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ENERGY DECAYING PHASE-FIELD MODEL FOR
FLUID-PARTICLE INTERACTION IN TWO-PHASE FLOW*
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Abstract. In this paper, we study a phase-field model for the dynamics of a solid particle in
two-phase flow. The governing system in our model is a coupled system of Navier—Stokes equations,
Cahn—Hillard equations for the multiphase flow, and Newton’s law for the motion of the particle.
The effect of the wettability of the particle and the motion of the contact line are modeled by the
generalized Navier boundary condition. To show that our model is physically consistent, we show
that the model can be derived from the principle of minimum energy dissipation (entropy production)
and has the energy decaying property. Using the method of matched asymptotic expansions, we also
derive the sharp interface limit for our model.
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1. Introduction. The two-phase fluid-particle interaction problem has wide ap-
plications in scientific and engineering areas such as materials separation, crude oil
emulsions, slurry transport, etc. There have been many works on modeling and simu-
lation of the two-phase fluid-particle interaction problems. The numerical approach of
fluid-particle systems may be classified into two types: the continuum approach and
the direct numerical simulation (DNS) approach. In the continuum approach, solid
particles and fluids are viewed as interpenetrating mixtures with different viscosities
that are governed by conservation laws [19, 32, 38, 39]. The continuum approach is
efficient and flexible. However, the false response from the viscous material used to
mimic the rigid objects might produce undesirable hydrodynamic effects, thus caus-
ing potential difficulties in the continuous approach when the particle concentration is
dense, or when there are particle-wall and particle-particle interactions in the problem.
On the other hand, the DNS approach [15, 16, 17] takes on a fundamental approach
with Navier—Stokes equations for fluids and Newton’s law for particles. The DNS
method gives a clear understanding of the mechanisms between fluid and particle and
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is well designed for many complicated problems involving nonlinear and geometrically
complicated phenomena.

For the DNS approach to fluid-particle interaction in two-phase flow, extra dif-
ficulties arise from the discontinuities of field variables near the fluid-fluid interface.
In order to overcome these problems, it is necessary to model the fluid-fluid interface
while conserving the conservative quantities at a discrete level even with discontinu-
ities. On this aspect, mathematical modeling of the two-phase flow may be classified
into the sharp interface method and the diffuse interface method. In the sharp inter-
face method, the fluid-fluid interface is of zero thickness and the variables near the
interface may be discontinuous. The sharp interface method has been successfully
applied to a wide range of physical problems; some of the best-known examples of the
sharp interface method include the marker and cell method [13], the volume of fluid
method [14], the front tracking method [12, 33|, and the level set method [24]. Mean-
while, the diffuse interface method, which is also known as the phase-field method,
assumes that the interface between different fluids has a finite thickness and the vari-
ables change smoothly across the interface. The earliest diffuse interface method may
be traced back to van der Waals [34], which is based on the thermodynamic consid-
eration of the free energy of a binary system, with a hypothesis that the equilibrium
interface profiles can be obtained by minimizing the free energy functional. In the
work of Cahn and Hilliard [6], the free energy is derived from a multivariable Taylor
expansion about the free energy per molecule. The diffusive interface method has
been further developed in [3, 21, 37, 28].

On the problem of two-phase flows, another difficulty comes from the dynamics
near the moving contact line (MCL). The MCL is defined as the intersection of the
fluid-fluid interface with the solid wall and particle surface. In order to describe
the dynamics near the MCL, proper boundary conditions are required on the solid
wall and the particle surface. Unlike single-phase flows where the no-slip boundary
condition is widely used in application, such a no-slip condition is incompatible with
the MCL in two-phase flows [8, 9, 11, 18, 22, 23]. In [26, 27] a generalized Navier
boundary condition (GNBC) is introduced to model the effect of the wettability and
the MCL. It is demonstrated that the GNBC can quantitatively reproduce the MCL
slip velocity profiles obtained from molecular dynamics simulations. Moreover, it has
been shown that a phase-field model with GNBC may be derived by the principle of
minimum dissipation [27].

In this paper, we develop a phase-field model for the two-phase fluid particle
interaction problem. An example of such a problem is a solid sphere falling through
a water surface; see Figure 1. Our model uses the DNS approach, which consists of
the Cahn—Hillard—Navier—Stokes equations for the dynamics of the two-phase fluid
flow and Newton’s second law for the particle motion. The effect of the wettability of
the particle and the motion of the contact line are modeled by the GNBC. Unlike the
previous models (e.g., [7]), the contribution of the capillary force to the particle motion
is also taken into account. The model and the boundary conditions are properly set
up so that they are physically consistent.

In order to describe practical problems, we consider two-phase flow with unequal
density. Constructing a physically consistent phase-field model for the unequal den-
sity case is very challenging. Onme of the reasons is that when fluid densities are
not equal, mass conservation is not a direct consequence of incompressibility any
more. As a result, when describing the unequal density case, one should either start
from mass conservation or start from incompressibility; none of the current mod-
els satisfy both of them. According to such choice, there are mainly two kinds of
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Fic. 1. Solid sphere falling through water surface.

approaches: the quasi-compressible approach and the incompressible approach. In
the quasi-compressible approach [1, 21, 31], the fluid is assumed to be slightly com-
pressible near the fluid-fluid interface, and as a result the governing system conserves
mass. In the incompressible approach [2, 4, 20, 29, 30], fluid is still incompressible
while the equation system is modified by physical properties of the problem, such as
the energy law. In this paper, we use the incompressible approach since we want to
verify our model by a variational point of view and derive the sharp interface limit. We
show that our model can be derived variationally through the principle of minimum
energy dissipation and has an energy decaying property.

For phase-field models, to capture the fluid-fluid interface, we introduce a diffuse
interface with nonzero thickness. However, in practical simulation, limited by, e.g.,
the computation resources, the thickness of the diffuse interface usually cannot be
chosen as small as the physical size. Therefore, it is important to study the influence of
interface thickness in the equation system, especially the limit of the governing system
when interface thickness goes to 0. Such a limit is called the sharp interface limit of
the governing system. Using the method of asymptotic expansion for MCL problems
[25, 35, 36], we also derive the sharp interface limit of the governing equations. We
show that the leading order problem is a coupled system of the Hale-Shaw equations,
the Navier—Stokes equations, and Newton’s law, with the fluid-fluid interface being
a free boundary, and the leading order dynamic contact angle is the same as the
static contact angle in the Young’s equation. Moreover, the sharp interface limit also
satisfies the energy decaying property. Compared with the previous results of equal
density two-phase flow, when densities of the two fluids are unequal, additional terms
will appear in the form of chemical potential and the pressure jump condition on
the fluid-fluid interface. These terms balance the change of kinetic energy caused
by unequal densities of fluids and thus are very important to the energy decaying
property of the sharp interface limit.

