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Abstract

The aim of this paper is to derive a stochastic representation of the solution to a nonlocal-in-

time evolution equation (with a historical initial condition), which serves a bridge between normal

diffusion and anomalous diffusion. We first derive the Feynman–Kac formula by reformulating the

original model into an auxiliary Caputo-type evolution equation with a specific forcing term subject

to certain smoothness and compatibility conditions. After that, we confirm that the stochastic formula

also provides the solution in the weak sense even though the problem data is nonsmooth. Finally,

numerical experiments are presented to illustrate the theoretical results and the application of the

stochastic formula.
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1. Introduction

In this paper, we study the nonlocal-in-time evolution equation
⎧
⎪⎨
⎪⎩

D(ρ)
∞ u(t, x) − ∆u(t, x) = f (t, x), (t, x) ∈ (0, T ] × Ω ,

u(t, x) = 0, (t, x) ∈ (0, T ] × ∂Ω ,

u(t, x) = φ(t, x), (t, x) ∈ (−∞, 0] × Ω ,

(1.1)

where Ω ⊂ R
d is a regular domain, the functions f and φ are given data, and D

(ρ)
∞ denotes

the nonlocal operator defined by

D(ρ)
∞ u(t, x) :=

∫ ∞

0

(u(t, x) − u(t − r, x))ρ(t, r ) dr, (1.2)

with the nonnegative kernel function ρ(t, r ) satisfying certain hypotheses (see details in

Section 2). The nonlocal operator −D
(ρ)
∞ is proved to be the Markovian generator of a (−∞, T ]-

valued decreasing Lévy-type process, denoted by −X t,(ρ) when started at t ∈ [0, T ]. We denote

by Bx a d-dimensional Brownian motion started at x ∈ R
d generated by the Laplacian ∆. The

processes −X t,(ρ) and Bx are always assumed to be independent.

The aim of the current work is to derive a stochastic representation for the solution to

the problem (1.1) with the historical initial condition. Besides their theoretical importance,

stochastic representations are extensively used in applications, e.g., to compute solutions

through the particle tracking method (see, e.g., [43,45]). It is a deep and classical result that

the solution to the diffusion equation
{
∂t u(t, x) = ∆u(t, x), (t, x) ∈ (0, T ] × R

d ,

u(0, x) = φ(0, x), x ∈ R
d ,

allows the stochastic representation u(t, x) = E[φ(0, Bx (t))]. This model describes normal

diffusion phenomena that exhibits homogeneity in both space and time. With the aid of single

particle tracking, recent studies have provided many examples of anomalous diffusion. One

typical example is the time-fractional (sub-)diffusion model,
{
∂αt u(t, x) = ∆u(t, x), (t, x) ∈ (0, T ] × R

d ,

u(0, x) = φ(0, x), x ∈ R
d ,

(1.3)

where ∂αt denotes the Caputo fractional derivative of order α ∈ (0, 1), defined by

∂αt u(t, x) = ∂t

∫ t

0

(t − r )−α

Γ (1 − α)
(u(r, x) − u(0, x)) dr.

The sub-diffusion phenomena has attracted much attention in applications such as contaminant

transport in groundwater [25], protein diffusion within cells [21], and thermal diffusion in

fractal media [35]. The problem (1.3) has been extensively studied both analytically and

numerically (see [34, Chapter 2.4] for an overview). Its solution can be expressed by u(t, x) =
E[φ(0, Y x (t))] [32], where Y x (t) = Bx (τ α0 (t)) and τ α0 (t) = inf{s > 0 : Xα(s) ≥ t} is the

inverse process of the α-stable subordinator Xα . The density of Y x (t) can be derived using a

conditioning argument [3,37]

Ht,x (y) =

∫ ∞

0

ps(x, y)∂sP[Xα(s) ≥ t] ds, (1.4)

where ∂sP[Xα(s) ≥ t] = α−1ts−1−1/αgα(ts−1/α), with gα being the density of Xα(1) and ps(x)

the density of Bx (s). It is interesting to observe that the time-changed Brownian motion Y x (t)
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displays time heterogeneity, as the non-Markovian time change t ↦→ τ α0 (t) is constant precisely

when the subordinator t ↦→ Xα(t) jumps [34]. This leads to the past-dependent diffusion Y x

being trapped, and in general spreading at a slower rate than Bx (see e.g. [30,36,44]). Let

us recall that Y x is sometimes called fractional kinetic and it enjoys surprising universality

properties [5]. It is easy to see that the Caputo fractional derivative can be written in the form

(1.2) by

∂αt u(t, x) = cα

∫ ∞

0

(u(t, x) − u(t − r, x))r−α−1 dr,

with the kernel ρ(t, r ) := cαr−α−1, cα = −Γ (−α)−1, where we extend the function u to

the negative real line by u(t) ≡ u(0) for t ∈ (−∞, 0). On the other hand, under certain

hypothesis, by taking ρ(t, r ) to be a compactly supported function in r (with the support

measured by the so-called horizon parameter), one may show that the nonlocal operator could

reproduce the first order derivative, as the horizon of nonlocal effects tends to zero with suitable

normalization [16]. Therefore, it is actually an interesting intermediate case between infinite-

horizon fractional derivatives and infinitesimal local derivatives. Moreover, it can be shown

that the nonlocal setting also serves to bridge between a short-time anomalous diffusion and

a long-time normal diffusion [17] which has been observed in many experiments [22]. More

discussions on connections to nonlocal modeling can be found in [15].

In case of time-independent Lévy measures and initial data, i.e. ρ(t, r )dr ≡ ρ(dr ) and

φ(t, x) ≡ φ(x), there exist some pioneer works about wellposedness and probabilistic represen-

tations. In [26], by Laplace transform and the theory of complete Bernstein functions, Kochubei

studied a Cauchy problem involving a general Caputo-type derivative, giving assumptions

on the Laplace transform of the kernel function. After that, these techniques combined with

semigroup theory were applied to a homogeneous time-fractional evolution equation involving

both first-order and fractional derivatives in time [40]. Recently, in [11–13], the authors

provided a general and explicit method to study Caputo-type diffusion models (possibly with

a first-order time derivative and a source term). See also [31,33] for the particular case of

distributed-order fractional time derivatives. Finally, we note that the Caputo-type problem

and its Feynman–Kac formula can be generalized in different ways, e.g., by adding a time

parameter [1]. In comparison with the aforementioned works, the nonlocal-in-time model (1.1)

allows a time-dependent kernel function ρ(t, r ), and requires a historical initial condition.

However, the probabilistic investigation of this model is still largely missing in the literature,

apart from the fractional case [41]. This motivates us to study the model (1.1) and derive a

clean stochastic explanation, which is the main contribution of this work.

Our technique first treats an equivalent inhomogeneous Caputo-type problem, essentially by

inverting (−D
(ρ)
∞ + ∆) when understood as an abstract generator of a Markov process taking

values in (0, T ] ×Ω and absorbed at {0}×Ω . Secondly, after explicitly computing the dual of

the abstract generator, we show that the above solution is indeed a weak solution. Uniqueness

of the weak solution is proved for variable separable kernels, extending results from [16]. As

an example, we show that the weak solution to the homogeneous problem (for f = 0) allows

the stochastic representation

u(t, x) = E
[
φ

(
−X t,(ρ)(τ0(t)), Bx (τ0(t))

)
1{τ0(t)<τΩ (x)}

]

=

∫ 0

−∞

∫

Ω

φ(r, y)Ht,x (r, y) dr dy,
(1.5)
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where τ0(t) = inf{s > 0 : −X t,(ρ)(s) ≤ 0}, τΩ (x) = inf{s > 0 : x + B(s) /∈ Ω} and the heat

kernel is given by

Ht,x (r, y) =

∫ t

0

ρ(z, z − r )

(∫ ∞

0

pΩ

s (x, y)∂zP[−X t,(ρ)(s) ≤ z] ds

)
dz.

Here we denote by pΩ

s (x, y) the density of the killed Brownian motion Bx (s)1{s<τΩ (x)}. Note

that for the standard fractional kernel ρ(t, r ) = cαr−α−1, −X t,(ρ) = t − Xα and τ0(t) = τ α0 (t).

The representation (1.5) appears to be new, and it suggests an interesting interpretation. This

is because the diffusion on Ω is still the anomalous diffusion Y x (t) = Bx (τ0(t)), but the

contribution in time of the initial condition φ(·, Y x (t)) depends on the waiting/trapping time

of Y x (t), which is indeed W (t) = X t,(ρ)(τ0(t)). Let us stress that as a particular case we treat

Caputo-type evolution equations.

The paper is organized as follows. In Section 2, we introduce some basic settings of the

nonlocal-in-time model (1.1) as well as some probabilistic background. Some popular and

concrete models will be provided as examples. In Section 3, after reformulating the model

(1.1) into a Caputo-type fractional diffusion problem, we develop some general solution theory,

provided additional smoothness and compatibility conditions on problem data. In Section 4, we

show that the candidate stochastic representation provides a weak solution of (1.1) even though

the data is weak. Finally, some numerical experiments will be presented in order to illustrate

our theoretical findings. Throughout, the notation c denotes a generic positive constant, whose

value may differ at each occurrence.

2. Preliminaries

2.1. General notation

We denote by N, R+, Rd , a ∧ b, Γ (·), 1E (·) and a.e., the set of positive integers, the set of

non-negative real numbers, the d-dimensional Euclidean space, the minimum between a, b ∈ R,

the gamma function, the indicator function of the set E and the statement almost everywhere

with respect to Lebesgue measure, respectively. To ease notation, F(I ) = F I whenever F(I )

is a space of real-valued functions on an interval I ⊂ R. We denote by ∥ · ∥B the norm of a

Banach space B, and if L is a bounded linear operator between Banach spaces, we denote its

operator norm by ∥L∥. We denote by C(E) the space of real-valued continuous functions on

E ⊂ R
d , and by B(E) the space of real-valued bounded and measurable functions on E . For

any T ≥ 0, we define the Banach spaces

C∞(−∞, T ] = { f ∈ C(−∞, T ] : f (t) → 0 as t → −∞},

C0[0, T ] = { f ∈ C[0, T ] : f (0) = 0},

both equipped with the supremum norm. We will also use the standard spaces C1[0, T ] =

{ f, f ′ ∈ C[0, T ]}, C1
0 [0, T ] = { f, f ′ ∈ C0[0, T ]} and C1

∞(−∞, T ] = { f, f ′ ∈ C∞(−∞, T ]}.

