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ENERGY DECAYING PHASE-FIELD MODEL FOR

FLUID-PARTICLE INTERACTION IN TWO-PHASE FLOW∗

XIANG LI† , QIANG DU‡ , AND XIAO-PING WANG§

Abstract. In this paper, we study a phase-field model for the dynamics of a solid particle in
two-phase flow. The governing system in our model is a coupled system of Navier–Stokes equations,
Cahn–Hillard equations for the multiphase flow, and Newton’s law for the motion of the particle.
The effect of the wettability of the particle and the motion of the contact line are modeled by the
generalized Navier boundary condition. To show that our model is physically consistent, we show
that the model can be derived from the principle of minimum energy dissipation (entropy production)
and has the energy decaying property. Using the method of matched asymptotic expansions, we also
derive the sharp interface limit for our model.

Key words. fluid-particle interaction, two-phase flow, phase-field model, principle of minimum
energy dissipation, sharp interface limit
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1. Introduction. The two-phase fluid-particle interaction problem has wide ap-
plications in scientific and engineering areas such as materials separation, crude oil
emulsions, slurry transport, etc. There have been many works on modeling and simu-
lation of the two-phase fluid-particle interaction problems. The numerical approach of
fluid-particle systems may be classified into two types: the continuum approach and
the direct numerical simulation (DNS) approach. In the continuum approach, solid
particles and fluids are viewed as interpenetrating mixtures with different viscosities
that are governed by conservation laws [19, 32, 38, 39]. The continuum approach is
efficient and flexible. However, the false response from the viscous material used to
mimic the rigid objects might produce undesirable hydrodynamic effects, thus caus-
ing potential difficulties in the continuous approach when the particle concentration is
dense, or when there are particle-wall and particle-particle interactions in the problem.
On the other hand, the DNS approach [15, 16, 17] takes on a fundamental approach
with Navier–Stokes equations for fluids and Newton’s law for particles. The DNS
method gives a clear understanding of the mechanisms between fluid and particle and
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TWO-PHASE FLUID-PARTICLE INTERACTION MODEL 573

is well designed for many complicated problems involving nonlinear and geometrically
complicated phenomena.

For the DNS approach to fluid-particle interaction in two-phase flow, extra dif-
ficulties arise from the discontinuities of field variables near the fluid-fluid interface.
In order to overcome these problems, it is necessary to model the fluid-fluid interface
while conserving the conservative quantities at a discrete level even with discontinu-
ities. On this aspect, mathematical modeling of the two-phase flow may be classified
into the sharp interface method and the diffuse interface method. In the sharp inter-
face method, the fluid-fluid interface is of zero thickness and the variables near the
interface may be discontinuous. The sharp interface method has been successfully
applied to a wide range of physical problems; some of the best-known examples of the
sharp interface method include the marker and cell method [13], the volume of fluid
method [14], the front tracking method [12, 33], and the level set method [24]. Mean-
while, the diffuse interface method, which is also known as the phase-field method,
assumes that the interface between different fluids has a finite thickness and the vari-
ables change smoothly across the interface. The earliest diffuse interface method may
be traced back to van der Waals [34], which is based on the thermodynamic consid-
eration of the free energy of a binary system, with a hypothesis that the equilibrium
interface profiles can be obtained by minimizing the free energy functional. In the
work of Cahn and Hilliard [6], the free energy is derived from a multivariable Taylor
expansion about the free energy per molecule. The diffusive interface method has
been further developed in [3, 21, 37, 28].

On the problem of two-phase flows, another difficulty comes from the dynamics
near the moving contact line (MCL). The MCL is defined as the intersection of the
fluid-fluid interface with the solid wall and particle surface. In order to describe
the dynamics near the MCL, proper boundary conditions are required on the solid
wall and the particle surface. Unlike single-phase flows where the no-slip boundary
condition is widely used in application, such a no-slip condition is incompatible with
the MCL in two-phase flows [8, 9, 11, 18, 22, 23]. In [26, 27] a generalized Navier
boundary condition (GNBC) is introduced to model the effect of the wettability and
the MCL. It is demonstrated that the GNBC can quantitatively reproduce the MCL
slip velocity profiles obtained from molecular dynamics simulations. Moreover, it has
been shown that a phase-field model with GNBC may be derived by the principle of
minimum dissipation [27].

In this paper, we develop a phase-field model for the two-phase fluid particle
interaction problem. An example of such a problem is a solid sphere falling through
a water surface; see Figure 1. Our model uses the DNS approach, which consists of
the Cahn–Hillard–Navier–Stokes equations for the dynamics of the two-phase fluid
flow and Newton’s second law for the particle motion. The effect of the wettability of
the particle and the motion of the contact line are modeled by the GNBC. Unlike the
previous models (e.g., [7]), the contribution of the capillary force to the particle motion
is also taken into account. The model and the boundary conditions are properly set
up so that they are physically consistent.

In order to describe practical problems, we consider two-phase flow with unequal
density. Constructing a physically consistent phase-field model for the unequal den-
sity case is very challenging. One of the reasons is that when fluid densities are
not equal, mass conservation is not a direct consequence of incompressibility any
more. As a result, when describing the unequal density case, one should either start
from mass conservation or start from incompressibility; none of the current mod-
els satisfy both of them. According to such choice, there are mainly two kinds of
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TWO-PHASE FLUID-PARTICLE INTERACTION MODEL 575

a 2D case, while extension of our model to the 3D case is straightforward. Let Ω
denote the entire computational domain, including fluid and the particle, which is
time-independent. The particle is moving inside Ω. The region of the particle is
denoted by P (t). Ω and P (t) are open sets. ∂P (t) and ∂Ω stand for the boundaries
of the particle and the computation domain. The particle is a rigid body and is
homogeneous with equal density. Two-phase flow in this system is a mixture of
two immiscible, incompressible fluids. Densities and viscosities of the two fluids are
denoted by ρ1, ρ2 and η1, η2. In the phase-field model, we introduce a variable φ such
that

{
φ =

√
r/u fluid 1,

φ = −
√
r/u fluid 2,

with a thin transition layer near the fluid-fluid interface. Here r and u are interface
thickness related parameters. In this paper we assume r = u. Using the phase variable
φ, fluid density and viscosity may be described by volume average:

ρ(φ) =

(
1 + φ

2

)
ρ1 +

(
1− φ

2

)
ρ2, η(φ) =

(
1 + φ

2

)
η1 +

(
1− φ

2

)
η2.

In this paper we may abbreviate ρ(φ) and η(φ) by ρ and η if there is no ambiguity.
Using the phase-field model, we may derive a phase-field model for the two-phase

fluid-particle system. Governing equations for the fluid is a coupled system of Cahn–
Hilliard equations and Navier–Stokes equations,

∂φ

∂t
+ u · ∇φ = M∆µ in Ω \ P (t),

µ = −K∆φ− rφ+ uφ3 +
1

2
ρ′(φ)|u|2 in Ω \ P (t),

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · (−pI+ ησ −K∇φ⊗∇φ) + ρg in Ω \ P (t),

∇ · u = 0 in Ω \ P (t),

where µ is called chemical potential, u denotes the fluid velocity, and p stands for
pressure. The term ∇φ⊗∇φ denotes the Kronecker product of ∇φ and its transpose
(∇φ)T , and σ is defined as σ := ∇u + (∇u)T . M is a phenomenological mobility
coefficient, and K is a material-related parameter.

By introducing the particle velocity Us and particle angular velocity ωs, and
denoting r the vector from the particle mass center to the current position, we may
define us := Us + ωs × r as the pointwise velocity of the current position on the
particle surface. Denote by n the outward normal on ∂Ω and ∂P (t), in which the
outward direction is w.r.t. the fluid domain Ω \ P (t).

