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STABILITY AND ERROR ANALYSIS FOR A SECOND-ORDER

FAST APPROXIMATION OF THE LOCAL AND NONLOCAL

DIFFUSION EQUATIONS ON THE REAL LINE\ast 

CHUNXIONG ZHENG† , QIANG DU‡ , XIANG MA§ , AND JIWEI ZHANG¶

Abstract. The stability and error analysis of a second-order fast approximation are considered
for the one-dimensional local and nonlocal diffusion equations in the unbounded spatial domain.
We first use the conventional central difference scheme to discretize the local second-order spatial
derivative operator and use an asymptotically compatible difference scheme to discretize the spatial
nonlocal diffusion operator, and apply second-order backward differentiation formula (BDF2) to
approximate the temporal derivative to achieve a fully discrete infinity system. To solve the resulting
fully discrete systems, we develop a unified framework that is applicable to the discretization of
both local and nonlocal problems. A key ingredient is to derive Dirichlet-to-Neumann (DtN)-type
absorbing boundary conditions (ABCs). To do so, we apply the z-transform and solve an exterior
problem using an iteration technique to derive a Dirichlet-to-Dirichlet (DtD)-type mapping as exact
ABCs. After that, we use the Green formula to reformulate the DtD-type mapping equivalently as
the DtN-type mapping. The resulting DtN-type mapping allows us to reduce the infinity discrete
system into a finite discrete system in a truncated computational domain of interest, and also make
it possible to present the stability and convergence analysis of the reduced problem under some
open but reasonable assumptions. To efficiently implement the exact ABCs, we further develop a
fast convolution algorithm based on approximation of the contour integral induced by the inverse
z-transform. The stability and error analysis of the reduced finite discrete system based on the fast
algorithm for exact ABCs are also established, and numerical examples are provided to demonstrate
the effectiveness of our proposed approach.

Key words. nonlocal diffusion equation, asymptotically compatible, artificial boundary method,
absorbing boundary conditions, fast algorithm, stability and error analysis, DtN-type map
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1. Introduction. Conventional heat (diffusion) equations representing a class
of partial differential equations have been applied to many fields [1] such as heat
transfer, fluid dynamics, astrophysics, and finance. Nonlocal diffusion models given
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in terms of integral equations can be viewed as more general models than the local
diffusion equations [8]. In this paper, we develop an efficient numerical scheme for
local heat/diffusion equations on unbounded spatial domains:

(\partial t + \scrL 0)q(x, t) = 0, (x, t) \in R\times (0, T ],

q(x, 0) = \varphi (x), x \in R,

lim
x\rightarrow \pm \infty 

q(x, t) = 0, t \in (0, T ],

(1.1)

and nonlocal heat/diffusion equations:

(\partial t + \scrL \delta )q(x, t) = 0, (x, t) \in R\times (0, T ],

q(x, 0) = \varphi (x), x \in R,

lim
x\rightarrow \pm \infty 

q(x, t) = 0, t \in (0, T ],

(1.2)

where the initial value \varphi is a given compactly supported function (see more discussion
on \varphi in section 2.3), the local operator \scrL 0 is defined as (1.5), and the nonlocal operator
\scrL \delta is a linear integral operator defined as

(1.3) \scrL \delta q(x) =

�
R

[q(x) - q(y)]\gamma 

\biggl( 

y  - x,
y + x

2

\biggr) 

dy.

The (interaction) kernel function \gamma in (1.3) has the following properties:
\bullet nonnegativeness: \gamma (\alpha , \beta ) \geq 0;
\bullet symmetry in \alpha : \gamma ( - \alpha , \beta ) = \gamma (\alpha , \beta );
\bullet finite horizon: \exists \delta > 0 such that \gamma (\alpha , \beta ) = 0 if | \alpha | > \delta > 0.

The nonlocal operator \scrL \delta has an intimate connection with local differential oper-
ators. Specifically, if the kernel function \gamma satisfies the moment condition

(1.4) 0 < \sigma (x) =
1

2

�
R

s2\gamma 

\biggl( 

s, x+
s

2

\biggr) 

ds <\infty ,

then the nonlocal operator \scrL \delta converges to the second-order differential operator;
see [8, 9, 11, 40], namely

(1.5) lim
\delta \rightarrow 0

\scrL \delta q(x) =  - \partial x(\sigma (x)\partial x)q(x) := \scrL 0q(x).

Such consistency is quite useful not only for the modeling, but also the valida-
tion/verification of numerical simulations. The asymptotic compatibility (AC) scheme,
a concept developed in [31, 32] and further extended in [33], is introduced to discretize
the nonlocal operator to preserve such an (analogous) limit (1.5) on the discrete level.

The AC scheme can guarantee that numerical solutions are consistent with both
the corrected local limiting problem (\delta \rightarrow 0) and nonlocal problem (\delta = \scrO (1)).

For problems defined on unbounded domains, one of the popular tools is the
artificial boundary method (ABM); see monograph [18] and review papers [13, 15, 34].
The key process of ABM is the construction of suitable artificial/absorbing boundary
conditions (ABCs). While the ABCs for local heat equations [14, 16, 17, 25, 35, 36,
38], Schrödinger equations [3, 4, 19, 20, 21, 25, 29], and wave equations [2, 24] have
been well studied, only a relative few works have focused on the nonlocal problems
[37, 39, 10, 11]. For nonlocal heat equations, the construction of nonlocal ABCs is
generally implemented in a layer due to the nonlocal interaction, which leads to the
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additional complications in both implementation and in the analysis of stability and
convergence of the resulting reduced problem on the bounded computational domain.

The aim of this paper is to present a unified framework to efficiently develop a
fast, stable, and second-order scheme, which is suitable for both local and nonlocal
diffusion equations on unbounded spatial domains. To this end, we first introduce
spatial discretizations, based on the central difference scheme and the asymptotic
compatibility (AC) scheme, to discretize the heterogeneous local derivative operator
and nonlocal diffusion operator, respectively, and use the second-order backward dif-
ferentiation formula (BDF2) to discretize the temporal derivative. After that, we
apply the z-transform to the exterior problem for the resulting infinite-dimensional
system, which is assumed to be well-posed. By the iteration technique to solve a
second-order operator difference equation, we obtain the exact Dirichlet-to-Dirichlet
(DtD)-type mapping from artificial boundary points to ghost points. We then use
the discrete Green formula to reformulate the DtD-type mapping into a Dirichlet-to-
Neumann (DtN)-type mapping. Taking the DtN mapping as our ABCs, we finally
obtain a reduced problem on a bounded computational domain of interest. The DtN-
type ABCs lead us to the corresponding stability and convergence analysis for the
proposed scheme, under some additional assumptions on the sectorial properties of
related linear operators, the special kernels considered in this paper. The latter re-
mains an open question to be studied beyond the current work.

In fact, for the resulting ABCs that contain temporal convolution induced by
the inverse z-transform, the estimates on computational cost and the analysis of
numerical stability and error analysis for numerical methods have been challenging
even for local PDEs [3, 20, 29]. Nevertheless, it is important to point out that the
iteration technique used in the design of DtD-type mapping and the Green formula
to reformulate DtD-type mapping into DtN-type are available whatever the system
that arises from the discretization of local or nonlocal models.

To reduce the computational cost for long time or small time-step simulations,
we consider the fast evaluation of temporal convolution. In the literature, fast algo-
rithms are well studied by utilizing the summation of exponentials to approximate the
convolution kernel. One can see the derivation of exponentials through quadrature
approximation in the time domain [4, 19, 38], direct rational approximation of kernel
symbols [2], or quadrature approximation of contour integrals in the Laplace domain
[21, 24]. In this paper, we use the main idea in [22, 23, 27, 28] to present a fast
evaluation of the temporal convolution for the boundary conditions. Based on the
construction of DtN-type mapping, the stability and error analysis of the resulting
scheme with our fast numerical approximation is also established.

The outline of the paper is as follows. In section 2, a fully discrete local and
nonlocal diffusion system is constructed, and the generalized DtN-type ABCs are
derived. To reduce the computational cost, in section 3, a fast convolution algorithm
is developed based on the approximation of the contour integral. The stability and
error analysis is given in section 4 and numerical experiments are provided in section
5 to demonstrate the effectiveness of our approach.

2. Design of absorbing boundary conditions.

2.1. Fully discrete scheme. Let \{ xn\} be a sequence of grid points with an
equidistant grid size h, and let Ψm be the hat basis function of width h centered
at point xm. For the discretizaiton of local operator (1.5), the second-order central
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difference scheme is given by

\scrL 0,hq(xn) = \sigma n+ 1
2

q(xn) - q(xn+1)

h2
+ \sigma n - 1

2

q(xn) - q(xn - 1)

h2
(2.1)

=
\sum 

m\in Z

an,m[q(xn) - q(xm)]

with

an,m =

\left\{ 

 

 

 

 

\sigma n+ 1
2
/h2, m = n+ 1,

\sigma n - 1
2
/h2, m = n - 1,

0 others.

