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Abstract

The aim of this paper is to derive a stochastic representation of the solution to a nonlocal-in-
time evolution equation (with a historical initial condition), which serves a bridge between normal
diffusion and anomalous diffusion. We first derive the Feynman-Kac formula by reformulating the
original model into an auxiliary Caputo-type evolution equation with a specific forcing term subject
to certain smoothness and compatibility conditions. After that, we confirm that the stochastic formula
also provides the solution in the weak sense even though the problem data is nonsmooth. Finally,
numerical experiments are presented to illustrate the theoretical results and the application of the
stochastic formula.
© 2019 Elsevier B.V. Allrights reserved.

MSC: 26A33; 34A08; 35A09; 35C15; 60H30; 60G52

Keywords: Nonlocal evolution; Historical initial condition; Feynman—Kac formula

* QD (Columbia University) is supported in part by NSF, United States DMS-1719699, AFOSR MURI center for
Material Failure Prediction through peridynamics and the ARO MURI, United States Grant W911NF-15-1-0562. LT
(University of Warwick) is supported by the EPSRC, UK. ZZ (The Hong Kong Polytechnic University) is partially
supported by the start-up grant from the Hong Kong Polytechnic University and a grant from the Research Grants
Council of the Hong Kong Special Administrative Region (Project No. 25300818).

*  Corresponding author.

E-mail addresses: qd2125@columbia.edu (Q. Du), 1t2739@columbia.edu (L. Toniazzi),
zhizhou@polyu.edu.hk (Z. Zhou).

https://doi.org/10.1016/j.spa.2019.06.011
0304-4149/© 2019 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2019.06.011
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2019.06.011&domain=pdf
mailto:qd2125@columbia.edu
mailto:lt2739@columbia.edu
mailto:zhizhou@polyu.edu.hk
https://doi.org/10.1016/j.spa.2019.06.011

Q. Du, L. Toniazzi and Z. Zhou / Stochastic Processes and their Applications 130 (2020) 2058-2085 2059

1. Introduction
In this paper, we study the nonlocal-in-time evolution equation
DL u(t, x) — Au(t,x) = f(t,x), (t,x)€(0,T]x £,
u(t,x) =0, (t,x) e (0, T] x 342, (1.1)
u(t,x) = ¢, x), (t,x)e(—o0,0]x (2,

where 2 C R? is a regular domain, the functions f and ¢ are given data, and D,E,ﬁ;) denotes
the nonlocal operator defined by

Df,g)u(t, x) = / (u(t,x) —u( —r,x))p(t, rydr, (1.2)
0

with the nonnegative kernel function p(z,r) satisfying certain hypotheses (see details in
Section 2). The nonlocal operator —D¥is proved to be the Markovian generator of a (—oo, T']-
valued decreasing Lévy-type process, denoted by —X"(® when started at ¢ € [0, T]. We denote
by B* a d-dimensional Brownian motion started at x € RY generated by the Laplacian A. The
processes —X"(® and B¥ are always assumed to be independent.

The aim of the current work is to derive a stochastic representation for the solution to
the problem (1.1) with the historical initial condition. Besides their theoretical importance,
stochastic representations are extensively used in applications, e.g., to compute solutions
through the particle tracking method (see, e.g., [43,45]). It is a deep and classical result that
the solution to the diffusion equation

du(t,x) = Au(t,x), (t,x)e0,T]xR?,
u(0, x) = ¢(0, x), x e RY,

allows the stochastic representation u(t, x) = E[¢(0, B*(¢))]. This model describes normal

diffusion phenomena that exhibits homogeneity in both space and time. With the aid of single

particle tracking, recent studies have provided many examples of anomalous diffusion. One

typical example is the time-fractional (sub-)diffusion model,
! 3%u(t, x) = Au(r,x), (t,x) € (0, T] x R?,

L.
u(0,x) = $(0,x), xeR, (1.3)

where 97 denotes the Caputo fractional derivative of order o € (0, 1), defined by

t (t _ r)fa
o I'l —a)
The sub-diffusion phenomena has attracted much attention in applications such as contaminant
transport in groundwater [25], protein diffusion within cells [21], and thermal diffusion in
fractal media [35]. The problem (1.3) has been extensively studied both analytically and
numerically (see [34, Chapter 2.4] for an overview). Its solution can be expressed by u(t, x) =
E[¢(0, Y*(#))] [32], where Y*(t) = B*(z5(t)) and 75 (t) = inf{s > 0 : X*%(s) > t} is the
inverse process of the «-stable subordinator X®. The density of Y*(¢) can be derived using a
conditioning argument [3,37]

o u(t, x) =9 (u(r, x) — u(0, x))dr.

H; «(y) =/ ps(x, ), PLX(s) = 1]ds, (1.4)
0

where o,P[X%(s) > t] = a’lts’l’l/"‘ga(ts’l/"‘), with g, being the density of X*(1) and p,(x)
the density of B*(s). It is interesting to observe that the time-changed Brownian motion Y*(¢)
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displays time heterogeneity, as the non-Markovian time change t — 7 (¢) is constant precisely
when the subordinator r — X%(¢) jumps [34]. This leads to the past-dependent diffusion Y*
being trapped, and in general spreading at a slower rate than B* (see e.g. [30,36,44]). Let
us recall that Y~ is sometimes called fractional kinetic and it enjoys surprising universality
properties [5]. It is easy to see that the Caputo fractional derivative can be written in the form
(1.2) by

[o.¢]
o u(t, x) = cq f (u(t,x) —u(t —r, x))r*"'dr,
0

with the kernel p(f,7) = cor ® !, ¢4 = —I'(—a)~', where we extend the function u to
the negative real line by u(#) = u(0) for + € (—00,0). On the other hand, under certain
hypothesis, by taking p(¢,r) to be a compactly supported function in r (with the support
measured by the so-called horizon parameter), one may show that the nonlocal operator could
reproduce the first order derivative, as the horizon of nonlocal effects tends to zero with suitable
normalization [16]. Therefore, it is actually an interesting intermediate case between infinite-
horizon fractional derivatives and infinitesimal local derivatives. Moreover, it can be shown
that the nonlocal setting also serves to bridge between a short-time anomalous diffusion and
a long-time normal diffusion [17] which has been observed in many experiments [22]. More
discussions on connections to nonlocal modeling can be found in [15].

In case of time-independent Lévy measures and initial data, i.e. p(¢,7)dr = p(dr) and
o(t, x) = ¢(x), there exist some pioneer works about wellposedness and probabilistic represen-
tations. In [26], by Laplace transform and the theory of complete Bernstein functions, Kochubei
studied a Cauchy problem involving a general Caputo-type derivative, giving assumptions
on the Laplace transform of the kernel function. After that, these techniques combined with
semigroup theory were applied to a homogeneous time-fractional evolution equation involving
both first-order and fractional derivatives in time [40]. Recently, in [11-13], the authors
provided a general and explicit method to study Caputo-type diffusion models (possibly with
a first-order time derivative and a source term). See also [31,33] for the particular case of
distributed-order fractional time derivatives. Finally, we note that the Caputo-type problem
and its Feynman—Kac formula can be generalized in different ways, e.g., by adding a time
parameter [1]. In comparison with the aforementioned works, the nonlocal-in-time model (1.1)
allows a time-dependent kernel function p(#,7), and requires a historical initial condition.
However, the probabilistic investigation of this model is still largely missing in the literature,
apart from the fractional case [41]. This motivates us to study the model (1.1) and derive a
clean stochastic explanation, which is the main contribution of this work.

Our technique first treats an equivalent inhomogeneous Caputo-type problem, essentially by
inverting (—Dgg) 4+ A) when understood as an abstract generator of a Markov process taking
values in (0, 7] x {2 and absorbed at {0} x 2. Secondly, after explicitly computing the dual of
the abstract generator, we show that the above solution is indeed a weak solution. Uniqueness
of the weak solution is proved for variable separable kernels, extending results from [16]. As
an example, we show that the weak solution to the homogeneous problem (for f = 0) allows
the stochastic representation

u(t, x) = E[¢ (=X"(x(t)), B*(0(t)) Vgt <rqyen)]

0 (1.5)
- / fQ $(r. Y)H,x(r, y) dr dy.
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where 1y(f) = inf{s > 0 : —=X"®W(s) < 0}, to(x) = inf{s > 0 : x + B(s) ¢ {2} and the heat
kernel is given by

Ht,x(r7 )’):/ p(sz_r) (/ p_;Q('x7 y)aZP[_Xt‘(p)(s) SZ]dS) dZ.
0 0

Here we denote by p{(x, y) the density of the killed Brownian motion B*(s)1{y<¢., ). Note
that for the standard fractional kernel p(r, r) = cor 7', = X" =1 — X% and o(r) = (1)
The representation (1.5) appears to be new, and it suggests an interesting interpretation. This
is because the diffusion on {2 is still the anomalous diffusion Y*(¢) = B*(to(t)), but the
contribution in time of the initial condition ¢(-, Y*(¢)) depends on the waiting/trapping time
of Y*(t), which is indeed W(r) = X" (1y(t)). Let us stress that as a particular case we treat
Caputo-type evolution equations.