The equations of particle motion and rotation are given by Newton’s law:

Ms

dUs

dt
= −

∫

∂P (t)

(−pI+ ησ −K∇φ⊗∇φ) · nds+Msg,

Is
dωs

dt
= −

∫

∂P (t)

r× ((−pI+ ησ −K∇φ⊗∇φ) · n)ds.
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576 XIANG LI, QIANG DU, AND XIAO-PING WANG

Here Ms stands for the mass and Is stands for the inertia tensor of the particle. For
a particle with density ρs, Ms and Is can be written as

Ms = ρs

∫

P (t)

dx, Is = ρs

∫

P (t)

[(r · r)I− r⊗ r]dx.

On the particle surface ∂P (t), we apply the GNBC to describe the dynamics of
the MCL. Let τ denote the tangent direction on ∂Ω and ∂P (t), define uτ = u · τ as
the tangent component of fluid velocity field, and define uslip

τ := (u − us) · τ as the
slip velocity of fluid on the particle surface. On particle surface ∂P (t) the GNBC in
the governing system is given by

βuslip
τ = −η(σ · n) · τ + L(φ)

∂φ

∂τ
on ∂P (t),

∂φ

∂t
+∇φ · u = −λL(φ) on ∂P (t),

L(φ) = K
∂φ

∂n
+

∂γ(φ)

∂φ
on ∂P (t),

(u− us) · n = 0 on ∂P (t),

∂µ

∂n
= 0 on ∂P (t).

Denote uslip
τ,w := (u− uw) · τ the slip velocity of fluid on ∂Ω, where uw is the velocity

of the solid wall ∂Ω. GNBC on ∂Ω is given by

βuslip
τ,w = −η(σ · n) · τ + L(φ)

∂φ

∂τ
on ∂Ω,

∂φ

∂t
+∇φ · u = −λL(φ) on ∂Ω,

L(φ) = K
∂φ

∂n
+

∂γ

∂φ
on ∂Ω,

u · n = 0 on ∂Ω,

∂µ

∂n
= 0 on ∂Ω.

In GNBC the interfacial tension γ(φ) is defined as γ(φ) := − 1
2γ12 cos θ sin(

π
2φ). γ12

is defined as γ12 := 2
√
2

3
r2ξ
u
. θ is the static contact angle. ξ :=

√
K/r denotes

the interfacial thickness. L(φ) represents the uncompensated Young stress. β(φ) :=
1+φ
2 β1+

1−φ
2 β2 is the slip coefficient, and λ is a positive phenomenological parameter.

2.2. Dimensionless form. In numerical simulation, it is convenient to intro-
duce a dimensionless form of the governing equations for the two-phase fluid-particle
system. We scale length by a characteristic length L0, velocity by a characteristic
velocity V0, angular velocity by V0/L0, time by L0/V0, density by ρ1, pressure by
η1V0/L0, and external body force density by V 2

0 /L0. Then, we may derive a dimen-
sionless form of the governing equations in our model.

In the dimensionless form, since density ρ is scaled by ρ1, and viscosity η is scaled
by η1, ρ(φ) and η(φ) are defined as

ρ(φ) :=
1 + φ

2
+

1− φ

2
λρ, η(φ) :=

1 + φ

2
+

1− φ

2
λη,(1)

D
o

w
n
lo

ad
ed

 0
4
/1

1
/2

0
 t

o
 1

6
0
.3

9
.1

6
3
.1

4
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWO-PHASE FLUID-PARTICLE INTERACTION MODEL 577

where λρ := ρ2/ρ1 and λη := η2/η1 stand for density and viscosity ratios. Governing
equations of the fluid read

∂φ

∂t
+ u · ∇φ = Ld∆µ in Ω \ P (t),(2)

µ = −ε∆φ+
1

ε
(φ3 − φ) +

1

2
B−1Reρ′(φ)|u|2 in Ω \ P (t),(3)

Reρ

(
∂u

∂t
+ (u · ∇)u

)
(4)

= ∇ · (−pI+ ησ − Bε∇φ⊗∇φ) +Reρg in Ω \ P (t),

∇ · u = 0 in Ω \ P (t).(5)

Since particle mass Ms and inertia Is are also scaled by ρ1, which is

Ms = (ρs/ρ1)

∫

P (t)

dx, Is = (ρs/ρ1)

∫

P (t)

[(r · r)I− r⊗ r]dx,

the dimensionless equations of particle motion and rotation are

ReMs

dUs

dt
= −

∫

∂P (t)

(−pI+ ησ − Bε∇φ⊗∇φ) · nds+ReMsg,(6)

ReIs
dωs

dt
= −

∫

∂P (t)

r× ((−pI+ ησ − Bε∇φ⊗∇φ) · n)ds.(7)

In GNBC, γ(φ) is defined as γ(φ) := −
√
2
3 cos θ sin(π2φ). Introduce slip length ls by

ls1 := η1/β1, ls2 := η2/β2, then slip length ls(φ) :=
1+φ
2 + 1−φ

2 λls , where λls = ls2/ls1.
We also abbreviate ls(φ) by ls if there is no ambiguity. The dimensionless boundary
conditions on ∂P (t) are

η

Lsls
uslip
τ = −η(σ · n) · τ + BL(φ)∂φ

∂τ
on ∂P (t),(8)

∂φ

∂t
+∇φ · u = −VsL(φ) on ∂P (t),(9)

L(φ) = ε
∂φ

∂n
+

∂γ(φ)

∂φ
on ∂P (t),(10)

(u− us) · n = 0 on ∂P (t),(11)

∂µ

∂n
= 0 on ∂P (t),(12)

while the dimensionless boundary conditions on ∂Ω are

η

Lsls
uslip
τ,w = −η(σ · n) · τ + BL(φ)∂φ

∂τ
on ∂Ω,(13)

∂φ

∂t
+∇φ · u = −VsL(φ) on ∂Ω,(14)

L(φ) = ε
∂φ

∂n
+

∂γ(φ)

∂φ
on ∂Ω,(15)

u · n = 0 on ∂Ω,(16)

∂µ

∂n
= 0 on ∂Ω.(17)
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578 XIANG LI, QIANG DU, AND XIAO-PING WANG

Definitions and meanings of other dimensionless parameters are listed as follows:





ε := ξ/L0 Cahn number,

Ld := 3γ12M/2
√
2V0L

2
0 Diffusion coefficient,

Re := ρ1V0L0/η1 Reynolds number,

B := 3γ12/2
√
2η1V0 Inverse capillary number,

Ls := η1/β1L0 Slip length,

Vs := 3γ12λL0/2
√
2V0 Mobility coefficient.

For the dimensionless model, we may define the total energy F of the governing
system:

F := ReFk + BFb +ReFpm +ReFpr + BF∂P (t) + BF∂Ω,(18)

Fk :=

∫

Ω\P (t)

1

2
ρ|u|2dx, Fpm :=

1

2
Ms|Us|2, Fpr :=

1

2
Is|ωs|2,

Fb :=

∫

Ω\P (t)

fbdx, F∂P (t) :=

∫

∂P (t)

γds, F∂Ω :=

∫

∂Ω

γds,

where fb :=
ε
2 |∇φ|2 + 1

4ε (φ
2 − 1)2.

Remark 2.1. In the original form and the dimensionless form of the model, we
use the same notation, such as u, φ,Ms, . . . . This is because we would like to avoid
introducing too many different notational symbols in the paper. In the rest of this
paper, definitions of such symbols always follow the definitions in dimensionless form.