The paper is organized as follows. In section 2, we give the governing equations
for a two-dimensional (2D) model problem. In section 3 we present a variational
derivation of our model, which is based on the principle of minimum dissipation. The
energy decaying property of the model is shown in section 4. In section 5 we derive
the sharp interface limit of our model. Final discussions are given in section 6.

2. A phase-field model of the two-phase fluid-particle system.

2.1. Governing equations. In this section we present the phase-field governing
equations for the dynamics of a particle in two-phase flow. For simplicity we consider
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a 2D case, while extension of our model to the 3D case is straightforward. Let 2
denote the entire computational domain, including fluid and the particle, which is
time-independent. The particle is moving inside 2. The region of the particle is
denoted by P(t). Q and P(t) are open sets. dP(t) and 92 stand for the boundaries
of the particle and the computation domain. The particle is a rigid body and is
homogeneous with equal density. Two-phase flow in this system is a mixture of
two immiscible, incompressible fluids. Densities and viscosities of the two fluids are
denoted by p1, p2 and 11, 72. In the phase-field model, we introduce a variable ¢ such
that

¢ =—+/r/u fluid 2,

with a thin transition layer near the fluid-fluid interface. Here r and u are interface
thickness related parameters. In this paper we assume r = u. Using the phase variable
¢, fluid density and viscosity may be described by volume average:

p(¢) = (172L¢> p1+ (1;¢> p2, n(P) = (1;¢> m+ (1;¢> M2

In this paper we may abbreviate p(¢) and n(¢) by p and 7 if there is no ambiguity.

Using the phase-field model, we may derive a phase-field model for the two-phase
fluid-particle system. Governing equations for the fluid is a coupled system of Cahn—
Hilliard equations and Navier—Stokes equations,

{ o =+/r/u fluid 1,

%-l-u-V(b:MA,u n 0\ P,
”:_KA¢>—7“¢+U<153+%p’(qb)llll2 in Q\P(D),
P(?;tl"‘(u'v)u)ZV-(—pI+nU—KV¢®V¢)+pg in Q\ P(t),
vouso in 0\ P,

where p is called chemical potential, u denotes the fluid velocity, and p stands for
pressure. The term V¢ ® V¢ denotes the Kronecker product of V¢ and its transpose
(Vo)T, and o is defined as o := Vu + (Vu)?. M is a phenomenological mobility
coefficient, and K is a material-related parameter.

By introducing the particle velocity U, and particle angular velocity wg, and
denoting r the vector from the particle mass center to the current position, we may
define ug := U, + w,; X r as the pointwise velocity of the current position on the
particle surface. Denote by n the outward normal on 02 and JP(t), in which the
outward direction is w.r.t. the fluid domain Q \ P(¢).

The equations of particle motion and rotation are given by Newton’s law:

dUj
A WY 7/ (—pI + no — KVé ® Vo) - nds + M.g,
dt AP (1)
dwg
s :—/ rx ((—pI+no — KV¢QV¢) - n)ds.
dt aP(t)
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Here M, stands for the mass and I, stands for the inertia tensor of the particle. For
a particle with density ps, Mg and Iy can be written as

Mszps/ dx, IS:pS/ [(r-r)I—r®r]de.
P(t) P(t)

On the particle surface OP(t), we apply the GNBC to describe the dynamics of
the MCL. Let 7 denote the tangent direction on 92 and JP(t), define u, = u- 7 as
the tangent component of fluid velocity field, and define us!"? := (u — u,) - T as the
slip velocity of fluid on the particle surface. On particle surface dP(t) the GNBC in
the governing system is given by

Busl” = —p(o-m) - T+ L(d’)%f on OP(t),

& V6= AL(9) on OP(?)
99 | 0v(9)

L(¢) = Kai + Td) on OP(t),

(u—u,) n=0 on OP(t),

0

ﬁ -0 on OP(t).

Denote ujlif := (u—uy,) - 7 the slip velocity of fluid on 99, where u,, is the velocity
of the solid wall 9Q2. GNBC on 92 is given by

6u§l”’ =-—n(o-n) -7+ L($) g(b on Of),
T

aaf +Vo-u=-AL(¢) on 09,

L(¢) = K% + g%; on 09,

u-n=20 on 01,

a—u =0 on 0N

on '
In GNBC the interfacial tension v(¢) is defined as y(¢) := l'ylg cos@sin(g(b). Y12
is defined as y12 = %‘ﬁr% 0 is the static contact angle. v/ K/r denotes

the interfacial thickness. L(¢) represents the uncompensated Young stress. B(¢) :=
% b1+ % B2 is the slip coeflicient, and ) is a positive phenomenological parameter.

2.2. Dimensionless form. In numerical simulation, it is convenient to intro-
duce a dimensionless form of the governing equations for the two-phase fluid-particle
system. We scale length by a characteristic length Lg, velocity by a characteristic
velocity Vp, angular velocity by Vy/Lo, time by Lg/Vjp, density by p;, pressure by
mVo/Lo, and external body force density by VO2 /Lo. Then, we may derive a dimen-
sionless form of the governing equations in our model.

In the dimensionless form, since density p is scaled by p1, and viscosity 7 is scaled
by 1, p(¢) and n(¢) are defined as

1
(1) p(6) = 24 1200 )= 04 120,
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where A\, := pa/p1 and A, := n2/m1 stand for density and viscosity ratios. Governing
equations of the fluid read

(2) g‘f+ Vo = LaAp in Q\ P(t),
(3)  p=-cho+ (6"~ 0)+ 3B Repl(6)]ul’ in 0\ P(D),

4)  Rep <88t +(u-v) )

=V (-pIl+no —BeVp @ Vo) + Repg in Q\ P(t),
(5) V-u=0 in Q\ P(t).