Then we reserve specific notation for several Banach spaces of continuous functions. Namely,

for a bounded open set Ω ⊂ R
d and T ≥ 0 we write

C∂Ω (Ω ) = { f ∈ C(Ω ) : f = 0 on ∂Ω},

C∂Ω ([0, T ] × Ω ) = { f ∈ C([0, T ] × Ω ) : f = 0 on [0, T ] × ∂Ω},

C0,∂Ω ([0, T ] × Ω ) = { f ∈ C∂Ω ([0, T ] × Ω ) : f = 0 on {0} × Ω},

C∞,∂Ω ((−∞, T ] × Ω ) = { f ∈ C((−∞, T ] × Ω ) : f = 0 on ∂Ω ,

f (·, x) ∈ C∞(−∞, T ] for x ∈ Ω}.
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We denote by L p(E), p ∈ [1,∞] the usual Banach spaces of Lebesgue p-integrable real-valued

functions on E . We define L p(a, b; B) = { f : (a, b) → B such that t ↦→ ∥ f (t)∥B ∈ L p(a, b)},

for p ∈ [1,∞] and (a, b) ⊂ R, and by L
p

loc(a, b; B) the locally p-integrable version. If F and

F̃ are two sets of real-valued functions, we define F · F̃ := { f f̃ : f ∈ F, f̃ ∈ F̃}, and we

denote by Span{F} the set of all linear combination of elements in F .

The notation we use for an E-valued stochastic process started at x ∈ E is X x = {X x (s)}s≥0.

Note that the symbol t will often be used to denote the starting point of a stochastic process with

state space E ⊂ R. By a strongly continuous contraction semigroup T we mean a collection

of linear operators Ts : B → B, s ≥ 0, where B is a Banach space, such that Ts+r = Ts Tr ,

for every s, r ≥ 0, T0 is the identity operator, lims↓0 Ts f = f in B, for every f ∈ B, and

sups ∥Ts∥ ≤ 1. The generator of the semigroup T is defined as the pair (L,Dom(L)), where

Dom(L) := { f ∈ B : L f := lims↓0 s−1(Ts f − f ) exists in B}. We say that a set C ⊂ Dom(L)

is a core for (L,Dom(L)) if the generator equals the closure of the restriction of L to C . We

say that a set C ⊂ B is invariant under T if TsC ⊂ C for every s > 0. If a set C is invariant

under T and a core for (L,Dom(L)), then we say that C is an invariant core for (L,Dom(L)).

Recall that if C is a dense subspace of Dom(L) and C is invariant under T , then C is an

invariant core for (L,Dom(L)) (see [9, Lemma 1.34]), and that Dom(L) is invariant under T .

For a given λ ≥ 0 we define the resolvent of T by (λ−L)−1 :=
∫ ∞

0
e−λs Ts ds, and recall that

for λ > 0, (λ−L)−1 : B → Dom(L) is a bijection and it solves the abstract resolvent equation

L(λ− L)−1 f = λ(λ− L)−1 f − f, f ∈ B,

see for example [18, Theorem 1.1]. By a Feller semigroup we mean a strongly continuous

contraction semigroup T on any of the Banach spaces of continuous functions defined above

such that T preserves non-negative functions. A Feller semigroup T is said to be conservative

if the extension of T to bounded measurable functions preserves constants. Feller semigroups

are in one-to-one correspondence with Feller processes, where a Feller process is a time-

homogeneous sub-Markov process {X (s)}s≥0 such that s ↦→ Ts f (x) := E[ f (X (s))|X (0) =

x], f ∈ B is a Feller semigroup [9, Chapter 1.2]. We recall that every Feller process

admits a cádlág modification which enjoys the strong Markov property [9, Theorem 1.19 and

Theorem 1.20], and we always work with such modification. For further discussions on these

terminologies and notations, we refer to [9].

2.2. Nonlocal operators and related stochastic processes

Next, we review some basics on the nonlocal operators, along with some properties and

related definitions.

(H0) The function ρ : R × (0,∞) → [0,∞) is continuous and continuously differentiable

in the first variable. Furthermore,
∫ ∞

0

(1 ∧ r ) sup
t

ρ(t, r ) dr < ∞,

∫ ∞

0

(1 ∧ r ) sup
t

⏐⏐⏐∂tρ(t, r )

⏐⏐⏐ dr < ∞,

and

lim
δ→0

sup
t

∫

0<r≤δ

rρ(t, r ) dr = 0.

Moreover, there exist ϵ > 0 and γ > 0, such that the function ρ satisfies ρ(t, r ) ≥ γ > 0

for all t and |r | < ϵ.
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Definition 2.1. For any kernel function ρ satisfying condition (H0), the Marchaud-type

derivative D
(ρ)
∞ and the Caputo-type derivative D

(ρ)

0 are respectively defined by

D(ρ)
∞ u(t) :=

∫ ∞

0

(u(t) − u(t − r ))ρ(t, r ) dr, t ∈ (−∞, T ],

(2.1)

D
(ρ)

0 u(t) :=

∫ t

0

(u(t) − u(t − r ))ρ(t, r ) dr + (u(t) − u(0))

∫ ∞

t

ρ(t, r ) dr, t ∈ (0, T ],

(2.2)

and D
(ρ)

0 u(0) := limt↓0 D
(ρ)

0 u(t).

Under the assumption (H0), the Marchaud-type derivative (2.1) (as well as (2.2)) is well-

defined pointwise for regular functions, e.g., u ∈ L∞(−∞, T ) ∩ C1(−∞, T ]. In fact, it is easy

to observe that for any t ∈ (−∞, T ]

|D(ρ)
∞ u(t)| ≤

⏐⏐⏐
∫ 1

0

∫ r

0

u′(t − y) dyρ(t, r ) dr

⏐⏐⏐ +
⏐⏐⏐
∫ ∞

1

(u(t) − u(t − r ))ρ(t, r ) dr

⏐⏐⏐

≤ ∥u′∥L∞(t−1,t)

∫ 1

0

rρ(t, r ) dr + 2∥u∥L∞(−∞,t)

∫ ∞

1

ρ(t, r ) dr ≤ c.

Moreover, we can prove that D
(ρ)
∞ u ∈ L p(0, T ) for any u ∈ W 1,p(−∞, T ) (see details in

Lemma 4.2). Also, the operator could be defined in weak sense, i.e. Definition 4.5, which is

useful in the study of PDE theories.

The operator D
(ρ)
∞ can be seen as the left-sided generalization of the Marchaud derivative

[38, eq. (5.57) and (5.58)]. It is also known as the generator form of fractional derivatives

[27,34], or a Lévy-type generator [9].

Example 2.2. We mention some concrete and popular examples of the nonlocal operators.

(i) By setting ρ(t, r ) = −r−α−1/Γ (−α) with α ∈ (0, 1), the nonlocal operator D
(ρ)

0

reproduces the Caputo fractional derivative [14], and D
(ρ)
∞ the Marchaud fractional

derivative [38].

(ii) The operator Gδ , defined in [16, formula (1.2)] with a finite horizon parameter δ,

is a special case of the Marchaud-type derivative D
(ρ)
∞ with a time-independent and

compactly supported kernel function, see [15] for more discussions on nonlocal operators

with a finite horizon.

(iii) Other particular cases include the fractional derivatives of variable order, which are ob-

tained by taking ρ as the function ρ(t, r ) = −r−1−α(t)/Γ (−α(t)) with a suitable function

α(t) : R → (0, 1) [23], and tempered Lévy kernels ρ(t, r ) = −e−λrr−1−α/Γ (−α),

α ∈ (0, 1), λ > 0, [10,42].

Remark 2.3. The nonlocal derivatives −D
(ρ)
∞ and −D

(ρ)

0 have a clear probabilistic interpreta-

tion. The former tells us that the process at t makes a negative jump of size |r | with intensity

ρ(t, r ). The latter tells us that, as long as the jump does not cross 0, the process jumps from

t to t − r with intensity ρ(t, r ). Otherwise, it gets killed with rate/intensity
∫ ∞

t
ρ(t, r ) dr and

regenerated at 0 with the same rate, where it remains absorbed. This will be made rigorous in

Definition 2.4 and Proposition 2.6.
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2.3. Probabilistic interpretation and preliminary results

In this section, we discuss three stochastic processes generated by the operators defined in

(2.1) and (2.2) with kernel functions satisfying (H0).

Definition 2.4. Assume (H0).

(i) [27, Theorem 5.1.1]: Let T (ρ),∞ = {T
(ρ),∞

s }s≥0 be the Feller semigroup on C∞(−∞, T ]

with the generator
(
L

(ρ)
∞ ,Dom(L(ρ)

∞ )
)

being the closure of
(
−D(ρ)

∞ ,C1
∞(−∞, T ]

)
,

and recall that C1
∞(−∞, T ] is invariant under T (ρ),∞.

We denote the induced Feller process by

−X t,(ρ) = {−X t,(ρ)(s)}s≥0, t ∈ (−∞, T ].

(ii) [28, Theorem 4.1]: Let T (ρ) = {T
(ρ)

s }s≥0 be the Feller semigroup on C[0, T ] with the

generator

(
L

(ρ),Dom(L(ρ))
)

being the closure of
(
−D

(ρ)

0 ,C1[0, T ]
)
,

and recall that C1[0, T ] is invariant under T (ρ).

We denote the induced Feller process by −X
t,(ρ)

0 = {−X t,(ρ)(s)1{s<τ0(t)}}s≥0, t ∈ [0, T ].

(iii) We denote by T (ρ),kill = {T
(ρ)

s }s≥0 the Feller semigroup on C0[0, T ] with the generator
(
L

(ρ)

kill,Dom(L
(ρ)

kill)
)

being the closure of
(
−D

(ρ)

0 ,C1
0 [0, T ]

)
,

and C1
0 [0, T ] is invariant under T (ρ),kill.

We denote the induced Feller process by −X
t,(ρ),kill

0 = {−X
t,(ρ),kill

0 (s)}s≥0, t ∈ (0, T ].

Remark 2.5. The next proposition justifies the notation for the stochastic processes −X
t,(ρ)

0

and Definition 2.4(iii). The proof of parts (i), (ii) and (iii) is given in [24, Proposition 2.7], and

hence omitted here. Part (iv) can be proved by the same argument for Lemma 3.4.

Proposition 2.6.

(i) The processes −X t,(ρ), −X
t,(ρ)

0 and −X
t,(ρ),kill

0 are non-increasing and

P[−X t,(ρ)(s) ∈ (a, b)] = P[−X
t,(ρ)

0 (s) ∈ (a, b)] = P[−X
t,(ρ),kill

0 (s) ∈ (a, b)],

for every t ∈ (0, T ], 0 < a < b ≤ T , s > 0. In particular P[−X
t,(ρ)

0 (s) ∈ {0}] =

P[−X t,(ρ)(s) ≤ 0], for every t ∈ [0, T ], s > 0.

(ii) The law of

τ0(t) := inf{s > 0 : −X t,(ρ)(s) ≤ 0}, t ∈ (−∞, T ],

equals the law of the first exit time from the interval (0, T ] of the processes −X
t,(ρ)

0 for

each t ∈ (0, T ] (so that we will use indistinctly the same notation τ0(t)).

(iii) The expectation of τ0(t) is uniformly bounded, i.e., supt∈[0,T ] E[τ0(t)] < ∞.

(iv) It holds that
(
L

(ρ)

kill,Dom(L
(ρ)

kill)
)

=
(
L(ρ),Dom(L(ρ)) ∩ { f (0) = 0}

)
.
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Remark 2.7.