3. Variational derivation of the governing equations for the two-phase

flow. In this section we show that our model may be derived by the principle of
minimum energy dissipation. First of all, we should restrict the variables in the
governing system, such that they fit some basic physical properties of the system.
First, since the two-phase fluid is incompressible and impermeable, we have

∇ · u = 0 in Ω \ P (t),(19)

(u− us) · n = 0 on ∂P (t),(20)

u · n = 0 on ∂Ω.(21)

Moreover, defining material derivative D
Dt

as

Df

Dt
:=

∂f

∂t
+∇f · u,

we may define the diffusive current J, such that Dφ
Dt

= −∇ · J. We require that J

satisfies the following boundary condition:

J · n = 0 on ∂Ω ∪ ∂P (t).(22)

Boundary conditions (20)–(22) are called the impermeability boundary conditions. In
the derivation by variation, we assume that (19)–(22) hold. We also assume that the
wall velocity uw is 0.

For incompressible two-phase flows, the governing model system may be derived
from a minimum dissipation theorem [27] by minimizing the functional (Φ+ d

dt
F ) for
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TWO-PHASE FLUID-PARTICLE INTERACTION MODEL 579

prescribed φ, where Φ is the dissipation function. For the fluid-particle interaction
problem, the dissipation function Φ may be defined by Φ := R1+Rb, where R1 stands
for the dissipation caused by fluid motion, and Rb denotes the dissipation due to the
displacement from the two-phase equilibrium. The two dissipation terms R1 and Rb

may be given by

R1 :=
1

4

∫

Ω\P (t)

η|σ|2F dx+
1

2

∫

∂P (t)

η

Lsls
|uslip

τ |2ds+ 1

2

∫

∂Ω

η

Lsls
|uslip

τ |2ds,

Rb :=
1

2
BL−1

d

∫

Ω\P (t)

|J|2dx+
1

2
BV−1

s

∫

∂P (t)

∣∣∣∣
Dφ

Dt

∣∣∣∣
2

ds+
1

2
BV−1

s

∫

∂Ω

∣∣∣∣
Dφ

Dt

∣∣∣∣
2

ds,

where |σ|F is the Fronbenius norm of σ.
Given the definition of (Φ + d

dt
F ), according to the principle of minimum energy

dissipation (see [27, Appendix A]), for prescribed phase variable φ, we derive the
governing equations by minimizing (Φ + ∂

∂t
F ) w.r.t. perturbations to velocity field

u → u + δu, particle velocity Us → Us + δUs, particle angular velocity ωs →
ωs + δωs, diffusive current J → J + δJ, and Dφ

Dt
→ Dφ

Dt
+ δDφ

Dt
. Note that for the

original velocity field, we have the incompressibility condition (19) and impermeability
boundary condition (20)–(22), and the perturbed velocity field also needs to satisfy
the same conditions. Therefore, we require that the perturbation δJ, δu, δUs, and
ωs satisfy

∇ · δu = 0 in Ω \ P (t),(23)

(δu− δus) · n = 0 on ∂P (t),(24)

δu · n = 0 on ∂Ω,(25)

δJ · n = 0 on ∂Ω ∪ ∂P (t).(26)

Here δus := δUs + δωs × r. Moreover, similar to the discussion in section 3 of [20],
we choose perturbations that satisfy

D(δu)

dt
= 0 in Ω \ P (t),

d(δUs)

dt
= 0,

d(δωs)

dt
= 0.(27)

It is easy to see that such additional constraints do not affect the value at current
time; thus (19)–(22) are still well-defined.

For an arbitrary functional G(φ, Dφ
Dt

,u,Us,ωs,J), we introduce an operator δ to
denote the variation for prescribed φ, while the perturbation of variables is subject
to constraints (23)–(27). More precisely, we define δG by

δG :=

[
δG/

(
δ
Dφ

Dt

)]
δ
Dφ

Dt
+

δG

δu
· δu+

δG

δUs

· δUs +
δG

δωs

· δωs +
δG

δJ
· δJ,

where the variations above (e.g., δG/(δDφ
Dt

)) are taken by viewing φ as given data.
We may present the theorem on variational derivation.

Theorem 3.1. Given incompressibility condition (19) and impermeability bound-

ary conditions (20)–(22), governing equations (2)–(17) may be derived by minimizing

the functional Φ + d
dt
F w.r.t. velocity field u → u + δu, particle velocity Us →

Us+ δUs, particle angular velocity ωs → ωs+ δωs, diffusive current J → J+ δJ, and
Dφ
Dt

→ Dφ
Dt

+ δDφ
Dt

for prescribed variable φ, where the perturbations satisfy (23)–(27).
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Proof. We start from calculating the time derivative of energy F . Note that the
integration area Ω \ P (t) changes over the motion of P (t); it follows from (19)–(20)–
(21) that

d

dt
Fb =

d

dt

∫

Ω\P (t)

fbdx =

∫

Ω\P (t)

∂fb
∂t

dx+

∫

∂P (t)

fb(us · n)ds

=

∫

Ω\P (t)

∂fb
∂t

dx+

∫

∂P (t)

fb(u · n)ds+
∫

∂Ω

fb(u · n)ds

=

∫

Ω\P (t)

∂fb
∂t

+∇fb · u+ fb(∇ · u)dx =

∫

Ω\P (t)

D

Dt
fbdx.(28)

According to (3), define µ as

µ := −ε∆φ+
1

ε
(φ3 − φ) +

1

2
B−1Reρ′(φ)|u|2.

Since fb :=
ε
2 |∇φ|2 + 1

4ε (φ
2 − 1)2, we have

∫

Ω\P (t)

∂fb
∂t

dx =

∫

Ω\P (t)

(
ε∇φ∇∂φ

∂t
+

1

ε
(φ3 − φ)

∂φ

∂t

)
dx

=

∫

Ω\P (t)

(
−ε∆φ+

1

ε
(φ3 − φ)

)
∂φ

∂t
dx+ ε

∫

∂P (t)

∂φ

∂n

∂φ

∂t
ds+ ε

∫

∂Ω

∂φ

∂n

∂φ

∂t
ds

=

∫

Ω\P (t)

(
µ− 1

2
B−1Reρ′(φ)|u|2

)
∂φ

∂t
dx+ ε

∫

∂P (t)

∂φ

∂n

∂φ

∂t
ds+ ε

∫

∂Ω

∂φ

∂n

∂φ

∂t
ds.(29)

Using the well-known identity (cf., e.g., [10])

∇ · (∇φ⊗∇φ)− 1

2
∇(|∇φ|2) = ∆φ∇φ,

we have

∇fb =

(
µ− 1

2
B−1Reρ′(φ)|u|2

)
∇φ+ ε∇ · (∇φ⊗∇φ).

Using the above equation and Green’s formula, we may derive that

∫

Ω\P (t)

∇fb · udx =

∫

Ω\P (t)

(µ− 1

2
B−1Reρ′(φ)|u|2)(∇φ · u)dx(30)

+ ε

∫

Ω\P (t)

(∇ · (∇φ⊗∇φ)) · udx.

Here A : B =
∑

i,j aijbij for two matrices A = {aij} and B = {bij}.
Plugging (30) and (29) into (28), and multiplying B to both sides of the equation,

we may derive that

B d

dt
Fb = B

∫

Ω\P (t)

(
µ− 1

2
B−1Reρ′(φ)|u|2

)
Dφ

Dt
dx(31)

+ Bε
∫

Ω\P (t)

(∇ · (∇φ⊗∇φ)) · udx+ Bε
∫

∂P (t)

∂φ

∂n

∂φ

∂t
ds+ Bε

∫

∂Ω

∂φ

∂n

∂φ

∂t
ds.
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By the impermeability boundary condition (22), we have

∫

Ω\P (t)

µ
Dφ

Dt
dx = −

∫

Ω\P (t)

µ∇ · Jdx =

∫

Ω\P (t)

∇µ · Jdx.(32)

Combining (31) and (32), we have

B d

dt
Fb = B

∫

Ω\P (t)

∇µ · Jdx+ Bε
∫

Ω\P (t)

(∇ · (∇φ⊗∇φ)) · udx(33)

+ Bε
∫

∂P (t)

∂φ

∂n

∂φ

∂t
ds+ Bε

∫

∂Ω

∂φ

∂n

∂φ

∂t
ds− 1

2
Re

∫

Ω\P (t)

ρ′(φ)
Dφ

Dt
|u|2dx.