(2.2)

The AC scheme proposed in [11] to discretize the general nonlocal operator \scrL \delta is given
as

(2.3) \scrL \delta ,hq(xn) =
\sum 

m\in Z

an,m [q(xn) - q(xm)] ,

where

an,m =

\Biggl\{ 

1
(n - m)h

�
R
Ψ(n - m)h(s)s\gamma 

\bigl( 

s, xn+xm

2

\bigr) 

ds, m \not = n,

0, m = n.
(2.4)

Obviously, it holds that an,m \geq 0, an,m = am,n, n,m \in Z for both local and nonlocal
problems, which implies that the operators \scrL 0,h and \scrL \delta ,h are symmetric and non-
negative. The scheme extends earlier constructions in [31] for translation invariant
kernels. As shown in [11], the nonlocal coefficients in (2.3) will converge to the local
coefficients in (2.1) as the nonlocal interaction \delta vanishes. Without loss of generality,
we will use the notation (2.3) to represent the general case for local and nonlocal
coefficients.

Let \tau be the time step, and let tn = n\tau be the time points. The numerical

approximation of q(xk, tn) will be denoted by q
(n)
k . The BDF2 discretization operator

is defined by

\scrD \tau q
(n)
k =

3q
(n)
k  - 4q

(n - 1)
k + q

(n - 2)
k

2\tau 
.

Applying the BDF2 time discretization and the discrete local and nonlocal operator
\scrL \delta ,h, we have the fully discrete diffusion system:

\scrD \tau q
(n)
k + \scrL \delta ,hq

(n)
k = 0, k \in Z, n \geq 2,

q
(0)
k = \varphi (xk), k \in Z,

lim
k\rightarrow \pm \infty 

q
(n)
k = 0, n \geq 0.

(2.5)

2.2. The z-transform. To streamline the notation, given a bounded infinite
sequence \{ q(n)\} +\infty 

n=0, we define its z-transform as

q̂(z) =

+\infty 
\sum 

n=0

znq(n), | z| < 1,

and the inverse z-transform as

q(n) =
1

2\pi i

�
Sρ

q̂(z)z - (n+1)dz, n > 0, 0 < \rho < 1,

where S\rho represents a circle with radius \rho .
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FAST APPROXIMATION OF DIFFUSION EQUATIONS 1897

2.3. DtD-type absorbing boundary conditions. We now resort to the arti-
ficial boundary method to design ABCs for the infinite discrete system (2.5). To do
so, we make some additional assumptions on the initial function \varphi and kernel function
\gamma as follows:

\bullet \varphi is compactly supported over a finite interval, say [x - , x+];
\bullet \gamma is compactly supported over a strip [ - \delta , \delta ]\times R with \delta < (x+  - x - )/2;
\bullet \gamma becomes homogeneous in the exterior domains, namely,

\gamma (\alpha , \beta ) = \gamma L(\alpha ), \beta \in ( - \infty , x - + \delta ],

\gamma (\alpha , \beta ) = \gamma R(\alpha ), \beta \in [x+  - \delta ,+\infty ).
(2.6)

The functions \gamma L and \gamma R can be different. For the sake of brevity, we assume \gamma L =
\gamma R = \gamma \infty in what follows. For the local problem, we only assume that the diffusion
coefficient \sigma is a positive constant outside of computational domains Ω. Let Nl be
the largest integer with xNl

\leq x - , and Nr the smallest integer with x+ \leq xNr
.

We set

L =

\Biggl\{ 

1 local problem,

\lceil \delta /h\rceil nonlocal problem
(2.7)

and introduce the following notation:

Ω = [Nl, Nr] \cap Z, Ωc = Z\setminus Ω, Ω+ = [Nl  - L+ 1, Nr + L] \cap Z,

Ωr = [Nr  - L+ 1, Nr] \cap Z, Ωr,c = [Nr + 1,+\infty ) \cap Z,

Ωl = [Nl, Nl + L - 1] \cap Z, Ωl,c = ( - \infty , Nl  - 1] \cap Z.

Note that by definition if \delta /h is an integer, then \lceil \delta /h\rceil = \delta /h. Based on the above
assumptions on \varphi and \gamma in nonlocal problems, we conclude that

q
(0)
k = 0, k \in Ωc and an,m =  - cn - m, n \in Ωc, m \in Z,

where

ck =

\left\{ 

 

 

 

 

 

 

 - 1

kh

�
R

Ψkh(s)s\gamma \infty (s)ds, k \not = 0,

 - 
\sum 

m \not =0

cm, k = 0.
(2.8)

It is clear that ck = c - k. Moreover, we know ck = 0 for all k with | k| > L. For the
local problem, we have

ck =

\Biggl\{ 

 - \sigma /h2, | k| = 1,

2\sigma /h2, k = 0.
(2.9)

To introduce our construction of DtN-type mappings for the discrete diffusion
system, we first consider the right homogeneous subproblem, namely,

\scrD \tau q
(n)
k +

L
\sum 

m= - L

cmq
(n)
k+m = 0, k \in Ωr,c, n \geq 2,

q
(0)
k = 0, k \in Ωr,c,

lim
k\rightarrow +\infty 

q
(n)
k = 0, n \geq 0.

(2.10)
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Performing the z-transform on both sides of (2.10), we obtain

sq̂k +
L
\sum 

m= - L

cmq̂k+m = 0, k \in Ωr,c,

lim
k\rightarrow +\infty 

q̂k = 0,

(2.11)

where

(2.12) s = (3 - 4z + z2)/(2\tau ).

It is easy to verify that the principal square root of (2.12) is

(2.13) z = 2 - 
\surd 
1 + 2\tau s.

We introduce a bounded sequence space in \ell 2-norm:

l0 = \{ q = \{ qk\} k\in Z : #q < +\infty \} ,

where the symbol # stands for the number of nonzero elements. Let us define the
linear operator \scrT which acts on l0 as

\scrT q =
\Biggl\{ 

L
\sum 

m= - L

cmqk+m

\Biggr\} 

k\in Z

\forall q = \{ qk\} k\in Z \in l0.

It is obvious to verify that the operator \scrT is symmetric and nonnegative definite.
Therefore, \varrho (\scrT ), the spectrum of \scrT , lies on the right half real axis [11].

Denote

(2.14) Q̂r,k = [q̂Nr+(k - 1)L+1, q̂Nr+(k - 1)L+2, . . . , q̂Nr+kL]
T .

We can rewrite the fully discrete diffusive problem (2.11) into a second-order matrix
(or scalar for local problem) difference equation:

sQ̂r,k +AQ̂r,k - 1 +BQ̂r,k +AT Q̂r,k+1 = 0, k \geq 1,(2.15)

Q̂r,k \rightarrow 0, k \rightarrow +\infty ,(2.16)

with

(2.17) A =

\left( 

 

 

 

 

 

cL \cdot \cdot \cdot \cdot \cdot \cdot c2 c1
cL \cdot \cdot \cdot \cdot \cdot \cdot c2

cL \cdot \cdot \cdot \cdot \cdot \cdot 
\cdot \cdot \cdot \cdot \cdot \cdot 

cL

\right) 

 

 

 

 

 

, B =

\left( 

 

 

 

 

 

c0 c1 \cdot \cdot \cdot \cdot \cdot \cdot cL - 1

c1 c0 c1 \cdot \cdot \cdot \cdot \cdot \cdot 
\cdot \cdot \cdot c1 c0 c1 \cdot \cdot \cdot 
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 
cL - 1 \cdot \cdot \cdot \cdot \cdot \cdot c1 c0

\right) 

 

 

 

 

 

.

In the above, the coefficients ck are defined as (2.9) for the local problem and (2.8)
for the nonlocal problem, respectively. Equation (2.15) is equivalently reformulated
into

(2.18) Q̂r,k = A0Q̂r,k - 1 +B0Q̂r,k+1, k \geq 1,

with A0 =  - (s+B)
 - 1
A, B0 =  - (s+B)

 - 1
AT .
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With prescribed Q̂r,0 for all s /\in \varrho ( - \scrT ), the matrix (scalar) difference problem
(2.18) admits a unique solution. By using the fast algorithm for the second-order
operator difference equation developed in [11, Appendix], the value of Q̂r,1 is uniquely

determined by the value of Q̂r,0 in a linear manner, namely,

(2.19) Q̂r,1 = \̂scrK (s)Q̂r,0,

where \̂scrK (s) is an exact convolution kernel. For the local problem, we have the exact
formula

(2.20) \̂scrK (s) =
2 + h2s - 

\surd 
4h2s+ h4s2

2
.