(i) It follows from Proposition 2.6 that the process −X
t,(ρ)

0 is obtained by absorbing at the

point 0 the process −X t,(ρ) on its first attempt to leave the interval (0, T ].

(ii) Definition 2.4(ii) (Definition 2.4(iii)) could be a proposition derived from absorbing at

0 (killing on crossing 0) the process −X t,(ρ), t > 0.

(iii) If the Lévy kernel is independent of t , i.e. ρ(t, r ) = ρ(r ), then −X t,(ρ)(s) = t − X (ρ)(s)

is the non-increasing Lévy process with generator −D
(ρ)
∞ acting on C∞

c (R), where X (ρ)

is the subordinator with Lévy measure ρ(r )dr . This is a consequence of the fact that

L
(ρ)
∞ = −D

(ρ)
∞ on C∞

c (R) ⊂ Dom(L
(ρ)
∞ ), and [9, Theorem 2.7].

(iv) If the kernel ρ(t, r ) = ρ(r ) is integrable, then −D
(ρ)
∞ is the generator of a non-increasing

compound Poisson process.

Remark 2.8. The assumption (H0) could be replaced with an alternative one, as long as −D
(ρ)
∞

generates a non-increasing Feller process with the first exit times from (0, T ] having finite

expectation, along with the existence of invariant cores with the properties in Definition 2.4.

Nevertheless, the assumption (H0) provides a satisfactory level of generality for most of the

applications we have in mind.

Finally, we use one more assumption on the stochastic process X t,(ρ).

(H1) The law of −X t,(ρ)(s) is absolutely continuous with respect to Lebesgue measure for

each t ∈ [0, T ], s > 0, and we denote such density by p
(ρ)
s (t). Furthermore assume that

P[−X t,(ρ)(τ0(t)) ∈ {0}] = 0, for each t ∈ (0, T ].

Remark 2.9. Assumption (H1) ensures the existence of the probability density function

p
(ρ)
s (t), which helps us handle the weak problem data (see Theorem 3.10(ii)). Otherwise,

without (H1), we could assume that the problem data g in Theorem 3.10(ii) is a Baire class

1 function (Remark 3.11). This would allow us to handle several cases, such as ρ being

integrable [39, Remark 27.3].

Remark 2.10. Assumption P[−X t,(ρ)(τ0(t)) ∈ {0}] = 0 is implied by the existence of a density

p
(ρ)
s (t) if ρ(t, r )dr = ρ(dr ). This is because the existence of a density implies that ρ((0,∞)) =

∞, as X (ρ) cannot be a compound Poisson process. Then τ0(t) = inf{s > 0 : X (ρ)(s) > t},

the right inverse of X (ρ), and one can apply [6, III, Theorem 4]. Here X (ρ) is the increasing

subordinator with Lévy measure ρ(dr ).

Example 2.11. We list some examples where the densities p
(ρ)
s (t), t, s > 0, exist:

(i) kernels ρ(t, r )dr = ρ(dr ) such that ρ(dr ) ≥ r−1−αdr for all small r [39, Proposi-

tion 28.3];

(ii) kernels ρ(t, r ) = ρ(r ) such that
∫ ∞

0
ρ(r ) dr = ∞ [39, Theorem 27.7];

(iii) kernels ρ(t, r ) such that the respective symbols satisfy the Hölder continuity-type

conditions in [29, Theorem 2.14];

(iv) see [20] for another set of assumptions for kernels of the type ρ(t, r ) = p(t)q(r ) and a

literature discussion.
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2.4. The spatial operator ∆

Definition 2.12. For a bounded open set Ω ⊂ R
d we say that z ∈ ∂Ω is a regular point for Ω ,

if there exists a right circular finite cone with vertex at z, denoted by Vz , such that Vz ⊂ Ω
c.

We say a bounded open set Ω ⊂ R
d is regular if every z ∈ ∂Ω is a regular point for Ω .

Remark 2.13. From now on, we always assume that Ω ⊂ R
d is a regular set. In particular,

every Lipschitz domain is regular.

Definition 2.14. Let Ω ⊂ R
d be a regular set. Let (∆Ω ,Dom(∆Ω )) be the generator of the

Feller semigroup T Ω = {T Ω

s }≥0 on C∂Ω (Ω ), where T Ω

s f (x) := E[ f (Bx (s))1{s<τΩ (x)}], s ≥ 0,

x ∈ Ω , with Bx (s) = x + B(2s), s ≥ 0, x ∈ Ω , {B(s)}s≥0 being the standard d-dimensional

Brownian motion, and define the first exit times

τΩ (x) := inf{s > 0 : Bx (s) /∈ Ω}, x ∈ Ω .

Remark 2.15. Recall that Dom(∆Ω ) = { f ∈ C∂Ω (Ω ) ∩ C2(Ω ) : ∆ f ∈ C∂Ω (Ω )} (see, e.g.,

[4, Theorem 2.3]). We write ∆Ω = ∆ from now on. We denote the law of Bx (s)1{s<τΩ (x)} by

pΩ

s (x, y)dy, recalling that (x, y) ↦→ pΩ

s (x, y) is continuous for each s > 0.

Remark 2.16. The arguments in Section 3 could be extended to the case where the Laplacian

∆ is replaced by an operator whose semigroup on C∂Ω (Ω ) allows a density function pΩ

s (x, y)

with respect to Lebesgue measure for positive time (i.e. the respective version of the first part

of assumption (H1)). The restricted fractional Laplacian is an example of such operator (see,

e.g., [7,8]).

2.5. The inhomogeneous Caputo-type evolution equation

In order to study the stochastic representation and wellposedness of the solution to problem

(1.1), we consider the following equivalent form
⎧
⎪⎨
⎪⎩

(−D
(ρ)

0 + ∆)u(t, x) = −g(t, x), in (0, T ] × Ω ,

u(t, x) = 0, in (0, T ] × ∂Ω ,

u(0, x) = φ(0, x), in Ω ,

(2.3)

with the forcing term g = f + fφ , where we define

fφ(t, x) :=

∫ ∞

t

(φ(t − r, x) − φ(t, x))ρ(t, r ) dr, in (0, T ] × Ω .

Notice that fφ = −D
(ρ)
∞ φ, for φ extended to φ(0) on (0, T ] × Ω , and D

(ρ)
∞ u = D

(ρ)

0 u − fφ
for any smooth u such that u = φ on (−∞, 0]. In the following section, we shall discuss the

probabilistic representation of the solution to (1.1) with the help of the reformulation (2.3),

provided certain hypothesis on problem data.

3. General theory

In this section, we study the solution theory of the nonlocal problem. To this end, we begin

with the study of some time–space compound semigroups which are constructed using temporal

semigroups and spatial ones. This allows us to treat the Caputo-type evolution equation (2.3)

as an elliptic boundary value problem.
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3.1. Time–space compound semigroups

The next lemma shows that {T
(ρ)

s T Ω

s }s≥0 is a well-defined Feller semigroup on C∂Ω ([0, T ]×

Ω ) such that its generator is the closure of −D
(ρ)

0 + ∆.

Lemma 3.1. With the notation of Definitions 2.4 and 2.14, the operators

T (ρ),Ω := {T (ρ)
s T Ω

s }s≥0

form a Feller semigroup on C∂Ω ([0, T ]×Ω ), whose generator (L
(ρ)
Ω
,Dom(L

(ρ)
Ω

)) is the closure

of
(
−D

(ρ)

0 + ∆, Span
{
C1[0, T ] · Dom(∆Ω )

})
in C∂Ω ([0, T ] × Ω ),

where T (ρ) and −D
(ρ)

0 act on the [0, T ]-variable, and T Ω and ∆ act on the Ω -variable.

Proof. It is straightforward to show that T (ρ),Ω is a Feller semigroup by observing that

T (ρ)
s T Ω

r = T Ω

r T (ρ)
s , for every s, r ≥ 0,

and the contraction property

∥T Ω

s f ∥C([0,T ]×Ω) ≤ ∥ f ∥C([0,T ]×Ω) and ∥T (ρ)
s f ∥C([0,T ]×Ω) ≤ ∥ f ∥C([0,T ]×Ω),

holds for every f ∈ C∂Ω ([0, T ] × Ω ), s > 0. We denote the generator of T (ρ),Ω by

(L
(ρ)
Ω
,Dom(L

(ρ)
Ω

)). Let f = pq , where p ∈ C1[0, T ] and q ∈ Dom(∆Ω ). Then L(ρ) p =

−D
(ρ)

0 p from Definition 2.4(ii), and by a standard triangle inequality argument, we obtain
⏐⏐⏐⏐⏐
T

(ρ)
h T Ω

h f (t, x) − f (t, x)

h
− (−D

(ρ)

0 + ∆) f (t, x)

⏐⏐⏐⏐⏐

≤ ∥p∥C[0,T ]


T Ω

h q − q

h
− ∆q


C(Ω)

+ ∥∆q∥C(Ω)

T
(ρ)

h p − p


C[0,T ]

+ ∥q∥C(Ω)


T

(ρ)
h p − p

h
+ D

(ρ)

0 p


C[0,T ]

→ 0

as h ↓ 0. As a result, L
(ρ)
Ω

= (−D
(ρ)

0 + ∆) on Span{C1[0, T ] · Dom(∆Ω )} ⊂ Dom(L
(ρ)
Ω

).

Next, we aim to show that Span{C1[0, T ] · Dom(∆Ω )} is dense in C∂Ω ([0, T ] × Ω ). It is

enough to show that Span{C∞[0, T ] · C∞
c (Ω )} is dense in C∂Ω ([0, T ] × Ω ) by the inclusion

Span{C∞[0, T ] · C∞
c (Ω )} ⊂ Span{C1[0, T ] · Dom(∆Ω )}.

To this end, we notice that Span{C∞[0, T ] · C∞(Ω )} is a sub-algebra of C([0, T ] ×Ω ) that

contains constant functions and separates points. Hence Span{C∞[0, T ] · C∞(Ω )} is dense

in C([0, T ] × Ω ) by Stone–Weierstrass Theorem for compact Hausdorff spaces. Then for

f ∈ C∂Ω ([0, T ] × Ω ) we take a sequence { fn}n∈N ⊂ Span{C∞[0, T ] · C∞(Ω )} such that

fn → f . Pick functions {1Kn }n∈N ⊂ C∞
c (Ω ) such that 0 ≤ 1Kn ≤ 1, 1Kn (x) = 1 for x ∈ Kn ,

and 1Kn (x) = 0 for x ∈ Ω\Kn+1, where Kn is compact and Kn ⊂ Kn+1 ⊂ Ω for each n, and

∪n Kn = Ω . Define f̃n := 1Kn fn ∈ Span{C∞[0, T ] · C∞
c (Ω )} for each n ∈ N. Then, as n → ∞

∥ f̃n − f ∥C([0,T ]×Ω) ≤ ∥ f̃n − f ∥C([0,T ]×Kn ) + ∥ f̃n − f ∥C([0,T ]×Kn+1\Kn)

+ ∥ f̃n − f ∥C([0,T ]×Ω\Kn+1)
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= ∥ fn − f ∥C([0,T ]×Kn ) + ∥ f̃n − f ∥C([0,T ]×Kn+1\Kn)

+ ∥ f ∥C([0,T ]×Ω\Kn+1)

→ 0.