On the time derivative of the kinetic energy Fk, similar to the derivation in (28),

Re
d

dt
Fk = Re

d

dt

∫

Ω\P (t)

1

2
ρ(φ)|u|2dx = Re

∫

Ω\P (t)

1

2

D(ρ(φ)|u|2)
Dt

dx.

= Re

∫

Ω\P (t)

ρ(φ)
Du

Dt
· udx+

1

2
Re

∫

Ω\P (t)

ρ′(φ)
Dφ

Dt
|u|2dx.(34)

Moreover, it is straightforward that

Re
d

dt
Fpm = ReMs

dUs

dt
·Us, Re

d

dt
Fpr = ReIs

dωs

dt
· ωsdt.(35)

According to GNBC (10) and (15), we define L(φ) as L(φ) := ε∂φ
∂n

+ ∂γ(φ)
∂φ

. Using

impermeability boundary condition (20), we have

u− us = ((u− us) · τ )τ + ((u− us) · n)n = uslip
τ τ on ∂P (t).

Thus we have

B d

dt
F∂P (t) = B

∫

∂P (t)

∂γ(φ)

∂φ

(
∂φ

∂t
+∇φ · us

)
ds

= B
∫

∂P (t)

(
L(φ)− ε

∂φ

∂n

)(
∂φ

∂t
+∇φ · us

)
ds

= B
∫

∂P (t)

L(φ)

(
Dφ

Dt
− ∂φ

∂τ
uslip
τ

)
ds− Bε

∫

∂P (t)

∂φ

∂n

(
∂φ

∂t
+∇φ · us

)
ds.(36)

Similarly, using impermeability boundary condition (21), we have

B d

dt
F∂Ω = B

∫

∂Ω

∂γ(φ)

∂φ

∂φ

∂t
= B

∫

∂Ω

(
L(φ)− ε

∂φ

∂n

)
∂φ

∂t
ds

= B
∫

∂Ω

L(φ)

(
Dφ

Dt
− ∂φ

∂τ
uτ

)
ds− Bε

∫

∂Ω

∂φ

∂n

∂φ

∂t
ds.(37)

Summing up (33), (34), (35), (36), and (37), we come to

d

dt
F =B

∫

Ω\P (t)

∇µ · Jdx+ Bε
∫

Ω\P (t)

(∇ · (∇φ⊗∇φ)) · udx(38)

B
∫

∂P (t)

L(φ)

(
Dφ

Dt
− ∂φ

∂τ
uslip
τ

)
ds− Bε

∫

∂P (t)

∂φ

∂n
∇φ · usds
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+ B
∫

∂Ω

L(φ)

(
Dφ

Dt
− ∂φ

∂τ
uτ

)
ds+Re

∫

Ω\P (t)

ρ(φ)
Du

Dt
· udx

+Re
dUs

dt
·Us +Re

dωs

dt
· ωs.

On the variation of Φ, it is straightforward to see that

δ

(∫

Ω\P (t)

η

4
|σ|2F dx

)
=−

∫

Ω\P (t)

δu · (η∇ · σ)dx(39)

+

∫

∂P (t)

δu · (ησ · n)ds+
∫

∂Ω

δu · (ησ · n)ds.

Moreover, define

δuslip
τ := (δu− (δUs + δωs × r)) · τ on ∂P (t), δuτ := δu · τ on ∂Ω;

using (24)–(25), we have

δ

(
1

4

∫

Ω\P (t)

|σ|2F dx
)

=−
∫

Ω\P (t)

δu · (η∇ · σ)dx+ δUs ·
∫

∂P (t)

ησ · nds

(40)

+ δωs ·
∫

∂P (t)

r× η(σ · n)ds+
∫

∂P (t)

δuslip
τ η(σ · n) · τds

+

∫

∂Ω

δuτη(σ · n) · τds.

Recall the definition of Φ that

Φ =
1

4

∫

Ω\P (t)

η|σ|2F dx+
1

2

∫

∂P (t)

η

Lsls
|uslip

τ |2ds+ 1

2

∫

∂Ω

η

Lsls
|uslip

τ |2ds

+
1

2
BL−1

d

∫

Ω\P (t)

|J|2dx+
1

2
BV−1

s

∫

∂P (t)

∣∣∣∣
Dφ

Dt

∣∣∣∣
2

ds+
1

2
BV−1

s

∫

∂Ω

∣∣∣∣
Dφ

Dt

∣∣∣∣
2

ds,

we may derive the variation of Φ:

δΦ =−
∫

Ω\P (t)

δu · (η∇ · σ)dx+ δUs ·
∫

∂P (t)

ησ · nds(41)

+ δωs ·
∫

∂P (t)

r× η(σ · n)ds+
∫

∂P (t)

δuslip
τ η(σ · n) · τds

+

∫

∂Ω

δuτη(σ · n) · τds+ BL−1
d

∫

Ω\P (t)

δJ · Jdx

+

∫

∂P (t)

δuslip
τ

η

Lsls
uslip
τ ds+ BV−1

s

∫

∂P (t)

δ

(
Dφ

Dt

)
Dφ

Dt
ds

+

∫

∂Ω

δuτ

η

Lsls
uτds+ BV−1

s

∫

∂Ω

δ

(
Dφ

Dt

)
Dφ

Dt
ds.

For the variation of d
dt
F , using (23)–(27), we have

δ

(
d

dt
F

)
=B

∫

Ω\P (t)

δJ · ∇µdx+ Bε
∫

Ω\P (t)

δu · (∇ · (∇φ⊗∇φ))dx(42)

+ B
∫

∂P (t)

δ

(
Dφ

Dt

)
L(φ)ds− B

∫

∂P (t)

δuslip
τ L(φ)

∂φ

∂τ
ds
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− BεδUs ·
∫

∂P (t)

∂φ

∂n
∇φds− Bεδωs ·

∫

∂P (t)

r×
(
∂φ

∂n
∇φ

)
ds

+ B
∫

∂Ω

δ

(
Dφ

Dt

)
L(φ)ds− B

∫

∂Ω

δuτL(φ)
∂φ

∂τ
ds

+Re

∫

Ω\P (t)

δu · ρDu

Dt
dx+ReδUs ·Ms

dUs

dt
+Reδωs · Is

dωs

dt
.

Finally, using the incompressibility of the perturbated velocity field δu and (24)–
(25), we have

0 = −
∫

Ω\P (t)

(∇ · δu)pdx =

∫

Ω\P (t)

δu · ∇pdx−
∫

∂P (t)

δus · (pI · n)ds.(43)

Summing up (42), (41), and (43), we come to

δ

(
d

dt
F +Φ

)
(44)

=−
∫

Ω\P (t)

δu ·
(
Reρ

Du

Dt
+∇p− η∇ · σ + Bε∇ · (∇φ⊗∇φ)

)
dx

+ B
∫

∂P (t)

δ

(
Dφ

Dt

)(
V−1
s

Dφ

Dt
+ L(φ)

)
ds+ B

∫

∂Ω

δ

(
Dφ

Dt

)(
V−1
s

Dφ

Dt
+ L(φ)

)
ds

+ B
∫

Ω\P (t)

δJ · (L−1
d J+∇µ)dx

+ δUs ·
[
ReMs

dUs

dt
+

∫

∂P (t)

(−pI+ ησ − Bε(∇φ⊗∇φ)) · nds
]

+ δωs ·
[
ReIs

dωs

dt
+

∫

∂P (t)

r× ((−pI+ ησ − Bε(∇φ⊗∇φ)) · n)ds
]

+

∫

∂P (t)

δuslip
τ

(
−BL(φ)∂φ

∂τ
+

η

Lsls
uslip
τ + η(σ · n) · τ

)
ds

+

∫

∂Ω

δuτ

(
−BL(φ)∂φ

∂τ
+

η

Lsls
uslip
τ + η(σ · n) · τ

)
ds.