The paper is organized as follows. In Section 2, we introduce some basic settings of the
nonlocal-in-time model (1.1) as well as some probabilistic background. Some popular and
concrete models will be provided as examples. In Section 3, after reformulating the model
(1.1) into a Caputo-type fractional diffusion problem, we develop some general solution theory,
provided additional smoothness and compatibility conditions on problem data. In Section 4, we
show that the candidate stochastic representation provides a weak solution of (1.1) even though
the data is weak. Finally, some numerical experiments will be presented in order to illustrate
our theoretical findings. Throughout, the notation ¢ denotes a generic positive constant, whose
value may differ at each occurrence.

2. Preliminaries

2.1. General notation

We denote by N, R*, R, a AD, I'(-), 1g(-) and a.e., the set of positive integers, the set of
non-negative real numbers, the d-dimensional Euclidean space, the minimum between a, b € R,
the gamma function, the indicator function of the set E and the statement almost everywhere
with respect to Lebesgue measure, respectively. To ease notation, F'(I) = FI whenever F([)
is a space of real-valued functions on an interval / C R. We denote by || - || the norm of a
Banach space B, and if £ is a bounded linear operator between Banach spaces, we denote its
operator norm by || £||. We denote by C(E) the space of real-valued continuous functions on
E C RY, and by B(E) the space of real-valued bounded and measurable functions on E. For
any T > 0, we define the Banach spaces

Coo(—00, Tl ={f € C(—00,T]: f(t) > 0 as t > —o0},
Gol0, T1={f € C[0,T]: f(0) =0},

both equipped with the supremum norm. We will also use the standard spaces C'[0, T] =
{f, [ € CI0, T1}, Cyl0, TT1 = {f, f' € Col0, T1} and Cl (=00, T1 = {f, f' € Coo(—00, T]}.
Then we reserve specific notation for several Banach spaces of continuous functions. Namely,
for a bounded open set 2 C R? and T > 0 we write

Con()={f €C(2): f=0o0n00},
Coo([0, T1x 2)={f € C(0,T1x 2): f =0o0n[0,T] x 32},
Co.0([0, T1 x 2) = {f € Co([0, T] x 2): f =0 on {0} x 2},
Coop2((—00, T] x 2) ={f € C((—00, T] x £2): f =0 o0n a2,
f(-, x) € Coo(—00, T for x € 2}.
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We denote by L?(E), p € [1, oo] the usual Banach spaces of Lebesgue p-integrable real-valued
functions on E. We define L?(a, b; B) ={f : (a,b) — B such that t — || f(¢¥)||p € L?(a, b)},
for p € [1, oo] and (a, b) C R, and by L,oc(a b; B) the locally p- integrable version. If F' and
F are two sets of real-valued functions, we define F - F .= {ff: f € F, f € F}, and we
denote by Span{F'} the set of all linear combination of elements in F.

The notation we use for an E-valued stochastic process started at x € E is X* = {X*(s)}s>0-
Note that the symbol ¢ will often be used to denote the starting point of a stochastic process with
state space E C R. By a strongly continuous contraction semigroup T we mean a collection
of linear operators Ty : B — B, s > 0, where B is a Banach space, such that T, = T, T,,
for every s,r > 0, Ty is the identity operator, lim, o 7y f = f in B, for every f € B, and
sup, [|Ts|| < 1. The generator of the semigroup 7' is defined as the pair (£, Dom(L£)), where
Dom(L) :={f € B: Lf = limgg s™(T, f — f) exists in B}. We say that a set C C Dom(£)
is a core for (L, Dom(L)) if the generator equals the closure of the restriction of £ to C. We
say that a set C C B is invariant under T if T,C C C for every s > 0. If a set C is invariant
under T and a core for (£, Dom(L)), then we say that C is an invariant core for (L, Dom(L)).
Recall that if C is a dense subspace of Dom(£) and C is invariant under T, then C is an
invariant core for (£, Dom(£)) (see [9, Lemma 1.34]), and that Dom(£) is invariant under 7.
For a given A > 0 we define the resolvent of T by (A — L)™' := fooo e M T, ds, and recall that
for A > 0, (A —L)~!': B — Dom(£) is a bijection and it solves the abstract resolvent equation

LO—L)7'f=rsr—L7"f—f feB,

see for example [18, Theorem 1.1]. By a Feller semigroup we mean a strongly continuous
contraction semigroup 7" on any of the Banach spaces of continuous functions defined above
such that T preserves non-negative functions. A Feller semigroup T is said to be conservative
if the extension of T to bounded measurable functions preserves constants. Feller semigroups
are in one-to-one correspondence with Feller processes, where a Feller process is a time-
homogeneous sub-Markov process {X(s)}s>0 such that s — T f(x) := E[f(X(s))|X(0) =
x], f € B is a Feller semigroup [9, Chapter 1.2]. We recall that every Feller process
admits a cadlag modification which enjoys the strong Markov property [9, Theorem 1.19 and
Theorem 1.20], and we always work with such modification. For further discussions on these
terminologies and notations, we refer to [9].

2.2. Nonlocal operators and related stochastic processes

Next, we review some basics on the nonlocal operators, along with some properties and
related definitions.

(HO) The function p : R x (0, c0) — [0, 00) is continuous and continuously differentiable
in the first variable. Furthermore,

oo oo
/ (L AFr)supp(t,r)dr < oo, / (1 Ar)sup
0 1 0 t

3, p(t, r)‘ dr < oo,
and

lim sup/ ro(t,r)ydr = 0.
0<r<$

8—>0 ¢

Moreover, there exist € > 0 and y > 0, such that the function p satisfies p(¢,7) >y > 0
for all # and |r| < €.
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Definition 2.1. For any kernel function p satisfying condition (HO), the Marchaud-type
derivative D¥) and the Caputo-type derivative D(()'O ) are respectively defined by

Dég)l/l(l) = /m(u(t) - M(t - r))/)(t’ r)drv re (_OO, T]a
0
@.1)

0 t
2.2)
and DY u(0) := lim, ;o DY u(r).

Under the assumption (HO), the Marchaud-type derivative (2.1) (as well as (2.2)) is well-
defined pointwise for regular functions, e.g., u € L*(—o0, T)N Cl(—o00, T]. In fact, it is easy
to observe that for any ¢ € (—oo, T']

1 r 00
DLu(r)] < | / / Wit~y dyott, rydr| + | / W(t) — ult — r)p(t. r)dr
0 0 1

1
=< ”u/”LOO(t—l,t)/ rp(t,r)dr + 2||u||LOO(_OO'Z)f pt,rydr <c.
0 1

Moreover, we can prove that Dé’é)u € LP(0,T) for any u € WhHP(—o0, T) (see details in
Lemma 4.2). Also, the operator could be defined in weak sense, i.e. Definition 4.5, which is
useful in the study of PDE theories.

The operator DY) can be seen as the left-sided generalization of the Marchaud derivative
[38, eq. (5.57) and (5.58)]. It is also known as the generator form of fractional derivatives
[27,34], or a Lévy-type generator [9].

Example 2.2. We mention some concrete and popular examples of the nonlocal operators.

(i) By setting p(t,r) = —r % !/I'(—a) with a € (0, 1), the nonlocal operator D(()p)
reproduces the Caputo fractional derivative [14], and Déﬁ) the Marchaud fractional
derivative [38].

(ii) The operator Gs, defined in [16, formula (1.2)] with a finite horizon parameter &,
is a special case of the Marchaud-type derivative Dég) with a time-independent and
compactly supported kernel function, see [15] for more discussions on nonlocal operators
with a finite horizon.

(iii) Other particular cases include the fractional derivatives of variable order, which are ob-
tained by taking p as the function p(t, r) = —p~lme® /I'(—a(t)) with a suitable function
a(t) : R — (0,1) [23], and tempered Lévy kernels p(t,r) = —e *r~'7%/I'(—a),
a € (0,1), A >0, [10,42].

Remark 2.3. The nonlocal derivatives — DY and —Dép ) have a clear probabilistic interpreta-
tion. The former tells us that the process at  makes a negative jump of size |r| with intensity
p(t, r). The latter tells us that, as long as the jump does not cross 0, the process jumps from
t to t — r with intensity p(¢, r). Otherwise, it gets killed with rate/intensity ftoo p(t,r)dr and
regenerated at O with the same rate, where it remains absorbed. This will be made rigorous in
Definition 2.4 and Proposition 2.6.
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2.3. Probabilistic interpretation and preliminary results

In this section, we discuss three stochastic processes generated by the operators defined in
(2.1) and (2.2) with kernel functions satisfying (HO).
Definition 2.4. Assume (HO).