Then the density of Span{C1[0, T ] · Dom(∆Ω )} in C∂Ω ([0, T ] ×Ω ) together with the fact that

Span{C1[0, T ] · Dom(∆Ω )} is invariant under T (ρ),Ω and a subspace of Dom(L
(ρ)
Ω

) completes

the proof by [9, Lemma 1.34]. □

Then a similar argument shows the following corollary.

Corollary 3.2. With the notation of Definitions 2.4 and 2.14, it holds that:

(i) the operators T (ρ),kill,Ω := {T
(ρ),kill

s T Ω

s }s≥0 form a Feller semigroup on C0,∂Ω ([0, T ]×Ω ).

The generator (L
(ρ),kill

Ω
,Dom(L

(ρ),kill

Ω
)) of T (ρ),kill,Ω is the closure of

(
−D

(ρ)

0 + ∆, Span{C1
0 [0, T ] · Dom(∆Ω )}

)
in C0,∂Ω ([0, T ] × Ω ),

where T (ρ),kill and −D
(ρ)

0 act on the [0, T ]-variable, and T Ω and ∆ act on the

Ω -variable.

(ii) The operators T (ρ),∞,Ω := {T
(ρ),∞

s T Ω

s }s≥0 form a Feller semigroup on C∞,∂Ω ((−∞, T ]×

Ω ). The generator (L
(ρ),∞
Ω

,Dom(L
(ρ),∞
Ω

)) of T (ρ),∞,Ω is the closure of

(
−D(ρ)

∞ + ∆, Span{C1
∞(−∞, T ] · Dom(∆Ω )}

)
in C∞,∂Ω ((−∞, T ] × Ω ),

where T (ρ),∞ and −D
(ρ)
∞ act on the (−∞, T ]-variable, and T Ω and ∆ act on the

Ω -variable.

Remark 3.3. If the spatial generator is not the Laplacian, it could happen that C∞
c (Ω ) is

not contained in the domain of the spatial generator (as in the case of the restricted fractional

Laplacian). In such case one can extend the proof of Lemma 3.1 as in [41, Appendix II].

Lemma 3.4. With the notation of Definitions 2.4 and 2.14, it holds that

T (ρ),Ω = T (ρ),kill,Ω on C0,∂Ω ([0, T ] × Ω ),

and

L
(ρ)
Ω

= L
(ρ),kill

Ω
on Dom(L

(ρ),kill

Ω
) = Dom(L

(ρ)
Ω

) ∩ { f (0) = 0}.

Proof. The first claim is an immediate consequence of the observation that T (ρ),kill = T (ρ) on

C0[0, T ]. To prove the second claim, we first confirm that Dom(L
(ρ),kill
Ω

) ⊂ Dom(L
(ρ)
Ω

) by the

fact that T
(ρ),Ω

s = T (ρ),kill,Ω on C0,∂Ω ([0, T ] × Ω ). Next, we show that

u − u(0) ∈ Dom(L
(ρ),kill
Ω

) for all u ∈ Dom(L
(ρ)
Ω

).

In fact, let u ∈ Dom(L
(ρ)
Ω

) and consider its resolvent representation for some λ > 0 and

g ∈ C∂Ω ([0, T ] × Ω )

u(t, x) =

∫ ∞

0

e−λs T (ρ)
s T Ω

s g(t, x) ds,
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and hence

u(t, x) − u(0, x) =

∫ ∞

0

e−λs T Ω

s T (ρ)
s (g − g(0))(t, x) ds

=

∫ ∞

0

e−λs T Ω

s T (ρ),kill
s (g − g(0))(t, x) ds ∈ Dom(L

(ρ),kill
Ω

),

where we use the fact that T (ρ),kill = T (ρ) on C0,∂Ω ([0, T ] × Ω ) and that g − g(0) ∈

C0,∂Ω ([0, T ] × Ω ). □

Remark 3.5. Note that the resolvent representation yields that

(
−L

(ρ),kill
Ω

)−1

g(t, x) =

∫ ∞

0

T (ρ),Ω
s g(t, x) ds

= E

[∫ τ0(t)∧τΩ (x)

0

g
(
−X t,(ρ)(s), Bx (s)

)
ds

]
,

for g ∈ C0,∂Ω ([0, T ] × Ω ), as

T (ρ),Ω
s g(t, x) = T (ρ)

s T Ω

s g(t, x) = E
[
g

(
−X t,(ρ)(s)1{s<τ0(x)}, Bx (s)1{s<τΩ (x)}

)]

= E
[
g

(
−X t,(ρ)(s), Bx (s)

)
1{s<τ0(x)}1{s<τΩ (x)}

]
.

Also, if g = 1 then (−L
(ρ),kill
Ω

)−1g(t, x) = E[τt,x ], where we write τt,x = τ0(t) ∧ τΩ (x).

3.2. Notions of solutions

In order to discuss the stochastic representation of solutions to (1.1), we use the following

two auxiliary notions of solutions to the variant problem (2.3), as in [24].

Definition 3.6. Let g ∈ C∂Ω ([0, T ] × Ω ) and φ(0) ∈ Dom(∆Ω ) such that g(0) = −∆φ(0).

We say that a function u ∈ C∂Ω ([0, T ] × Ω ) is a solution in the domain of the generator to

problem (2.3) if

L
(ρ)
Ω

u = −g on (0, T ] × Ω , u(0) = φ(0), and u ∈ Dom(L
(ρ)
Ω

). (3.1)

The next solution concept for problem (2.3) is defined as a pointwise approximation of

solutions in the domain of the generator.

Definition 3.7. Let g ∈ B([0, T ] × Ω ) and φ(0) ∈ Dom(∆Ω ). We say that a function

u ∈ B([0, T ] × Ω ) is a generalized solution to problem (2.3) if

u = lim
n→∞

un pointwise,

where {un}n∈N is a sequence of solutions in the domain of the generator for a corresponding

sequence of data {gn}n∈N ⊂ C∂Ω ([0, T ] × Ω ) such that gn → g a.e. on (0, T ] × Ω ,

supn ∥gn∥C([0,T ]×Ω) < ∞, and gn(0) = −∆φ(0) for each n ∈ N.

Remark 3.8. The generalized solution will retain the homogeneous Dirichlet boundary

condition on ∂Ω and the initial condition u(0) = φ(0).
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3.3. Well-posedness and Feynman–Kac formula for problem (2.3)

In order to study the Feynman–Kac stochastic formula, we use the following assumption on

the initial data:

(H2) The initial data φ : (−∞, 0] × Ω → R is such that the extension of φ to φ(0) on

(0, T ] × Ω satisfies φ ∈ Dom(L
(ρ),∞
Ω

) and L
(ρ),∞
Ω

φ = (−D
(ρ)
∞ + ∆)φ.

Remark 3.9. We have some observations on the assumption (H2):

(i) Assumption (H2) is satisfied for example by linear combinations of initial conditions

in variables-separable form, that is, φ(t, x) = p(t)q(x), where p ∈ C1
∞(−∞, 0],

p′(0−) = 0 and q ∈ Dom(∆Ω ). Such set of functions is dense in C∞,∂Ω ((−∞, 0] ×Ω )

by a Stone–Weierstrass argument as mentioned in Remark 3.3. The problem (1.1) with

such a kind of initial data has been analytically studied in [16].

(ii) Note that (H2) implies φ(0) ∈ Dom(∆Ω ) and fφ ∈ C([0, T ] × Ω ). This is because

(H2) implies φ(0) ∈ C∂Ω (Ω ), ∆φ(t) = ∆φ(0) ∈ C∂Ω (Ω ) for t ∈ [0, T ], observing that

D
(ρ)
∞ φ(t) ∈ C∂Ω (Ω ) for each t > 0 by Dominated Convergence Theorem, and then use

fφ = −D
(ρ)
∞ φ.

(iii) The case where (H2) no longer holds is to be discussed in the next section.

Theorem 3.10. Assume (H0). Then

(i) If g +∆φ(0) ∈ C0,∂Ω ([0, T ]×Ω ) for some g ∈ C∂Ω ([0, T ]×Ω ) and φ(0) ∈ Dom(∆Ω ),

then there exists a unique solution in the domain of the generator to problem (2.3).

(ii) Assume (H1). If g ∈ B([0, T ] × Ω ) and φ(0) ∈ Dom(∆Ω ), then there exists a unique

generalized solution to problem (2.3), and the generalized solution allows the stochastic

representation for any (t, x) ∈ (0, T ] × Ω

u(t, x) = E
[
φ(0, Bx (τ0(t)))1{τ0(t)<τΩ (x)}

]

+ E

[∫ τ0(t)∧τΩ (x)

0

g
(
−X t,(ρ)(s), Bx (s)

)
ds

]
.

(3.2)

(iii) Assume (H1), (H2) and let g = f + fφ , for f ∈ B([0, T ] × Ω ). Then both solutions in

part (i) and (ii) allow the stochastic representation for any (t, x) ∈ (0, T ] × Ω

u(t, x) = E
[
φ

(
−X t,(ρ)(τ0(t)), Bx (τ0(t))

)
1{τ0(t)<τΩ (x)}

]

+ E

[∫ τ0(t)∧τΩ (x)

0

f
(
−X t,(ρ)(s), Bx (s)

)
ds

]
.

(3.3)

Proof. (i) Recall that we write τt,x = τ0(t) ∧ τΩ (x). Then using Proposition 2.6(iii) with the

inequality
⏐⏐⏐(−L

(ρ),kill
Ω

)−1w(t, x)

⏐⏐⏐ =

⏐⏐⏐⏐E
[∫ τt,x

0

w
(
−X t,(ρ)(s), Bx (s)

)
ds

]⏐⏐⏐⏐ ≤ ∥w∥C([0,T ]×Ω)E
[
τt,x

]
,

for any w ∈ C0,∂Ω ([0, T ] × Ω ), we know that (−L
(ρ),kill
Ω

)−1 is bounded on C0,∂Ω ([0, T ] × Ω ).

Meanwhile, we observe that T
(ρ),kill,Ω

s w ∈ C0,∂Ω ([0, T ] × Ω ) if w ∈ C0,∂Ω ([0, T ] × Ω ) for

each s > 0, and it holds that∫ ∞

0

⏐⏐T (ρ),kill,Ω
s w(t, x)

⏐⏐ ds ≤ ∥w∥C([0,T ]×Ω)

∫ ∞

0

P[s < τt,x ]ds = ∥w∥C([0,T ]×Ω)E[τt,x ]

< ∞.
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Therefore we conclude that (−L
(ρ),kill
Ω

)−1 maps C0,∂Ω ([0, T ] × Ω ) to itself. Then it follows

by [18, Theorem 1.1’] that ū := (−L
(ρ),kill
Ω

)−1(g + ∆φ(0)) is the unique solution to

L
(ρ),kill
Ω

ū = −(g + ∆φ(0)) on (0, T ] × Ω , ū(0) = 0, and ū ∈ Dom(L
(ρ),kill
Ω

). (3.4)

It remains to show that u satisfies (3.1) if and only if u − φ(0) satisfies (3.4). For the ‘if’

direction, let ū satisfy (3.4). Then u := ū + φ(0) ∈ Dom(L
(ρ)
Ω

) and L
(ρ),kill
Ω

ū = L
(ρ)
Ω

ū, both by

Lemma 3.4. Also L
(ρ)
Ω
φ(0) = ∆φ(0) by Lemma 3.1, using L(ρ)1 = 0. To conclude observe

that by (3.4), u(0) = φ(0) and

L
(ρ)
Ω

(ū + φ(0)) = L
(ρ),kill
Ω

ū + ∆φ(0) = −g.