In order to minimize d
dt
F + Φ for prescribed φ, variation w.r.t. each variable in

the above equality should vanish respectively. First, variation w.r.t. δJ gives

∂φ

∂t
+ u · ∇φ = −∇ · J = Ld∆µ in Ω \ P (t),

while the definition of µ gives

µ = −ε∆φ+
1

ε
(φ3 − φ) +

1

2
B−1Reρ′(φ)|u|2 in Ω \ P (t).

The impermeability boundary condition (22) is equivalent to

J · n = ∇µ · n = 0 on ∂Ω ∪ ∂P (t).
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Using the variation w.r.t. the velocity variables u in (44), we have

Reρ
Du

Dt
= ∇ · (−pI+ ησ − Bε∇φ⊗∇φ) in Ω \ P (t).

On the boundary of the fluid and the particle surface, variation w.r.t. uτ and
uslip
τ in (44) gives

η

Lsls
uslip
τ = −η(σ · n) · τ + BL(φ)∂φ

∂τ
on ∂P (t),

η

Lsls
uτ = −η(σ · n) · τ + BL(φ)∂φ

∂τ
on ∂Ω.

By the variation w.r.t. Us and ωs in (44), we have

ReMs

dUs

dt
= −

∫

∂P (t)

(−pI+ ησ − Bε∇φ⊗∇φ) · nds,

ReIs
dωs

dt
= −

∫

∂P (t)

r× ((−pI+ ησ − Bε∇φ⊗∇φ) · n)ds.

Finally, variation w.r.t. Dφ
Dt

in (44) gives

∂φ

∂t
+∇φ · u = −VsL(φ) on ∂P (t) ∪ ∂Ω,

while definition of L(φ) is

L(φ) = ε
∂φ

∂n
+

∂γ(φ)

∂φ
on ∂P (t) ∪ ∂Ω.

Recall the incompressible and impermeability boundary conditions, we have

∇ · u = 0 in Ω \ P (t),

(u− us) · n = 0 on ∂P (t),

u · n = 0 on ∂Ω.

Collecting all the above equations, we have recovered the governing system intro-
duced in this paper.

4. Energy decaying property. In the fluid-particle interaction system, if there
is no energy inflow/outflow or external force, total energy of the system should decay
over time. We now show that the energy decaying property can be derived from our
phase-field model, The goal of this section is to prove the following theorem.

Theorem 4.1. Suppose that wall speed uw = 0, and that external force g = 0;

governing system (2)–(17) satisfies the following energy decaying property:

dF

dt
=−

∫

Ω\P (t)

η

2
|σ|2F dx− BLd

∫

Ω\P (t)

|∇µ|2dx−
∫

∂P (t)

η

Lsls
|uslip

τ |2ds(45)

− BVs

∫

∂P (t)

|L(φ)|2ds−
∫

∂Ω

η

Lsls
|uτ |2ds− BVs

∫

∂Ω

|L(φ)|2ds.

Proof. Recall from (34) that

Re
d

dt
Fk = Re

∫

Ω\P (t)

ρ(φ)
Du

Dt
· udx+

1

2
Re

∫

Ω\P (t)

ρ′(φ)
Dφ

Dt
|u|2dx.(46)
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Taking the inner product of (4) with u and integrating in Ω \ P (t), we have

Re

∫

Ω\P (t)

ρ

(
Du

Dt

)
· udx =

∫

Ω\P (t)

u · (−∇p+ η∇ · σ − Bε∇ · (∇φ⊗∇φ))dx

=−
∫

Ω\P (t)

η

2
|σ|2F dx+ Bε

∫

Ω\P (t)

(∇φ⊗∇φ) : ∇udx(47)

+

∫

∂P (t)

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) · uds

+

∫

∂Ω

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) · uds.

Plugging (46) into (47), we have

d

dt
Fk =−

∫

Ω\P (t)

η

2
|σ|2F dx+ Bε

∫

Ω\P (t)

(∇φ⊗∇φ) : ∇udx(48)

+

∫

∂P (t)

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) · uds

+

∫

∂Ω

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) · uds

+
1

2
Re

∫

Ω\P (t)

ρ′(φ)
Dφ

Dt
|u|2dx.

Using Green’s formula on the right-hand side of (31), we have

B d

dt
Fb =B

∫

Ω\P (t)

(
µ− 1

2
B−1Reρ′(φ)|u|2

)
Dφ

Dt
dx+ Bε

∫

Ω\P (t)

(∇ · (∇φ⊗∇φ)) · udx

+ Bε
∫

∂P (t)

∂φ

∂n

∂φ

∂t
ds+ Bε

∫

∂Ω

∂φ

∂n

∂φ

∂t
ds

=B
∫

Ω\P (t)

µ
Dφ

Dt
dx− 1

2
Re

∫

Ω\P (t)

ρ′(φ)|u|2Dφ

Dt
dx+ Bε

∫

∂P (t)

∂φ

∂n

Dφ

Dt
ds

+ Bε
∫

∂Ω

∂φ

∂n

Dφ

Dt
ds− Bε

∫

Ω\P (t)

(∇φ⊗∇φ) : ∇udx.

Multiplying (2) by Bµ, integrating in Ω \ P (t), and using boundary conditions
(12) and (17), we have

B
∫

Ω\P (t)

µ
Dφ

Dt
dx = BLd

∫

Ω\P (t)

µ∆µdx = −BLd

∫

Ω\P (t)

|∇µ|2dx,

and thus we have

B d

dt
Fb = −BLd

∫

Ω\P (t)

|∇µ|2dx− 1

2
Re

∫

Ω\P (t)

ρ′(φ)|u|2Dφ

Dt
dx(49)

+ Bε
∫

∂P (t)

∂φ

∂n

Dφ

Dt
ds+ Bε

∫

∂Ω

∂φ

∂n

Dφ

Dt
ds− Bε

∫

Ω\P (t)

(∇φ⊗∇φ) : ∇udx.

Taking inner product to (6) by Us, we have

ReMs

d

dt

(
1

2
|Us|2

)
= −

∫

∂P (t)

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) ·Usds.
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Taking inner product to (7) by ωs, we have

ReIs
d

dt
(
1

2
|ωs|2) = −

∫

∂P (t)

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) · (ωs × r)ds.

Summing up the two equations above, we come to

d

dt
(ReFpm +ReFpr) = −

∫

∂P (t)

((−pI+ ησ − Bε(∇φ⊗∇φ)) · n) · usds.(50)

Now we deal with the surface energy F∂P (t). Recall from (36) that

B d

dt
F∂P (t)ds =B

∫

∂P (t)

L(φ)
Dφ

Dt
ds− Bε

∫

∂P (t)

∂φ

∂n

Dφ

Dt
ds

− B
∫

∂P (t)

L(φ)
∂φ

∂τ
uslip
τ ds+ Bε

∫

∂P (t)

∂φ

∂n

∂φ

∂τ
uslip
τ ds.

Using the boundary condition (9), we have
∫

∂P (t)

L(φ)
Dφ

Dt
ds = −

∫

∂P (t)

Vs|L(φ)|2ds.

