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Many graphene moiré superlattices host narrow bands with nonzero valley Chern numbers. We provide
analytical and numerical evidence for a robust spin and/or valley polarized insulator at total integer band
filling in nearly flat bands of several different moiré materials. In the limit of a perfectly flat band, we
present analytical arguments in favor of the ferromagnetic state substantiated by numerical calculations.
Further, we numerically evaluate its stability for a finite bandwidth. We provide exact diagonalization
results for models appropriate for ABC trilayer graphene aligned with hBN, twisted double bilayer
graphene, and twisted bilayer graphene aligned with hBN. We also provide DMRG results for a
honeycomb lattice with a quasiflat band and nonzero Chern number, which extend our results to larger
system sizes. We find a maximally spin and valley polarized insulator at all integer fillings when the band is
sufficiently flat. We also show that interactions may induce effective dispersive terms strong enough to
destabilize this state. These results still hold in the case of zero valley Chern number (for example, trivial
side of TLG/hBN). We give an intuitive picture based on extended Wannier orbitals, and emphasize the role
of the quantum geometry of the band, whose microscopic details may enhance or weaken ferromagnetism

in moiré materials.
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Following the discovery of correlated insulators and
superconductivity in magic angle twisted bilayer graphene
(TBG) [1,2], a great deal of attention has been lavished on
various “moiré materials.” In TBG, the correlated insulator
and superconductor have since been observed by other
groups [3,4], leading to a wealth of new information. When
the TBG is aligned with a hexagonal Boron Nitride sub-
strate (TBG/hBN), emergent ferromagnetism and a large
[5] or even quantized [6] anomalous Hall effect is observed
at 3/4 filling of the conduction band. In other experiments,
the moiré bands formed when ABC stacked trilayer
graphene is aligned with one of the hBN (TLG/hBN)
substrates display interesting strong correlation physics
[7-9]. Applying a perpendicular displacement field D
enables control of the bandwidth leading to a gate-tunable
correlated insulator at half-filling [7]. Furthermore the sign
of D controls the band topology [9-11]: the Chern number,
which is equal and opposite for the two valleys, is nonzero
for one sign of D and zero for the other sign. Remarkably
on the topologically nontrivial side, the 1/4 filled state in
the valence band shows ferromagnetism and a quantized
anomalous Hall effect with Chern number 2 [9]. In yet other
experiments, in twisted double bilayer graphene systems
(TDBG, i.e., bilayer graphene twisted relative to another
bilayer graphene to a magic angle), a spin polarized
insulator [12—14] is found at half-filling of the conduction
band giving way [12,13], upon doping, to a superconductor
that is likely also spin polarized. Theoretically, the con-
duction band in TDBG also has a nonzero Chern number
equal and opposite for the two valleys [10,15-17].
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In this Letter, we study the physics of narrow moiré
bands in the strong interaction limit; i.e., when the
Coulomb interaction is much larger than the bandwidth.
We focus on the moiré systems where the conduction and
valence bands are separated from each other by energy gaps
[18]. The spinful electrons occupy bands in two discon-
nected valleys (denoted + and —) such that time-reversal
maps one valley to the other. As a result, the + and —
valleys of the active band have equal and opposite Chern
number C. We call v7 the filling fraction including the spin
and valley degrees of freedom, i.e., the number of electrons
per moiré unit cell in the active band. We restrict our
attention to total integer fillings v = 1, 2, 3. We consider
density-density interactions of typical strength U, and focus
on the strong coupling limit U/W > 1, where W is the
bandwidth of the active band. Previous papers have
presented physical arguments, and supporting Hartree-
Fock calculations, that the system in this limit is a spin-
valley ferromagnetic insulator [10,15,19-22]. However
Hartree-Fock theory typically overestimates the stability
of ferromagnetic states. Thus it is important to substantiate
the physical arguments for spin-valley ferromagnetism
through other less biased calculations. In the context of
strained graphene, Ref. [23] provided numerical evidence
for a valley-polarized insulator at fractional filling. Here we
present analytical arguments and numerical calculations—
exact diagonalization (ED) and density matrix renormali-
zation group (DMRG)—for models pertinent to moiré
materials. We show that spin-valley ferromagnetic states
are stabilized in the flat-band limit even when the band is
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topologically trivial [20]. We provide a quantitative esti-
mate of the stability range of the ferromagnetic states
in terms of the interaction to bandwidth ratio. We also
show that intervalley coherent order is always disfavored
compared to ferromagnetism in the limit where the flat
band is a Landau level. We emphasize that the interactions
renormalize the bare (noninteracting) dispersion of the
band. The strong interaction limit is thus defined as the
regime where residual interactions far exceed the renor-
malized bandwidth.