(i) [27, Theorem 5.1.1]: Let T®-> = {T"*},_, be the Feller semigroup on Coo(—00, T']
with the generator

(ﬁg@), Dom(ﬁg’g))) being the closure of (—Dgg), Cl(~c0, T]) ,

and recall that C! (—oo, T] is invariant under T -,
We denote the induced Feller process by

=X = {=X"P(5)}z0, 1€ (=00, T].

(i) [28, Theorem 4.1]: Let T® = {T\”’},~¢ be the Feller semigroup on C[0, T with the
generator

(£, Dom(L”)) being the closure of (—D((f), c'mo, T]) ,

and recall that C'[0, T'] is invariant under 7.
We denote the induced Feller process by —Xf)‘(p) = {=X"PU(s) s <o) }s0, 1 € [0, T].
(iii)) We denote by TPkl — {Ts(p )}520 the Feller semigroup on Cy[0, T'] with the generator

(Lf(’i’l)l, Dom(Lf(’i’l)l ) being the closure of (—D(()”), C, 10, T]) ,
and C,[0, T] is invariant under 7Kl

We denote the induced Feller process by —X(’)’(p)’kill = {—X(t)’(p)’km(s)}xzo, te(,T].

Remark 2.5. The next proposition justifies the notation for the stochastic processes —X(t)’(p )
and Definition 2.4(iii). The proof of parts (i), (ii) and (iii) is given in [24, Proposition 2.7], and
hence omitted here. Part (iv) can be proved by the same argument for Lemma 3.4.

Proposition 2.6.
(i) The processes —X"), —X(t)’(p) and —XE)‘(p)’ki” are non-increasing and
P[—X""(s) € (a, b)] = P[-X;(s) € (@, b)] = P[-X; """ (s) € (a, b)],

for every t € (0,T], 0 <a < b <T,s > 0. In particular P[—X(t)’(p)(s) e {0}] =
P[—X"®)(s) < 0], for every t € [0, T], s > 0.
(ii) The law of

7o(7) ;= inf{s > 0: =X"@P(s) <0}, e (—o0,T],

equals the law of the first exit time from the interval (0, T] of the processes —X(')’(p ) for
each t € (0, T] (so that we will use indistinctly the same notation to(t)).
(iii) The expectation of ty(t) is uniformly bounded, i.e., sup,., 1 El70(1)] < oo.

(iv) It holds that (zjj}l, Dom(zjg.’,;)) = (L, Dom(LP) N {£(0) = 0}).
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Remark 2.7.

(i) It follows from Proposition 2.6 that the process —X(t)’(p ) is obtained by absorbing at the

point 0 the process —X") on its first attempt to leave the interval (0, T].

(i1) Definition 2.4(ii) (Definition 2.4(iii)) could be a proposition derived from absorbing at
0 (killing on crossing 0) the process —X"), t > 0.

(i) If the Lévy kernel is independent of ¢, i.e. p(¢, r) = p(r), then — X" (s) =t — X)(s)
is the non-increasing Lévy process with generator -DY¥ acting on C*°(R), where X*)
is the subordinator with Lévy measure p(r)dr. This is a consequence of the fact that
£L) = —DY on C*(R) c Dom(L£Y)), and [9, Theorem 2.7].

(iv) If the kernel p(¢, r) = p(r) is integrable, then —Dgg) is the generator of a non-increasing
compound Poisson process.

Remark 2.8. The assumption (HO) could be replaced with an alternative one, as long as —D(Dg)
generates a non-increasing Feller process with the first exit times from (0, 7] having finite
expectation, along with the existence of invariant cores with the properties in Definition 2.4.
Nevertheless, the assumption (HO) provides a satisfactory level of generality for most of the
applications we have in mind.

Finally, we use one more assumption on the stochastic process X",

(H1) The law of —X"")(s) is absolutely continuous with respect to Lebesgue measure for
each ¢t € [0, T], s > 0, and we denote such density by pﬁp )(t). Furthermore assume that
P[—X"®)(1o(¢)) € {0}] = 0, for each ¢t € (0, T].

Remark 2.9. Assumption (HI1) ensures the existence of the probability density function
pi" )(t), which helps us handle the weak problem data (see Theorem 3.10(ii)). Otherwise,
without (H1), we could assume that the problem data g in Theorem 3.10(ii) is a Baire class
1 function (Remark 3.11). This would allow us to handle several cases, such as p being
integrable [39, Remark 27.3].

Remark 2.10. Assumption P[—X")(zo(¢)) € {0}] = 0 is implied by the existence of a density
pﬁp )(t) if p(t, r)dr = p(dr). This is because the existence of a density implies that p((0, 00)) =
00, as X» cannot be a compound Poisson process. Then 1p(z) = inf{s > 0 : X(s) > ¢},
the right inverse of X, and one can apply [6, III, Theorem 4]. Here X is the increasing
subordinator with Lévy measure p(dr).

Example 2.11. We list some examples where the densities p.Ep )(t), t,s > 0, exist:

(i) kernels p(t,r)dr = p(dr) such that p(dr) > r~'=%dr for all small r [39, Proposi-
tion 28.3];
(i1) kernels p(t, r) = p(r) such that f0°° p(r)dr = oo [39, Theorem 27.7];
(iii) kernels p(z,r) such that the respective symbols satisfy the Holder continuity-type
conditions in [29, Theorem 2.14];
(iv) see [20] for another set of assumptions for kernels of the type p(t,7) = p(t)q(r) and a
literature discussion.
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2.4. The spatial operator A

Definition 2.12. For a bounded open set 2 C R? we say that z € 312 is a regular point for 12,
if there exists a right circular finite cone with vertex at z, denoted by V,, such that V, C £2¢.
We say a bounded open set £2 C RY is regular if every z € 342 is a regular point for £2.

Remark 2.13. From now on, we always assume that £2 C R is a regular set. In particular,
every Lipschitz domain is regular.

Definition 2.14. Let 2 C R? be a regular set. Let (A, Dom(Ag)) be the generator of the
Feller semigroup T = {T,”}-¢ on Cyo(£2), where T,2 f(x) := E[ f(B*(s))Lis<c 0], s = 0,
x € 2, with B*(s) = x + B(2s), s > 0, x € {2, {B(s)}s>0 being the standard d-dimensional
Brownian motion, and define the first exit times

To(x) =inf{s > 0: B*(s) ¢ 2}, x € f.

Remark 2.15. Recall that Dom(Ag) = {f € Cyo(2) N C?(2) : Af € Cya(f)} (see, e.g.,
[4, Theorem 2.3]). We write Ap = A from now on. We denote the law of B*(s)1is<x)} by
p_{z(x, y)dy, recalling that (x, y) — pSQ(x, y) is continuous for each s > 0.

Remark 2.16. The arguments in Section 3 could be extended to the case where the Laplacian
A is replaced by an operator whose semigroup on Cyq({2) allows a density function p(x, y)
with respect to Lebesgue measure for positive time (i.e. the respective version of the first part
of assumption (H1)). The restricted fractional Laplacian is an example of such operator (see,
e.g., [7,8]).

2.5. The inhomogeneous Caputo-type evolution equation

In order to study the stochastic representation and wellposedness of the solution to problem
(1.1), we consider the following equivalent form

(=DY + Ayu(t, x) = —g(t, x), in (0,T]x £2,
u(t,x) =0, in (0, T] x 842, (2.3)
u(0,x) = ¢(0,x), in {2,
with the forcing term g = f + f;, where we define

Jo(t, x) = /OO(¢(¢ —r,x)— ¢, x)p(t, r)dr, in(0,T] x £2.

Notice that f; = —Dég)¢, for ¢ extended to ¢(0) on (0, T] x {2, and Df)g)u = Dép u — o
for any smooth u such that u = ¢ on (—oo, 0]. In the following section, we shall discuss the
probabilistic representation of the solution to (1.1) with the help of the reformulation (2.3),
provided certain hypothesis on problem data.

3. General theory

In this section, we study the solution theory of the nonlocal problem. To this end, we begin
with the study of some time—space compound semigroups which are constructed using temporal
semigroups and spatial ones. This allows us to treat the Caputo-type evolution equation (2.3)
as an elliptic boundary value problem.
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3.1. Time—space compound semigroups

The next lemma shows that {Ts(p)TSQ }s>0 1s a well-defined Feller semigroup on Cy ([0, 7] x
{2) such that its generator is the closure of —D(()p )4 A
Lemma 3.1. With the notation of Definitions 2.4 and 2.14, the operators
T2 . {Ts(p)TsQ}szO

form a Feller semigroup on Cy([0, T]x §2), whose generator (L(f;), DOm(C(g))) is the closure

of
(=D + A, Span {C'10. 71 Dom(Ag)}) i Cya((0. T1 x ),

where T and —D(()p ) act on the [0, T]-variable, and T and A act on the Q-variable.