For any prescribed s /\in \varrho ( - \scrT ), we apply the inverse z-transform to the operator
\̂scrK (s) to have

(2.21) Kj =
1

2\pi i

�
| z| =\rho 

\̂scrK (s)

zj+1
dz, 0 < \rho < 1, j \geq 0,

where s = (3 - 4z + z2)/(2\tau ). Performing inverse z-transform to (2.19) yields

(2.22) Q
(n)
r,1 = \scrK \ast Q(n)

r,0 =

n
\sum 

m=0

Kn - mQ
(m)
r,0 , n \geq 0,

where Q
(n)
r,k represents the inverse z-transform of Q̂r,k defined as (2.14), i.e.,

Q
(n)
r,k = [q

(n)
Nr+(k - 1)L+1, q

(n)
Nr+(k - 1)L+2, . . . , q

(n)
Nr+kL]

T .(2.23)

One can see that the expression (2.22) is a DtD-type mapping.
Similarly, setting

Q̂l,k = [q̂Nl - (k - 1)L - 1, q̂Nl - (k - 1)L - 2, . . . , q̂Nl - kL]
T ,

Q
(n)
l,k = [q

(n)
Nl - (k - 1)L - 1, q

(n)
Nl - (k - 1)L - 2, . . . , q

(n)
Nl - kL]

T ,

and considering the left homogeneous subproblem, we have the left DtD-type mapping
as

(2.24) Q
(n)
l,1 = \scrK \ast Q(n)

l,0 =

n
\sum 

m=0

Kn - mQ
(m)
l,0 , n \geq 0.

Taking DtD-type mappings (2.22) and (2.24) as ABCs, we have the discrete sys-
tem on the truncated domain:

\scrD \tau q
(n)
k + \scrL \delta ,hq

(n)
k = 0, k \in Ω, n \geq 2,

Q
(n)
r,1 =

n
\sum 

m=0

Kn - mQ
(m)
r,0 , Q

(n)
l,1 =

n
\sum 

m=0

Kn - mQ
(m)
l,0 ,

q
(1)
k = q

(0)
k + \tau \partial tq

(0)
k = \varphi (xk) + \tau \scrL \delta ,h\varphi (xk), k \in Ω,

q
(0)
k = \varphi (xk), k \in Ω+.

(2.25)
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2.4. DtN-type absorbing boundary conditions. It is well known that Neu-
mann type problems substantially differ from the Dirichlet type problems for nonlo-
cal/fractional equations; see [6, 7, 9, 12, 30]. The study of Neumann problems will
have an important influence on many applications such as interface problems, free
boundary problems, and domain compositions of nonlocal problems. We consider
here the Neumann data based on the definition of the discrete operator. By the
discrete Green formula, we have

\sum 

n\in Ω

\scrL \delta ,hqn \cdot vn =
\sum 

n\in Ω

\sum 

m\in Ω

an,m(qn  - qm)vn +
\sum 

n\in Ω

\sum 

m\in Ωc

an,m(qn  - qm)vn

=
1

2

\sum 

n\in Ω

\sum 

m\in Ω

an,m(qn  - qm)(vn  - vm) +
\sum 

n\in Ω

\sum 

m\in Ωc

an,m(qn  - qm)vn

=
1

2

\sum 

n\in Ω

\sum 

m\in Ω

an,m(qn  - qm)(vn  - vm) +
\sum 

n\in Ω

\sum 

m\in Ωc

an,m(qn  - qm)(vn  - vm)

 - 
\sum 

n\in Ωc

\sum 

m\in Ω

an,m(qn  - qm)vn.(2.26)

From (2.26), we formulate the interior and exterior Neumann data, respectively, as

\scrN Ωqn =  - 
\sum 

m\in Ωc

an,m(qn  - qm), n \in Ω,(2.27)

\scrN Ωcqn =
\sum 

m\in Ω

an,m(qn  - qm), n \in Ωc.(2.28)

We point out that the interior and exterior Neumann data are useful for the proofs
of Theorem 4.1 and Lemma 4.1.

Noting that the discrete coefficients satisfy an,m =  - cn - m on artificial layers, we
may rewrite (2.27) into

\scrN Ωqn =
\sum 

m\in Ωc

cn - mqn  - 
\sum 

m\in Ωc

cn - mqm, n \in Ωr.(2.29)

Prescribed Qr,0, we can address (2.29) in the form of a vector as

(2.30) \scrN ΩQr,0 = DQr,0  - ATQr,1,

where the matrix A is given in (2.17) and

D = diag

\Biggl( 

L
\sum 

i=L

ci,
L
\sum 

i=L - 1

ci, . . . ,
L
\sum 

i=1

ci

\Biggr) 

.

Similarly, for the DtD-type mappings (2.24), we have

(2.31) \scrN ΩQl,0 = DQl,0  - ATQl,1.

The corresponding Green formula (2.32) is given as

\sum 

n\in Ω

\scrL \delta ,hqn \cdot vn =
1

2

\sum 

n\in Ω

\sum 

m\in Ω

an,m(qn  - qm)(vn  - vm)

 - \scrN ΩQl,0 \cdot Vl,0  - \scrN ΩQr,0 \cdot Vr,0,(2.32)
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where

V
(n)
r,0 = [v

(n)
Nr - L+1, v

(n)
Nr - L+2, . . . , v

(n)
Nr

]T ,

V
(n)
l,0 = [v

(n)
Nl+L - 1, v

(n)
Nl+L - 2, . . . , v

(n)
Nl

]T .

Applying the relationships (2.22) and (2.24) to (2.30) and (2.31), we have the following
truncated problem with DtN-type mappings:

\scrD \tau q
(n)
k + \scrL \delta ,hq

(n)
k = 0, k \in Ω, n \geq 2,

\scrN ΩQ
(n)
r,0 = (D  - AT\scrK \ast )Q(n)

r,0 , \scrN ΩQ
(n)
l,0 = (D  - AT\scrK \ast )Q(n)

l,0 ,

q
(1)
k = q

(0)
k + \tau \partial tq

(0)
k = \varphi (xk) + \tau \scrL \delta ,h\varphi (xk), k \in Ω,

q
(0)
k = \varphi (xk), k \in Ω+.

(2.33)

3. Fast convolution algorithm. Because the DtD-type mappings in (2.25) and
the DtN-type mappings in (2.33) involve the temporal convolutions, computational
cost and storage will be formidable for long-time or small time-step simulations. In
this section, we focus on developing a fast algorithm to significantly reduce the com-
putational cost and storage to evaluate ABCs.

3.1. Quadrature error analysis. To develop a fast algorithm for our DtN-type
ABCs, the key point is to construct an efficient numerical approximation of the inverse
z-transform of \̂scrK (s) with certain holomorphic mappings. Here we use the discretized
contour integrals developed in [22, 23, 27, 28] for the inverse Laplace transform. The
technique in [19] is based on the assumption that the matrix-valued symbol \̂scrK (s) is
sectorial, namely, it satisfies

(3.1) \| \̂scrK (s)\| 2 \leq M

| s| for | arg(s)| < \pi  - \psi with 0 < \psi <
1

2
\pi ,

and the integration contour Γs may then be changed as

(3.2) R \rightarrow Γs : \theta \mapsto  - \rightarrow \gamma s(\theta ) = \mu (1 - sin(\alpha + i\theta )) + \sigma ,

where \mu represents a positive scale parameter, \alpha (< \pi /2) is a positive angle, and \sigma 
represents a shift parameter. One can see a graphical illustration of a contour Γs in
Figure 1 for given parameters \mu = 1, \alpha = \pi /4, and \sigma = 0.

According to (2.20) for the local problem, one can check that \̂scrK (s) satisfies the
condition (3.1). Unfortunately, at the moment the assumption on the sectorial prop-
erty remains to be verified for the nonlocal problem but we will proceed with our
analysis based on its validity.

After parametrizing (2.21) via \gamma s(\theta ) (s is defined in (2.12)), we get

(3.3) Kj =
1

2\pi 

� +\infty 

 - \infty 

Gj(\theta )d\theta ,

where

(3.4) Gj(\theta ) =
\̂scrK (\gamma s(\theta ))

\Bigl( 

2 - 
\sqrt{} 

1 + 2\tau \gamma s(\theta )
\Bigr) j+1

\mu \tau cos(\alpha + i\theta )
\sqrt{} 

1 + 2\tau \gamma s(\theta )
.
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Fig. 1. Sketch map of the contours Γs with \mu = 1, \alpha = \pi /4, and \sigma = 0.

Apply the truncated trapezoidal rule (see [23]) to approximate the contour integral
(3.3). We then arrive at

(3.5) Kj \approx 
\tau 

2\pi 

N
\sum 

n= - N

Gj(\theta n) \equiv K̃j ,

where \theta n = n\tau and \tau represents a step length parameter of the trapezoidal rule for
the contour integral.

Our following analysis is similar to the error analyses of the trapezoidal rule for
the holomorphic integrands [22, 23, 27, 28]. In the spirit of [22, section 6], we recall
the conformal mapping

(3.6) \gamma s(\theta ) = \mu (1 - sin(\alpha + i\theta )).