Physical argument for ferromagnetism.—First consider
the case of a topologically trivial band with nonzero Berry
flux distribution. Such a situation arises in TLG/hBN for
one sign of the displacement field D [10]. Using a Wannier
basis [24,25], we can build an effective tight-binding model
for the active band [20]. The Wannier functions have a
finite extension which is needed to capture the Berry flux
density in the band. Projecting the Coulomb interaction
onto the Wannier basis leads to an on site Hubbard
interaction of order U (and smaller terms between neigh-
boring sites) but also to an intersite ferromagnetic Hund’s
interaction Jrp = g,U [20]. The coefficient g; depends on
the overlap of Wannier densities at neighboring sites but
stays finite even when W — 0. In the large-U limit, the
ground state has a fixed integer number v of electrons at
each site. The active degrees of freedom are local moments
in spin-valley space. In the strict limit W — 0, the only
coupling that survives between these local spin-valley
degrees of freedom is Jp, giving rise to a spin-valley
ferromagnet [20] (see also Ref. [26]). As W increases, there
will also be antiferromagnetic intersite superexchange
aW?/U with a a constant independent of W and U.
This antiferromagnetic exchange can dominate over the
intersite Hund’s exchange only when W > /(g,/a)U.
Thus if W/U is small enough we get a spin-valley
ferromagnetic Mott insulator. In this mechanism the larger
the extension of the Wannier functions, the larger the
coefficient g,, and thus the stronger the ferromagnetism.

Turning next to the case of topologically nontrivial
4+ Chern bands, symmetric Wannier functions cannot be
localized [24,25]; we may view this as the limit of Wannier
functions with infinite extension. Intuitively, the Hund’s
effect will only be stronger, hence a spin-valley ferromag-
netic insulator is the likely ground state at all integer
fillings.

Analytical considerations.—For a perfectly flat band
separated by a large gap from other bands, the effective
Hamiltonian is the Coulomb interaction projected onto the
active band

Hy = 5p(q)V(a)5p(—q), (1)
q

where 5p(q) = p(q) — pod?(q) is the deviation of the
projected density from the average density p,. The total

projected density operator p(q) =p.(q)+p_(q) is
summed over spin and valley indices, and the projected
densities p. in each valley s = + are written

ﬁs(q) = Z’ls(k + q, k)c;'(Jrq,ﬂka,as’ (2)
k.o

where ¢ =1, is the spin index. The A, are valley
dependent form factors which are defined in terms of
the Bloch eigenstates |ug)) through A (k +q.k) =
(Usk+qlttsx). Because of the Berry flux distribution, A
is a nontrivial function of k and q. It is readily verified that
p(—q) = p(q)" as befits the total density operator. The
Hamiltonian Hy is invariant under a U(2) x U(2) rotation
corresponding to independent charge and spin conservation
within each valley. It is not SU(4) invariant in spin-valley
space due to the form factors. With the further assumption
that the interaction V(q) >0 for all q (satisfied for
Coulomb and for short range repulsive potentials), it
becomes clear that Hy is positive semidefinite. Thus any
state |w) that satisfies

op(a)ly) =0 (3)

for all q is an exact ground state.

At vy integer, consider the state obtained by filling up vy
bands to form an insulator. At vy =2 this can be spin
polarized or valley polarized. At vz = 1, 3 this must be
both spin and valley polarized. Consider a simple model
that restricts the sum over momenta to the first Brillouin
zone [27]; these states satisfy Eq. (3), hence they are
eigenstates of Hy with eigenvalue 0. It follows that any
ground state of Hy must satisfy Eq. (3) for all q. The
remaining question is whether the spin-valley polarized
states are the unique ground states. Indeed the same
argument applied to a half-filled Hubbard model in the
flat band limit (zero hopping) would yield ferromagnetic
ground states; but these are degenerate with all other spin
configurations. In contrast in the flat Chern band, spin flips
in the ferromagnetic state generically cost energy. This is
well known in the idealized case of a band with uniform
Berry curvature, i.e., quantum Hall ferromagnetism [28,29],
where the spin stiffness p, can be calculated exactly [10] and
is proportional to the square of the Chern number. This
suggests that these ferromagnetic states may indeed be the
unique ground states for any flat Chern band.