Proof. It is straightforward to show that T is a Feller semigroup by observing that
)82 _ 727)
T.PT" =T7"T,", for every s,r >0,
and the contraction property

172 flleqorina < 1 lcqorna  ad 1T Flleqorna < If leqoray:
holds for every f € Cyn([0,T] x £2), s > 0. We denote the generator of T-? by
(E%?),Dom(ﬁ(é’))), Let f = pq, where p € C'[0,T] and ¢ € Dom(Ag). Then £LPp =
—D((]’] ) p from Definition 2.4(ii), and by a standard triangle inequality argument, we obtain

(o) 2 —
T,”T,” f(t. x) f(tvx)_(_D(()/’)_|_A)f(t,x)

h
2
<pll 3 + 1Aq o I TP p —
< lIplicro.m I q|  +1A4qllce | TP —p o]
C(£2) ’
(p)
I, p—p
+llgll e hT+D(()p)p -0
C[0,7T]

as h | 0. As a result, £ = (—=DY’ + A) on Span{C'[0, T]- Dom(A )} € Dom(L%).
Next, we aim to show that Span{C'[0, T'] - Dom(Ap)} is dense in Cyo([0, T] x £2). It is
enough to show that Span{C*°[0, T'] - C2°(£2)} is dense in Cy([0, T'] x §2) by the inclusion

Span{C>[0, T]- C>°(£2)} C Span{C'[0, T]- Dom(A)}.

To this end, we notice that Span{C*°[0, T']- C OO(ﬁ)} is a sub-algebra of C([0, T'] x ) that
contains constant functions and separates points. Hence Span{C>[0, T] - C*®(£2)} is dense
in C([0, T] x £2) by Stone-Weierstrass Theorem for compact Hausdorff spaces. Then for
f € Cyo([0,T] x 2) we take a sequence {f,}neny C Span{C>®[0, T] - C®(2)} such that
fa — f. Pick functions {1k, }peny C C°(£2) such that 0 < 1, < 1, 1g,(x) =1 for x € K,,,
and 1k, (x) = 0 for x € 2\K, 4+, where K, is compact and K, C K, 4+, C {2 for each n, and
U, K, = 12. Define fn = 1k, fn € Span{C*°[0, T']- C°({2)} for each n € N. Then, as n — o0

Ifo = Fllcao.rixey = I1fu = fllcqo.rixkn + I1fa = Flle(o.rixi,,1\&)
+ ||fn - f”c([o,T]xﬁ\K,H_])
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=1 = fllcqo.rixkn + Il fo — Flle(o.71x K1 \Kn)
T e qo.rix@ k)
— 0.
Then the density of Span{C'[0, T]-Dom(Ap)} in C30o([0, T] x 2) together with the fact that

Span{C 110, T]1- Dom(Ag,)} is invariant under 7®"* and a subspace of Dom(ﬁ((')o)) completes
the proof by [9, Lemma 1.34]. O

Then a similar argument shows the following corollary.

Corollary 3.2. With the notation of Definitions 2.4 and 2.14, it holds that:

)Kill, 82— {Ts(p)’ki”TsQ }s>o0 form a Feller semigroup on Cy 30([0, T]x §2).

The generator (E(Qp)’ki”, Dom(ﬁ(f;)’km)) of TWHKILEL s the closure of

(i) the operators T

(=D§+ A, Span(C310, T1- Dom(Ag)}) in Co10(10.T] x ),

where Tl qnd —D(()p) act on the [0, T1-variable, and T and A act on the
2-variable.

(ii) The operators TP100.82 .— {Tg(p)‘ooTSQ}szoform a Feller semigroup on Co 50((—00, T]x
£2). The generator (E(Qp)’oo, Dom(ﬁ(g)’oo)) of T s the closure of

(=D¥) + A, Span{Cl(—o0, T1-Dom(Agp)}) in Cxso((—00, T1x £2),

where T and —Dgg) act on the (—oo, T]-variable, and T* and A act on the
2-variable.

Remark 3.3. If the spatial generator is not the Laplacian, it could happen that C2°({2) is
not contained in the domain of the spatial generator (as in the case of the restricted fractional
Laplacian). In such case one can extend the proof of Lemma 3.1 as in [41, Appendix IIJ.

Lemma 3.4. With the notation of Definitions 2.4 and 2.14, it holds that
T2 = TOHLE on  Co0(10, T x £2),
and
Ly =L on Dom(LE ™) = Dom(LE) N {£(0) = 0}.
Proof. The first claim is an immediate consequence of the observation that 7kl = 7 on

Col0, T]. To prove the second claim, we first confirm that Dom(ﬁ(gp)’km) - Dom(ﬂ(g”)) by the
fact that T, = T®XIL2 on €y 50([0, T] x £2). Next, we show that

u—u(0) e Dom(ﬁ(f;)’km) forall u e Dom(ﬁ((’;)).

In fact, let u € Dom(ﬁ(('g)) and consider its resolvent representation for some . > 0 and
g € Cyu([0,T] x 2)

o0
u(t,x):/ e_“]}(p)TSQg(t,x)ds,
0
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and hence
00
—As o §2
) =00 = [ PTITg — g0 1) ds
0

00 .
— / e*A.S Ts(ZTY(p),klll(g _ g(o))(t’ x) ds € Dom(‘c(g),klll)’
0

where we use the fact that 7@l = T® on Cy,0([0, T] x 2) and that g — g(0) €
Coon(0, T x ). O

Remark 3.5. Note that the resolvent representation yields that

o\ —1 00
(_L(éa),klu) o(t.x) = / TO-2(, ) ds
0

T0(HOATR(X)
=E [ f g (=X"(s), BX(s)) ds} :
0
for g € Co.90([0, T] x §2), as
TP e(t,x) = TPT g(t, x) = E[g (X" () <oy B () s<r0y)]
=E [g (_Xt’(p)(s)’ Bx(s)) 1[s<r0(x)}1{s<r9(x)}] .

Also, if g =1 then (—£(£)’ki“)_'g(t, x) = E[1, ], where we write 1, , = 19(¢) A T(x).

3.2. Notions of solutions

In order to discuss the stochastic representation of solutions to (1.1), we use the following
two auxiliary notions of solutions to the variant problem (2.3), as in [24].

Definition 3.6. Let g € Cy([0, T] x {2) and ¢(0) € Dom(A ;) such that g(0) = —Ap(0).
We say that a function u € Cy([0, T] x £2) is a solution in the domain of the generator to
problem (2.3) if

LB =—gon(0,T] x 2, u(0)=¢©), andu e Dom(L). (3.1)

The next solution concept for problem (2.3) is defined as a pointwise approximation of
solutions in the domain of the generator.

Definition 3.7._Let g € B(0,T] x £2) and ¢(0) € Dom(Ag). We say that a function
u € B([0, T] x £2) is a generalized solution to problem (2.3) if

u = lim u, pointwise,

n—oo

where {u,},en 1s a sequence of solutions in the domain of the generator for a corresponding
sequence of data {g,},ey C Cy([0,T] x {2) such that g, — g ae. on (0,7T] x {2,
sup,, 18nllco.rixm) < 00, and g,(0) = —A¢(0) for each n € N.

Remark 3.8. The generalized solution will retain the homogeneous Dirichlet boundary
condition on 9{2 and the initial condition #(0) = ¢(0).



2070 Q. Du, L. Toniazzi and Z. Zhou / Stochastic Processes and their Applications 130 (2020) 2058-2085
3.3. Well-posedness and Feynman—Kac formula for problem (2.3)

In order to study the Feynman—Kac stochastic formula, we use the following assumption on
the initial data:

(H2) The initial data ¢ : (—o0, 0] x 2 — R is such that the extension of ¢ to ¢(0) on
(0, T] x 12 satisfies ¢ € Dom(ﬁ(g)’oo) and E(gm% = (=D¥) + A)¢.

Remark 3.9. We have some observations on the assumption (H2):

(i) Assumption (H2) is satisfied for example by linear combinations of initial conditions
in variables-separable form, that is, ¢(t,x) = p(t)g(x), where p € Céo(—oo, 0],
p'(0—) =0 and g € Dom(Ap,). Such set of functions is dense in Cs 502((—00, 0] X £2)
by a Stone—Weierstrass argument as mentioned in Remark 3.3. The problem (1.1) with
such a kind of initial data has been analytically studied in [16].

(ii) Note that (H2) implies ¢(0) € Dom(Ag) and fy € C([0, T] x {2). This is because
(H2) implies ¢(0) € Cy(82), Ap(t) = Ap(0) € Cy(§2) for ¢ € [0, T], observing that
Déﬁ) o(t) € Cyn(2) for each t > 0 by Dominated Convergence Theorem, and then use
fy =—DL¢.

(iii) The case where (H2) no longer holds is to be discussed in the next section.

Theorem 3.10. Assume (HO). Then

(i) If g+ Ap(0) € Co.90([0, T] x £2) for some g € C3([0, T1x §2) and ¢p(0) € Dom(Ap),
then there exists a unique solution in the domain of the generator to problem (2.3).