Since particle mass M, and inertia I, are also scaled by p1, which is

M= (ofo) | L 1=l | leent-rea

P(t)

the dimensionless equations of particle motion and rotation are

du,
(6) s—— = —/ (—pI +no — BeVo @ Vo) - nds + ReM,g,
de OP(t)
dw;
(7) Rel Vs _ —/ rx ((—=pI+no —BeVop @ Vo) - n)ds
dt aP(t)

In GNBC, ~(¢) is defined as y(¢) := —% cos sin(5 ¢). Introduce slip length I, by

lsi == m1/B1, lsz :=12/B2, then slip length [,(¢) = 1;¢’+12%7 where A, = lsp/ls1.-
We also abbreviate I5(¢) by I if there is no ambiguity. The dimensionless boundary
conditions on OP(t) are

n slip _ . a¢
(8) o —ul'? = —n(o-n) -7+ BL(¢)— 5y on OP(t),
O 2 +Veu=-VI) on OP(0),
_ 99 9(9)
(10) L(¢) = S + 96 on OP(t),
(11) (u—us) - n=0 on OP(t),
0
(12) a—z =0 on 9P(t),
while the dimensionless boundary conditions on 02 are
0
(13) ﬁnl uSl”’ —n(o -n) -1+ BL(9) 3? on 09,
(14) 80(1/55 +Vo-u=-V,L(¢) on 09,
_ 0 (@)
(15) L&) =5, + 54 on 0Q,
(16) u-n=0 on 09,
(17) % =0 on ON.
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Definitions and meanings of other dimensionless parameters are listed as follows:

e:=¢/Lg Cahn number,

L= 3v12M/2v/2Vy L2 Diffusion coefficient,

Re := p1VoLo/m Reynolds number,

B = 3712/2V2mVy Inverse capillary number,
Ls:=m/b1Lo Slip length,

V, = 3712/\L0/2\/§V0 Mobility coefficient.

For the dimensionless model, we may define the total energy F of the governing
system:

(18) F :=ReF} + BFy, + Rerm + Rerr + BFap(t) + BFsq,

1 1 1
F, ;:/ —plul’dz, F,, = §MS|US|27 E,, = §IS|wS|2,
Q\P(t)

Fb ::/ fdeE, FaP(t) 2:/ fyds, FaQ Z:/ ’)/ds,
Q\P(t) dP(t) a0

where f, := £|V¢|> + L(¢* —1)%

Remark 2.1. In the original form and the dimensionless form of the model, we
use the same notation, such as u, ¢, My, .... This is because we would like to avoid
introducing too many different notational symbols in the paper. In the rest of this
paper, definitions of such symbols always follow the definitions in dimensionless form.

3. Variational derivation of the governing equations for the two-phase
flow. In this section we show that our model may be derived by the principle of
minimum energy dissipation. First of all, we should restrict the variables in the
governing system, such that they fit some basic physical properties of the system.
First, since the two-phase fluid is incompressible and impermeable, we have

(19) V-u=0 in Q\ P(t),
(20) (u—u;) - n=0 on IP(t),
(21) u-n=20 on 0.
Moreover, defining material derivative % as
Dy _of
we may define the diffusive current J, such that % = —V - J. We require that J

satisfies the following boundary condition:
(22) J - n=0 ondQUOIP(t).

Boundary conditions (20)—(22) are called the impermeability boundary conditions. In
the derivation by variation, we assume that (19)—(22) hold. We also assume that the
wall velocity u,, is 0.

For incompressible two-phase flows, the governing model system may be derived
from a minimum dissipation theorem [27] by minimizing the functional (® + %F ) for
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prescribed ¢, where @ is the dissipation function. For the fluid-particle interaction
problem, the dissipation function ® may be defined by ® := Ry + R}, where R; stands
for the dissipation caused by fluid motion, and R} denotes the dissipation due to the
displacement from the two-phase equilibrium. The two dissipation terms R; and Ry
may be given by

1 1 N slipp2 1 N\ slipp2
Ry ::—/ 77|0'2dx+7/ ——|uP|“ds + = ——|u"*P|“ds,
4 Jo\p) v 2 Jop@) Lsls 2 Joq Lsls
1. 1 Do |? 1 Do |?
Ry := =BL 1/ J?de + =BV ! —Z| ds+ =Byt —| ds,
277 Javpw o 2 ar(t) | Dt 2 oq | Dt

where |o|F is the Fronbenius norm of o

Given the definition of (® + %F ), according to the principle of minimum energy
dissipation (see [27, Appendix A]), for prescribed phase variable ¢, we derive the
governing equations by minimizing (® + %F ) w.r.t. perturbations to velocity field
u — u + Ju, particle velocity Uy — U, 4+ 0Uy, particle angular velocity ws —
ws + dwg, diffusive current J — J + 6J, and %(f — %‘f + 5%‘?. Note that for the
original velocity field, we have the incompressibility condition (19) and impermeability
boundary condition (20)-(22), and the perturbed velocity field also needs to satisfy
the same conditions. Therefore, we require that the perturbation §J, du, §U,, and

ws satisfy

(23) V-éu=0 in Q\ P(t),
(24) (bu—4dus) - n=0 on OP(¢),

(25) dju-n=0 on 09,

(26) 0J-n=0 on 0N UIP(t).

Here dug := U, 4 dws X r. Moreover, similar to the discussion in section 3 of [20],
we choose perturbations that satisfy

D(6u) —__ d(5uy) d(5ws)

o =0 in Q\ P(t), I =0, g7 =0

(27)

It is easy to see that such additional constraints do not affect the value at current
time; thus (19)—(22) are still well-defined.

For an arbitrary functional G(¢, %, u, U, w,, J), we introduce an operator § to
denote the variation for prescribed ¢, while the perturbation of variables is subject
to constraints (23)—(27). More precisely, we define §G by

s (5PN 50 L 9C L 06 L 6G a6
56 = [m/ (5 Dt)]a 00 00 bt 28 0 2 e

where the variations above (e.g., 5G/(5%)) are taken by viewing ¢ as given data.
We may present the theorem on variational derivation.

THEOREM 3.1. Given incompressibility condition (19) and impermeability bound-
ary conditions (20)—(22), governing equations (2)—(17) may be derived by minimizing
the functional ® + %F w.r.t. velocity field u — u + du, particle velocity Ug —
U, +0Uyg, particle angular velocity ws — ws + dws, diffusive current J — J+48J, and
%‘f — % + 5%‘? for prescribed variable ¢, where the perturbations satisfy (23)—(27).
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Proof. We start from calculating the time derivative of energy F. Note that the

integration area €\ P(¢) changes over the motion of P(t); it follows from (19)—(20)-
(21) that

d d Ofy
—F, = / frdx :/ ——dx +/ fo(us -n)ds
dt dt Jo\pa a\p@r) Ot OP(t) ( )

—/ afbd +/ fo(u-n)ds+ fo(u-n)ds
Q oP(t)

\p(t) Ot 80
(28) :/ oh +Vfy-u+ fiy(V-u)de = / —fbdx
Q\P(t) ot Q\P(t) Dt

According to (3), define u as
1, .. 1.
pi=—eAp+ =(¢° = ¢) + 5B Rep/(9)[ul*.

