ga(h) = Py(A1, Ao, h),

where g3(h) is the value of g3(z) at z equal to h. By solving these linear equations,
we can get the coefficients C; and Cy corresponding to different BCs, as given in
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(3.10), (3.11), and (3.12), respectively. The electric potential and electric field can be
easily obtained from the Fourier expansion (or the discrete inverse Fourier transform
on lattice points) of (3.8) and its derivatives, e.g.,

(A1) )= L2 3 B A, 2l AR

A1,)\2=—OO

and

99 oo
Oz A ~ 2T\ 27w Aoy
(A5) ( ¢ ) = L2 § I < )\; ) ¢()‘17 )\Qa Z>61 g eI Eoy

A17A2=—OO

while

(o]
2w 27w
(A.6) % =L? Z [A[(CreM? — Coe™N2) 4 ga(2)]e! ~ 2" el 7T
A1, A2=—00

Consequently, the electrostatic energy can also be obtained.

For the Poisson equation (2.7) with a more general Dirichlet BC in the z direction,
we can make use of the linearity of the operator A and decompose the solution ¢ of
(2.7) into ¢ = @1 + @2 with ¢1, ¢ satisfying

(A?) €A¢1 =V.P and 6A¢2 =0

P1]z=0 = b1]2=n =0 P2l.=0 = c1,  Pals=n = co.
The total solution for (2.7) under this type of BC is ¢ = ¢1 + ¢, and the total electric
field is V¢ = V@1 + V. This works in general without requiring the Dirichlet data
c1 and ¢y being constants.

Now we adopt the same idea and notations to calculate ¢, and its derivatives
under the Dirichlet BC. For the special case by (2.8), when both ¢; and ¢z are con-
stants, the solution ¢ with these boundary constants has the form of ¢ = az + b
(a = ©25%) and b = c;. Thus, the special case leads to ¢ = ¢1 + az +b, Vo = a,
and V¢ = V¢, + a, where a = (0,0,a)7T.

In general, we may apply the 2D Fourier expansion in the X-Y plane to solve the
Laplace equation for ¢o, i.e.,

d2¢s

dz?

(A.8) — (AT +23)d2 = 0.

The solution of the homogeneous second-order ordinary differential equation with
respect to real variable z by (A.8) has the form

(A.9) b2(A1, A, 2) = C1(A1, A2)eZ 4 Co (A, Aa)e 2]

where |A| is the same as used above. Performing a 2D Fourier expansion on the BC
(2.8), the unknown coefficients C; and Cs can be determined by solving the linear
equations

(A.10) {010\1, A2) + Ca(A1, A2) = é4,

C1 (A1, A2)eMP 4+ oA, Ap)e™ M = ¢,
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Thus, the solution of C; and Cs could be given by

Gy — Ere~ AR érelMh — ¢,

(A.11) G r) = mp— e Gl = Rp

Appendix B. Calculation of the electrostatic energy variation of (2.6)
under different BCs.

B.1. Energy and energy variation under the Dirichlet BC. To calculate
the electrostatic energy in the form of (2.6) and its energy variation under the Dirichlet
BC, we adopt the splitting idea above, and the electrostatic energy in the form (2.6)
can be rewritten as

1
Fele:/feledvz/7(v¢1'P+V¢2'P)dV.
Q Q2

Thus, we only need to handle the term V¢q, as the ¢4 is independent of P according

o (A.7). For notational convenience, we just use ¢;(P) to denote the dependence
of ¢1 on P, which is a linear operator and can be easily found by the left part of
(A.7). More specifically, ¢1(P) refers to the solution of the Poisson equation subject
to the homogeneous Dirichlet boundary for a given P, i.e., A¢1(P) = 1div(P) in the
domain and ¢; = 0 on the top and bottom boundary surfaces (periodicity in the film
plane). Meanwhile, V¢ (P) refers to the electric field corresponding to the auxiliary
potential ¢1, and we calculate the Fréchet derivative of electrostatic energy at P
along the direction Cj as

tho _ %/[ng)l(P) -Q+V1(Q)- P+ V- Q] dV.
Q

where [ is a scalar. Using the divergence theorem, Green’s identity, and the periodicity
of P, Q and ¢1(P), ¢1(Q) in the X-Y plane and the zero Dirichlet condition for the
latter pair on the top and bottom surfaces, we get