(ii) Assume (HI). If g € B([0, T] x £2) and ¢(0) € Dom(Ay,), then there exists a unique
generalized solution to problem (2.3), and the generalized solution allows the stochastic
representation for any (t,x) € (0, T] x {2

u(t, x) = E[¢(0, B (to()) zy)<r 00y ]
T0(DHATR(X)
+E [/ g (—X”(”)(s), Bx(s)) ds:| .
0

(iii) Assume (H1), (H2) and let g = f + fy4, for f € B([0, T] x ). Then both solutions in
part (i) and (ii) allow the stochastic representation for any (t,x) € (0, T] x {2

u(t, x) = E[¢ (—X"P(5(t)), B*(1(t)) Lig0)<z0001 )
(AT (x)
+E[/ o I (=X""X(s), B*(s)) dsj|.
0

(3.2)

(3.3)

Proof. (i) Recall that we write 7, . = 79(¢) A T(x). Then using Proposition 2.6(iii) with the
inequality

’(—ﬁfé)’ki“)*lw(t, x)) = ‘E [/m w (—X")(s), B*(s)) ds]
0

=< ||w||c([0,T|><ﬁ)E [Tt,x] )

for any w € Co30([0, T] x §2), we know that (—E(f;)’km)_l is bounded on Cy 3([0, T1 x £2).
Meanwhile, we observe that T,”"""w € Cy,0([0, T] x 2) if w € Coy0([0, T] x £2) for
each s > 0, and it holds that

o0 o0
kill, 2
fo | TR 2, )| ds < wlleqorxm fo Pls < 7. lds = |wll o,z ElT]

< Q.
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Therefore we conclude that (—E(;;)‘km)"l maps Co3([0, T] x £2) to itself. Then it follows
by [18, Theorem 1.1’] that i := (—E(f;)’klu)’l(g + A¢(0)) is the unique solution to
LOWG = —(g+ Ap(0) on (0, T] x 2, @(0)=0, and i € Dom(LY ).  (3.4)

It remains to show that u satisfies (3.1) if and only if u — ¢(0) satisfies (3.4). For the ‘if’
direction, let u satisfy (3.4). Then u := u + ¢(0) € Dom(ﬁ(Qp) ) and L(f;)’klnﬁ = E(f;)ﬁ, both by
Lemma 3.4. Also L£¢(0) = A¢p(0) by Lemma 3.1, using £”1 = 0. To conclude observe
that by (3.4), u(0) = $(0) and

LY+ ¢0)) = L5 + Ap(0) = —g.

The ‘only if” direction is similar and omitted.

(i) Now we let g € B([0, T] x £2) and ¢(0) € Dom(Ag,). Then we can take a sequence
{gn}nn € Cop0([0, T] x £2) such that g, — g a.e., sup, ”gn”C([O,T]xﬁ) < o0 and g,(0) =
—A@p(0) as required by Definition 3.7. Now for each g,, by Remark 3.5, we consider the
stochastic representation of the respective solution in the domain of the generator

unt, x) = E [ [ e -x0. 570) ds] +E [ [ as0, Bx(s»ds} +$(0. ).
0 0

Then for any (¢, x) € (0, T] x {2, we note that

E [ / " g (=X0(s), BX(s)) ds}
0

= / E[g, (—X"“(s), B*(s A 10(x))) Ljs<roayy] ds
0

o0
f (f / gn<z,y>p§p><t,z>p_?(x,y)dzdy)ds
0 2 J(0,t]

sup [l &n | co. 1 B [7x] < 00,
n

IA

where we use the first part of (H1) and the density pf in the last equality. Hence we can apply
the Dominated Convergence Theorem to obtain as n — oo,

E [ | g (CXO5), BY) ds} ~E [ / " e (LX), BY(s) dsi| |
0 0

It follows that a generalized solution u exists and it is given by
Trx Tt,x
u(t, x) =E [ f 8 (=X"“s), B*(9)) ds] +E [ / Ag(0, B*(s))ds} +¢(0, x)
0 0

—E [/ " g (=X (s, BX(s)) ds] +E[¢0. B'(@.)].
0

where Dynkin formula [18, Theorem 5.1] with Lemma 3.1 is used in the last equality. Finally,
the uniqueness of the generalized solution follows immediately from the independence of the
approximating sequence.

(iii) Extend ¢ to ¢(0) on (0, T] x {2, and denote it again by ¢. Then by Dynkin formula
([18, Theorem 5.1]) and Corollary 3.2(ii) provided assumption (H2), we have

E [¢ (_Xl'(p)(ft,x)v Bx(rt,x))] — o(t, x)
—E [/ f.x(_Dg/O’) + A (_Xt,(p)(s), Bx(s)) dsi| .
0
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Meanwhile, for (¢, x) € (0, T] x 12 the identities f;(z, x) = —DL'p(t, x), Ap(0, x) = A(z, x)
and

f ({1t — 1) — $lt, XVp(t, rydr = / (0, x) — $(0, )p(t, r)dr = 0
0 0

hold, and we can derive the equality
E [ f (DY + M)p (—X"P)(s), B (s)) ds}
0

—E [/ ”(f(,; + Ap) (—X"*)(s), B(s)) ds] )
0

Therefore, the generalized solution allows the following representation
. x) =K [ /O " Ag (—XH0s), BX(s)) ds} + 60, x)
+E [ fo et (=X")(s), B (5)) ds]
_E [ /0 "2DD + Ay (—XHO (s, BX(s) ds} + (0, %)
+E [/0% f(=X"9)(s), BX(s)) ds]

=E[¢ (—-X""(t.2). B*(t.:)) | + E [ / " F (= x0s), BY(5) ds]
0

+ ¢(Os )C) - ¢(t» -x)
=E[¢ (—X" P (r(1)), B*(10()) Lirgtty<r0)}]

+E [ / " F (= x10s), BY(s) ds] .
0

for all (¢, x) € (0, T] x {2. This completes the proof of the theorem. [J

Remark 3.11. If assumption (HI1) does not hold, one shall modify the definition of
a generalized solution requiring pointwise convergence everywhere on (0, 7] x {2 of the
approximating sequence. This allows to run the argument of Theorem 3.10(ii) as long as one
such sequence exists. This means that our data g has to be a Baire class 1 function (which
includes continuous functions but it is a smaller class than B([0, T'] x ﬁ)).

Remark 3.12. Note that every generalized solution is the pointwise limit on [0, T] x 2
of a sequence of solutions in the domain of the generator {u,},cn, and from the stochastic
representation we can infer that sup, |[u,llcqo.rx;y < ©°. This implies the convergence
u, — u in L?((0, T) x §2) for every p € [1, 00).

We now give a more explicit formula for the heat kernel of the solution in (3.3) (f = 0).
Proposition 3.13. Let assumptions (HO) and (HI) hold true. Then

0
E[6 (— X" (1)), BX0o(t) Ligr<raon] = / /Q S WH A (r ) drdy, (3.5
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for every (t,x) € (0, T] x 2 and ¢ € B((—00, 0] x (2), where

H, (r,y) = / o(z,2—71) (f P2, »pie, z)ds) dz.
0 0

Proof. By (HI), it is enough to prove formula (3.5) on the set {—X"P)(1o(1)) < 0}. Fix
(t,x) € (0,T] x £2. Let ¢ € Span{C! (—o0, T]- Dom(Ap)} such that ¢ = 0 on [-n~", T]
for n € N. By Remark 3.9(i) ¢ satisfies (H2). Then by Dynkin formula along with 5(5)’00¢ =
(—Déﬁ) + A)¢ by Corollary 3.2 and A¢ = 0 on (0, T'], we have that

u(t, x) : = E[¢ (= X" (z0(1)), B*(2o(1))) Lizg(ty<zp 0]
—E [ / " —DL¢ (—X"*(s), B(s)) ds]
0

= / E |:1{s<ro(t)} / ¢ (_Xt’(p)(s) — 1, B*(s A TQ(X)))
0 —

Xt(0)(s)

x p (—X"(s), r) dri| ds

Next, using the independence of —X")(s A 1o(¢)) and B*(s A To(x)), {s < ()} = {0 <
—X")(s)}, Fubini’s Theorem and standard change of variables, we obtain

M(I’X)zfnfo </0 (/ $@=ry) p(z”)dr) P.ﬁ’”(hz)dz) pf(x, y)dsdy
o0 t 0
= / / </ (/ o, y) p(z,z— r)dr) P, z)dz) p2(x, y)dsdy
2 J0 0 00
0 ¢ o
= / / o, y) (f p(z,z2 — r)/ POt )pfx, y)ds dz) dydr.
—o0 J 2 0 0

By a density argument the identity (3.5) holds for every ¢ € B((—oo,n™') x £) N
C((—oo,n™1) x £2) for every n € N. Considering the non-negative increasing sequence
®n = L _oou1yx0> # € N, by Monotone Convergence Theorem one can pass to the limit
in both sides of (3.5), confirming that H; , induces a finite measure on (—oo, 0) x {2, as the
right hand side of (3.5) is finite. By another density argument the equality (3.5) holds for every

¢ € C((—00,0] x 2)N{f =0on {0} x 2U(—o0,0] x 312},

and we are done by Riesz—Markov—Kakutani representation Theorem [27, Theorem 1.7.3]. [

Remark 3.14. Suppose that (HO) and (H1) hold, and that ¢,, ¢ € B((—o0, 0] x ), forn € N,
such that ¢, — ¢ a.e. on (—o0, 0] x 12, sup,, [1nll p—co.01x72) < 00, and f € B((0, T] x ).
Then Proposition 3.13 and Dominated Convergence Theorem imply that u,, — u pointwise on
(0, T] x £2 and sup,, [[un [l g(—oo.01x72) < 0©- Here u,, is defined as (3.3) for ¢, f, n € N, and
u is defined as (3.3) for ¢, f. This in turn implies the convergence u,, — u in L?((0, T) x §2)
for each p € [1, 00).