Besides spin-valley polarized states, intervalley coherent
(IVC) states are a plausible ground state candidate for
moiré systems at integer filling vy [10,15,19,21,30] (see
also Ref. [31]). To address these, it is instructive to consider
a toy model where the active band is the lowest Landau
level of a system with opposite magnetic fields +B for each
valley. Then the projected density operators satisfy the
Girvin-MacDonald-Platzman (GMP) algebra [32] (I is the
magnetic length):
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(axq)53

(69-(q). 59+ (q)] = ﬁisin( .

>5ﬁ:t(q +q').
4)

Since the commutator has the opposite sign for the two
opposite valleys, the total density satisfies

sp(@.aptat)] = 20sin () g+ ). )

where I°(q) = 6p., (q) — 8p_(q) is the Fourier transform of
the valley charge density. Thus in any ground state, by
applying Eq. (3) to the left-hand side of Eq. (5), we find that

Fg)ly) =0, ¥V q#0. (6)
Thus the valley charge density cannot have fluctuations at
any nonzero ¢ in a ground state. If however there is IVC
order then the breaking of valley U, (1) symmetry will lead
to nonzero fluctuations of I°(q). For instance from the
expected Goldstone fluctuations of the phase of the IVC
order parameter the ground state correlator

WiFOE@W) = Y5 ()

Here «,, is the valley charge susceptibility, and py, is the
phase stiffness of the IVC order parameter. See, e.g., Huang
[33] for the analogous correlator in superfluidity. The exact
result in Eq. (6) is in conflict with this expectation,
therefore the IVC ordered state is not a ground state in
this model. Moving away from this toy model, introducing
a small bandwidth and Berry curvature fluctuations will
clearly not change this result [34]. We thus expect that, as
suggested by Hartree-Fock, the IVC state is disfavored
relative to the spin-valley polarized states in the nearly flat
band limit for generic =C Chern bands. In what follows we
will provide numerical results supporting this expectation.

Note that in realistic models, various effects are respon-
sible for the dispersion of the active band. Besides the bare
bandwidth W, of the noninteracting model, two bilinear
terms of order U contribute to the overall bandwidth. The
first term is the Fock term stemming from the interaction
between electrons in the active band and in the fully
occupied bands. The second term is the difference between
H\y and its normal-ordered counterpart; it is proportional to
the fluctuations of the squared form factor |A,(k + q, k)%
See the Supplemental Material [37] for more details. In our
analytical considerations, we considered the case where the
renormalized bandwidth vanishes.

Exact diagonalization results for a single moiré band.—
We consider the continuum momentum-space models [38]
of three moiré systems (TBG/hBN [21], TDBG [10,15],
TLG/hBN [10]). In our model of TBG/hBN, both top and
bottom hBN substrates are aligned with TBG, in contrast to

the experimental setups of Refs. [5,6] where only one hBN
substrate is aligned. Unless otherwise noted, for concrete-
ness we respectively choose the twist angles 6 = 1.05°,
1.2° and 0, and the displacement field D = 0, 40, and
50 mV. The active band is the valence (TLG/hBN) or the
conduction (TBG/hBN and TDBG) band and has Chern
number C = +1 (TBG/hBN), C =+2 (TDBG), and
C = £3 (TLG/hBN) [39]. We also consider the trivial
(C = 0) band obtained in TBG/hBN by rotating one hBN
by a 60° angle relative to the other hBN, or in TLG/hBN by
switching the sign of the displacement field D. We take the
limit where the active band is separated from other bands
by a gap much larger than its bandwidth. The Hamiltonian
is obtained by normal ordering the projected Hamiltonian
Hy of Eq. (1), where the screened Coulomb interaction
takes the form

1 —qro
V(q)=U5(1—e )- (8)

We choose the screening length ry = 5.0 in units of the
moiré lattice constant. To qualitatively address the effect of
a finite dispersion of the band, we also consider the addition
of a simplified kinetic term (not the realistic dispersion)
which gives the active band a width W.

w
H=Hy —%Zcos (k-a; +k-ay)cice, (9)
K

where ag, a, are the moiré lattice vectors. We study this
model using exact diagonalization at integer filling v7 = 1,
2 (vy =3 is related to vy = 1 in our model through a
particle-hole transformation). We call N the number of
moiré unit cells, and choose the aspect ratio of the finite
cluster to be close to 1.