Let us select \alpha , d > 0 such that 0 < \alpha  - d < \alpha + d < \pi /2 - \psi . The mapping \gamma s (3.6)
transforms each horizontal straight line Im \theta = \beta ,  - d \leq \beta \leq d into a left branch of
the hyperbola

\lambda \in C :

\biggl( 

Re\lambda  - \mu 

\mu sin(\alpha  - \beta )

\biggr) 2

 - 
\biggl( 

Im\lambda 

\mu cos(\alpha  - \beta )

\biggr) 2

= 1

with the foci at (0, 0), (2\mu , 0) and asymptotes forming angles \pm [\pi /2 - (\alpha  - \beta )]. There-
fore, \gamma s transforms the horizontal strip Dd = \{ \theta \in C : | Im \theta | \leq d\} into the region
Ω = \gamma s(Dd) which is limited by the left branches corresponding to \beta = \pm d. Noting
(3.1) and assuming that \alpha > 0 and d > 0 with 0 < \alpha  - d < \alpha + d < \pi /2 - \psi , we have
all the hyperbolas lie in the sector of analyticity of \̂scrK (s).

We now aim to obtain the quadrature error of the following truncated trapezoidal
rule (3.5) for the integral of Gj :

(3.7) E\tau ,N (Gj) =
1

2\pi 

� +\infty 

 - \infty 

Gj(\theta )d\theta  - 
\tau 

2\pi 

N
\sum 

n= - N

Gj(n\tau ), \tau > 0, N \geq 1.

To estimate E\tau ,N (Gj), we use the same methodology developed in [22, 23]. The
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mapping Gj satisfies the following two conditions:

� d

 - d

\| Gj(\theta + i\beta )\| 2d\beta \rightarrow 0 as | \theta | \rightarrow +\infty ,

N(Gj , Dd) :=

� +\infty 

 - \infty 

\| Gj(\theta + id)\| 2 + \| Gj(\theta  - id)\| 2d\theta < +\infty .

Without loss of generality, we set parameters for the following analysis and simulations
as

\sigma = 0, \alpha =
\pi 

4
, \psi =

\pi 

24
, d =

\pi 

6
, B = 10, k0 = 20.

Using the similar techniques as in [22, 23], we have the following results stated
in Lemmas 3.1–3.3 and Theorem 3.1. For brevity, we leave the proofs of these results
to the appendix. Differing from the proofs in [22, 23], we divide the whole integral
interval into two parts, and obtain the proper upper bounds, respectively.

Lemma 3.1. Let | \beta | \leq d, \theta \geq ln(56/(\mu \tau ) + 2), \mu \tau \leq 1, k \geq 1, and t = k\tau . It
holds that

\| Gk(\theta + i\beta )\| 2 \leq M0

(1 - \mu t/k)
k+1
2

\biggl( 

1 +
\mu t

k
cosh \theta 

\biggr)  - k+1
2

,

where M0 = 2M\tau 
\sqrt{} 

1+sin(\alpha +d)
1 - sin(\alpha  - d) , and Gk is defined as ( 3.4).

Lemma 3.2. If R \geq 0, a > 0, and k \geq 1, it holds that

� +\infty 

R

\Bigl( 

1 +
a

k
cosh \theta 

\Bigr)  - k+1
2

d\theta \leq \phi (a) exp

\biggl( 

 - a coshR
4

\biggr) 

+
\Bigl( 

1 +
a

k
coshR

\Bigr)  - k−1
2

,

where \phi (a) = 2 + | ln (1 - exp ( - a/4)) | .
We refer the reader to [22, Lemma 2] for the proof of Lemma 3.2.

Lemma 3.3. If k \geq 1/(100\mu \tau ),\mu \tau \leq 1/2, and N\tau \geq ln(56/(\mu \tau )+2), it holds that

N(Gk, Dd) \leq 9M0N\tau exp(2\mu t).

Theorem 3.1. If t = k\tau , k \geq 1/(100\mu \tau ), \mu \tau \leq 1/2, and N\tau \geq ln(56/(\mu \tau ) + 2),
it holds that

\| E\tau ,N (Gk)\| 2 \leq 10M0N\tau exp

\biggl( 

2\mu t - 2\pi d

\tau 

\biggr) 

+ 16
\surd 
2M0 exp

\biggl( 

\mu t - \mu t cosh(N\tau )

4

\biggr) 

+ 2
\surd 
2M0 exp(\mu t)

\biggl( 

1 +
\mu t

k
cosh(N\tau )

\biggr)  - k−1
2

.

Theorem 3.1 implies that for any given tolerance error \varepsilon > 0, the leading order
of \| E\tau ,N (Gk)\| 2 is the order of \scrO (\varepsilon ) if we take the parameters to satisfy

2\mu t - 2\pi d

\tau 
\leq ln \varepsilon , k > b log

1

\varepsilon 
, and

1

B
log

1

\varepsilon 
\leq \mu t \leq log

1

\varepsilon 
,

where b and B > 1 are two given positive constants.
Noting that within one set of quadrature points of the contour as shown in [22], we

do not have a uniformly good approximation for all n = 0, . . . , NT , where NT = T/\tau 
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represents the total number of time grid points. Thus, we locally introduce a sequence
of fast-growing time index intervals

I0 = [0, k0] and Im =
\bigl( 

k0B
m - 1, k0B

m
\bigr] 

, m \geq 1,

where k0 is a given positive constant. The contour Γ
(m)
s is accordingly chosen as

(3.8) R \rightarrow Γ(m)
s : \theta \mapsto  - \rightarrow \gamma (m)

s (\theta ) = \mu m(1 - sin(\alpha + i\theta )),

with an m-dependent parameter \mu m = 1/(125Bm\tau ) > 0. Recalling (3.5) and (3.4),
we approximate the contour integrals (2.21) as

(3.9) K̃j \equiv 
\tau 

2\pi 

Nm
\sum 

n= - Nm

\omega (m)
n

\Bigl( 

p(m)
n

\Bigr) j+1

\approx Kj \forall j \in Im,

where

(3.10) \omega (m)
n =

\mu m\tau cos(\alpha + i\theta n)\̂scrK (\gamma 
(m)
s (\theta n))

\sqrt{} 

1 + 2\tau \gamma 
(m)
s (\theta n)

and p(m)
n =

1

2 - 
\sqrt{} 

1 + 2\tau \gamma 
(m)
s (\theta n)

.

On the other hand, the approximation is poor for j \in I0. We use the following
approximate formula to directly calculate Kj while j \in I0, namely

(3.11) K̃j \equiv 
\rho  - j

N0

N0
\sum 

n=1

\̂scrK (s(e - 2n\pi i/N0))e - 2jn\pi i/N0 \approx Kj , j \in I0.

Before ending this section, we point out that, for any given tolerance error \varepsilon > 0
and time step \tau , we can employ the following formula for the calculation of local
contours such that \| E\tau ,N (Gk)\| 2 = \scrO (\varepsilon ), namely

\tau =  - 2\pi d

1.01 ln \varepsilon 
, \mu m =

1

125Bm\tau 
, Nm = ln

\biggl( 

56

\mu m\tau 
+ 2

\biggr) 

/\tau .(3.12)

3.2. Numerical schemes with fast evaluation of ABCs. Replacing Km

in (2.22) and (2.24) with K̃m, we derive the approximate mappings which can be
efficiently evaluated as

Q
(n)
r,1 = \̃scrK \ast Q(n)

r,0 =

n
\sum 

m=0

K̃n - mQ
(m)
r,0 , n \geq 0,(3.13)

Q
(n)
l,1 = \̃scrK \ast Q(n)

l,0 =

n
\sum 

m=0

K̃n - mQ
(m)
l,0 , n \geq 0.(3.14)

Again, applying the relationships (3.13) and (3.14) to (2.30) and (2.31), we have the
following truncated problem with fast evaluations of DtN-type mappings:

\scrD \tau q
(n)
k + \scrL \delta ,hq

(n)
k = 0, k \in Ω, n \geq 2,

\scrN ΩQ
(n)
r,0 = (D  - AT \̃scrK \ast )Q(n)

r,0 , \scrN ΩQ
(n)
l,0 = (D  - AT \̃scrK \ast )Q(n)

l,0 ,

q
(1)
k = q

(0)
k + \tau \partial tq

(0)
k = \varphi (xk) + \tau \scrL \delta ,h\varphi (xk), k \in Ω,

q
(0)
k = \varphi (xk), k \in Ω+.