4. Stochastic representation for solutions in weak sense

In Section 3, the stochastic representation of the solution to the nonlocal-in-time evolution
model (1.1) is established in case that the data is smooth and compatible. The aim of this section
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is to show that the representation (3.3) still provides a solution of (1.1) in the weak sense,
even though the data does not satisfy the smoothness and compatibility conditions required in
Section 3. Now we denote by W!-7(£2) the standard Sobolev space of p-integrable functions on
2 with p-integrable weak first derivatives, p € [1, co]. Denote by H~!({2) the dual of HOI(Q),
where HJ(£2) is the closure of C2°(£2) in W'2(2).

In case that the kernel p is time-independent and compactly supported, the existence and
uniqueness of the weak solution (4.3) has been confirmed in [16]. The uniqueness argument for
the more general variables-separable kernel p(z,r) = p(r)q(r) is similar, so we only present
some useful results here and omit some similar detailed proof in order to avoid redundancy.
We do not prove uniqueness of weak solutions for our general time-dependent kernel p(z, r).

Lemma 4.1. Suppose that u € B(—oo,T) N L' (=00, T), and v € CX(0, T) with zero
extension out of the interval (0, T). Further, we suppose that

T (o)
f f lu(t) — u(t — r)|p(t, r)drdt < co. 4.1
0 0
Then it holds that
T T
/ DL u(tyv(t)dt = — f u(t) (DL *v)(t) dt
() — 00
with
DE () = _/ v()p(t, r) — v(t + r)p(t +r,r)dr. 4.2)
0

The next lemma gives an upper bound of DY for smooth functions in Sobolev spaces.

Lemma 4.2. Let the kernel p satisfy (HO). Then the operator Dg’g) defined by (1.2) satisfies
”D(()Z)U”L”(—OO,T) < C”U”Wl’p(—OOA,T)’ (U S] Wl,[’(_oo’ T),

with p € [1, co].

Proof. We only prove the result for p € [1, 00), as the case p = oo follows analogously. By
Holder’s inequality and assumption (HO) we have that

T 1 P
/ (f lu(t) — u(t —r)|p(t, r)dr) dt
—00 0
-1

T pl . . 1 p
< / / —|u(t) utt —nl” ro(t,r)dr ([ rp(t,r) dr) dt
—x0 Jo re 0

T 1 £ — _ 4
< c/ / Mrp(t, r)dsdt
—00 J0 r
1 T
§c/ rl_”|max,0(t,r)|/ lu(t) —u( —r)|’ dtdr
0 4 —00

1
p p
< [ rima e Al gy < gy
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where we apply the fact that f_Too lu(t) —u( —r)|’dt < c|r|”||u||'v’vl_p(_oo T) in the second last
inequality. On the other hand, we have the following estimate ’

T e8] p
/ (/ lu(t) — u(t — r)|p(t, r)dr) dt
T7Oo 00 : 00 p—1
< / / lu(t) —u(t — r)|Pp(t, r)dr (/ p(t, r)dr) dt
—o00 J1 1

T 00
< c/ / lu(t) — ut —r)|’p(t, r)drdt
—o0 J1
00 T
< c/ max p(t, r)/ lu(t) —u(t —r)|’ dtdr
1 ! —00

o0
p p
<e /1 max p(t, P dr oy < el o
Then we obtain the desired assertion. [

Similar argument yields the following a priori bound for the dual operator DL given by
(4.2).

Lemma 4.3. Let the kernel p satisfy (HO) and let the operator Dé’g)’* be defined by (4.2).
Then for any v € WHP(R) with p € [1, 00), it holds that

||D£)’*U||LP(R) < Clvllwirgy-

Proof. First, we use the following splitting

oo

o0
DY u(r) = / W(t+r)—v()p(r, r)dr+ / v(t+r)(p(t+r,r)=p(t,r)dr = i +1.
0 0
Now using the same argument as that in Lemma 4.2, we derive that for p € [1, co)

illLr@) < Cllvllwirg)-

Therefore it suffices to bound I,. For p € [1, o0), by Holder’s inequality and assumption (HO)
we have that

00 1 p
/ (/ Iv(t+r)||p(t,r)—,0(t—|—r)|dr> dt
—0o0 0

o pl 1 p=l1
Sf / v + )P |pt,r) — p(t +r)dr (/ lo(t,r) — pt +r, V)Idr) dt.
—00 JO 0

Then we observe that

1 1 t+r 1
[ oen=perrnnar< [ [ o< [ rmaxiaeeniar <.
0 0 Jt 0

and hence

oo 1 p
/ </ (@ + e, r)— pt +r, r)ldr> dt
—00 0

00 1
< c/ / [t + PP lp(t, P) = pe +r, )| drdt
—o00 JO
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1 e8]
< c/ / lv(t + r)|? dt max |p(t,r) — p(t +r,1)|dr
0 —00 !

1
< C”U”LP(R)/ lealX|3tp(f,f”)|df” < cllvliLrwy-
0

Meanwhile, applying the following observation

/ lo(t, r) — p(t +r,r)ldr < / lp(t, I+ 1p(t +r,r)ldr <c,
1 1

we have the following estimate

o) 00 P
f (f [v(t + Nllp(t, r) — p(t +r, r)IdS> dt
—00 1

o0 o0
50/ / lv(t + NP |pt, r) — pt +r, )| dsdt
—00 J1

- c/ / (e + P17 di (G, )] + 1p(t +r, ) dr
1 —00

< cllvliLr®)s
which yields that
IL0lLr@®) < Cllvliwtpm)-
This completes the proof for p € [1, 00), and the case that p = oo follows analogously. [

Then we have the following result for a smooth function with compact support.

Corollary 4.4. Let the kernel p satisfy (HO) and let the operator DL be defined by (4.2).
Then Dég)’*v € L'(—o00, T)N L*®(—o00, T) for any v € Cg(O, T).

Definition 4.5. We define the weak Mal:c/haud-type derivative of a function u € L! (R; B),

loc
for a Banach space B, to be a function Dég) u € L' (R; B) that satisfies

loc
/ DL u(t)v(t)dt = / u(t)(DP*v)(1)dt, for every v € CZ(0, T),
R R

with the integral defined in the Bochner sense.
The following lemma gives the equivalence between the variational nonlocal operator and
the strong one in the case that B = R and p is variables-separable.

Lemma 4.6. Suppose that the kernel p satisfies (HO) and it is variables-separable,
i.e, p(t,r) = p(t)q(r) with p(t) € C'10, T] and p(t) > c; > 0. Moreover, we let u € L*(R)
and Dg’;)u € L*(0, T). Then D(Dg)u e L*(0,T) and

Dé'g)u = Dég) u almost everywhere,

where DX is defined by (1.2).

Proof. First of all, we consider the case that the kernel function is translation preserved,
i.e., p(t,r) = p(r). To this end, we define the truncated nonlocal operator

8
DY u(t) = f (u(t) — u(t —r)p(r)dr
0
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as well as its adjoint operator fo )* and the weak operator Dép ). Since for any 6 > 0, we have

o0 o0 o0
/ @) —u(t —r))pr)ydr = u(t)/ o(r)ydr — / u(t —r)p(rydr € L*0, T),
s s s
by assumption (HO). By the definition of the weak operator, one may deduce that

DPu(t) = DLu(r) — / ") — utt — r)p(rydr € L30, T)
§

Now by Lemma [16, Lemma 2.4] we have that D{"’u € L2(0, T) and D{"’u = D{"u. As a
result, we derive that

DY u(r) = /oo(u(r) —u(t — r)p(r)dr = D u(t)
0
+ /Oo(u(t) —u(t — r)p(r)dr € L0, T),
§

and hence Dc(f))u = Dé’g)u almost everywhere.
Next, we consider the case that p(t, r) = p(t)q(r) and define the operator

DDu(r) = f ") - ute — gty ds.
0

The same as before, we may define corresponding adjoint and weak operators. Define (f, g)% :=
fab fgdt, b > a > —oco. Then we note that

(pDéZ)u, v)g = (u, Dg’é)’*(pv))foo = (u, Dég)’*v)zoo = (Dég)u, v)g,

which together with the positivity assumption on p(¢) yields that

DLu(t) = — DLu(r) < — ‘Déﬁ)u(t)‘ € 120, T).
p(t) C1

As a result, we obtain that Dé%)u(t) = Dé%)u(t) e L*(0,T) and

DWu(t) = p()DLu(t) = DL u(t) € L*©0,T). O

Lemma 4.7. Let u € B((—oo,T] x §2) be the function defined in (3.3) under the
assumptions (HO) and (H1), for ¢ € L*(—00,0; H()l((l)) and f € L*0,T; Hol(.Q)). Then
it € L®(—o0, T; H}(12)).