Since f, := 5|Vo|? + £ (¢? — 1)2, we have

8fb B 99 1 3 5¢>
/Q\P(t) ot /Q\P(t) (quSV +€(¢ —9) ot

¢ ¢ 0¢ ¢ D
- ~ctot 200 0)) Farre [ L0%asic [ S0%0,
/S;\P(t) < ¢ (¢ (b) ot OP(t) on Ot o0 dn Ot
1, 0¢ ¢ 0 9¢ 9¢
29) = — B 'Rep’ u2> —dz+e / —ds+e ——ds

Using the well-known identity (cf., e.g., [10])

1
V- (Vo@ V) = SV(IVHF) = AdVe,
we have
1
Vfy = (u - 26—1Rep’<¢>|u|2) Vé+ev- (Voo Vo).
Using the above equation and Green’s formula, we may derive that
1
G [ Vheude= [ (ue (B R (@)u)(Vo w)ds
Q\P(t) Q\P@) 2
+e/ (V- (Vo Vo)) - ude.
Q\P(t)
Here A: B =3, . a;;b;; for two matrices A = {a;;} and B = {b;;}.

Plugging (30) and (29) into (28), and multiplying B to both sides of the equation,
we may derive that

dp _ g res o) 22
o) B -5 [ - (1= 587 Res (@) Do
9¢ 09 ¢ 09
+Be/ V- (Voo Ve¢)) - udx + Be ———ds+ Be —ds.
Q\P(t)( (Vé@Ve) ap(t) On Ot o On Ot
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By the impermeability boundary condition (22), we have

D
(32) / uﬁdm = 7/ uV - Jdz = / Vi - Jda.
avpe Dt Q\P(t) Q\P(t)

Combining (31) and (32), we have

33 BLip -8 V- Jdz +Be/ (V- (Vé® V) - uda
dt Q\P(®) Q\P(t)
9¢ 9¢ 9¢9¢ 1 1) P2 1y2
+ Be / 8n 5 ds+Be/@Q o 8td 272 Q\P(t)p (9) Dt |u|“dx.

On the time derivative of the kinetic energy F}, similar to the derivation in (28),

d d/ 2 1 D(p(¢)[uf?)
Re—F), = Re —p(@)|ul®dr =R ————=dx.
Du D¢
34 :’Re/ p(p)— - udx + ’Re/ oo ul?dz.
(34) PO D T kA

Moreover, it is straightforward that

d dU, d o dws
(35) Re dt pm = ReMSW . U37 Re dt pT’ = RGISW . wsdt

According to GNBC (10) and (15), we define L(¢) as L(¢) := ean
impermeability boundary condition (20), we have

u—u, = ((u—u,) 7)7+ ((u—u,) -n)n=u"Pr on OP(t).

Thus we have

d _ 0v(¢) (09
BaFap(t) =B P 8¢ <8t + VQb U, ) ds
¢ ¢
= L) — e22 ) [ Z2
B/f)P(t)( 2 ) <5t+v¢ u>
_ Do 09 ai _ 09 (99
(36) =B . L(¢) <Dt 5,U p) ds — Be o) O <(‘3t +Vo- us> s.

Similarly, using impermeability boundary condition (21), we have

d B () 0 ] ¢
Batoe=B| 55 a =P BQ<L(¢’) an) s
_ D¢ 99 9909 ,
(37) N B a0 L(¢) (Dt 87’ > ds — B a0 3n 8t ds
Summing up (33), (34), (35), (36), and (37), we come to
(38) iF B Vu-de+Be/ (V- (Vo Vo)) - udz
dt Q\P(t) Q\P(t)
D¢ 09 wl ) 9¢

B L P ) ds — Be —V sd
OP(t) (@) (Dt o ap(t) On 0 st
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D¢  0¢ ) / Du
+ B L (—uT ds + Re — -udr
- @)\ 5~ 2, o r(9) 5,
dU, dw,
Wy,

e - e
dt 3 dt
On the variation of @, it is straightforward to see that

(39) ) / f|o'\Fdx =— / du-(nV - o)de
o\ 4 Q\P(1)

+ / ou- (no -n)ds + ou- (no -n)ds.
aP(t) G19)

Moreover, define

ousl? .= (Ju — (U, + dw, x 1)) - T on P(t), du, :=du-7 on dQ;
using (24)—(25), we have
(40)

1
ol -~ / lo|%ds | = — / du-(nV -o)dx + 0Us - no - nds
4 Jo\p(t) \P(1) oP(t)
+ 0w, - / r x n(o-n)ds + / SuslPy(o - m) - Tds
oP(t) aP(t)

+ / ou;n(o - n) - 7ds.
T9)

Recall the definition of ® that

1 1
<I>:7/ 770'2d$+*/
4 Ja\p@) lolF 2 dP(t)Ll

slzp| ds+ = / El |uslzp| ds

2 2

1 D D
+=BL;! / |J|?dx + va;l / DoV gs 4 va;l / D¢ ds,
2 O\P(t) 2 ap(t) | Dt 2 oq | Dt
we may derive the variation of ®:
(41) 0P =— / du-(nV -o)dr + 0Us - no - nds
Q\P(t) oP(t)

+ 0w, - / r x n(o-n)ds + / ousl®y(o - n) - Tds
oP(t) aP(t)

o0

stip " sli -1 ¢\ D¢
Jr/ Sust? Lyl ds + BY, / 4] ( ) —ds
aP(t) £5l5 s aP(t) Dt Dt

D¢\ D¢
+/ 5uT£lqus+BV /5<Dt>DtdS'

For the variation of 5 F, using (23)-(27), we have

+ Su,;n(o -n) - Tds + BL;* / 0J - Jdzx
Q\P(t)

(42) 4§ (dF) =B 6J - Vyudz + Be/ du- (V- (Vo®Vo))dx
dt Q\P(t) Q\P(t)
D¢ i 99
+B ) () L(¢)ds — B SusPL(¢) =—ds
opty \Dt @) oP(t) ( 5
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— BedUy, - a—¢V¢>ds — Bedw, - / r X (?Vgﬁ) ds
n

AP(t) on AP(t)

D¢ d¢
+B ] <Dt> L(¢)ds — B/BQ 5uTL(¢)§ds

a9
Du dU dw

R du-p——dr + RedU, - My—> + Redws - [y——.
+ e/Q\P(t) upp x + Re o + Redw o

Finally, using the incompressibility of the perturbated velocity field du and (24)-
(25), we have

(43) 0= f/ (V- du)pdx = / du- Vpdr — / dus - (pI - n)ds.
Q\P(t) Q\P(t) OP(t)