(3.15)
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3.3. Fast evaluation of DtN-type boundary conditions. We now address
the detailed implementation of the fast algorithm of the convolution in ABCs. For
any fixed time index k \in Il =

\bigl( 

k0B
l - 1, k0B

l
\bigr] 

, we define

\scrF n
l (k) =

k
\sum 

m=k0Bl−1+1

\Bigl( 

p(l)n

\Bigr) m+1

Q
(k - m)
r,0 ,

\scrG n
i (k) =

k0B
i

\sum 

m=k0Bi−1+1

\Bigl( 

p(i)n

\Bigr) m+1

Q
(k - m)
r,0 , 1 \leq i \leq l  - 1,

(3.16)

which have the recursion relations in the forms of

\scrF n
l (k + 1) =

\Bigl( 

p(l)n

\Bigr) k0B
l−1+2

Q
(k - k0B

l−1)
r,0 + p(l)n \scrF n

l (k),(3.17)

\scrG n
i (k + 1) =

\Bigl( 

p(i)n

\Bigr) k0B
i−1+2

Q
(k - k0B

i−1)
r,0  - 

\Bigl( 

p(i)n

\Bigr) k0B
i+2

Q
(k - k0B

i)
r,0

+ p(i)n \scrG n
i (k), 1 \leq i \leq l  - 1.(3.18)

We take the discrete convolution (3.13) as an example, and have the similar fast
evaluation for (3.14). By definition, (3.13) can be divided into l + 2 parts:

(3.19) Q
(k)
r,1 = K̃0Q

(k)
r,0 +

k0
\sum 

m=1

K̃mQ
(n - m)
r,0 + Q̃

(k)
1 + \cdot \cdot \cdot + Q̃

(k)
l

with Q̃
(k)
i defined as

Q̃
(k)
i =

k0B
i

\sum 

m=k0Bi−1+1

K̃mQ
(n - m)
r,0 =

\tau 

2\pi 

Ni
\sum 

n= - Ni

\omega (i)
n \scrG n

i (k), 1 \leq i \leq l  - 1,

Q̃
(k)
l =

k
\sum 

m=k0Bl−1+1

K̃mQ
(n - m)
r,0 =

\tau 

2\pi 

Nl
\sum 

n= - Nl

\omega (l)
n \scrF n

l (k),

where the coefficients \omega 
(\cdot )
n are given in (3.10).

4. Stability and error analysis. We now present the stability and error esti-
mate for the approximate fully discrete problem (3.15) with fast evaluations of DtN-
type boundary conditions under the assumptions made in earlier sections.

4.1. Stability analysis for a nonlocal discrete system. We first consider
the stability analysis of the following discrete scheme:

\scrD \tau \phi 
(n)
k + \scrL \delta ,h\phi 

(n)
k = f

(n)
k , k \in Ω, n \geq 2,(4.1)

\scrN ΩΦ
(n)
r,0 = (D  - AT\scrK \ast )Φ(n)

r,0 +G(n)
r ,(4.2)

\scrN ΩΦ
(n)
l,0 = (D  - AT\scrK \ast )Φ(n)

l,0 +G
(n)
l ,(4.3)

\phi 
(1)
k = \phi 

(0)
k + \tau \partial t\phi 

(0)
k + f

(1)
k , k \in Ω,(4.4)
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with the given initial values \phi 
(0)
k for k \in Ω+ and

Φ
(n)
r,0 = [\phi 

(n)
Nr - L+1, \phi 

(n)
Nr - L+2, . . . , \phi 

(n)
Nr

]T ,

Φ
(n)
l,0 = [\phi 

(n)
Nl+L - 1, \phi 

(n)
Nl+L - 2, . . . , \phi 

(n)
Nl

]T ,

G(n)
r = \{ g(n)r,1 , . . . , g

(n)
r,L\} and G

(n)
l = \{ g(n)l,1 , . . . , g

(n)
l,L \} .

To do so, we introduce the inner product and the induced norm

\Bigl( 

\phi (n), \varphi (n)
\Bigr) 

h
= h

\sum 

k\in Ω

\phi 
(n)
k \varphi 

(n)
k , \| \phi (n)\| h =

\sqrt{} 

(\phi (n), \phi (n))h

for the vectors \phi (n) =
\bigl( 

\phi 
(n)
k

\bigr) 

k\in Ω
and \varphi (n) =

\bigl( 

\varphi 
(n)
k

\bigr) 

k\in Ω
.

Lemma 4.1. The discrete DtN operator is stable, in the sense that for sequences

V
(n)
\ast ,0 satisfying V

(n)
\ast ,1 = \scrK \ast V(n)

\ast ,0 with \ast \in \{ r, l\} and any j \geq 2, it holds that

j
\sum 

n=2

\scrN ΩV
(n)
\ast ,0 \cdot V(n)

\ast ,0 \leq 0,(4.5)

where \scrN ΩV
(n)
\ast ,0 = (D  - AT\scrK \ast )V(n)

\ast ,0 .

Proof. We consider the right homogeneous exterior problem

\scrD \tau \phi 
(n)
k +

\sum 

m\in Z

ak,m [q(xk) - q(xm)] = 0, k \in Ωr,c, n \geq 2,

\phi (0) = \phi (1) = 0,

Φ
(n)
r,0 = V

(n)
r,0 ,

lim
k\rightarrow +\infty 

\phi 
(n)
k = 0, n \geq 0.

(4.6)

For problems on the exterior domain, we have the coefficients an,m =  - cn - m \geq 0 due
to the assumption on the kennel function \gamma and \sigma in section 2.3. The problem (2.10)
implies (2.30). Similarly, the problem (4.6) implies that

\scrN Ωr,cΦ
(n)
r,0 = (D  - AT\scrK \ast )Φ(n)

r,0 = (D  - AT\scrK \ast )V(n)
r,0 = \scrN ΩV

(n)
r,0 .

Taking inner production between \phi nk and (4.6), and using the Green formula (2.32)
of the discrete operator for the exterior domain, we have

\sum 

k\in Ωr,c

\scrD \tau \phi 
(n)
k \phi 

(n)
k +

1

2

\sum 

k\in Ωr,c

\sum 

m\in Ωr,c

ak,m

\Bigl( 

\phi 
(n)
k  - \phi (n)m

\Bigr) 2

+
\sum 

k\in Ωr,c

\sum 

m\in Ωr

ak,m

\Bigl( 

\phi 
(n)
k  - \phi (n)m

\Bigr) 2

=
\sum 

k\in Ωr

\sum 

m\in Ωr,c

ak,m

\Bigl( 

\phi 
(n)
k  - \phi (n)m

\Bigr) 

\phi 
(n)
k =  - \scrN ΩV

(n)
r,0 \cdot V(n)

r,0 .

Summing the index n from 2 to j over the above identity, we have

j
\sum 

n=2

\scrN ΩV
(n)
r,0 \cdot V(n)

r,0 \leq 0,
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where we use the property in [26, Lemma 2.2] that

j
\sum 

n=2

\sum 

k\in Ωr,c

\scrD \tau \phi 
(n)
k \phi 

(n)
k \geq 0.

By considering a left homogenous exterior problem, we similarly derive (4.5).

Theorem 4.1. Assuming the condition (3.1) is satisfied, there exists a positive
constant \tau 0 such that for \tau \leq \tau 0 the solution of (4.1)–(4.4) satisfies the following
stability estimate for j \geq 2 in the cases of the local problem with \delta = 0:

\| \phi (j)\| 2h \leq C

\Biggl( 

\| \phi (0)\| 2h + \| \phi (1)\| 2h + \tau 

j
\sum 

n=2

\Bigl( 

h2| G(n)
r | 2 + h2| G(n)

l | 2 + \| f (n)\| 2h
\Bigr) 

\Biggr) 

,

and nonlocal problem with \delta > 0:

\| \phi (j)\| 2h \leq C

\Biggl( 

\| \phi (0)\| 2h + \| \phi (1)\| 2h + \tau 

j
\sum 

n=2

\Bigl( 

h\| G(n)
r \| 22 + h\| G(n)

l \| 22 + \| f (n)\| 2h
\Bigr) 

\Biggr) 

.

Proof. Taking inner production between \phi 
(n)
k and (4.1) and applying the Green

formula (2.32) of the discrete operator for the interior domain as

\sum 

k\in Ω

\scrL \delta ,h\phi 
(n)
k \cdot \phi (n)k =

1

2

\sum 

k\in Ω

\sum 

m\in Ω

ak,m(\phi 
(n)
k  - \phi (n)m )2

 - \scrN ΩΦ
(n)
l,0 \cdot Φ(n)

l,0  - \scrN ΩΦ
(n)
r,0 \cdot Φ(n)

r,0 ,

we arrive at

\sum 

k\in Ω

\scrD \tau \phi 
(n)
k \phi 

(n)
k +

1

2

\sum 

k\in Ω

\sum 

m\in Ω

ak,m(\phi 
(n)
k  - \phi (n)m )2

= \scrN ΩΦ
(n)
r,0 \cdot Φ(n)

r,0 +\scrN ΩΦ
(n)
l,0 \cdot Φ(n)

l,0 +
\sum 

k\in Ω

f
(n)
k \phi 

(n)
k .

(4.7)

Set

xn := \| \phi (n)\| 2h, yn := \| \phi (n)  - \phi (n - 1)\| 2h,

zn = \| f (n)\| 2h, bn =
1

2

\sum 

k\in Ω

\sum 

m\in Ω

ak,m(\phi 
(n)
k  - \phi (n)m )2,

dn = \scrN ΩΦ
(n)
r,0 \cdot Φ(n)

r,0 +\scrN ΩΦ
(n)
l,0 \cdot Φ(n)

l,0 .