Proof. Consider (3.3) for f = 0 (the proof for f # 0 is similar and omitted). Fix ¢+ > 0.
By [19, Chapter 7.1] we have T;Q¢(r, ) =E[¢p(r, B (s)1j5<)] € HOI(.Q) for a.e. r € (—00,0)
and s > 0. Consider the Borel probability space (I', u;), where I' = (—o0,0) x (0, c0)
and p,(dsdr) = (fot p(z,z—r)pﬁp)(t,z)dz> dsdr, so that formula (3.5) reads u(t,x) =

fr szd)(r, x) iy (dsdr). Note that for a.e. r € (—o0, 0) and every s > 0
1T 1) = 16 a1y =< 10110ty = C

where the first inequality holds by [19, Chapter 7.1, Theorem 5.(i)], as ¢(r) € Hol(Q) for a.e.
r € (—o00,0). We conclude that u(t) € HOI(Q), because the above bound proves that TQ¢(~) :
I, uy) — Hol(.Q) is Bochner integrable, which implies that u(t) = fp To() u(d) =
lim,_ o S, in H'(£2), where each S, is a linear combination of functions in HOI(Q).
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Formula (3.5) suggests the definition

0 t
Vﬁ(f,x):z/ (/ o(z,z—r) (/ VT o, x)p'P, z)ds) dz)d
—00 0 0

= / VT2 ¢(r, x) wi(dsdr).
r

Then Vii(z) € L*(£2), because

/ (Va(t, x))* dx —/ (/ VT o(r, x)u,(dsdr)) (/ VTS/Q¢(r/,x);L,(ds’dr’)> dx
r

//(/ VY"Squ(r,x)VT"S,Q(b(r’,x)dx) wi(dsdr)w,(ds'dr’)

- / / 172 S 1 o ITESC 1) saldsdrypne(ds'dr’)
rJr

2
< C? ( / ,u,(dsdr)) = C>.
I

Applying Fubini’s Theorem to the definition of weak derivative proves that Vi(¢) is indeed
the weak derivative of #(¢). Finally, sup,c /, o (Vau(t, x))? dx < C? and the smoothness of
¢ implies that # € L>(—oo, T; H}({2)), concluding the proof. [

Next we shall show that the stochastic representation (3.3) provides a weak solution of
problem (1.1), whose definition is given as below.

Definition 4.8. A function u is called a weak solution to problem (1.1)if u € L%, T; HOI(Q))

and DLu € L0, T; H-'(£2)), and for every v € L0, T; H/(£2)) (with zero extension to
t <0

{ (DDu. v) = —(Vu, Vo) + (. v). and, “3)

u(t) = q)(t) for a.e. t € (—o00, 0),

where the notation (-, -) is defined by

(u, v) / / u(t, x)v(t, x)dx dt,

or the duality in case that u € L%(0, T; H~'(12)).

Remark 4.9. If u is the weak solution of (1.1) and Dc(,g)u e L0, T; L*(2)), we have
DPu = DLu by Lemma 4.6, provided that the kernel function is variables-separable,
ie., p(t,s) = p(t)g(s) with p(t) € C'[0,T] and p(t) > ¢; > 0. Then u satisfies Eq. (1.1)
almost everywhere.

Theorem 4.10. Assume (HO) and (HI). Let u be given by formula (3.3), where ¢ €
L>(—00, 0; Hy(£2))NL®(—00,0) x 2) and f € L0, T; Hy (£2)) N L>((0, T) x {2). Define
the extension u of u as

u, on0,T]x {2,

U= 4.4)
¢, on (—00,0) x 2.

Then u is a weak solution to problem (1.1).
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Proof. Assume for the first two steps that ¢ satisfies (H2).

Step 1: Let u be a solution in the domain of the generator to problem (2.3) for g = f + f4, and
initial condition ¢(0), for some f € Caq([0, T] x £2). As u € Dom(L%)), by Lemma 3.4, u —
¢(0) € Dom(ﬁ(ﬂp)’km), and hence applying Corollary 3.2(i) there exists {ii, },en C Dom(C(Qp) ’km)
such that

iy — u—¢0), L% — L5wu—¢©) and LY, = (—DY + Ai,.
Then we apply Lemmas 3.4 and 3.1 to obtain that
Uy = iy + ¢(0) € Dom(LE)), u, — u, LBuy = LY i, + Ap0) — Lu

and u,(0) = ¢(0) for all n € N. Then using the fact that DLii, = DY"u, — f; for 1 € [0, T},
we have

(DY — My, — fp = DL, — Aii,,  on [0, T] x £2,
where i, is defined for each n € N by

~ urﬁ on (07 T]X‘Qv
i, = 4.5)
¢, on (—o0,0] x (2.
Therefore, we have that
(=DP + Aii,, = (=D + Myu, + fp — LBu + fy = — 1,

where the convergence is in Cyo([0, T] x £2).
On the other hand, we apply Corollary 4.4 for any v € C2°((0, T') x {2) to obtain as n — oo

(=D¥) + Ait,y, v) = (ity, (—DL* + A) — (it, (=DL* + Ayw),

where Corollary 4.4 guarantees that (—Dég)’* + Aw € L'((—00,0) x 2)NL®0,T) x 12),
and hence

(u, (DL* — Ayw) = (f, v) for any v e C2°((0, T) x ).

Step 2: Let now u be the generalized solution to problem (2.3) for g = f + f,, where
f € L*®(0,T) x §2), and let u be its extension with historical initial data ¢. By the definition
of the generalized solution, we pick a sequence f, € Cy([0, T] x £2) such that

fo—> f ae, Ja(0) = —(f(0) + Ap(0)) and sup ”fn”C([O,T]xﬁ) < OQ.
Besides, we denote by u,, the respective solution in the domain of the generator and let i, be
its extension by (4.5). Then by Step 1, we know that each i, satisfies

(itn, (=DQ* 4+ Q) = (= f,v),  forany ve CX((0,T)x ),

as well as the initial and boundary conditions in (1.1). Now the Dominated Convergence
Theorem provided the uniform upper bound of f,, implies that

fo— f in  L*0,T;L*)) as n — oo.

On the other hand, we have &, — @ in L%(0, T; L?({2)) by Remark 3.12. Meanwhile
(DL — Ay e L'((—o0, 0)x 2)NL>¥((0, T)x 2) for any v € C2((0, T)x £2) by Corollary 4.4.
Therefore we obtain as n — 00

(ity, (DL* — A)) — (i, (DL* — Ayw), for any v e C>((0,T) x 2).
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Step 3: Now we consider the case that ¢ € L*°(—o0, 0; H(}(.Q)) N L®({(—00,0) x 2) and f €
L>*(0, T; HOI(Q)) N L0, T) x £2). To this end, we set functions ¢ (¢, x) = ¢(t, x)1;, k),
for K € N. By the density of Span{C°(—K,0) - C>(£2)} in B([—K, 0] x ) with respect to
sequential convergence a.e., we choose ¢x ; € Span{C°(—K, 0) - C°(§2)} such that

¢k, — ¢x ae. and sup 6k jllcq—k.ox2) < 0°-
J

By Remark 3.9(i), we know that ¢ ; satisfies assumption (H2) for each j € N. Denote by
ug,; the generalized solution with the initial data ¢k ; and source term f, and denote by ug
the function given by formula (3.3) with ¢ = ¢ and source term f. By Remark 3.14 we
conclude that

sup ik jll p—k.11x0) <00 and ugj— ug ae. on (—K,T]x {2
J

Then for any v € C((0, T)x £2), we know that (DY) — A)*v € L'((—K, 0)x 2)NL®((0, T) x
{2) by Corollary 4.4, and hence

(fig, (DL* — Ayw) = lim (iig j, (DL* — Aw) = (f, v), (4.6)

j—o0o

and g = ¢g on (—K, 0] x 2. We can now pass to the limit as K — oo in (4.6), given that
ug — uae.on (—00, T) x 2, with supg [lix || g0, 77x52) < 0°, again by Remark 3.14, and

(DL — Ay*v € L'((—00, 0) x 2) N L>®((0, T) x 2) by Corollary 4.4. Here u is defined by
(3.3) for ¢ and f, and u by (4.4). Therefore

(@i, (DL* — Ayw) = (f, v).