We start by investigating the nature of the ground state in
the limit Wy,,. = 0. In spite of the band flatness, the normal
ordering of the interaction induces a finite dispersion (see
the Supplemental Material [37]), such that ferromagnetism
is not guaranteed. Nevertheless, for vy = 1, we find that the
ground state is always fully spin and valley polarized;
the resulting state has a quantum anomalous Hall effect
Oy = Ce?/h. At vy = 2, maximal polarization of spin or
valley leads to several correlated insulators all related by
U(2) x U(2) symmetry in our model. For example, one
with full spin polarization (but /, = 0), which is a valley-
Hall insulator if C # 0, and one with full valley polarization
(S, = 0), with anomalous Hall effect o,, = 2Ce?/h [40].
Numerically, we find that these vy = 2 polarized insulators
indeed have the lowest energy in all models except for one:
the C =0 TBG/hBN. In this case, the ground state is
partially polarized, but the important finite-size effects
prevent us from identifying its nature.

Adding a finite bandwidth W, we find that the ferro-
magnetic phase survives up to W_.~0.05U in some
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FIG. 1. Stability of the FM state in the isolated flat band upon
adding a finite bandwidth W,.. The maximum value of
bandwidth W, is plotted as a function of the number of moiré
unit cells Ny at filling vy = 1 and vy = 2.

models, and up to W, = 0.2U in others at filling vy = 1. At
vr = 2, the ferromagnet is relatively less stable, with
critical values ranging from W. = 0.04U to W, = 0.1U.
The critical bandwidth is extracted from a finite-size
extrapolation of exact diagonalization results which is
detailed in Fig. 1.

The spin stiffness p, measures the energy change from
twisting the spin boundary conditions To evaluate p,, we
calculated the spin-wave dispersion exactly for large
systems (hundreds of moiré unit cells) by restricting the
calculation to the valley-polarized, S, = N/2 — 1 sector.
Figure 2(a) shows this dispersion in the case of the C = 3
model, and displays a remarkable data collapse for
36 < N, < 256. Figure 2(b) illustrates the influence of
the Berry curvature distribution F(k) on the spin stiffness
[F(k) is changed by tuning the microscopic parameters
such as 6 or D]. While F(k) does not uniquely determine
the spin stiffness [41], for a given model [a given color in
Fig. 2(b)], larger Berry curvature fluctuations typically
enhance p,.

Ferromagnetism in the spin-valley Haldane model.—We
now turn to DMRG calculations on infinitely long
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FIG. 2. Properties of low-energy spin excitations at vy = 1 and
Wyae = 0. (a) Spin-wave dispersion around the I' point in the
C = £3 model from exact diagonalization, for different numbers
N, of moiré unit cells. (b) Spin stiffness p, as a function of the
averaged squared Berry curvature F(k)? averaged over the
Brillouin zone, evaluated from a linear fit of the spin-wave
dispersion at the ' point. a,; is the moiré lattice constant. For
each model, we changed the Berry curvature distribution by
adjusting the twist angle @ or the displacement field D.

cylinders, which help us circumvent the size limitations
of exact diagonalization. We use a tight-binding model,
which facilitates DMRG [42], but comes with an additional
cost: due to the nontrivial Chern number of the active band,
we must consider a two-band model. Additionally, the two-
band model permits the consideration of the band gap
energy scale, which we have supposed to be infinite until
now. Our toy model is a tight-binding model on the
honeycomb lattice based on the Haldane model [45] with
on site Hubbard interaction of strength U.

H, = _Z(tijcj-z;+cj(r+ + t?jcj-a—cj(f— +He)
i,j,o
+U Z NigsNig!s' (10)

i,0,6'.s.s'

The hopping amplitudes 7;; are nonzero for first and
second neighbor and realize the Haldane model. We also
consider third and fourth neighbor hopping. We tune these
parameters to obtain a narrow conduction band with Chern
number C =41 and C = £2. See the Supplemental
Material [37] for the details of the tight-binding model.