Summing up (42), (41), and (43), we come to

(44)

d
6| =F+®
(F+2)
Du
:f/ 5u'<726p+Van~U+BeV-(V¢®V¢)>d:c
Q\P(1) Dt

+B 5 <D¢’> <vle¢ + L(¢)) ds+B | 6 <D¢> <vle¢ + L(¢)> ds
aP(t) oQ

Dt Dt Dt Dt
+B 6J - (L' T + Vu)da
Q\P(t)
dUj
+0U; - [ReM;—— + / (—pI +no — Be(Vo @ Vo)) - nds
dt oP(t)
dwy
+ dws - |Rel, +/ r X ((—pI+no — Be(Vo @ Vo)) - n)ds
dt Jap)
+/ Sustp (_BL(¢)8¢ + Luilip +n(o-n)- 7') ds
OP(t) or Ll

+/ our (—B‘L(gf))aqS + uslP (o - n) 'T) ds.
a0 87’ ESZS

In order to minimize %F + @ for prescribed ¢, variation w.r.t. each variable in
the above equality should vanish respectively. First, variation w.r.t. J gives

%JFu-qu: ~V-J=L4Ap in Q\P(t),
while the definition of p gives
p=—ebo+ (6~ 0) + B Ref ()l i 0\ Q).
The impermeability boundary condition (22) is equivalent to

J n=Vuy-n=0 on O U OP(t).
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Using the variation w.r.t. the velocity variables u in (44), we have
Du ) -
Repﬁ =V - (—pl+no—BeVp @ Vo) in Q\ P(%).

On the boundary of the fluid and the particle surface, variation w.r.t. w, and
usl’P in (44) gives

Lui”p =-n(o-n) 7+ BL(d))% on OP(t),
Ll or
U 9¢
L= n(o-n) -7+ BL(¢) = 5y on 0.
By the variation w.r.t. U and w; in (44), we have
dU,
s = —/ (—pI+no — BeVp @ Vo) - nds,
dt oP(t)
dw,
Rel,— = — r X ((—pI+no — BeVop @ V) -n)ds
dt oP(1)
Finally, variation w.r.t. ﬁ in (44) gives
09
o Vo u=-VL(9) on OP(t)UdQ,
while definition of L(¢) is
99 9v(9)
L) =e—+ ——+ P(t Q.
(9) = o T 96 on OP(t)Ud
Recall the incompressible and impermeability boundary conditions, we have
V-u=0 in Q\ P(t),
(u—u;) mn=0 on OP(t),
un=20 on 0f2.

Collecting all the above equations, we have recovered the governing system intro-
duced in this paper. O

4. Energy decaying property. In the fluid-particle interaction system, if there
is no energy inflow/outflow or external force, total energy of the system should decay
over time. We now show that the energy decaying property can be derived from our
phase-field model, The goal of this section is to prove the following theorem.

THEOREM 4.1. Suppose that wall speed u,, = 0, and that external force g = 0;
governing system (2)—(17) satisfies the following energy decaying property:

dr / 2 2 lip|2
- = —|o] d:r—BLd/ |Vul“de — ——|u"P|“ds
dt N a\ P(t) ap(t) Ls l

— BV |L(¢)|ds — / 2ds — BV, / |L(¢)|?ds.
o0

oP(t) 00 Lsls

Proof. Recall from (34) that

(45)

d Du
46 Re—F, =R ~—— .ud R () = |u|?dz.
) Reghi=Re | o) P wdesgRe [ o) B
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Taking the inner product of (4) with u and integrating in 2\ P(¢), we have

Du
R e . d = - (— . _B . d
e/ﬂ\P(t)p<Dt) e /Q\P(t)u VPt aV- o —Bev- (Vo @ V9))da
47 == Slolkde + 5 V6 ® V) : Vud
(47) téwm2w“aﬂ'5éwm(¢® $) : Vudz
+/ ((=pI+no —Be(Vo @ Ve)) -n) - uds
P(t)
+/ ((=pI +no — Be(Vp @ Vo)) - n) - uds.
o
Plugging (46) into (47), we have
d
48 —Fp=— Lo|2de + B Vo @ Vo) : Vud
) dt " /Q\P<t>2|U|F v 6/n\pm( P& VY): Vuds
+/ ((=pI 4 no — Be(Vo @ V¢)) - n) - uds
aP(t)
+/ ((=pL+no —Be(Vo ® V¢)) - n) - uds
o
+ 1Re (¢)£|u|2dx

2 Jarw
Using Green’s formula on the right-hand side of (31), we have

B R, =B (u - 1l”ﬁ"17€e/)’(¢)lu|2) %d:ﬂ + Be/ (V- (Vo ® V) - uda
dt Q\P(t) P
9¢ 9¢ 99 0

B 8Pt)5n8td Be man@tds

u 2% D¢ 26D
:B/ dz—fRe/ '¢u27dx+3/
Q\P(t) Dt Q\P(t) e Dt oP(t) on Dt

09 D¢

+ Be —,ds — Be Vo ® Vo) : Vudz.

o0 an Dt Q\P(t)( (b (b)

Multiplying (2) by Bu, integrating in Q \ P(t), and using boundary conditions
(12) and (17), we have

B 1 (bdx = BLd/ pApdr = —BLd/ |V u|d,
a\pe) Dt \P(1) Q\P(1)
and thus we have
d 1 D
(49) B—F, = —BLd/ |V u|?da — 7726/ p’(¢>)\u\2—¢dx
dt Q\P(t) O\P(t) Dt
0¢ D¢ 0¢ D¢ /
+ Be s+ Be —ds — Be V¢ ®@ V) : Vudz.
ap(t) On Dt o0 On Dt Q\P(t)( )

Taking inner product to (6) by Uy, we have

d

1 2 = - — . .
ReM. <2|US| ) - /ap(t)(( pl+no —Be(Vo® Vo)) -n) - Ugds.
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Taking inner product to (7) by ws, we have
d
Rel, o (2 jwsl?) = —/ ((=pL+no —Be(Vo ® V) - n) - (ws x r)ds.
dt 2 aP(t)
Summing up the two equations above, we come to

(50) i(’Rerm + ReFy,) = — / ((—pI+no — Be(Vp @ Vo)) - n) - usds.

dt aP(t)
Now we deal with the surface energy Fyp(). Recall from (36) that

d Do 26 Do
B—F, ds=B L ds — Be
at’ orwe 0P i op( On Dt ds
9 g 0999
- B L(¢)z—u3"Pds + Be ul'Pds.
oP(t) ( )57 op(r) On 0T

Using the boundary condition (9), we have

Dé - .
Ap(t)L(¢) 5705 = /aP(t) V| L(¢)|?ds.