The ‘only if’ direction is similar and omitted.

(ii) Now we let g ∈ B([0, T ] × Ω ) and φ(0) ∈ Dom(∆Ω ). Then we can take a sequence

{gn}nN ∈ C0,∂Ω ([0, T ] × Ω ) such that gn → g a.e., supn ∥gn∥C([0,T ]×Ω) < ∞ and gn(0) =

−∆φ(0) as required by Definition 3.7. Now for each gn , by Remark 3.5, we consider the

stochastic representation of the respective solution in the domain of the generator

un(t, x) = E

[∫ τt,x

0

gn

(
−X t,(ρ)(s), Bx (s)

)
ds

]
+ E

[∫ τt,x

0

∆φ(0, Bx (s))ds

]
+ φ(0, x).

Then for any (t, x) ∈ (0, T ] × Ω , we note that

E

[∫ τt,x

0

gn

(
−X t,(ρ)(s), Bx (s)

)
ds

]

=

∫ ∞

0

E
[
gn

(
−X t,(ρ)(s), Bx (s ∧ τΩ (x))

)
1{s<τ0(t)}

]
ds

=

∫ ∞

0

(∫

Ω

∫

(0,t]

gn(z, y)p(ρ)
s (t, z)pΩ

s (x, y) dz dy

)
ds

≤ sup
n

∥gn∥C([0,T ]×Ω)E
[
τt,x

]
< ∞,

where we use the first part of (H1) and the density pΩ

s in the last equality. Hence we can apply

the Dominated Convergence Theorem to obtain as n → ∞,

E

[∫ τt,x

0

gn

(
−X t,(ρ)(s), Bx (s)

)
ds

]
→ E

[∫ τt,x

0

g
(
−X t,(ρ)(s), Bx (s)

)
ds

]
.

It follows that a generalized solution u exists and it is given by

u(t, x) = E

[∫ τt,x

0

g
(
−X t,(ρ)(s), Bx (s)

)
ds

]
+ E

[∫ τt,x

0

∆φ(0, Bx (s))ds

]
+ φ(0, x)

= E

[∫ τt,x

0

g
(
−X t,(ρ)(s), Bx (s)

)
ds

]
+ E

[
φ(0, Bx (τt,x ))

]
,

where Dynkin formula [18, Theorem 5.1] with Lemma 3.1 is used in the last equality. Finally,

the uniqueness of the generalized solution follows immediately from the independence of the

approximating sequence.

(iii) Extend φ to φ(0) on (0, T ] × Ω , and denote it again by φ. Then by Dynkin formula

([18, Theorem 5.1]) and Corollary 3.2(ii) provided assumption (H2), we have

E
[
φ

(
−X t,(ρ)(τt,x ), Bx (τt,x )

)]
− φ(t, x)

= E

[∫ τt,x

0

(−D(ρ)
∞ + ∆)φ

(
−X t,(ρ)(s), Bx (s)

)
ds

]
.
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Meanwhile, for (t, x) ∈ (0, T ]×Ω the identities fφ(t, x) = −D
(ρ)
∞ φ(t, x), ∆φ(0, x) = ∆φ(t, x)

and
∫ t

0

(φ(t − r, x) − φ(t, x))ρ(t, r ) dr =

∫ t

0

(φ(0, x) − φ(0, x))ρ(t, r ) dr = 0

hold, and we can derive the equality

E

[∫ τt,x

0

(−D(ρ)
∞ + ∆)φ

(
−X t,(ρ)(s), Bx (s)

)
ds

]

= E

[∫ τt,x

0

( fφ + ∆φ)
(
−X t,(ρ)(s), Bx (s)

)
ds

]
.

Therefore, the generalized solution allows the following representation

u(t, x) = E

[∫ τt,x

0

∆φ
(
−X t,(ρ)(s), Bx (s)

)
ds

]
+ φ(0, x)

+ E

[∫ τt,x

0

( fφ + f )
(
−X t,(ρ)(s), Bx (s)

)
ds

]

= E

[∫ τt,x

0

(−D(ρ)
∞ + ∆)φ

(
−X t,(ρ)(s), Bx (s)

)
ds

]
+ φ(0, x)

+ E

[∫ τt,x

0

f
(
−X t,(ρ)(s), Bx (s)

)
ds

]

= E
[
φ

(
−X t,(ρ)(τt,x ), Bx (τt,x )

)]
+ E

[∫ τt,x

0

f
(
−X t,(ρ)(s), Bx (s)

)
ds

]

+ φ(0, x) − φ(t, x)

= E
[
φ

(
−X t,(ρ)(τ0(t)), Bx (τ0(t))

)
1{τ0(t)<τΩ (x)}

]

+ E

[∫ τt,x

0

f
(
−X t,(ρ)(s), Bx (s)

)
ds

]
.

for all (t, x) ∈ (0, T ] × Ω . This completes the proof of the theorem. □

Remark 3.11. If assumption (H1) does not hold, one shall modify the definition of

a generalized solution requiring pointwise convergence everywhere on (0, T ] × Ω of the

approximating sequence. This allows to run the argument of Theorem 3.10(ii) as long as one

such sequence exists. This means that our data g has to be a Baire class 1 function (which

includes continuous functions but it is a smaller class than B([0, T ] × Ω )).

Remark 3.12. Note that every generalized solution is the pointwise limit on [0, T ] × Ω

of a sequence of solutions in the domain of the generator {un}n∈N, and from the stochastic

representation we can infer that supn ∥un∥C([0,T ]×Ω) < ∞. This implies the convergence

un → u in L p((0, T ) × Ω ) for every p ∈ [1,∞).

We now give a more explicit formula for the heat kernel of the solution in (3.3) ( f = 0).

Proposition 3.13. Let assumptions (H0) and (H1) hold true. Then

E
[
φ

(
−X t,(ρ)(τ0(t)), Bx (τ0(t))

)
1{τ0(t)<τΩ (x)}

]
=

∫ 0

−∞

∫

Ω

φ(r, y)Ht,x (r, y) dr dy, (3.5)
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for every (t, x) ∈ (0, T ] × Ω and φ ∈ B((−∞, 0] × Ω ), where

Ht,x (r, y) =

∫ t

0

ρ(z, z − r )

(∫ ∞

0

pΩ

s (x, y)p(ρ)
s (t, z) ds

)
dz.

Proof. By (H1), it is enough to prove formula (3.5) on the set {−X t,(ρ)(τ0(t)) < 0}. Fix

(t, x) ∈ (0, T ] × Ω . Let φ ∈ Span{C1
∞(−∞, T ] · Dom(∆Ω )} such that φ = 0 on [−n−1, T ]

for n ∈ N. By Remark 3.9(i) φ satisfies (H2). Then by Dynkin formula along with L
(ρ),∞
Ω

φ =

(−D
(ρ)
∞ + ∆)φ by Corollary 3.2 and ∆φ = 0 on (0, T ], we have that

u(t, x) : = E
[
φ

(
−X t,(ρ)(τ0(t)), Bx (τ0(t))

)
1{τ0(t)<τΩ (x)}

]

= E

[∫ τt,x

0

−D(ρ)
∞ φ

(
−X t,(ρ)(s), Bx (s)

)
ds

]

=

∫ ∞

0

E

[
1{s<τ0(t)}

∫ ∞

−X t,(ρ)(s)

φ
(
−X t,(ρ)(s) − r, Bx (s ∧ τΩ (x))

)

× ρ
(
−X t,(ρ)(s), r

)
dr

]
ds

Next, using the independence of −X t,(ρ)(s ∧ τ0(t)) and Bx (s ∧ τΩ (x)), {s < τ0(t)} = {0 <

−X t,(ρ)(s)}, Fubini’s Theorem and standard change of variables, we obtain

u(t, x) =

∫

Ω

∫ ∞

0

(∫ t

0

(∫ ∞

z

φ (z − r, y) ρ(z, r ) dr

)
p(ρ)

s (t, z) dz

)
pΩ

s (x, y) ds dy

=

∫

Ω

∫ ∞

0

(∫ t

0

(∫ 0

−∞

φ (r, y) ρ(z, z − r ) dr

)
p(ρ)

s (t, z) dz

)
pΩ

s (x, y) ds dy

=

∫ 0

−∞

∫

Ω

φ (r, y)

(∫ t

0

ρ(z, z − r )

∫ ∞

0

p(ρ)
s (t, z)pΩ

s (x, y) ds dz

)
dy dr.

By a density argument the identity (3.5) holds for every φ ∈ B((−∞, n−1) × Ω ) ∩

C((−∞, n−1) × Ω ) for every n ∈ N. Considering the non-negative increasing sequence

φn = 1(−∞,n−1)×Ω , n ∈ N, by Monotone Convergence Theorem one can pass to the limit

in both sides of (3.5), confirming that Ht,x induces a finite measure on (−∞, 0) × Ω , as the

right hand side of (3.5) is finite. By another density argument the equality (3.5) holds for every

φ ∈ C((−∞, 0] × Ω ) ∩ { f = 0 on {0} × Ω ∪ (−∞, 0] × ∂Ω},

and we are done by Riesz–Markov–Kakutani representation Theorem [27, Theorem 1.7.3]. □

Remark 3.14. Suppose that (H0) and (H1) hold, and that φn, φ ∈ B((−∞, 0]×Ω ), for n ∈ N,

such that φn → φ a.e. on (−∞, 0] × Ω , supn ∥φn∥B((−∞,0]×Ω) < ∞, and f ∈ B((0, T ] × Ω ).

Then Proposition 3.13 and Dominated Convergence Theorem imply that un → u pointwise on

(0, T ] × Ω and supn ∥un∥B((−∞,0]×Ω) < ∞. Here un is defined as (3.3) for φn, f , n ∈ N, and

u is defined as (3.3) for φ, f . This in turn implies the convergence un → u in L p((0, T ) ×Ω )

for each p ∈ [1,∞).

4. Stochastic representation for solutions in weak sense

In Section 3, the stochastic representation of the solution to the nonlocal-in-time evolution

model (1.1) is established in case that the data is smooth and compatible. The aim of this section
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is to show that the representation (3.3) still provides a solution of (1.1) in the weak sense,

even though the data does not satisfy the smoothness and compatibility conditions required in

Section 3. Now we denote by W 1,p(Ω ) the standard Sobolev space of p-integrable functions on

Ω with p-integrable weak first derivatives, p ∈ [1,∞]. Denote by H−1(Ω ) the dual of H 1
0 (Ω ),

where H 1
0 (Ω ) is the closure of C∞

c (Ω ) in W 1,2(Ω ).