Applying the property in [5, inequality (37)], we have

\Bigl( 

\phi (n), 2\tau \scrD \tau \phi 
(n)
\Bigr) 

h
\geq 3

2
xn  - 2xn - 1 +

1

2
xn - 2 + yn  - yn - 1.(4.8)

Applying (4.8) to (4.7), we have

3xn  - 4xn - 1 + xn - 2 \leq 2(yn - 1  - yn) + 4h\tau (dn  - bn) + 4\tau 
\surd 
xnzn.
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Summing the index n from 2 to j and applying Lemma 4.1, we derive

xj \leq 3x1  - x0 + 2y1  - (2yj + 2xj  - xj - 1) + 4h\tau 

j
\sum 

n=2

(dn  - bn) + 4\tau 

j
\sum 

n=2

\surd 
xnzn

\leq 5x1 + x0  - (2
\surd 
xj  - 

\surd 
xj - 1)

2 + 4h\tau 

j
\sum 

n=2

(dn  - bn) + 4\tau 

j
\sum 

n=2

\surd 
xnzn

\leq 5x1 + x0 + 4h\tau 

j
\sum 

n=2

\Bigl( \Bigl( 

Φ
(n)
r,0 ,G

(n)
r

\Bigr) 

+
\Bigl( 

Φ
(n)
l,0 ,G

(n)
l

\Bigr) 

 - bn

\Bigr) 

+ 4\tau 

j
\sum 

n=2

\surd 
xnzn.

(4.9)

(i) For the local problem, we refer the reader to [38, Lemma 2.2 and Theorem 3.1]
for an analogous proof. Applying the Cauchy inequality and the discrete embedding
theorem \| \phi (n)\| L∞ \leq C0(hbn + \| \phi (j)\| h) to the last inequality in (4.9), we have

xj \leq 5x1 + x0 + 2\tau 

j
\sum 

n=2

zn + 2\tau 

j
\sum 

n=2

xn

+ 4\tau 

j
\sum 

n=2

\biggl( 

1

4C2
0

| Φ(n)
r,0 | 2 +

1

4C2
0

| Φ(n)
l,0 | 2 + C2

0h
2| G(n)

r | 2 + C2
0h

2| G(n)
l | 2  - hbn

\biggr) 

\leq 5x1 + x0 + 4C2
0h

2\tau 

j
\sum 

n=2

\Bigl( 

| G(n)
r | 2 + | G(n)

l | 2
\Bigr) 

+ 2\tau 

j
\sum 

n=2

zn + 6\tau 

j
\sum 

n=2

xn.

From the above, we arrive at

(4.10) (1 - 6\tau )xj \leq 5x1+x0+4C0h
2\tau 

j
\sum 

n=2

\Bigl( 

| G(n)
r | 2 + | G(n)

l | 2
\Bigr) 

+2\tau 

j - 1
\sum 

n=2

zn+6\tau 

j - 1
\sum 

n=2

xn.

The direct application of the Gronwall inequality to (4.10) produces

xj \leq C

\Biggl( 

x1 + x0 + \tau 

j
\sum 

n=2

\Bigl( 

h2| G(n)
r | 2 + h2| G(n)

l | 2 + zn

\Bigr) 

\Biggr) 

.

Recalling the definition of xj and zj , we have

\| \phi (j)\| 2h \leq C

\Biggl( 

\| \phi (0)\| 2h + \| \phi (1)\| 2h + \tau 

j
\sum 

n=2

\Bigl( 

h2| G(n)
r | 2 + h2| G(n)

l | 2 + \| f (n)\| 2h
\Bigr) 

\Biggr) 

.

(ii) For nonlocal problem with \delta > 0, applying the Cauchy inequality and the

facts bn \geq 0 and h
\bigl( 

Φ
(n)
\ast ,0 ,Φ

(n)
\ast ,0

\bigr) 

\leq \| \phi (n)\| 2h = xn to the last inequality in (4.9), we
derive

xj \leq 5x1 + x0 + 2\tau 

j
\sum 

n=2

zn + 2\tau 

j
\sum 

n=2

xn

+ 2h\tau 

j
\sum 

n=2

\Bigl( 

\| Φ(n)
r,0 \| 22 + \| Φ(n)

l,0 \| 22 + \| G(n)
r \| 22 + \| G(n)

l \| 22
\Bigr) 

\leq 5x1 + x0 + 2h\tau 

j
\sum 

n=2

\Bigl( 

\| G(n)
r \| 22 + \| G(n)

l \| 22
\Bigr) 

+ 2\tau 

j
\sum 

n=2

zn + 6\tau 

j
\sum 

n=2

xn.
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From the above, we arrive at

(4.11) (1 - 6\tau )xj \leq 5x1+x0+2h\tau 

j
\sum 

n=2

\Bigl( 

\| G(n)
r \| 22 + \| G(n)

l \| 22
\Bigr) 

+2\tau 

j - 1
\sum 

n=2

zn+6\tau 

j - 1
\sum 

n=2

xn.

The direct application of the Gronwall inequality to (4.11) produces

xj \leq C

\Biggl( 

x1 + x0 + \tau 

j
\sum 

n=2

\Bigl( 

h\| G(n)
r \| 22 + h\| G(n)

l \| 22 + zn

\Bigr) 

\Biggr) 

.

Recalling the definitions of xj and zj , we have

\| \phi (j)\| 2h \leq C

\Biggl( 

\| \phi (0)\| 2h + \| \phi (1)\| 2h + \tau 

j
\sum 

n=2

\Bigl( 

h\| G(n)
r \| 22 + h\| G(n)

l \| 22 + \| f (n)\| 2h
\Bigr) 

\Biggr) 

.

This completes the proof.

4.2. Error estimate. From the above analysis, we first use the central difference
scheme to discretize the local spatial operator and use an asymptotically compatible
scheme to discretize the nonlocal spatial operator, then we apply BDF2 to approxi-
mate the temporal derivative to achieve a fully discrete infinity system. According to
Taylor expansion, we obtain that the truncation error is in the order of \scrO (\tau 2 + h2).
After that, we solve the discrete matrix (or scalar) difference equation on the exte-
rior domain by recursive technique, and derive the exact DtD-type ABCs (2.22) and
(2.24), where the coefficients (2.21) are obtained by the inverse z-transform. Finally,
we reformulate the DtD-type ABCs into DtN-type ABCs, and derive the reduced
problem (2.33). Now that the ABCs are exact, we have that the solution of (2.33) is
the same as the solution of (2.5) confined to the computational domain.

Let q
(n)
\ast = (q(x1, tn), . . . , q(xM , tn)) denote the nodal values of the exact solution

of (1.2), and let q(n) =
\bigl( 

q
(n)
1 , . . . , q

(n)
M

\bigr) 

be the numerical solution given by the scheme

(3.15). Let \phi (n) = q
(n)
\ast  - q(n) denote the error functions. To obtain the error estimate

of the fast algorithm, we need investigate the truncated errors on fnk and G
(n)
\ell and

G
(n)
\ell due to the stability analysis in Theorem 4.1. To the end, it is straightforward

to verify that the error functions satisfy (4.1) with

f
(n)
k = \scrD \tau q

(n)
k  - \partial tq(xk, tn) + \scrL hq

(n)
k  - \scrL q(xk, tn).

By using Taylor expansion, we have

\| f (n)\| h \leq C(\tau 2 + h2), 0 \leq n \leq NT .

The errors G
(n)
\ell and G

(n)
\ell for the discrete DtN-type ABCs arise mainly from the

convolution approximation. Specifically, for the local problem, we have

hG
(n)
\ell = hAT (\̃scrK  - \scrK ) \ast Q(n)

\ell ,0 , \ell \in \{ l, r\} .(4.12)

For the nonlocal problem with \delta = \scrO (1), we have

\surd 
hG

(n)
\ell =

\surd 
hAT (\̃scrK  - \scrK ) \ast Q(n)

\ell ,0 , \ell \in \{ l, r\} .(4.13)
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By the definition (3.7), Theorem 3.1, and parameters chosen in (3.12), we have

(4.14) \| \̃scrK  - \scrK \| 2 \leq NT \varepsilon .

In fact, from (4.12), (4.13), and (4.14), we have

\Biggl\{ 

h| G(n)
\ell | \leq Ch\| AT \| \infty \| \̃scrK  - \scrK \| 2 \leq C\varepsilon hNT \| AT \| \infty ,

\| G(n)
\ell \| h \leq C

\surd 
h\| AT \| \infty \| \̃scrK  - \scrK \| 2 \leq C\varepsilon 

\surd 
hNT \| AT \| \infty ,

(4.15)

where A is given in (2.17) with the estimate

\| AT \| \infty =

\Biggl\{ 

\scrO (h - 2) local problem,

\scrO (h - 2\nu ) nonlocal problem,
(4.16)

with 0 < \nu < 1. We point out that the infinity norm \| AT \| \infty depends on the discrete
coefficients ck for nonlocal operator in (2.8). When we consider the nonintegrable
kernel \gamma (\alpha , \beta ) = 2 - 2\nu 

\delta 2−2ν \alpha 
 - 1 - 2\nu with 0 < \nu < 1, we have ck = \scrO (h - 2\nu ) by using the

discrete scheme in [39, page 14, Example 5].
Overall, from (4.15) and (4.16), we can take \varepsilon = \tau 3h/T for the local problem and

\varepsilon = \tau 3h2\nu  - 
1
2 /T for the nonlocal problem to ensure the following estimates:

\Biggl\{ 

h| G(n)
\ell | \leq C\tau 2, \ell \in \{ l, r\} , 0 \leq n \leq NT local problem,

\| G(n)
\ell \| h \leq C\tau 2, \ell \in \{ l, r\} , 0 \leq n \leq NT nonlocal problem.