Equation (8) also gives

[ negtatras = [ pvpds— [ (o) uas,
OP(t) or op() Lsls l OP(t)

thus we have

99D

B~ d Fop =B - Vi|L(¢)|?ds — Be b 00 DL B opo Lol z —ustP 2 ds
; 0¢ 0
(51) -B oro n((o - n) - 7)uiPds + Be - 82 8? slivgs,
Similarly the time derivative of the surface energy BFyq is
B%Fag =-B . Vi|L(¢)|?ds — Be » gi L;fd -B T l
(52) - B/@Q n((o -n) - T)u,ds + Be . %%m.ds

Energy decaying property (45) may be derived by summing up (48), (49), (50),
(51), and (52). O

5. Sharp interface limit. Since our model is a diffusive interface model, the
interface between two fluids is assumed to have a finite thickness of O(e). Using the
method of matched asymptotic expansion, we study the limit of the solutions of our
model as the interface thickness ¢ — 0. In this paper, we consider the case that
mobility constants Ly and V, are constant. The cases when L; and V, depend on
e are discussed in [36]. We assume that the external force g and wall speed u,, are
zero. For simplicity of derivation, we shift the pressure p in the governing system by
p — p — Bfy to get equivalent forms of (4), (6), and (7):

(53) Rep (21; (u- V)u) =V (—pl+no)+BuVe in Q\ P(t),
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(54) ReM, avs _ _ / (=pI+ BfpI + o) - nds,
di aP(t)
dws
(55) Rel, = —/ rx ((=pI+ BfpyI+ o) - n)ds.
dt aP(t)

Other governing equations remain unchanged since there are no pressure terms in
these equations. In this section, we replace (4), (6), and (7) by (53), (54), and (55)
and study the sharp interface limit of the equivalent system.

Since we study the limit of solution as € — 0, we denote (¢¢, ¢, uc, U, w¢) the
solution of the (pressure-shifted) equation system, which depends on e. The two-phase
interface is given by the zero level-set of the phase-field function,

= {x € Q\ P(t)|¢" () = 0}.

Let d€(x,t) be the signed distance function to I', which satisfies [Vd¢| = 1. Suppose
that d° has the expansion

o0

= Z eldi(x,t);

i=0
then we also have |Vd°| = 1. Using definition of d°, we may also define
Y= {(x,1)d°(x,t) = 0},
QF == {(x,t) € Q\ P(t)| £ d°(x,t) > 0}.
Using the method of asymptotic expansion, we may derive governing equations
when € — 0, with I' being the fluid-fluid interface.

5.1. Outer expansion. First we consider the asymptotic expansion away from
the fluid-fluid interface, which is called the outer expansion. We seek an expansion of
the variables in {QF}, respectively, which are in the form

o0 o0 o] o0 o0
o = Zeid)f, ue = Zeiuf ut = Zeiuii, U = ZeiUi, w = Zeiwi.
i=0 i=0 i=0 i=0 i=0
Define {¢6—L, ug, ug, p(ﬂf, U(:)t} the corresponding variables in Qoi. It is straightforward
to derive the leading order equations in QSE:

(56) ¢y = %1,
(57) Apg =0,

3115_L + + + +
(58) Rep T + (uy - Vug | =-Vpg +nV -0y,
(59) V-ui =0.

The boundary conditions on 0f) are

g

(60) B =0, u(“)i-n:07Elu(fﬂ':—n(a'ai-n)-ﬂ
while the boundary conditions on dP(t) are
ous 1
(61) 8772 =0, (ugE —Us0) -n=0, Yl (ua—L —Ug0) T = fn(a'gt ‘n)-T.

Here us,0 = Ug +wg x r.
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Since the above equations are defined in Q , respectively, in order to close the
equation system, we also need boundary condltlons on I'°, which will be derived by
the inner expansion.

5.2. Inner expansion. We study the asymptotic behavior of solutions to the
governing system in a neighborhood of I'°. In order to do that, we examine the inner
expansion of the solution of our governing equations near the interface. Define £ = d{
as the scaled distance from the interface, and consider the inner expansion of the
following form:

(6, €, us, o) (x, 1) = (¢, i€, 0, 5°) (x, 1, ),

oo

(62) (6% 50 P (x,1,6) = Y €(6" I, T, ) (x, 1, €).

=0

Given the inner and outer expansions, we need the matching conditions for the inner
and outer expansions. Following [5], we match the expansions by requiring that

(63) (6, 11, 8, 7) (%, 1, €) = (67, 1, %, p°) (X, ) as € — Fo0,

where x; = x+€£Vd°. Applying Taylor expansion at point x to (63), then the leading
and the next order asymptotic expansions give

(64) CJim (0% 780,57 (,1,€) = (05, 1w, ) (%, 1)
and
(65)  im (0% 0 ) (x,4,€) = (6 1w b)) (1)

+ gvdo (v¢0 avNO ,Vu VpO )( )
which imply
66) lim 3§(¢ 70, a%, ) (x,1,€) = 0,

(67) hm a§(¢ ot ph(x,t,€) = (Vd° - (VoT, VuE, Vud, Vpt))(x,1).

We then study the inner expansion of our model. Applying expansion (62) into
(2), (3), (53), and (5), we have

(68) Lafige — e[La(Ad‘ig +2Vd - VIig) — 9,d“G¢ — (@ - V)d“d¢)]

+ (LA — 9,05 — 0 - V) =0

~ 1 ~ i~

(69) € (Ad%f)é +2Vd* - Vg + i — zReBlp’(¢5)|ue|2>

+ A6 + (D — ((69)° = 6)) =0
(70) €e[Rep (WED S + (T - VA)TE) — nAdTE — 29(Vde - V)UE + (5t — Bl o) V-]

+ €[Rep(° + (U - V)T) + V" — nAT° — Bi*V¢<] — niig, =0,

(71) €V -+ 8§ - Vd° =0.

Here V := (£, g) A= axz +8y2,f5
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The leading order equations of the above equation system are
Ldﬁgg = 07
~ ~3 o~
Fe — (90"~ 3) =0,
nﬁgg = Oa
#0 - Vd =0,

(72)

while the next order equations are
Lafige — La(Ad°i + 2Vd" - VID) — 8,d°92 — (W° - V)d*6? = 0,
- e o~ o~ -
dee —3((0°)" = 1)0" + Ad¢¢ +2Vd" - Ve
o 1 0\ |~

+ 1" = SReB~p (6°) [0 =0,
Rep(¢°) (Wd,d° + (W - Vd°)@l) — nAd°@? — 2n(Vd® - V)ul

+ (2 - Bi'¢2) Vd° — nug, =0,
Vea + 1 - Vd 4+l - vd = 0.