We numerically obtained the ground state of H; for
infinitely long cylinders with L, = 2 unit cells along the
perimeter. We extracted the spin and valley polarization of
the ground state for several values of U. We find that the
onset of ferromagnetism U,./W is always smaller than the
band gap [see Fig. 3(c)]. Working in the valley-polarized or
spin-polarized limits, we can better approach the conver-
gence as a function of bond dimension, and simulate wider
cylinders (up to L, = 3). Our results are shown in Fig. 3
and confirm the ferromagnetic nature of the ground state for
U > U, where U, ~3W (the band gap is, respectively,
A/W = 6.0 and 5.45 for the C = +1 and C = +2 param-
eters). U, decreases with increasing system size L, (our
complementary exact diagonalization results on this
model show the same trend [37]), giving us confidence
that U, < A in the thermodynamic limit.

Discussion.—In this Letter we have shown both ana-
lytical and numerical evidence for spin and valley

of@ C=1-]|f®) L,=2-]||f© vr=1-
3 c=2-||f Ly =3 ||} vp =2
5F E E
E 4F E o= |
~ . -
SEE g 3
of E —H —e— o |F ...
1F 3 o LN
—
0 I L L 1 L L 1 L .
0 05 1 15 20 05 1 15 20 05 1 15 2
1000/x 1000/x 1000/x
FIG. 3. Onset of ferromagnetism in the C = 1, 2 Honeycomb

model Eq. (10), extracted from DMRG on cylinders of perimeter
L, as a function of the bond dimension y. (a) Valley-polarized
model, vy = 1. (b) Spin-polarized model, v = 1. (c¢) Full spin
and valley model at vy = 1, 2, limited to L, = 2.
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polarization in nearly flat bands, which emerge in several
graphene moiré superlattices. Our results demonstrate a
valley and spin polarized quantum anomalous Hall insu-
lator at vy =1 or vy =3. At vy =2, a spin-polarized
valley Hall insulator and a valley-polarized quantum
anomalous Hall insulator are both possible. Indeed recent
experiments have already observed signatures for spin
polarization in twisted double bilayer graphene and anoma-
lous Hall effect in TBG/hBN [5] and TLG/hBN [9].

The phenomenon we described is reminiscent of quan-
tum Hall ferromagnetism, but there are important
differences. Most naively, the finite bandwidth may destroy
ferromagnetism, and we have quantitatively evaluated the
position of this transition. Further, flat-band ferromagnet-
ism appears even when the Chern number is zero, due to the
nonzero Berry flux. Deviating from the Landau level
situation through large Berry curvature fluctuations has
two opposite effects, which, respectively, destabilize and
stabilize ferromagnetism: it may increase the strength of
interaction-induced dispersive terms, but it may also
enhance the spin stiffness. A natural future direction is
to study the possibility of fractional quantum Hall effect
from similar spontaneous time reversal breaking at frac-
tional filling.

We are thankful to Yin-Chen He and Kun Yang for
insightful discussions. We thank Eslam Khalaf for pointing
out an error in the initial version of this manuscript. DMRG
calculations were performed using the TeNPy Library
(version 0.4.0) [46]. This work was supported by NSF
Grant No. DMR-1911666, and partially through a Simons
Investigator Award from the Simons Foundation to Senthil
Todadri. C. R. is supported by the Marie Sklodowska-Curie
program under EC Grant Agreement No. 751859. Part of
this work was performed during a visit of C. R. and T. S. at
Aspen Center for Physics, which is supported by National
Science Foundation Grant No. PHY-1607611. C.R. per-
formed the ED simulations, Z. D. performed the DMRG
simulations. Y. H.Z. provided the momentum space and
lattice models. C.R., Y.H.Z., and T.S. supervised the
work of Z. D. All authors contributed to the discussions and
analysis of results.

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras et al., Nature (London) 556, 80 (2018).

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[3] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe,
T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science
363, 1059 (2019).

[4] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, L
Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang,

A. Bachtold, A.H. MacDonald, and D. K. Efetov, Nature
(London) 574, 653 (2019).

[5] A.L. Sharpe, E.J. Fox, A.W. Barnard, J. Finney, K.
Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-
Gordon, Science 365, 605 (2019).

[6] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu,
K. Watanabe, T. Taniguchi, L. Balents, and A.F. Young,
Science 367, 900 (2020).

[7]1 G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K.
Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang, and F.
Wang, Nat. Phys. 15, 237 (2019).

[8] G. Chen, A.L. Sharpe, P. Gallagher, I. T. Rosen, E. Fox,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung,
Z. Shi, D. Goldhaber-Gordon, Y. Zhang, and F. Wang,
Nature (London) 572, 215 (2019).