Combining the truncated error analysis above and the stability analysis in Theorem
4.1, we directly have the following convergence analysis.

Theorem 4.2. Assume the condition (3.1) is satisfied and that the solutions of
local problem (1.1) and nonlocal problem (1.2) are sufficiently smooth. For the local
problem with \delta = 0 and \varepsilon = \tau 3h/T , and the nonlocal problem with \delta > 0 and \varepsilon =

\tau 3h2\nu  - 
1
2 /T , if \tau \leq \tau 0 and the parameters are chosen as that in (3.12), then the

following error estimate holds:

max
0\leq n\leq NT

\| \phi (n)\| h \leq C(\tau 2 + h2).

We remark that noting that \varepsilon = \tau 3h/T for the local problem and \varepsilon = \tau 3h2\nu  - 
1
2 /T

for the nonlocal problem from Theorem 4.2, the evaluation of (3.19) has the com-
putational complexity on the order of \scrO (NmNTL

2) through the recurrence rela-
tions (3.16) - (3.18). Using the choice of the parameters in (3.12), we have Nm =
\scrO (log2NT log 1/h). Thus, the computational cost for the fast algorithm is on the
order of \scrO (L2NT log2NT log 1/h), which significantly reduces the direct evaluation
(2.33) with the complexity of \scrO (L2N2

T ) for long-time or small-time-step simulations.
We further point out that, from Theorem 4.2, we require \varepsilon = \tau 3h/T for the

local problem and \varepsilon = \tau 3h2\nu  - 
1
2 /T for the nonlocal problem to have the optimal

convergence order. The reason is that we simply use the \ell 2-norm to present the
stability analysis for the nonlocal problem in Theorem 4.1. On the other hand, for
the approximation of the contour integral (3.3) by the numerical scheme (3.5), the
grid step \tau to approximate the contour integral is the order of \tau = \scrO ( - 1/ log \varepsilon ).
Thus, comparing \tau = \scrO ( - 1/(3 log \tau + log h)) for local problem, the grid step \tau =
\scrO ( - 1/(3 log \tau + (2v  - 1/2) log h)) for nonlocal problem. It leads to a refined grid
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step \tau with the increment of \scrO ( - 1/ log h) to calculate the convolution coefficients K̃j

(j = 1, . . . , NT ) to improve their accuracy. This implies that the extra computational
complexity for the evaluation of K̃j for each j in (3.9) with a refined \tau is in the
order of \scrO (logNT log 1/h). When combining the fast algorithm (3.16) - (3.18) to
evolve the model equation, the total extra computational complexity is in the order
of \scrO (L2NT log2NT log 1/h).

5. Numerical examples. We now embark on numerical examples to demon-
strate the effectiveness of our approach in various aspects: (i) the spatial and time
convergence of numerical scheme (3.15) for the local problem; (ii) the spatial and
time convergence of the numerical scheme (3.15) to the nonlocal problem (1.2) by
fixing \delta and refining h \leq \delta and \tau ; (iii) the asymptotic compatibility of the numerical
scheme by refining \delta and h simultaneously; (iv) the computational efficiency of the
fast scheme (3.15) compared with the direct scheme (2.33).

In all simulations below, the Gaussian initial value is used as

q(x, 0) =

\sqrt{} 

5

\pi 
exp
\bigl( 

 - 5(x - 0.2)2
\bigr) 

,

and three typical kernels are respectively taken as
1. the constant integral kernels \gamma (\alpha , \beta ) = 3\delta  - 3 for \alpha \in [ - \delta , \delta ];
2. the nonintegral kernel \gamma (\alpha , \beta ) = 2\alpha  - 1\delta  - 2 for \alpha \in (0, \delta ];
3. the inhomogeneous kernel

(5.1) \gamma (\alpha , \beta ) =
40

\surd 
10\sigma \surd 
\pi \xi 3

exp

\biggl( 

 - 10\alpha 2

\xi 2

\biggr) 

with \xi = \delta (1 + erfc(\beta )/4) and \sigma = 1 + exp( - 3\beta 2).

Table 1

Example 1 (local convergence): \ell 2-errors and spatial convergence orders.

h 2−2 2−3 2−4 2−5 2−6

\ell 2-errors 5.49× 10−4 1.35× 10−4 3.36× 10−5 8.38× 10−6 2.09× 10−6

order − 2.02 2.01 2.00 2.00

Example 1. We first consider the local problem

qt = qxx

with the exact solution given by

q(x, t) =
1

\sqrt{} 

4\pi (t+ 0.05)
exp

\biggl( 

 - (x - 0.2)2

4(t+ 0.05)

\biggr) 

.

For all simulations, we take the computational domain Ω = [ - 3, 3] and the final time
T = 2. We verify the spatial convergence order by refining the spatial size h and
setting the time step \tau = 5\times 10 - 4, and we test the time convergence order by refining
the time step \tau and setting the spatial step h = 2 - 8. Table 1 shows second-order
spatial convergences and Table 2 shows second-order time convergence.

Example 2. We then consider the constant integral kernel \gamma (\alpha , \beta ) = 3\delta  - 3 for
\alpha \in [ - \delta , \delta ], which only depends on the first parameter \alpha . In this situation, the
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Table 2

Example 1 (local convergence): \ell 2-errors and time convergence orders.

\tau 2−2 2−3 2−4 2−5 2−6

\ell 2-errors 6.81× 10−3 1.44× 10−3 3.38× 10−4 8.16× 10−5 2.00× 10−5

order − 2.24 2.09 2.05 2.03

pseudo-spectral method is used to calculate the reference solution by solving the
nonlocal problem over a larger domain with sufficiently fine mesh sizes.

By taking \delta = 0.5, 1, 2, respectively, Table 3 shows the \ell 2-errors and spatial
convergence orders of numerical solutions of discrete scheme (3.15) by refining mesh
sizes h with the same parameters as those in Example 1. Table 4 shows the \ell 2-
errors and time convergence orders of numerical solutions of discrete scheme (3.15)
by refining mesh sizes \tau with the same parameters as those in Example 1. Table 5
shows asymptotic compatibility for our scheme. One can see that scheme (3.15) has
second-order convergence rate.

Table 3

Example 2 (nonlocal convergence): \ell 2-errors and spatial convergence orders.

h
\delta 

\delta = 2 Order \delta = 1 Order \delta = 0.5 Order

2−2 6.86× 10−4
−− 3.03× 10−4

−− 2.68× 10−4
−−

2−3 1.69× 10−4 2.02 7.55× 10−5 2.00 6.86× 10−5 1.96
2−4 4.20× 10−5 2.01 1.88× 10−5 2.01 1.72× 10−5 1.99
2−5 1.05× 10−5 2.00 4.68× 10−6 2.01 4.30× 10−6 2.00
2−6 2.60× 10−6 2.01 1.15× 10−6 2.02 1.07× 10−6 2.00

Table 4

Example 2 (nonlocal convergence): \ell 2-errors and time convergence orders.

\tau 
\delta 

\delta = 2 Order \delta = 1 Order \delta = 0.5 Order

2−2 9.15× 10−3
−− 7.47× 10−3

−− 6.98× 10−3
−−

2−3 1.95× 10−3 2.23 1.56× 10−3 2.26 1.47× 10−3 2.25
2−4 4.56× 10−4 2.10 3.99× 10−4 1.97 3.66× 10−4 2.00
2−5 1.07× 10−4 2.09 8.54× 10−5 2.22 8.04× 10−5 2.19
2−6 2.45× 10−5 2.13 2.06× 10−5 2.05 1.95× 10−5 2.05

Table 5

Example 2 (local limit): \ell 2-errors and spatial convergence orders.

h
\delta 

\delta = h Order \delta = 2h Order \delta = 3h Order

2−2 5.49× 10−4
−− 1.60× 10−3

−− 3.34× 10−3
−−

2−3 1.35× 10−4 2.02 3.90× 10−4 2.03 8.03× 10−4 2.06
2−4 3.36× 10−5 2.01 9.67× 10−5 2.01 1.98× 10−4 2.02
2−5 8.36× 10−6 2.01 2.41× 10−5 2.01 4.93× 10−5 2.01
2−6 2.07× 10−6 2.01 5.99× 10−6 2.01 1.23× 10−5 2.00

We now check the computational costs by comparing the fast scheme (3.15) with
the direct scheme (2.33) for both the local problem and the nonlocal problem. The
CPU time is calculated by taking the total temporal stepNT = [0.6, 1, 1.5, 2.5, 4, 6, 8, 12]
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\times 104 with a fixed spatial mesh size h = 1/8, and using the parameters given in (3.12).
Figure 2 clearly shows the O(N2

T ) complexity for the direct algorithm (2.33), and the
essential O(NT log2NT ) complexity of the fast method (3.15) for both local and non-
local problems. That is, the fast scheme significantly reduces the computational cost
as NT is larger and larger.
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Fig. 2. The CPU-time for different total time steps NT with h = 1/8. Left: local problem.
Right: nonlocal problem.