Equation (8) also gives

−
∫

∂P (t)

L(φ)
∂φ

∂τ
uslip
τ ds = −

∫

∂P (t)

η

Lsls
|uslip

τ |2ds−
∫

∂P (t)

η((σ · n) · τ )uslip
τ ds,

thus we have

B d

dt
F∂P (t) =− B

∫

∂P (t)

Vs|L(φ)|2ds− Bε
∫

∂P (t)

∂φ

∂n

Dφ

Dt
ds− B

∫

∂P (t)

η

Lsls
|uslip

τ |2ds

− B
∫

∂P (t)

η((σ · n) · τ )uslip
τ ds+ Bε

∫

∂P (t)

∂φ

∂n

∂φ

∂τ
uslip
τ ds.(51)

Similarly the time derivative of the surface energy BF∂Ω is

B d

dt
F∂Ω =− B

∫

∂Ω

Vs|L(φ)|2ds− Bε
∫

∂Ω

∂φ

∂n

Dφ

Dt
ds− B

∫

∂Ω

η

Lsls
|uτ |2ds

− B
∫

∂Ω

η((σ · n) · τ )uτds+ Bε
∫

∂Ω

∂φ

∂n

∂φ

∂τ
uτds.(52)

Energy decaying property (45) may be derived by summing up (48), (49), (50),
(51), and (52).

5. Sharp interface limit. Since our model is a diffusive interface model, the
interface between two fluids is assumed to have a finite thickness of O(ε). Using the
method of matched asymptotic expansion, we study the limit of the solutions of our
model as the interface thickness ε → 0. In this paper, we consider the case that
mobility constants Ld and Vs are constant. The cases when Ld and Vs depend on
ε are discussed in [36]. We assume that the external force g and wall speed uw are
zero. For simplicity of derivation, we shift the pressure p in the governing system by
p → p− Bfb to get equivalent forms of (4), (6), and (7):

Reρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · (−pI+ ησ) + Bµ∇φ in Ω \ P (t),(53)
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ReMs

dUs

dt
= −

∫

∂P (t)

(−pI+ BfbI+ σ) · nds,(54)

ReIs
dωs

dt
= −

∫

∂P (t)

r× ((−pI+ BfbI+ σ) · n)ds.(55)

Other governing equations remain unchanged since there are no pressure terms in
these equations. In this section, we replace (4), (6), and (7) by (53), (54), and (55)
and study the sharp interface limit of the equivalent system.

Since we study the limit of solution as ε → 0, we denote (φε, µε,uε,Uε
s,ω

ε
s) the

solution of the (pressure-shifted) equation system, which depends on ε. The two-phase
interface is given by the zero level-set of the phase-field function,

Γε := {x ∈ Ω \ P (t)|φε(x) = 0}.
Let dε(x, t) be the signed distance function to Γε, which satisfies |∇dε| = 1. Suppose
that dε has the expansion

dε =

∞∑

i=0

εidi(x, t);

then we also have |∇d0| = 1. Using definition of d0, we may also define

Γ0 := {(x, t)|d0(x, t) = 0},
Ω±

0 := {(x, t) ∈ Ω \ P (t)| ± d0(x, t) > 0}.
Using the method of asymptotic expansion, we may derive governing equations

when ε → 0, with Γ0 being the fluid-fluid interface.

5.1. Outer expansion. First we consider the asymptotic expansion away from
the fluid-fluid interface, which is called the outer expansion. We seek an expansion of
the variables in {Ω±

0 }, respectively, which are in the form

φε =

∞∑

i=0

εiφ±
i , µε =

∞∑

i=0

εiµ±
i , uε =

∞∑

i=0

εiu±
i , Uε

s =

∞∑

i=0

εiUi, ω
ε
s =

∞∑

i=0

εiωi.

Define {φ±
0 , µ

±
0 ,u

±
0 , p

±
0 ,σ

±
0 } the corresponding variables in Ω±

0 . It is straightforward
to derive the leading order equations in Ω±

0 :

φ±
0 = ±1,(56)

∆µ±
0 = 0,(57)

Reρ

(
∂u±

0

∂t
+ (u±

0 · ∇)u±
0

)
= −∇p±0 + η∇ · σ±

0 ,(58)

∇ · u±
0 = 0.(59)

The boundary conditions on ∂Ω are

∂µ±
0

∂n
= 0, u±

0 · n = 0,
1

Lsls
u±
0 · τ = −η(σ±

0 · n) · τ ,(60)

while the boundary conditions on ∂P (t) are

∂µ±
0

∂n
= 0, (u±

0 − us,0) · n = 0,
1

Lsls
(u±

0 − us,0) · τ = −η(σ±
0 · n) · τ .(61)

Here us,0 = U0 + ω0 × r.
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588 XIANG LI, QIANG DU, AND XIAO-PING WANG

Since the above equations are defined in Ω±
0 , respectively, in order to close the

equation system, we also need boundary conditions on Γ0, which will be derived by
the inner expansion.

5.2. Inner expansion. We study the asymptotic behavior of solutions to the
governing system in a neighborhood of Γ0. In order to do that, we examine the inner
expansion of the solution of our governing equations near the interface. Define ξ = dε

ε

as the scaled distance from the interface, and consider the inner expansion of the
following form:

(φε, µε,uε, pε)(x, t) = (φ̃ε, µ̃ε, ũε, p̃ε)(x, t, ξ),

(φ̃ε, µ̃ε, ũε, p̃ε)(x, t, ξ) =

∞∑

i=0

εi(φ̃i, µ̃i, ũi, p̃i)(x, t, ξ).(62)

Given the inner and outer expansions, we need the matching conditions for the inner
and outer expansions. Following [5], we match the expansions by requiring that

(φ̃ε, µ̃ε, ũε, p̃ε)(x, t, ξ) ≈ (φε, µε,uε, pε)(xξ, t) as ξ → ±∞,(63)

where xξ = x+εξ∇dε. Applying Taylor expansion at point x to (63), then the leading
and the next order asymptotic expansions give

lim
ξ→±∞

(φ̃0, µ̃0, ũ0, p̃0)(x, t, ξ) = (φ±
0 , µ

±
0 ,u

±
0 , p

±
0 )(x, t)(64)

and

lim
ξ→±∞

(φ̃1, µ̃1, ũ1, p̃1)(x, t, ξ) = (φ±
1 , µ

±
1 ,u

±
1 , p

±
1 )(x, t)(65)

+ ξ∇d0 · (∇φ±
0 ,∇µ±

0 ,∇u±
0 ,∇p±0 )(x, t),

which imply

lim
ξ→±∞

∂ξ(φ̃
0, µ̃0, ũ0, p̃0)(x, t, ξ) = 0,(66)

lim
ξ→±∞

∂ξ(φ̃
1, µ̃1, ũ1, p̃1)(x, t, ξ) = (∇d0 · (∇φ±

0 ,∇µ±
0 ,∇u±

0 ,∇p±0 ))(x, t).(67)

We then study the inner expansion of our model. Applying expansion (62) into
(2), (3), (53), and (5), we have

Ldµ̃
ε
ξξ − ε[Ld(∆dεµ̃ε

ξ + 2∇dε · ∇̃µ̃ε
ξ)− ∂td

εφ̃ε
ξ − (ũε · ∇)dεφ̃ε

ξ)](68)

+ ε2(Ld∆̃µ̃ε − ∂tφ̃
ε − ũε · ∇̃φ̃ε) = 0,

ε

(
∆dεφ̃ε

ξ + 2∇dε · ∇̃φ̃ε
ξ + µ̃ε − 1

2
ReB−1ρ′(φ̃ε)|ũε|2

)
(69)

+ ε2∆̃φ̃ε + (φ̃ε
ξξ − ((φ̃ε)3 − φ̃ε)) = 0,

ε[Reρε(ũε
ξ∂td

ε + (ũε · ∇dε)ũε
ξ)− η∆dεũε

ξ − 2η(∇dε · ∇̃)ũε
ξ + (p̃εξ − Bµ̃εφ̃ε

ξ)∇dε](70)