/ Vi (Q) - PdV = — / o1 (Q) divPdV
Q

/ $1(Q) Mgy (P)dV

(B.2) - / A6 (D) én(P)aV
= / div@ ¢y (P)dV
Q

:/Q-V¢1(P dv.
Q

Combining the above derivation and results in (B.1), we can get the variation of
electrostatic energy in the form (2.6), under the Dirichlet BC (2.8), as

e — Vo, + (Vs = Vo - SV

B.1.1. The case with constant BC. A particular case of the Dirichlet BC is
the constant BC by (2.8), with ¢; and c2 being constants in the X-Y plane. For (2.6),
we end up with the following form for the electrostatic energy:

(B.1)

(B.3)

1
Fele:/i(v¢1'P+a'P) dV
Q
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The energy variation is

JFele
oP

1 1
=V¢—§V¢2:V¢—§a.

B.1.2. The case with tip-induced BC. The tip-induced BC by (2.9) is an-
other special case of the Dirichlet BC. Following the results presented in Appendix A
above and with ¢ = ¢1 + @2, we easily get that the electrostatic energy variation with
respect to polarization vector P in the energy density form, (2.6), is

5Fele
oP

1 1
=V¢; + §V¢2 =Vo¢— §V¢2 .
The potential ¢o satisfies

Ady =0
(B.4) B B 7
$2|:=0 =0,  P2|.=n = do @ =20+ (y — 02 + 72

The solution can be determined as discussed previously in Appendix A. In this special
case, (A.11) leads to

étop()\lv )\2)

Cr(Asde) = =Co(Ms he) = 55—

Similarly, we can get the solution of ¢2 in both real and Fourier variables under
the Dirichlet BC through the 2D Fourier expansion, i.e., (A.4), and in this way the
gradient of ¢ can also be computed, e.g., through (A.5), and

(B'5) 6¢2 = Z Z |)\| C’lele Cs E*IA\Z) z"*” 2’”\27/'

/\1:700 )\2—700

Thus, the total electrostatic potential can be obtained by summing up the solution of
the two parts in (A.7).

B.2. Electrostatic energy and its variation in an open circuit. We note
that the electrostatic energy in (2.6) is

1
Fele:/feledvz/*vqs'Pd‘/.
Q Q2

We adopt the same idea used before to calculate the F'réchet derivative of the elec-
trostatic energy in this case. For the Fréchet derivative of electrostatic energy at
P along the direction @), we can use the same expression as given in (B.1). But in
this case, ¢ is replaced by ¢, and (;5(@) means the solution of the Poisson equation
subject to the Neumann BC for a given @, i.e., Aqb(@) = %div(@) in the domain, and
quZ)(Q) -ii =@ - ii on the top and bottom boundary surfaces (periodicity in the film
plane), where 7 is the unit vector normal to the boundary surface.

For the integral of V(@) - P, we note that (2.7) still holds. By using the di-
vergence theorem, Green’s identity, and the periodicity of P, ¢(P), Q and ¢(Q) in
the X-Y plane as well as the Neumann BC for the two pairs on the top and bottom
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surface boundaries, respectively, we get
(B.6)

/Q Vo(G) - P dV
= | #(Q)P-dS - / H(Q)divPdV
Q

o0

— [ s(@P-as+e ( [ 90(@)- oy - [ o@vae)- dS)

o0

- [ 0@ P - Vo) -as+ ([ oP)ve@-as— [ oP)re@ av)

=c [ ¢(P)V$(Q) -dS — [ ¢(P)divQ dV
(o9} Q

- / 6(P)(eV(D) - O))-dS + / Vo(P) -G dv
o0 Q

= [ Vo(P) Q@ dV,
Q

where dS denotes the normal surface area element, and from the derivation above,
combining the Fréchet derivative in (B.1), we can easily get that the variation of the
energy form (2.6), under the open-circuit BC, is

5Fele
oP

(B.7) = V¢(P).

It should be noted that under the Neumann BC, the solutions of the Poisson equation
differ from each other by a constant. This is unimportant in general, as the goal is to
obtain the electric field V¢ that is unique according to the Poisson equation in this
case when given a polarization vector P.
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