In case that the kernel ρ is time-independent and compactly supported, the existence and

uniqueness of the weak solution (4.3) has been confirmed in [16]. The uniqueness argument for

the more general variables-separable kernel ρ(t, r ) = p(r )q(r ) is similar, so we only present

some useful results here and omit some similar detailed proof in order to avoid redundancy.

We do not prove uniqueness of weak solutions for our general time-dependent kernel ρ(t, r ).

Lemma 4.1. Suppose that u ∈ B(−∞, T ) ∩ L1(−∞, T ), and v ∈ C∞
c (0, T ) with zero

extension out of the interval (0, T ). Further, we suppose that

∫ T

0

∫ ∞

0

|u(t) − u(t − r )|ρ(t, r ) dr dt < ∞. (4.1)

Then it holds that
∫ T

0

D(ρ)
∞ u(t)v(t) dt = −

∫ T

−∞

u(t)(D(ρ),∗
∞ v)(t) dt

with

D(ρ),∗
∞ v(t) = −

∫ ∞

0

v(t)ρ(t, r ) − v(t + r )ρ(t + r, r ) dr. (4.2)

The next lemma gives an upper bound of D
(ρ)
∞ for smooth functions in Sobolev spaces.

Lemma 4.2. Let the kernel ρ satisfy (H0). Then the operator D
(ρ)
∞ defined by (1.2) satisfies

∥D(ρ)
∞ v∥L p(−∞,T ) ≤ C∥v∥W 1,p(−∞,T ), v ∈ W 1,p(−∞, T ),

with p ∈ [1,∞].

Proof. We only prove the result for p ∈ [1,∞), as the case p = ∞ follows analogously. By

Hölder’s inequality and assumption (H0) we have that

∫ T

−∞

(∫ 1

0

|u(t) − u(t − r )|ρ(t, r ) dr

)p

dt

≤

∫ T

−∞

∫ 1

0

|u(t) − u(t − r )|p

r p
rρ(t, r ) dr

(∫ 1

0

rρ(t, r ) dr

)p−1

dt

≤ c

∫ T

−∞

∫ 1

0

|u(t) − u(t − r )|p

r p
rρ(t, r ) ds dt

≤ c

∫ 1

0

r1−p| max
t
ρ(t, r )|

∫ T

−∞

|u(t) − u(t − r )|p dt dr

≤ c

∫ 1

0

r | max
t
ρ(t, r )| dr∥u∥

p

W 1,p(−∞,T )
≤ c∥u∥

p

W 1,p(−∞,T )
,
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where we apply the fact that
∫ T

−∞
|u(t) − u(t − r )|p dt ≤ c|r |p∥u∥

p

W 1,p(−∞,T )
in the second last

inequality. On the other hand, we have the following estimate
∫ T

−∞

(∫ ∞

1

|u(t) − u(t − r )|ρ(t, r ) dr

)p

dt

≤

∫ T

−∞

∫ ∞

1

|u(t) − u(t − r )|pρ(t, r ) dr

(∫ ∞

1

ρ(t, r ) dr

)p−1

dt

≤ c

∫ T

−∞

∫ ∞

1

|u(t) − u(t − r )|pρ(t, r ) dr dt

≤ c

∫ ∞

1

max
t
ρ(t, r )

∫ T

−∞

|u(t) − u(t − r )|p dt dr

≤ c

∫ ∞

1

max
t
ρ(t, r ) dr∥u∥

p

L p(−∞,T ) ≤ c∥u∥
p

W 1,p(−∞,T )
.

Then we obtain the desired assertion. □

Similar argument yields the following a priori bound for the dual operator D
(ρ),∗
∞ given by

(4.2).

Lemma 4.3. Let the kernel ρ satisfy (H0) and let the operator D
(ρ),∗
∞ be defined by (4.2).

Then for any v ∈ W 1,p(R) with p ∈ [1,∞], it holds that

∥D(ρ),∗
∞ v∥L p(R) ≤ C∥v∥W 1,p(R).

Proof. First, we use the following splitting

D(ρ),∗
∞ v(t) =

∫ ∞

0

(v(t +r )−v(t))ρ(t, r ) dr +

∫ ∞

0

v(t +r )(ρ(t +r, r )−ρ(t, r )) dr = I1+ I2.

Now using the same argument as that in Lemma 4.2, we derive that for p ∈ [1,∞)

∥I1∥L p(R) ≤ C∥v∥W 1,p(R).

Therefore it suffices to bound I2. For p ∈ [1,∞), by Hölder’s inequality and assumption (H0)

we have that
∫ ∞

−∞

(∫ 1

0

|v(t + r )||ρ(t, r ) − ρ(t + r )| dr

)p

dt

≤

∫ ∞

−∞

∫ 1

0

|v(t + r )|p|ρ(t, r ) − ρ(t + r )| dr

(∫ 1

0

|ρ(t, r ) − ρ(t + r, r )| dr

)p−1

dt.

Then we observe that
∫ 1

0

|ρ(t, r ) − ρ(t + r, r )| dr ≤

∫ 1

0

∫ t+r

t

|∂yρ(y, r )| dr ≤

∫ 1

0

r max
t

|∂tρ(t, r )| dr ≤ c,

and hence
∫ ∞

−∞

(∫ 1

0

|v(t + r )||ρ(t, r ) − ρ(t + r, r )| dr

)p

dt

≤ c

∫ ∞

−∞

∫ 1

0

|v(t + r )|p|ρ(t, r ) − ρ(t + r, r )| dr dt
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≤ c

∫ 1

0

∫ ∞

−∞

|v(t + r )|p dt max
t

|ρ(t, r ) − ρ(t + r, r )| dr

≤ c∥v∥L p(R)

∫ 1

0

r max
t

|∂tρ(t, r )| dr ≤ c∥v∥L p(R).

Meanwhile, applying the following observation
∫ ∞

1

|ρ(t, r ) − ρ(t + r, r )| dr ≤

∫ ∞

1

|ρ(t, r )| + |ρ(t + r, r )| dr ≤ c,

we have the following estimate
∫ ∞

−∞

(∫ ∞

1

|v(t + r )||ρ(t, r ) − ρ(t + r, r )| ds

)p

dt

≤ c

∫ ∞

−∞

∫ ∞

1

|v(t + r )|p|ρ(t, r ) − ρ(t + r, r )| ds dt

≤ c

∫ ∞

1

∫ ∞

−∞

|v(t + r )|p dt (|ρ(t, r )| + |ρ(t + r, r )|) dr

≤ c∥v∥L p(R),

which yields that

∥I2∥L p(R) ≤ C∥v∥W 1,p(R).

This completes the proof for p ∈ [1,∞), and the case that p = ∞ follows analogously. □

Then we have the following result for a smooth function with compact support.

Corollary 4.4. Let the kernel ρ satisfy (H0) and let the operator D
(ρ),∗
∞ be defined by (4.2).

Then D
(ρ),∗
∞ v ∈ L1(−∞, T ) ∩ L∞(−∞, T ) for any v ∈ C1

c (0, T ).

Definition 4.5. We define the weak Marchaud-type derivative of a function u ∈ L1
loc(R; B),

for a Banach space B, to be a function D̃
(ρ)
∞ u ∈ L1

loc(R; B) that satisfies
∫

R

D̃
(ρ)
∞ u(t)v(t) dt =

∫

R

u(t)(D(ρ),∗
∞ v)(t) dt, for every v ∈ C∞

c (0, T ),

with the integral defined in the Bochner sense.

The following lemma gives the equivalence between the variational nonlocal operator and

the strong one in the case that B = R and ρ is variables-separable.

Lemma 4.6. Suppose that the kernel ρ satisfies (H0) and it is variables-separable,

i.e., ρ(t, r ) = p(t)q(r ) with p(t) ∈ C1[0, T ] and p(t) ≥ c1 > 0. Moreover, we let u ∈ L∞(R)

and D̃
(ρ)
∞ u ∈ L2(0, T ). Then D

(ρ)
∞ u ∈ L2(0, T ) and

D(ρ)
∞ u = D̃

(ρ)
∞ u almost everywhere,

where D
(ρ)
∞ is defined by (1.2).

Proof. First of all, we consider the case that the kernel function is translation preserved,

i.e., ρ(t, r ) = ρ(r ). To this end, we define the truncated nonlocal operator

D
(ρ)
δ u(t) =

∫ δ

0

(u(t) − u(t − r ))ρ(r ) dr
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as well as its adjoint operator D
(ρ),∗
δ and the weak operator D̃

(ρ)
δ . Since for any δ > 0, we have

∫ ∞

δ

(u(t) − u(t − r ))ρ(r ) dr = u(t)

∫ ∞

δ

ρ(r ) dr −

∫ ∞

δ

u(t − r )ρ(r ) dr ∈ L2(0, T ),

by assumption (H0). By the definition of the weak operator, one may deduce that

D̃
(ρ)
δ u(t) = D̃

(ρ)
∞ u(t) −

∫ ∞

δ

(u(t) − u(t − r ))ρ(r ) dr ∈ L2(0, T )

Now by Lemma [16, Lemma 2.4] we have that D
(ρ)
δ u ∈ L2(0, T ) and D

(ρ)
δ u = D̃

(ρ)
δ u. As a

result, we derive that

D(ρ)
∞ u(t) =

∫ ∞

0

(u(t) − u(t − r ))ρ(r ) dr = D
(ρ)
δ u(t)

+

∫ ∞

δ

(u(t) − u(t − r ))ρ(r ) dr ∈ L2(0, T ),

and hence D
(ρ)
∞ u = D̃

(ρ)
∞ u almost everywhere.

Next, we consider the case that ρ(t, r ) = p(t)q(r ) and define the operator

D(q)
∞ u(t) =

∫ ∞

0

(u(t) − u(t − r ))q(r ) ds.

The same as before, we may define corresponding adjoint and weak operators. Define ⟨ f, g⟩b
a :=∫ b

a
f g dt , b > a ≥ −∞. Then we note that

⟨pD̃
(q)
∞ u, v⟩T

0 = ⟨u, D(q),∗
∞ (pv)⟩T

−∞ = ⟨u, D(ρ),∗
∞ v⟩T

−∞ = ⟨D̃
(ρ)
∞ u, v⟩T

0 ,

which together with the positivity assumption on p(t) yields that

D̃
(q)
∞ u(t) =

1

p(t)
D̃

(ρ)
∞ u(t) ≤

1

c1

⏐⏐⏐D̃
(ρ)
∞ u(t)

⏐⏐⏐ ∈ L2(0, T ).