Given the leading order equations (72) and the matching condition (64), it follows
immediately that ° and u° are independent of &, thus

[ug] =0 and Vd° - [Vug] =0 on I'%,

where [ug] stands for the jump between ug and u, on I'y.
From the second equation in (72), and the matching condition (64), we find that

¢V satisfies the following equations:
70 _ (70\3 _ 70 70 _ s 70
(74) bee = (¢7)" = 9", ¢ lg=0 =0, finnoo(b +1.

The solution of the above equations is ¢° = tanh(gg).
Note that ﬁg = 0, and the first equation in next order equations (73) gives

Lafige — 0,d°02 — (8° - V)d°¢ = 0.

Integrating the above equation w.r.t. & over (—oo,+00), and using the matching
condition (64), (67), we may derive that

(75) 0yd’ + (ug - V)d° = >

Vdo ' [V:U‘OL

which is the evolution equation for the interface I'°.
Next, to derive the equation for u° on T'?, we use (74) and the matching condition
for ¢V to get

+oo - o oo . .
/ %FWWW—Uwﬁ%jK Ledl — Be((3°)° — 30)Bude

— 00

_ +Oo~1~0 0 1 _
(76) —/ Ll — 3B =0,
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Similar to [25], we assume that
0.0 —
(77) Vd® - Vg2 = 0.

Multiplying 52 to the second equation in (73), integrating w.r.t. £ over (—oo, +00),
and plugging (76)—(77), we have

+oo . - -
[ <ﬁ° + Ad%¢¢ — %Rezs*lp’(w) |ﬁ°2> $edé = 0.

Recalling that /i° and u® are independent of ¢, using match condition (64), the above

equation means that

. FCa
2

1
(78) B =~ SR A + S ReB ™ [p(6o)][uo on T,

Here F, is defined as Fq := _+:OO |¢~32|2d§.
From the last equation in (73), by noting that ﬁg =0, we have
V- +ag - vd =0.

0

Moreover, since u’ is independent of &, we have

V-i'= lim V-2 = lim (V-2 +e'Vd @) =V uf =0,
and we have ug - Vd° = 0. The matching condition (67) then gives
(79) (Vd"-V)uy) - Vd® =0 onI?.
From the third equation in (73), since i = 0, we have
ke - (3 - BROT)VL ~o.

By multiplying Vd" to both sides of the equation above and noting that |Vd°| = 1,
we have

0 ~1 ~0 ~070

After integrating the above equation w.r.t. & over (—oo,+00), it follows from the
matching conditions (64)—-(67) and (79)—(78) that

1
[po] = QB,u(jf = —BFc,Ad° + §Re[p(¢o)]|u0|2 on I'Y.

Remark 5.1. Compared with the standard results in, e.g., [35], we introduced a
new term 3Re[p(¢o)][ug|?>. This term balanced the change of kinetic energy caused
by the motion of the fluid-fluid interface. In an equal density case such a term will
vanish; then our pressure jump will reduce to the original result.

Next we deal with the boundary conditions on 0f2. As a relaxation parameter,
Vs may take on different choices. In this paper, following [35], we assume that the
mobility constant Vs ~ O(1). For other choices of Vg, we refer to [36] for a detailed
discussion.
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Eliminating L(¢) in (15) and (14), then using inner expansion (62), we have

(Feond + Gvar i) +e (atqsf + 95w+ e 2L a +V ;?) + eV, %‘f =)

The leading order term of the above equation gives
$0,d° + $2Vd° - @ = 0 on IQ.
Integrating the above equality w.r.t. £ over (—oo, +00), we have
9, d’ +Vd” -up =0 on 9.
The above equation and (75) also lead to
Vd® - [Vu’] =0 on 9QNT°.

Eliminating L(¢) by (13) and (15), the inner expansion (62) leads to

n ~Ne o =€, - % . €.
£Slsu T= 77(0' n+e “on +e” ( n)Vd) T
00 5 0d°  0y()) (065 | i3 00
+B< an % T T ae ar T 0y,

Y is independent of &, O(e™1) terms of the above equality give

8d° @)\ ~dd°
<¢5 78(¢ )> % or

Noting that %—d: # 0 and (Eg # 0 on 0f2, we have

Since u

~,0d°  9v(6°)
R~ 5

=0.

Multiplying the above equation by 52, integrating w.r.t. £ over (—oo,400), and
defining 4 = y(¢3), we have

od° 5
— dé =~v_ — 4.
o |¢> Id§ =v- — 7+
We define ag := arccos(%d ) as the angle between interface I'° and the fluid

surface 0f; the above equation then equals to
cosag = (Y- —v+)/Fca-
Similarly, we may derive the boundary conditions on the particle surface P (t):

Opd® +Vd® - up =0 on OP(t),
vd® - [V’ =0 on P(t)NTY,
cosag = (v— —v+)/Fca-
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5.3. Forces on the particle. We study the sharp interface for (54) and (55).
First we derive a sharp interface limit of (54), then we may deal with (55) in a similar
way. In order to derive the leading order term of the above equations, we let € — 0
on both sides of (54) and calculate the limit with the help of asymptotic expansion.
According to the inner expansion, since p¢ and ¢ is bounded of € near the fluid-fluid
interface I'Y, we have

lim — (—p T4+ noc)-nds = —/ (—pol + noyg) - nds.
=0 Jap) AP(t)

On the force term
- / (Bfy(¢)I — BeVo© @ Vo) - nds,
aP(t)

note that when € — 0, V¢ have singularity near the fluid-fluid interface I'?, and we
cannot simply take the limit inside the integral. In order to study the leading order
behavior of

- / —Be(Vo© @ Vo) - nds,
aP(t)

given a fixed small parameter ey, we split P(t) into A% := {(x,t) € P(t)|d°(x,t) < ey}
and P(t)\ A%, and deal with the integration over A and P(t)\ A separately. When
the integration area is away from the fluid-fluid interface, we have

lim — (f5(6)I = BeV© @ Vo) - nds
e—0 P(t)\A%0
= lim — (fb(QSO)I — BeVgy ® ngo) -nds = 0.

e—0 P(t)\AeO

Next we derive the sharp interface limit of
—/ (fo(6°) — BeVg© @ V) - nds.
A<o

By defining ¢ = %, we have ¢ = o €°¢Y; then we may expand & by

e
O (2,y,1,6) = (@, y,1,€%) + €6 (2,4, 1,6, €") + €% (w,y,1,€°,6,6) ...
Using the above inner expansion, we may see that ¢° also satisfies

(80) 02 = (6°)* = 0°, ¢le=0 =0, (i @0 = 41,

which means that ¢° = tanh(?fo).