[9] G. Chen, A. L. Sharpe, E.J. Fox, Y.-H. Zhang, S. Wang, L.
Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T.
Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang,
Nature (London) 579, 56 (2020).

[10] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T.
Senthil, Phys. Rev. B 99, 075127 (2019).

[11] B. L. Chittari, G. Chen, Y. Zhang, F. Wang, and J. Jung,
Phys. Rev. Lett. 122, 016401 (2019).

[12] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, K. Watanabe, T.
Taniguchi, A. Vishwanath, and P. Kim, arXiv:1903.08130.

[13] C. Shen, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, Y.
Chu, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D.
Shi, and G. Zhang, Nat. Phys. (2020), https://www.nature
.com/articles/s41567-020-0825-9.

[14] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park,
K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, arXiv:
1903.08596.

[15] J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, and A.
Vishwanath, Nat. Commun. 10, 5333 (2019).

[16] M. Koshino, Phys. Rev. B 99, 235406 (2019).

[17] J. Liu and X. Dai, Phys. Rev. X 9, 031021 (2019).

[18] This is not the case in the original TBG where Dirac points
connect conduction and valence bands.

[19] N. Bultinck, S. Chatterjee, and M.P. Zaletel, arXiv:
1901.08110.

[20] Y.-H. Zhang and T. Senthil, Phys. Rev. B 99, 205150
(2019).

[21] Y.-H. Zhang, D. Mao, and T. Senthil, Phys. Rev. Research 1,
033126 (2019).

[22] M. Xie and A. H. MacDonald, Phys. Rev. Lett. 124, 097601
(2020).

[23] P. Ghaemi, J. Cayssol, D. N. Sheng, and A. Vishwanath,
Phys. Rev. Lett. 108, 266801 (2012).

[24] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N.
Marzari, Phys. Rev. Lett. 98, 046402 (2007).

[25] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[26] J. Kang and O. Vafek, Phys. Rev. Lett. 122, 246401 (2019).

[27] Though this is a good approximation [given the rapid decay
of A,(k + q, k)], our numerical results do not invoke this
restriction.

[28] S.L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi,
Phys. Rev. B 47, 16419 (1993).

[29] Z.F. Ezawa and G. Tsitsishvili, Rep. Prog. Phys. 72, 086502
(2009).

187601-5



PHYSICAL REVIEW LETTERS 124, 187601 (2020)

[30] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam,
Nat. Commun. 6, 6308 (2015).

[31] H.C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys.
Rev. X 8, 031089 (2018).

[32] S.M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys.
Rev. B 33, 2481 (1986).

[33] K. Huang, Statistical Mechanics, 2nd ed. (John Wiley and
Sons, Inc., 1987).

[34] In a generic Chern band, the GMP algebra is approximated in
the q — 0 limit [35,36], and Eq. (6) still holds in this limit.

[35] S. A. Parameswaran, R. Roy, and S.L. Sondhi, C.R. Phys.
14, 816 (2013).

[36] C. Repellin, T. Neupert, Z. Papi¢, and N. Regnault, Phys.
Rev. B 90, 045114 (2014).

[37] See the Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.124.187601 for more
details on the renormalization of the bare bandwidth by
interactions, and additional numerical data.

[38] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci.
U.S.A. 108, 12233 (2011).

[39] In TLG/hBN, a quantized anomalous Hall effect was in
fact observed at C = 2 [9]. Here, we use the continuum

noninteracting model which predicts a Chern C = £3 band.
A scenario involving interactions and supported by Hartree-
Fock calculations was proposed in Ref. [9] to explain this
discrepancy.

[40] Including the weak intervalley Hund’s interaction would
break the U(2) x U(2) symmetry and lift the degeneracy
between these two states.

[41] Even in the case of uniform Berry curvature, the real part of
the quantum geometric tensor also enters the expression of
ps [10].

[42] While it is in principle possible to perform DMRG using a
hybrid momentum-real space basis [43,44], it comes with
the cost of longer-range interactions and more complex
algorithms.

[43] J. Motruk, M. P. Zaletel, R. S. K. Mong, and F. Pollmann,
Phys. Rev. B 93, 155139 (2016).

[44] G. Ehlers, S. R. White, and R. M. Noack, Phys. Rev. B 95,
125125 (2017).

[45] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[46] J. Hauschild and F. Pollmann, SciPost Phys. Lect.
Notes, 5 (2018), code available from https://scipost.org/
SciPostPhysLectNotes.5.

187601-6