As a result, we obtain that D
(q)
∞ u(t) = D̃

(q)
∞ u(t) ∈ L2(0, T ) and

D(ρ)
∞ u(t) = p(t)D̃

(q)
∞ u(t) = D̃

(ρ)
∞ u(t) ∈ L2(0, T ). □

Lemma 4.7. Let ũ ∈ B((−∞, T ] × Ω ) be the function defined in (3.3) under the

assumptions (H0) and (H1), for φ ∈ L∞(−∞, 0; H 1
0 (Ω )) and f ∈ L∞(0, T ; H 1

0 (Ω )). Then

ũ ∈ L∞(−∞, T ; H 1
0 (Ω )).

Proof. Consider (3.3) for f = 0 (the proof for f ̸= 0 is similar and omitted). Fix t > 0.

By [19, Chapter 7.1] we have T Ω

s φ(r, ·) = E[φ(r, B ·(s))1{s<τΩ }] ∈ H 1
0 (Ω ) for a.e. r ∈ (−∞, 0)

and s ≥ 0. Consider the Borel probability space (Γ , µt ), where Γ = (−∞, 0) × (0,∞)

and µt (dsdr ) =
(∫ t

0
ρ(z, z − r )p

(ρ)
s (t, z) dz

)
dsdr , so that formula (3.5) reads u(t, x) =∫

Γ
T Ω

s φ(r, x)µt (dsdr ). Note that for a.e. r ∈ (−∞, 0) and every s ≥ 0

∥T Ω

s φ(r )∥H1(Ω) ≤ ∥φ(r )∥H1(Ω) ≤ ∥φ∥L∞(−∞,0;H1
0

(Ω)) =: C,

where the first inequality holds by [19, Chapter 7.1, Theorem 5.(i)], as φ(r ) ∈ H 1
0 (Ω ) for a.e.

r ∈ (−∞, 0). We conclude that ũ(t) ∈ H 1
0 (Ω ), because the above bound proves that T Ω

· φ(·) :

(Γ , µt ) → H 1
0 (Ω ) is Bochner integrable, which implies that ũ(t) =

∫
Γ

T Ω

· φ(·)µt (d·) =

limn→∞ Sn in H 1(Ω ), where each Sn is a linear combination of functions in H 1
0 (Ω ).
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Formula (3.5) suggests the definition

∇ũ(t, x) : =

∫ 0

−∞

(∫ t

0

ρ(z, z − r )

(∫ ∞

0

∇T Ω

s φ(r, x)p(ρ)
s (t, z) ds

)
dz

)
dr

=

∫

Γ

∇T Ω

s φ(r, x)µt (dsdr ).

Then ∇ũ(t) ∈ L2(Ω ), because
∫

Ω

(∇ũ(t, x))
2

dx =

∫

Ω

(∫

Γ

∇T Ω

s φ(r, x)µt (dsdr )

) (∫

Γ

∇T Ω

s′ φ(r ′, x)µt (ds ′dr ′)

)
dx

=

∫

Γ

∫

Γ

(∫

Ω

∇T Ω

s φ(r, x)∇T Ω

s′ φ(r ′, x) dx

)
µt (dsdr )µt (ds ′dr ′)

≤

∫

Γ

∫

Γ

∥T Ω

s φ(r )∥H1(Ω)∥T Ω

s′ φ(r ′)∥H1(Ω) µt (dsdr )µt (ds ′dr ′)

≤ C2

(∫

Γ

µt (dsdr )

)2

= C2.

Applying Fubini’s Theorem to the definition of weak derivative proves that ∇ũ(t) is indeed

the weak derivative of ũ(t). Finally, supt∈(0,T )

∫
Ω
(∇ũ(t, x))

2
dx ≤ C2 and the smoothness of

φ implies that ũ ∈ L∞(−∞, T ; H 1
0 (Ω )), concluding the proof. □

Next we shall show that the stochastic representation (3.3) provides a weak solution of

problem (1.1), whose definition is given as below.

Definition 4.8. A function u is called a weak solution to problem (1.1) if u ∈ L2(0, T ; H 1
0 (Ω ))

and D̃
(ρ)
∞ u ∈ L2(0, T ; H−1(Ω )), and for every v ∈ L2(0, T ; H 1

0 (Ω )) (with zero extension to

t < 0){
⟨D̃

(ρ)
∞ u, v⟩ = −⟨∇u,∇v⟩ + ⟨ f, v⟩, and,

u(t) = φ(t), for a.e. t ∈ (−∞, 0),
(4.3)

where the notation ⟨·, ·⟩ is defined by

⟨u, v⟩ =

∫ T

−∞

∫

Ω

u(t, x)v(t, x) dx dt,

or the duality in case that u ∈ L2(0, T ; H−1(Ω )).

Remark 4.9. If u is the weak solution of (1.1) and D̃
(ρ)
∞ u ∈ L2(0, T ; L2(Ω )), we have

D̃
(ρ)
∞ u = D

(ρ)
∞ u by Lemma 4.6, provided that the kernel function is variables-separable,

i.e., ρ(t, s) = p(t)q(s) with p(t) ∈ C1[0, T ] and p(t) ≥ c1 > 0. Then u satisfies Eq. (1.1)

almost everywhere.

Theorem 4.10. Assume (H0) and (H1). Let u be given by formula (3.3), where φ ∈
L∞(−∞, 0; H 1

0 (Ω )) ∩ L∞((−∞, 0) ×Ω ) and f ∈ L∞(0, T ; H 1
0 (Ω )) ∩ L∞((0, T ) ×Ω ). Define

the extension ũ of u as

ũ :=

{
u, on (0, T ] × Ω ,

φ, on (−∞, 0) × Ω .
(4.4)

Then ũ is a weak solution to problem (1.1).
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Proof. Assume for the first two steps that φ satisfies (H2).

Step 1: Let u be a solution in the domain of the generator to problem (2.3) for g ≡ f + fφ , and

initial condition φ(0), for some f ∈ C∂Ω ([0, T ] ×Ω ). As u ∈ Dom(L
(ρ)
Ω

), by Lemma 3.4, u −

φ(0) ∈ Dom(L
(ρ),kill
Ω

), and hence applying Corollary 3.2(i) there exists {ûn}n∈N ⊂ Dom(L
(ρ),kill
Ω

)

such that

ûn → u − φ(0), L
(ρ)
Ω

ûn → L
(ρ)
Ω

(u − φ(0)) and L
(ρ)
Ω

ûn = (−D
(ρ)

0 + ∆)ûn.

Then we apply Lemmas 3.4 and 3.1 to obtain that

un := ûn + φ(0) ∈ Dom(L
(ρ)
Ω

), un → u, L
(ρ)
Ω

un = L
(ρ)
Ω

ûn + ∆φ(0) → L
(ρ)
Ω

u

and un(0) = φ(0) for all n ∈ N. Then using the fact that D
(ρ)
∞ ũn = D

(ρ)

0 un − fφ for t ∈ [0, T ],

we have

(D
(ρ)

0 − ∆)un − fφ = D(ρ)
∞ ũn − ∆ũn, on [0, T ] × Ω ,

where ũn is defined for each n ∈ N by

ũn :=

{
un, on (0, T ] × Ω ,

φ, on (−∞, 0] × Ω .
(4.5)

Therefore, we have that

(−D(ρ)
∞ + ∆)ũn = (−D

(ρ)

0 + ∆)un + fφ → L
(ρ)
Ω

u + fφ = − f,

where the convergence is in C∂Ω ([0, T ] × Ω ).

On the other hand, we apply Corollary 4.4 for any v ∈ C∞
c ((0, T )×Ω ) to obtain as n → ∞

⟨(−D(ρ)
∞ + ∆)ũn, v⟩ = ⟨ũn, (−D(ρ),∗

∞ + ∆)v⟩ → ⟨ũ, (−D(ρ),∗
∞ + ∆)v⟩,

where Corollary 4.4 guarantees that (−D
(ρ),∗
∞ + ∆)v ∈ L1((−∞, 0) × Ω ) ∩ L∞((0, T ) × Ω ),

and hence

⟨u, (D(ρ),∗
∞ − ∆)v⟩ = ⟨ f, v⟩, for any v ∈ C∞

c ((0, T ) × Ω ).

Step 2: Let now u be the generalized solution to problem (2.3) for g = f + fφ , where

f ∈ L∞((0, T ) ×Ω ), and let ũ be its extension with historical initial data φ. By the definition

of the generalized solution, we pick a sequence fn ∈ C∂Ω ([0, T ] × Ω ) such that

fn → f a.e., fn(0) = −( fφ(0) + ∆φ(0)) and sup
n

∥ fn∥C([0,T ]×Ω) < ∞.

Besides, we denote by un the respective solution in the domain of the generator and let ũn be

its extension by (4.5). Then by Step 1, we know that each ũn satisfies

⟨ũn, (−D(ρ),∗
∞ + ∆)v⟩ = ⟨− fn, v⟩, for any v ∈ C∞

c ((0, T ) × Ω ),

as well as the initial and boundary conditions in (1.1). Now the Dominated Convergence

Theorem provided the uniform upper bound of fn implies that

fn → f in L2(0, T ; L2(Ω )) as n → ∞.

On the other hand, we have ũn → ũ in L2(0, T ; L2(Ω )) by Remark 3.12. Meanwhile

(D
(ρ),∗
∞ −∆)v ∈ L1((−∞, 0)×Ω )∩L∞((0, T )×Ω ) for any v ∈ C∞

c ((0, T )×Ω ) by Corollary 4.4.

Therefore we obtain as n → ∞

⟨ũn, (D(ρ),∗
∞ − ∆)v⟩ → ⟨ũ, (D(ρ),∗

∞ − ∆)v⟩, for any v ∈ C∞
c ((0, T ) × Ω ).
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Step 3: Now we consider the case that φ ∈ L∞(−∞, 0; H 1
0 (Ω )) ∩ L∞((−∞, 0) ×Ω ) and f ∈

L∞(0, T ; H 1
0 (Ω )) ∩ L∞((0, T ) × Ω ). To this end, we set functions φK (t, x) = φ(t, x)1{t<−K },

for K ∈ N. By the density of Span{C∞
c (−K , 0) · C∞

c (Ω )} in B([−K , 0] × Ω ) with respect to

sequential convergence a.e., we choose φK , j ∈ Span{C∞
c (−K , 0) · C∞

c (Ω )} such that

φK , j → φK a.e. and sup
j

∥φK , j∥C([−K ,0]×Ω) < ∞.

By Remark 3.9(i), we know that φK , j satisfies assumption (H2) for each j ∈ N. Denote by

uK , j the generalized solution with the initial data φK , j and source term f , and denote by uK

the function given by formula (3.3) with φ ≡ φK and source term f . By Remark 3.14 we

conclude that

sup
j

∥ũK , j∥B([−K ,T ]×Ω) < ∞ and ũK , j → ũK a.e. on (−K , T ] × Ω .