To deal with the integration in A, first we deal with the case that A€ is straight.
We introduce a local coordinate system. The z axis is parallel to A and the origin
is on the intersection of the fluid and the solid boundary, as shown in Figure 2. With
the help of the local coordinates, we may express A by T € (—eq, €9).

Now we find the limit as ¢ — 0 of the integral below:

7/ fBev& ® V%ﬁ - nds.
A<o

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/11/20 to 160.39.163.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

|’0
Q0 Qf
[I“ —~
—
5 T
va®
n .
o
~
v Tint

F1G. 2. Local coordinates on straight boundary.

Using the local coordinates, we have

lim— [ —BeVo  ® V¢ nds=lim— [ —Be(Vé’ @ Vi) - nds

e—0 A€o e—0 A<o

€0 R R €o/€ R R
= lim f/ —Be(V¢® @ Vo) - ndz = lim 7/ —Be(V¢® @ Vo) -ns_Lng

U 0 J_ oo /e in ag
_ Bsinlao [ 6:0/; %? v %(i & = BV Fo
Next we find

lim — . Bfy ()1 - nds.

Since ¢° = tanh(@f’), we have

lim — Bfy(¢)1 - nds = lim — Bfy(6°)I - nds
e—0 Aco A€o
€o/€ R B €o/e R B
—im- [ BAG o —de———Fon [ (0 Pde = - nFe,
e—0 —eo/e sin &g sin o —eo/e sin o

Summing the two leading order terms in the above two equations together, we may
see that the leading order term of

~ [ N~ BV 0 V) s
is given by

Cos a

B—

B
VdOFC — ST o2 IlFCa = BFCaT[,
0

sin ag

where the direction of the total force is 71 = Vd° cos oy — n, which is parallel to the
fluid interface, as shown in Figure 2. We may see that leading order term of force

- /A ()T~ BV © V) s

is physically consistent to the capillary force given by the fluid interface.
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ro

Fi1c. 3. Local coordinates on curved boundary.

Now we deal with the case that the particle boundary is curved (see Figure 3).
We also introduce a local coordinate system, as shown in Figure 3. Let the Z axis be
parallel to the tangent line of the particle surface on the intersection of the particle
surface and fluid-fluid interface, {Z = 0} being the intersection point. Representing
the boundary of the particle by 5 = y(«), then 3’(0) = 0. Then we have

~ [ (@t T = BV (2.9,6) © VG (0.3:1.6)) - nds

= / (3@ 5 @) 1) — BV (7. 5(3),1.€6) © VI (7, 5(7).1,6)] - n

—e€o

14y (z)[?)dz.
Since y'(0) = 0, we may expand /1 + |¢/(Z)|? by
VI+ 7 @) =1+7"(0)z + OF?).

Moreover when y = 0, we have § = #2220

VI+HT(@))2=14+¢€ (

Then it is straightforward to see that the curved boundary does not contribute to the
leading order of the boundary force term.

To derive the sharp interface limit for each intersection point between the fluid
interface and particle surface, we denote by > 4, the sum taken from each intersection
and derive the sharp interface limit for (54):

, thus we have

7(0) + 0(1)> = 14£0(e).

CoS (g

dU
ReM, =% — _/ (—pOI+nao)-nds+ZBFcaTI-
dt P (t) A;

The sharp interface limit of (55) may then be derived similarly:

dwo

I,—
Re o

= —/ r X ((—pol + noy) - n)ds + Zr X BFcoTy.
aP(t) Y

We may see that leading order terms of the forces on the particle coincide with
the physical concept of capillary force, whose direction is parallel to the fluid-fluid
interface.
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Collecting all the results in the above, we may derive the leading order behavior
of the governing system. The leading profiles (gf)at, ug, ug,pgt) satisfy the following
coupled system of Hele-Shaw equations and incompressible Navier—Stokes equations
in Qat:

o =1,
Apy =0,
+
duy + +\ _ o, =+ +
Rep 5 + (uy - Vug | = —Vpy +nAug,
V-uf =0.

The boundary conditions on 9f2 are

oug 1
—;72 =0, uf -n=0, YR uwi T =—(6F -n)-T,
while the boundary conditions on OP(t) are
oy 1
% =0, (uf —u,g) -n=0, E—l(ugE —u,9) - T=—(6F -n)-T.
svs

Boundary conditions on the fluid-fluid interface I'° are

Feq 1 _
Hy = =5 A’ + T ReB p(o)][uo,

[uo] =0, (Vd°-V)ug -Vd°® =0,

Ipo] = ~BFoud” + SRelp(do)] ol
The dynamics of the interface is given by
0yd® + (ug - V)d° = %Vdo Vo),
with the contact angle satisfying
cosag = (7- — 7+)/Fea.
Moreover, on 02 and OP(t) we have
d” + (ug - V)d" = 0.

Equations for the particle motion are

dU
ReM, =0 — _/ (—pol 4+ noy) 'ndS‘i‘ZBFCaTIv
dt OP(t) Ar

d
Rel, 20 — _/ r % ((—pol +no0) - n)ds + Y v x BF,Tr,
dt dP(t) Ap

where ), is taken from each intersection point between I'® and dP(t).

Similar to the governing system (2)—(17), we can also derive the energy decaying
property for the sharp interface limit. For an arbitrary curve T’ let |T'| denote its
length. The total energy F© of the sharp interface limit is defined as
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F?:=ReFy + BF) + ReM,F,,, + Rel Fy, + BFyp,) + BFjq,

1 1 1
FIS = / 5p(¢0)|u0|2dx, FI? = FC(I|FO|’ F](o)m = §|U0|27 F]I())T‘ = §|w0|27
Q\P(1)

Fpay =7T0P®) N Q| +9710P() N Qg |, Fig :=7T1020 Q|+ 771020 Qg .

If we assume that the wall speed u,, = 0 and the external force g = 0, similar to
the phase-field model in this paper, the total energy of the sharp interface limit also

decays over time, such that
d
ﬁ(RepF,S + BF) + ReM,Fy,, + Rel Fy, + BFp ) + BFyq)

:—/ g\ooﬁpdw—BLd/ \Vu{fﬁdx—BLd/ Vg [2dx
Q\P(2) Q5 Qy

n 2 n 2
- ——|(ug —usyg) - T|°ds — ——|ug - T|%ds.
/8P(t) L (o —uys0) - 7 . £8l5| 0l

6. Conclusions. In this paper, a new phase-field model is constructed for the
fluid-particle interaction problem in two-phase flows. Our model may be derived by
the principle of minimal dissipation. Moreover our model satisfies the energy decaying
property. We also derive the sharp interface limit of the governing equations. There
are various future works to be done on the model introduced in this paper, such
as developing efficient numerical schemes for our model which maintain the energy
decaying property.
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