Example 3. We use this example to consider the nonintegral kernel \gamma (\alpha , \beta ) =
2\alpha  - 1\delta  - 2 for \alpha \in [0, \delta ], and again use the pseudo-spectral method to achieve the
reference solution. Table 6 shows second-order spatial convergences by refining the
spatial size h for any given \delta by using fast scheme (3.15) with the same parameters
as those used in Example 1.

Table 6

Example 3 (nonlocal convergence): \ell 2-errors and spatial convergence orders.

h
\delta 

\delta = 2 order \delta = 1 Order \delta = 0.5 Order

2−2 4.75× 10−4
−− 3.00× 10−4

−− 2.80× 10−4
−−

2−3 1.17× 10−4 2.02 7.42× 10−5 2.02 6.91× 10−5 2.02
2−4 2.92× 10−5 2.00 1.85× 10−5 2.01 1.72× 10−5 2.01
2−5 7.29× 10−6 2.00 4.61× 10−6 2.00 4.29× 10−6 2.00
2−6 1.83× 10−6 1.99 1.16× 10−6 1.99 1.08× 10−6 1.99

Example 4. We use this example to consider the inhomogeneous kernel given in
(5.1). In this situation, noting that the diffusion coefficient is inhomogeneous, the
pseudo-spectral method is not available to compute the reference solution. Alterna-
tively, we use the fast scheme (3.15) to achieve the reference solutions with sufficiently
fine mesh size. Again, using the fast scheme with the same parameters as that in Ex-
ample 1, Table 7 shows second-order spatial convergences by refining the spatial size
h for any given \delta .

6. Conclusion. A stable, fast, and second-order approximation scheme is de-
veloped for numerically solving both local and nonlocal diffusion equations on the
unbounded spatial domain. To present the error estimate of the proposed scheme,
the key step is to construct the DtN-type ABCs for the fully discrete system whenever
it arises from the local or nonlocal problems. After that, we use the technique devel-
oped in [22, 23, 27, 28] to design a fast algorithm of the ABCs. Finally, we established
the stability and error analysis for our proposed scheme with fast evaluations of ABCs
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Table 7

Example 4 (nonlocal convergence): \ell 2-errors and spatial convergence orders.

h
\delta 

\delta = 0.5 Order \delta = 0.4 Order \delta = 0.3 Order

2−2 2.27× 10−4
−− 2.83× 10−4

−− 3.26× 10−4
−−

2−3 6.83× 10−5 2.02 6.79× 10−5 2.06 6.76× 10−5 2.27
2−4 1.69× 10−5 2.01 1.68× 10−5 2.02 1.66× 10−5 2.02
2−5 4.15× 10−6 2.03 4.11× 10−6 2.03 4.06× 10−6 2.04
2−6 9.81× 10−7 2.08 9.69× 10−7 2.09 9.52× 10−7 2.09

based on some sectorial properties of the associated operator \̂scrK . While the latter re-
mains open, in all simulations, no numerical instability and second-order convergence
had been observed. As far as we know, this is the first work on establishing a common
framework to design DtN-type ABCs for both local and nonlocal problems with fast
algorithms to evaluate the ABCs.

In this paper, we only consider the local problem and the nonlocal problem with
\delta = \scrO (1). As the horizon \delta \rightarrow 0, it is known that nonlocal operators will converge
to local operators; see (1.5). It is natural to ask if the discrete approximation (3.15)
converges to the local problem as both \delta and h \rightarrow 0, that is, if the approximation is
truly asymptotically compatible in the sense of [31, 32, 33] in light of the additional
approximations. The corresponding stability analysis in Theorem 4.1 remains open.
This is beyond the scope of this paper and will be left to future studies.

Appendix A.

The proof of Lemma 3.1. Based on the condition (3.1) and using the similar tech-
niques in [23], it is straightforward to verify

\| \mu \tau \̂scrK (\gamma (\theta + i\beta )) cos(\alpha + i(\theta + i\beta ))\| 2 \leq M\tau 

\sqrt{} 

1 + sin(\alpha + d)

1 - sin(\alpha  - d)
:=

M0

2
\forall \theta \in R,

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2 - 
\sqrt{} 

1 + 2\tau \gamma (\theta + i\beta )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 1
\sqrt{} 

(1 + \mu \tau cosh \theta )(1 - \mu \tau )
\forall \theta \geq ln

\biggl( 

56

\mu \tau 
+ 2

\biggr) 

,

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1
\sqrt{} 

1 + 2\tau \gamma (\theta + i\beta )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 2 \forall \theta \in R.

Recalling the definition of Gk(\theta + i\beta ) in (3.4) and noting the estimates above, we
have the desired result that

\| Gk(\theta + i\beta )\| 2 \leq M0
\sqrt{} 

(1 + \mu \tau cosh \theta )k+1(1 - \mu \tau )k+1
.

This completes the proof.

The proof of Lemma 3.3. Using the results in Lemmas 3.1 and 3.2, and noting
the facts that

(1 - y/k) - (k+1) \leq 2 exp(2y) for 0 \leq y \leq k/2,

\phi (y) \leq 8 for y \geq 0.01,
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we have

N(Gk, Dd) := 2

\Biggl( � +\infty 

N\tau 

+

� N\tau 

0

\Biggr) 

(\| Gk(\theta + id)\| 2 + \| Gk(\theta  - id)\| 2) d\theta 

\leq 4

� +\infty 

N\tau 

M0

(1 - \mu t/k)
k+1
2

\biggl( 

1 +
\mu t

k
cosh \theta 

\biggr)  - k+1
2

d\theta 

+ 2

� N\tau 

0

(\| Gk(\theta + id)\| 2 + \| Gk(\theta  - id)\| 2) d\theta 

\leq 4
\surd 
2M0 exp(\mu t)

\Biggl( 

8 exp

\biggl( 

 - \mu t cosh(N\tau )
4

\biggr) 

+

\biggl( 

1 +
\mu t

k
cosh(N\tau )

\biggr)  - k−1
2

\Biggr) 

+ 8M0N\tau exp(2\mu t)

\leq 9M0N\tau exp(2\mu t).

The proof of Theorem 3.1.

Proof. Denote

E\tau ,\infty (Gk) =

� +\infty 

 - \infty 

Gk(\theta )d\theta  - \tau 
\infty 
\sum 

n= - \infty 

Gk(n\tau ).

For any fixed N \geq 1, it is easy to verify that

\| E\tau ,N (Gk)\| 2 \leq \| E\tau ,\infty (Gk)\| 2 + \tau 
\sum 

| n| \geq N+1

\| Gk(n\tau )\| 2.

By Theorem 4.1 in [27] (see also [28]), we have

\| E\tau ,\infty (Gk)\| 2 \leq N(Gk, Dd)

e2\pi d/\tau  - 1
\leq 10M0N\tau exp

\biggl( 

2\mu t - 2\pi d

\tau 

\biggr) 

.

Moreover, we have

\tau 
\sum 

| n| \geq N+1

\| Gk(n\tau )\| 2 \leq 2

+\infty 
\sum 

n=N+1

M0

(1 - \mu t/k)
k+1
2

\biggl( 

1 +
\mu t

k
cosh(n\tau )

\biggr)  - k+1
2

\leq 2M0

(1 - \mu t/k)
k+1
2

� +\infty 

N\tau 

\biggl( 

1 +
\mu t

k
cosh \theta 

\biggr)  - k+1
2

d\theta 

\leq 2
\surd 
2M0 exp(\mu t)

\Biggl( 

8 exp

\biggl( 

 - \mu t cosh(N\tau )
4

\biggr) 

+

\biggl( 

1 +
\mu t

k
cosh(N\tau )

\biggr)  - k−1
2

\Biggr) 

.

Overall, we arrive at

\| E\tau ,N (Gk)\| 2 \leq 10M0N\tau exp

\biggl( 

2\mu t - 2\pi d

\tau 

\biggr) 

+ 16
\surd 
2M0 exp

\biggl( 

\mu t - \mu t cosh(N\tau )

4

\biggr) 

+ 2
\surd 
2M0 exp(\mu t)

\biggl( 

1 +
\mu t

k
cosh(N\tau )

\biggr)  - k−1
2

.
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