+ ε2[Reρ(∂tũ
ε + (ũε · ∇̃)ũε) + ∇̃p̃ε − η∆̃ũε − Bµ̃ε∇̃φ̃ε]− ηũε

ξξ = 0,

ε∇̃ · ũε + ũε
ξ · ∇dε = 0.(71)

Here ∇̃ := ( ∂
∂x

, ∂
∂y

), ∆̃ := ∂2

∂x2 + ∂2

∂y2 , fξ := ∂f
∂ξ

.
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The leading order equations of the above equation system are





Ldµ̃
0
ξξ = 0,

φ̃0
ξξ −

((
φ̃0
)3 − φ̃0

)
= 0,

ηũ0
ξξ = 0,

ũ0
ξ · ∇d0 = 0,

(72)

while the next order equations are





Ldµ̃
1
ξξ − Ld

(
∆̃d0µ̃0

ξ + 2∇d0 · ∇̃µ̃0
ξ

)
− ∂td

0φ̃0
ξ −

(
ũ0 · ∇

)
d0φ̃0

ξ = 0,

φ̃1
ξξ − 3

((
φ̃0
)2 − 1

)
φ̃1 +∆dεφ̃0

ξ + 2∇d0 · ∇̃φ̃0
ξ

+ µ̃0 − 1

2
ReB−1ρ′

(
φ̃0
)
|ũ0|2 = 0,

Reρ
(
φ̃0
)(
ũ0
ξ∂td

0 +
(
ũ0 · ∇d0

)
ũ0
ξ

)
− η∆d0ũ0

ξ − 2η
(
∇d0 · ∇̃

)
ũ0
ξ

+
(
p̃0ξ − Bµ̃0φ̃0

ξ

)
∇d0 − ηũ1

ξξ = 0,

∇̃ · ũ0 + ũ1
ξ · ∇d0 + ũ0

ξ · ∇d1 = 0.

(73)

Given the leading order equations (72) and the matching condition (64), it follows
immediately that µ̃0 and ũ0 are independent of ξ, thus

[u0] = 0 and ∇d0 · [∇u0] = 0 on Γ0,

where [u0] stands for the jump between u+
0 and u−

0 on Γ0.
From the second equation in (72), and the matching condition (64), we find that

φ̃0 satisfies the following equations:

φ̃0
ξξ = (φ̃0)3 − φ̃0, φ̃0|ξ=0 = 0, lim

ξ→±∞
φ̃0 = ±1.(74)

The solution of the above equations is φ̃0 = tanh(
√
2
2 ξ).

Note that µ̃0
ξ = 0, and the first equation in next order equations (73) gives

Ldµ̃
1
ξξ − ∂td

0φ̃0
ξ − (ũ0 · ∇)d0φ̃0

ξ = 0.

Integrating the above equation w.r.t. ξ over (−∞,+∞), and using the matching
condition (64), (67), we may derive that

∂td
0 + (u0 · ∇)d0 =

Ld

2
∇d0 · [∇µ0],(75)

which is the evolution equation for the interface Γ0.
Next, to derive the equation for µ0 on Γ0, we use (74) and the matching condition

for φ̃0 to get

∫ +∞

−∞
(φ̃1

ξξ − (3(φ̃0)2 − 1)φ̃1)φ̃
0
ξdξ =

∫ +∞

−∞
φ̃1
ξξφ̃

0
ξ − ∂ξ((φ̃

0)3 − φ̃0)φ̃1dξ

=

∫ +∞

−∞
φ̃1
ξξφ̃

0
ξ − φ̃0

ξξξφ̃
1dξ = 0.(76)
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Similar to [25], we assume that

∇d0 · ∇̃φ̃0
ξ = 0.(77)

Multiplying φ̃0
ξ to the second equation in (73), integrating w.r.t. ξ over (−∞,+∞),

and plugging (76)–(77), we have

∫ +∞

−∞

(
µ̃0 +∆d0φ̃0

ξ −
1

2
ReB−1ρ′

(
φ̃0
)
|ũ0|2

)
φ̃0
ξdξ = 0.

Recalling that µ̃0 and ũ0 are independent of ξ, using match condition (64), the above
equation means that

µ±
0 = −FCa

2
∆d0 +

1

4
ReB−1[ρ(φ0)]|u0|2 on Γ0.(78)

Here FCa is defined as FCa :=
∫ +∞
−∞ |φ̃0

ξ |2dξ.
From the last equation in (73), by noting that ũ0

ξ = 0, we have

∇̃ · ũ0 + ũ1
ξ · ∇d0 = 0.

Moreover, since ũ0 is independent of ξ, we have

∇̃ · ũ0 = lim
ξ→±∞

∇̃ · ũ0 = lim
ξ→±∞

(
∇̃ · ũ0 + ε−1∇dε · ũ0

ξ

)
= ∇ · u±

0 = 0,

and we have ũ1
ξ · ∇d0 = 0. The matching condition (67) then gives

((
∇d0 · ∇

)
u±
0

)
· ∇d0 = 0 on Γ0.(79)

From the third equation in (73), since ũ0
ξ = 0, we have

ηũ1
ξξ −

(
p̃0ξ − Bµ̃0φ̃0

ξ

)
∇d0 = 0.

By multiplying ∇d0 to both sides of the equation above and noting that |∇d0| = 1,
we have

η∇d0 · ũ1
ξξ = p̃0ξ − Bµ̃0φ̃0

ξ .

After integrating the above equation w.r.t. ξ over (−∞,+∞), it follows from the
matching conditions (64)–(67) and (79)–(78) that

[p0] = 2Bµ±
0 = −BFCa∆d0 +

1

2
Re[ρ(φ0)]|u0|2 on Γ0.

Remark 5.1. Compared with the standard results in, e.g., [35], we introduced a
new term 1

2Re[ρ(φ0)]|u0|2. This term balanced the change of kinetic energy caused
by the motion of the fluid-fluid interface. In an equal density case such a term will
vanish; then our pressure jump will reduce to the original result.

Next we deal with the boundary conditions on ∂Ω. As a relaxation parameter,
Vs may take on different choices. In this paper, following [35], we assume that the
mobility constant Vs ∼ O(1). For other choices of Vs, we refer to [36] for a detailed
discussion.
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Eliminating L(φ) in (15) and (14), then using inner expansion (62), we have

(
φ̃ε
ξ∂td

ε + φ̃ε
ξ∇dε · ũε

)
+ ε

(
∂tφ̃

ε + ∇̃φ̃ε · ũε + Vsφ̃
ε
ξ

∂dε

∂n
+ Vs

∂γ(φ̃ε)

∂φ

)
+ ε2Vs

∂φ̃ε

∂n
= 0.

The leading order term of the above equation gives

φ̃0
ξ∂td

0 + φ̃0
ξ∇d0 · ũ0 = 0 on ∂Ω.

Integrating the above equality w.r.t. ξ over (−∞,+∞), we have

∂td
0 +∇d0 · u0 = 0 on ∂Ω.

The above equation and (75) also lead to

∇d0 · [∇µ0] = 0 on ∂Ω ∩ Γ0.

Eliminating L(φ) by (13) and (15), the inner expansion (62) leads to

η

Lsls
ũε · τ =− η

(
σ̃

ε · n+ ε−1ũε
ξ

∂dε

∂n
+ ε−1(ũε

ξ · n)∇dε
)
· τ

+ B
(
ε
∂φ̃ε

∂n
+ φ̃ε

ξ

∂dε

∂n
+

∂γ(φ̃ε)

∂φ

)(
∂φ̃ε

∂τ
+ ε−1φ̃ε

ξ

∂dε

∂τ

)
.

Since ũ0 is independent of ξ, O(ε−1) terms of the above equality give

B
(
φ̃0
ξ

∂d0

∂n
+

∂γ(φ̃0)

∂φ

)
φ̃0
ξ

∂d0

∂τ
= 0.