By Lemma 4.7 and the smoothness of the problem data f and ¢ we obtain i € L*(0, T; H, ({2))
and u satisfies the identities in (4.3). Also, for every w € HOI(Q), veC Cl (0, T'), and properties
of Bochner integrals

[ee]

T T
/ (i (t), w)DL*v(t) dt = ( f (Ai(t) + f()v(r)dt, w>
_ 0

where (-, -) is the dual pairing of HOI(Q). Then by the smoothness of v, the left hand side
satisfies

T T
/ (ﬁ(t),w)Dé?**v(t)dt:/ (ﬂ(t)Dé?‘*v(t),w)dt:(/

T

o] —0Q o0

@)D *v(t)dt, w> )
Therefore, we derive that

T T
f ()DL *u(t)dt = f (Au(t) + fFO))v(t)dt.
—00 0

This confirms that DY = Aii + f € L0, T; H~'(£2)), and we proved that u is a weak
solution to problem (1.1). [

Remark 4.11. The uniqueness of the weak solution can be derived straightforwardly, provided
that the kernel function is variables-separable and satisfies the assumption given in Lemma 4.6.
Here we let f = 0 and ¢ = 0, and consider the eigenvalue problem

— Ap = rp in 2 and ¢, =0on af? 4.7
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By the spectrum theorem of the Laplacian, this eigenvalue problem (4.7) admits a nonde-
creasing sequence {A,}>>, of positive eigenvalues, which tend to co with n — oo, and a
corresponding sequence {¢,}.", of eigenfunctions which form an orthonormal basis in L*(2).

Then for any ¥ € C°(0, T), we have

T ~ T
/ DL (), )y (1) dt + / Do (D), @)Y (1) dt =0
0 0
As a result, (u(t), ¢,) is the solution of the initial value problem

DL W), ¢n) + *u(t), ¢») =0  with (u(t), ¢,) =0 forall t <O0.

Then Lemma 4.6 and the uniqueness of the solution [16, Section 3]' yields that (u(t), ¢,) =0
for all n, and hence u(t) = 0. See [2] for a discussion of uniqueness of weak solutions in the
time-fractional case.

Remark 4.12. If ¢(z,x) = ¢o(x) € Hol(()) in Theorem 4.10, then one recovers the weak
solution to the (inhomogeneous) Caputo-type fractional diffusion equation [11,24]

(AT (X)
u(t, x) = E[¢o (B*(10(1)) Lizy()<rpxy | + E [/ f (—X”(p)(s), B(s)) ds} .
0

Remark 4.13. The solution in Theorem 4.10 will be continuous at t = 0 for every x € {2
if ¢ is continuous in {0} x {2 and 7y : [0, T] — R is continuous. This can be proved by a
stochastic continuity argument for the first term of the solution (3.3), and for the second term
one can use E[7o(#)] — 0 as ¢ | 0 (which is a consequence of the continuity of 7y). However,
the solution (3.3) will in general fail to be continuous at t+ = 0 even for smooth data. This is
for example the case of integrable kernels fooo p(r)dr < oo (see [41, Remark A.3]).

5. Numerical results

In this section, we present some numerical results to illustrate those theoretical findings, and
explain how to apply the derived Feymann—Kac formula to numerically solve the nonlocal-in-
time diffusion problem. To this end, we test the one-dimensional nonlocal diffusion problem
(1.1) in £2 = (—1, 1), and consider the non-integrable kernel function

ps(r) = (1 — )8 ' .6)(r), .1
with o € (0, 1) and the following data:

(i) initial data ¢(x, £) = ' (1 + x)(1 — x)*x and zero source term f = 0;
(i) trivial initial data ¢(x, t) = 0 and source term f = e’ x% sin2mx).

The kernel function is proposed in this way in order to keep that foa rps(r)dr =1 and hence
the nonlocal operator recovers the infinitesimal first-order derivative as the nonlocal horizon
diminishes. The analytical property of the model has been extensively studied in [16].

The stochastic process generated by the spatially second-order derivative (with zero bound-
ary conditions), which is well-known as the killed Brownian motion in {2, can be simply
approximated by the lattice random walk. Specifically, we divided the interval {2 into M small

! The uniqueness argument for the initial value problem in [16, Section 3] can be easily extended to
time-dependent kernels p satisfying (HO).
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intervals, with the uniform mesh size h = 2/M and grid points x; = jA—1, j =0,1,..., M.
Then in each time level, the particle standing in x; will randomly move to x;_; or x;;. In
case that the particle hits the boundary of {2, then the time is set as 7 (x;). Here we let B;’ 3]
be the position where the particle starting at position x; arrives at time 7.

Similarly, the stochastic process generated by the operator

)
—DPu(r) = _fo (u(t) — u(t —r)ps(r)dr

with historical initial data could also be approximated by a one-dimensional lattice random
walk, where the trajectory of the particle involves some long-distance jumps. To numerically
simulate the stochastic process, we discretize [0, T] into K small intervals [z,_;,t,] with

n=1,2,...,K and let k = T/K. Then we consider the discretization (assume that § = mk)
u(ty) — utu_y) [* - Tk
D u(ty) » —— / rps(ryds + Y (uty) — u(ty_i)) ps(r)dr
0 — (j—Dk
. = (5.2)
1 -
= k—a<w0u(tn) — iju(tn,,)) = DV u(t,).
j=1

Here the weights {w;}7_, are computed exactly as wy = 8~ (1 +L201 —m‘“)), o = 5!
and w; = 81 1TT"‘((j —D)™*—j7), j=2,3,...,m. At each time level, the particle standing
at the grid point ¢; will jump to one of the grid points ¢;_;, for i = 1,2,...,m, with the
probability p; = w;/wy. It is easy to verify that Y- w; = wo and hence Y7, p; = 1. We
let 7o(t,) be the time that the particle starting at #, passes 0, and X,t("’(p )(ro(tn)) be the position
where the particle arrives below 0. Then by applying the scaling 2ak® = h?86*~!, the solution
to (1.1) can be approximated by

Ui =E [ (= X7 o0, By () Ny <eayn |
To(tn)ATR (X)) X
+E [ / f (—X,’:’(p)(s), Bhf(s)) dsi| ,
0

using Monte Carlo method, where the integral is computed by trapezoidal rule.

In Fig. 1, we plot the numerical solution at different time levels, where the kernel function
is defined in (5.1) with « = 0.75 and § = 0.2. In the computation, we let # = 0.02 and
k = Yh26*=1/2a, and use 50000 Monte Carlo trials. Since the closed form of the analytical
solution is not available, the benchmark solutions are computed by the finite difference scheme

(o) ah
D(S “2 _axxuz = fn

(5.3)

with a very fine mesh, say k = 10~* and & = 1073, where the discrete operator in time
Dgp ) s given by (5.2) and the spatial one E_))’}x is the central difference approximation to the
second order derivative. We observe that the numerical solution computed by the stochastic
approach is very close to the one computed by the finite difference scheme, which supports
our theoretical results. Moreover, in Table | we present the £-error of the Monte Carlo solution
with different N (number of Monte Carlo trails) at different time level T, with fixed § = 0.2,
a =0.75, h =0.02 and k = Jh?5*~!/2«, where we use the finite difference solutions as the
benchmark solutions. The Monte Carlo solution converges with the order O(N _%). While this
is formally expected, a rigorous analysis can be a very interesting question to be addressed in
a future work.
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Fig. 1. Numerical results with § = 0.2 and o = 0.75. (Blue dots: numerical solutions computed by (5.3) and Monte
Carlo method (MC); Red curves: reference solutions computed by finite difference method (FD).)

Table 1

Case (i): ¢2-error of the numerical solution computed by (5.3) and Monte
Carlo method (MC), with different 7 and N.

T\N 1000 2000 4000 8000 16 000 Rate

0.1 6.55e—3 4.63e—3 3.39e—3 2.6le-3 193e-3 =~ —0.44
0.2 6.5le—3 4.58e—3 3.05e—3 2.23e—3 1.50e—-3 =~ —0.53
0.4 4.65e—3 3.64e—3 242e—-3 1.75¢e-3 13le-3 =~ —-0.46

6. Concluding remarks

In this paper, we study the stochastic representation for an initial-boundary value problem

of a nonlocal-in-time evolution equation (1.1), where the nonlocal operator appearing in the

model is the Markovian generator of a (—oo, T']-valued decreasing Lévy-type process. Under

certain hypothesis, we derive the Feynman—Kac formula of the solution by reformulating the

original problem into a Caputo-type nonlocal model with a specific forcing term. The case

of weak data is also studied by energy arguments. The stochastic representation leads to a

numerical scheme based on the Monte Carlo approach. The current theoretical results could

be used to give more rigorous analysis of the stochastic algorithms for the nonlocal-in-time

model. It is also an interesting topic to study some quantitative properties, such as asymptotical

compatibility with shrinking nonlocal horizon parameter, of those algorithms.
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