Then for any v ∈ C∞
c ((0, T )×Ω ), we know that (D

(ρ)
∞ −∆)∗v ∈ L1((−K , 0)×Ω )∩L∞((0, T )×

Ω ) by Corollary 4.4, and hence

⟨ũK , (D(ρ),∗
∞ − ∆)v⟩ = lim

j→∞
⟨ũK , j , (D(ρ),∗

∞ − ∆)v⟩ = ⟨ f, v⟩, (4.6)

and ũK = φK on (−K , 0] × Ω . We can now pass to the limit as K → ∞ in (4.6), given that

ũK → ũ a.e. on (−∞, T ) × Ω , with supK ∥ũK ∥B((−∞,T ]×Ω) < ∞, again by Remark 3.14, and

(D
(ρ)
∞ − ∆)∗v ∈ L1((−∞, 0) × Ω ) ∩ L∞((0, T ) × Ω ) by Corollary 4.4. Here u is defined by

(3.3) for φ and f , and ũ by (4.4). Therefore

⟨ũ, (D(ρ),∗
∞ − ∆)v⟩ = ⟨ f, v⟩.

By Lemma 4.7 and the smoothness of the problem data f and φ we obtain ũ ∈ L2(0, T ; H 1
0 (Ω ))

and ũ satisfies the identities in (4.3). Also, for every w ∈ H 1
0 (Ω ), v ∈ C1

c (0, T ), and properties

of Bochner integrals
∫ T

−∞

(ũ(t), w)D(ρ),∗
∞ v(t) dt =

(∫ T

0

(∆ũ(t) + f (t))v(t) dt, w

)
,

where (·, ·) is the dual pairing of H 1
0 (Ω ). Then by the smoothness of v, the left hand side

satisfies
∫ T

−∞

(ũ(t), w)D(ρ),∗
∞ v(t) dt =

∫ T

−∞

(ũ(t)D(ρ),∗
∞ v(t), w) dt =

(∫ T

−∞

ũ(t)D(ρ),∗
∞ v(t) dt, w

)
.

Therefore, we derive that
∫ T

−∞

ũ(t)D(ρ),∗
∞ v(t) dt =

∫ T

0

(∆ũ(t) + f (t))v(t) dt.

This confirms that D̃
(ρ)
∞ ũ = ∆ũ + f ∈ L2(0, T ; H−1(Ω )), and we proved that u is a weak

solution to problem (1.1). □

Remark 4.11. The uniqueness of the weak solution can be derived straightforwardly, provided

that the kernel function is variables-separable and satisfies the assumption given in Lemma 4.6.

Here we let f = 0 and φ = 0, and consider the eigenvalue problem

− ∆ϕ = λϕ in Ω and ϕn = 0 on ∂Ω (4.7)
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By the spectrum theorem of the Laplacian, this eigenvalue problem (4.7) admits a nonde-

creasing sequence {λn}
∞
n=1 of positive eigenvalues, which tend to ∞ with n → ∞, and a

corresponding sequence {ϕn}
∞
n=1 of eigenfunctions which form an orthonormal basis in L2(Ω ).

Then for any ψ ∈ C∞
c (0, T ), we have

∫ T

0

D̃
(ρ)
∞ (u(t), ϕn)ψ(t) dt +

∫ T

0

λn(u(t), ϕn)ψ(t) dt = 0

As a result, (u(t), ϕn) is the solution of the initial value problem

D̃
(ρ)
∞ (u(t), ϕn) + λn(u(t), ϕn) = 0 with (u(t), ϕn) = 0 for all t < 0.

Then Lemma 4.6 and the uniqueness of the solution [16, Section 3]1 yields that (u(t), ϕn) = 0

for all n, and hence u(t) ≡ 0. See [2] for a discussion of uniqueness of weak solutions in the

time-fractional case.

Remark 4.12. If φ(t, x) ≡ φ0(x) ∈ H 1
0 (Ω ) in Theorem 4.10, then one recovers the weak

solution to the (inhomogeneous) Caputo-type fractional diffusion equation [11,24]

u(t, x) = E
[
φ0

(
Bx (τ0(t))

)
1{τ0(t)<τΩ (x)}

]
+ E

[∫ τ0(t)∧τΩ (x)

0

f
(
−X t,(ρ)(s), Bx (s)

)
ds

]
.

Remark 4.13. The solution in Theorem 4.10 will be continuous at t = 0 for every x ∈ Ω

if φ is continuous in {0} × Ω and τ0 : [0, T ] → R is continuous. This can be proved by a

stochastic continuity argument for the first term of the solution (3.3), and for the second term

one can use E[τ0(t)] → 0 as t ↓ 0 (which is a consequence of the continuity of τ0). However,

the solution (3.3) will in general fail to be continuous at t = 0 even for smooth data. This is

for example the case of integrable kernels
∫ ∞

0
ρ(r ) dr < ∞ (see [41, Remark A.3]).

5. Numerical results

In this section, we present some numerical results to illustrate those theoretical findings, and

explain how to apply the derived Feymann–Kac formula to numerically solve the nonlocal-in-

time diffusion problem. To this end, we test the one-dimensional nonlocal diffusion problem

(1.1) in Ω = (−1, 1), and consider the non-integrable kernel function

ρδ(r ) = (1 − α)δα−1r−α−11(0,δ)(r ), (5.1)

with α ∈ (0, 1) and the following data:

(i) initial data φ(x, t) = e5t (1 + x)(1 − x)2x and zero source term f ≡ 0;

(ii) trivial initial data φ(x, t) = 0 and source term f = et x2 sin(2πx).

The kernel function is proposed in this way in order to keep that
∫ δ

0
rρδ(r ) dr = 1 and hence

the nonlocal operator recovers the infinitesimal first-order derivative as the nonlocal horizon

diminishes. The analytical property of the model has been extensively studied in [16].

The stochastic process generated by the spatially second-order derivative (with zero bound-

ary conditions), which is well-known as the killed Brownian motion in Ω , can be simply

approximated by the lattice random walk. Specifically, we divided the interval Ω into M small

1 The uniqueness argument for the initial value problem in [16, Section 3] can be easily extended to

time-dependent kernels ρ satisfying (H0).
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intervals, with the uniform mesh size h = 2/M and grid points x j = jh − 1, j = 0, 1, . . . ,M .

Then in each time level, the particle standing in x j will randomly move to x j−1 or x j+1. In

case that the particle hits the boundary of Ω , then the time is set as τΩ (x j ). Here we let B
x j

h (t)

be the position where the particle starting at position x j arrives at time t .

Similarly, the stochastic process generated by the operator

−D
(ρ)
δ u(t) = −

∫ δ

0

(u(t) − u(t − r ))ρδ(r ) dr

with historical initial data could also be approximated by a one-dimensional lattice random

walk, where the trajectory of the particle involves some long-distance jumps. To numerically

simulate the stochastic process, we discretize [0, T ] into K small intervals [tn−1, tn] with

n = 1, 2, . . . , K and let k = T/K . Then we consider the discretization (assume that δ = mk)

D
(ρ)
δ u(tn) ≈

u(tn) − u(tn−1)

k

∫ k

0

rρδ(r ) ds +

m∑

j=2

(u(tn) − u(tn−k))

∫ jk

( j−1)k

ρδ(r ) dr

=
1

kα

(
ω0u(tn) −

m∑

j=1

ω j u(tn− j )
)

=: D̄
(ρ)
δ u(tn).

(5.2)

Here the weights {ω j }
m
j=0 are computed exactly as ω0 = δα−1

(
1+ 1−α

α
(1−m−α)

)
, ω1 = δα−1

and ω j = δα−1 1−α
α

(( j −1)−α− j−α), j = 2, 3, . . . ,m. At each time level, the particle standing

at the grid point t j will jump to one of the grid points t j−i , for i = 1, 2, . . . ,m, with the

probability pi = ωi/ω0. It is easy to verify that
∑m

j=1 ω j = ω0 and hence
∑m

j=1 p j = 1. We

let τ0(tn) be the time that the particle starting at tn passes 0, and X
tn ,(ρ)
k (τ0(tn)) be the position

where the particle arrives below 0. Then by applying the scaling 2αkα = h2δα−1, the solution

to (1.1) can be approximated by

U n
h =E

[
φ

(
−X

tn ,(ρ)
k (τ0(t)), B

x j

h (τ0(tn))
)

1{τ0(tn )<τΩ (x j )}

]

+ E

[∫ τ0(tn )∧τΩ (x j )

0

f
(
−X

tn ,(ρ)
k (s), B

x j

h (s)
)

ds

]
,

(5.3)

using Monte Carlo method, where the integral is computed by trapezoidal rule.

In Fig. 1, we plot the numerical solution at different time levels, where the kernel function

is defined in (5.1) with α = 0.75 and δ = 0.2. In the computation, we let h = 0.02 and

k = α
√

h2δα−1/2α, and use 50 000 Monte Carlo trials. Since the closed form of the analytical

solution is not available, the benchmark solutions are computed by the finite difference scheme

D̄
(ρ)
δ un

h − ∂̄h
xx un

h = f n

with a very fine mesh, say k = 10−4 and h = 10−3, where the discrete operator in time

D̄
(ρ)
δ is given by (5.2) and the spatial one ∂̄h

xx is the central difference approximation to the

second order derivative. We observe that the numerical solution computed by the stochastic

approach is very close to the one computed by the finite difference scheme, which supports

our theoretical results. Moreover, in Table 1 we present the ℓ2-error of the Monte Carlo solution

with different N (number of Monte Carlo trails) at different time level T , with fixed δ = 0.2,

α = 0.75, h = 0.02 and k = α
√

h2δα−1/2α, where we use the finite difference solutions as the

benchmark solutions. The Monte Carlo solution converges with the order O(N− 1
2 ). While this

is formally expected, a rigorous analysis can be a very interesting question to be addressed in

a future work.
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Fig. 1. Numerical results with δ = 0.2 and α = 0.75. (Blue dots: numerical solutions computed by (5.3) and Monte

Carlo method (MC); Red curves: reference solutions computed by finite difference method (FD).)

Table 1

Case (i): ℓ2-error of the numerical solution computed by (5.3) and Monte

Carlo method (MC), with different T and N .

T \N 1000 2000 4000 8000 16 000 Rate

0.1 6.55e−3 4.63e−3 3.39e−3 2.61e−3 1.93e−3 ≈ −0.44

0.2 6.51e−3 4.58e−3 3.05e−3 2.23e−3 1.50e−3 ≈ −0.53

0.4 4.65e−3 3.64e−3 2.42e−3 1.75e−3 1.31e−3 ≈ −0.46

6. Concluding remarks

In this paper, we study the stochastic representation for an initial–boundary value problem

of a nonlocal-in-time evolution equation (1.1), where the nonlocal operator appearing in the

model is the Markovian generator of a (−∞, T ]-valued decreasing Lévy-type process. Under

certain hypothesis, we derive the Feynman–Kac formula of the solution by reformulating the

original problem into a Caputo-type nonlocal model with a specific forcing term. The case

of weak data is also studied by energy arguments. The stochastic representation leads to a

numerical scheme based on the Monte Carlo approach. The current theoretical results could

be used to give more rigorous analysis of the stochastic algorithms for the nonlocal-in-time

model. It is also an interesting topic to study some quantitative properties, such as asymptotical

compatibility with shrinking nonlocal horizon parameter, of those algorithms.
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