Noting that ∂d0

∂τ
6= 0 and φ̃0

ξ 6= 0 on ∂Ω, we have

φ̃0
ξ

∂d0

∂n
− ∂γ(φ̃0)

∂φ
= 0.

Multiplying the above equation by φ̃0
ξ , integrating w.r.t. ξ over (−∞,+∞), and

defining γ± := γ(φ±
0 ), we have

∂d0

∂n

∫ +∞

−∞
|φ̃0

ξ |2dξ = γ− − γ+.

We define α0 := arccos(∂d
0

∂n
) as the angle between interface Γ0 and the fluid

surface ∂Ω; the above equation then equals to

cosα0 = (γ− − γ+)/FCa.

Similarly, we may derive the boundary conditions on the particle surface ∂P (t):

∂td
0 +∇d0 · u0 = 0 on ∂P (t),

∇d0 · [∇µ0] = 0 on ∂P (t) ∩ Γ0,

cosα0 = (γ− − γ+)/FCa.
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5.3. Forces on the particle. We study the sharp interface for (54) and (55).
First we derive a sharp interface limit of (54), then we may deal with (55) in a similar
way. In order to derive the leading order term of the above equations, we let ε → 0
on both sides of (54) and calculate the limit with the help of asymptotic expansion.
According to the inner expansion, since p̃ε and σ̃

ε is bounded of ε near the fluid-fluid
interface Γ0, we have

lim
ε→0

−
∫

∂P (t)

(−pεI+ ησε) · nds = −
∫

∂P (t)

(−p0I+ ησ0) · nds.

On the force term

−
∫

∂P (t)

(Bfb(φε)I− Bε∇φε ⊗∇φε) · nds,

note that when ε → 0, ∇φε have singularity near the fluid-fluid interface Γ0, and we
cannot simply take the limit inside the integral. In order to study the leading order
behavior of

−
∫

∂P (t)

−Bε(∇φε ⊗∇φε) · nds,

given a fixed small parameter ε0, we split P (t) into Λε0 := {(x, t) ∈ P (t)|d0(x, t) < ε0}
and P (t)\Λε0 , and deal with the integration over Λε0 and P (t)\Λε0 separately. When
the integration area is away from the fluid-fluid interface, we have

lim
ε→0

−
∫

P (t)\Λε0

(fb(φ̃
ε)I− Bε∇φε ⊗∇φε) · nds

= lim
ε→0

−
∫

P (t)\Λε0

(fb(φ0)I− Bε∇φ0 ⊗∇φ0) · nds = 0.

Next we derive the sharp interface limit of

−
∫

Λε0

(fb(φ̃
ε)− Bε∇φ̃ε ⊗∇φ̃ε) · nds.

By defining ξi = di

ε
, we have ξ =

∑∞
i=0 ε

iξi; then we may expand φ̃ε by

φ̃ε(x, y, t, ξ) = φ̂0(x, y, t, ξ0) + εφ̂1(x, y, t, ξ0, ξ1) + ε2φ̂2(x, y, t, ξ0, ξ1, ξ2) . . . .

Using the above inner expansion, we may see that φ̂0 also satisfies

φ̂0
ξξ = (φ̂0)3 − φ̂0, φ̂0|ξ=0 = 0, lim

ξ→±∞
φ̂0 = ±1,(80)

which means that φ̂0 = tanh(
√
2
2 ξ0).

To deal with the integration in Λε0 , first we deal with the case that Λε0 is straight.
We introduce a local coordinate system. The x̃ axis is parallel to Λε0 and the origin
is on the intersection of the fluid and the solid boundary, as shown in Figure 2. With
the help of the local coordinates, we may express Λε0 by x̃ ∈ (−ε0, ε0).

Now we find the limit as ε → 0 of the integral below:

−
∫

Λε0

−Bε∇φ̃ε ⊗∇φ̃ε · nds.
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Collecting all the results in the above, we may derive the leading order behavior
of the governing system. The leading profiles (φ±

0 , µ
±
0 ,u

±
0 , p

±
0 ) satisfy the following

coupled system of Hele–Shaw equations and incompressible Navier–Stokes equations
in Ω±

0 :




φ±
0 = ±1,

∆µ±
0 = 0,

Reρ

(
∂u±

0

∂t
+ (u±

0 · ∇)u±
0

)
= −∇p±0 + η∆u±

0 ,

∇ · u±
0 = 0.

The boundary conditions on ∂Ω are

∂µ±
0

∂n
= 0, u±

0 · n = 0,
1

Lsls
u±
0 · τ = −(σ±

0 · n) · τ ,

while the boundary conditions on ∂P (t) are

∂µ±
0

∂n
= 0, (u±

0 − us,0) · n = 0,
1

Lsls
(u±

0 − us,0) · τ = −(σ±
0 · n) · τ .

Boundary conditions on the fluid-fluid interface Γ0 are

µ±
0 = −FCa

2
∆d0 +

1

4
ReB−1[ρ(φ0)]|u0|2,

[u0] = 0, (∇d0 · ∇)u±
0 · ∇d0 = 0,

[p0] = −BFCa∆d0 +
1

2
Re[ρ(φ0)]|u0|2.

The dynamics of the interface is given by

∂td
0 + (u0 · ∇)d0 =

Ld

2
∇d0 · [∇µ0],

with the contact angle satisfying

cosα0 = (γ− − γ+)/FCa.

Moreover, on ∂Ω and ∂P (t) we have

∂td
0 + (u0 · ∇)d0 = 0.

Equations for the particle motion are

ReMs

dU0

dt
= −

∫

∂P (t)

(−p0I+ ησ0) · nds+
∑

AI

BFCaτI ,

ReIs
dω0

dt
= −

∫

∂P (t)

r× ((−p0I+ ησ0) · n)ds+
∑

AI

r× BFCaτI ,

where
∑

AI
is taken from each intersection point between Γ0 and ∂P (t).

Similar to the governing system (2)–(17), we can also derive the energy decaying
property for the sharp interface limit. For an arbitrary curve Γ, let |Γ| denote its
length. The total energy F 0 of the sharp interface limit is defined as
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F 0 := ReF 0
k + BF 0

b +ReMsF
0
pm +ReIsF

0
pr + BF 0

∂P (t) + BF 0
∂Ω,

F 0
k :=

∫

Ω\P (t)

1

2
ρ(φ0)|u0|2dx, F 0

b := Fca|Γ0|, F 0
pm :=

1

2
|U0|2, F 0

pr :=
1

2
|ω0|2,

F 0
∂P (t) := γ+|∂P (t) ∩ Ω+

0 |+ γ−|∂P (t) ∩ Ω−
0 |, F 0

∂Ω := γ+|∂Ω ∩ Ω+
0 |+ γ−|∂Ω ∩ Ω−

0 |.

If we assume that the wall speed uw = 0 and the external force g = 0, similar to
the phase-field model in this paper, the total energy of the sharp interface limit also
decays over time, such that

d

dt
(ReρF 0

k + BF 0
b +ReMsF

0
pm +ReIsF

0
pr + BF 0

∂P (t) + BF 0
∂Ω)

= −
∫

Ω\P (t)

η

2
|σ0|2F dx− BLd

∫

Ω+
0

|∇µ+
0 |2dx− BLd

∫

Ω−

0

|∇µ−
0 |2dx

−
∫

∂P (t)

η

Lsls
|(u0 − us,0) · τ |2ds−

∫

∂Ω

η

Lsls
|u0 · τ |2ds.

6. Conclusions. In this paper, a new phase-field model is constructed for the
fluid-particle interaction problem in two-phase flows. Our model may be derived by
the principle of minimal dissipation. Moreover our model satisfies the energy decaying
property. We also derive the sharp interface limit of the governing equations. There
are various future works to be done on the model introduced in this paper, such
as developing efficient numerical schemes for our model which maintain the energy
decaying property.
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