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ABSTRACT Lipid bilayers can exhibit asymmetric states in which the physical characteristics of one leaflet differ from those of
the other. This most visibly manifests in a different lipid composition, but it can also involve opposing lateral stresses in each
leaflet that combine to an overall vanishing membrane tension. Here we use theoretical modeling and coarse-grained simulation
to explore the interplay between a compositional asymmetry and a nonvanishing differential stress. Minimizing the total elastic
energy leads to a preferred spontaneous curvature that balances torques due to both bending moments and differential stress,
with sometimes unexpected consequences. For instance, asymmetric flat bilayers, whose specific areas in each leaflet are
matched to those of corresponding tensionless symmetric flat membranes, still exhibit a residual differential stress, because the
conditions of vanishing area strain and vanishing bending moment differ. We also measure the curvature rigidity of asymmetric
bilayers and find that a sufficiently strong differential stress, but not compositional asymmetry alone, can increase the bending
modulus. The likely cause is a stiffening of the compressed leaflet, which appears to be related to its gel transition, but not
identical with it. We finally show that the impact of cholesterol on differential stress depends on the relative strength of elastic
and thermodynamic driving forces: if cholesterol solvates equally well in both leaflets, it will redistribute to cancel both leaflet
tensions almost completely; but if its partitioning free energy prefers one leaflet over the other, the resulting distribution bias may
even create differential stress. Since cells keep most of their lipid bilayers in an asymmetric nonequilibrium steady state, our
findings suggests that biomembranes are elastically more complex than previously thought: besides a spontaneous curvature
they might also exhibit significant differential stress, which could strongly affect their curvature energetics.

STATEMENT OF SIGNIFICANCE The two leaflets of biological membranes generally differ in their lipid composition, but
we know much less about such asymmetric systems than about their symmetric counterparts, and what little we know is often
perplexing. For instance, recent experiments on artificial asymmetric membranes found them to be much stiffer than their cognate
symmetric counterparts. In this paper we discuss the interplay between lipid asymmetry and a difference in individual leaflet
tension, arguing that their intricate coupling is responsible for some of the observed phenomena, in particular an increase in
membrane rigidity. We also show that the ubiquity of cholesterol, a molecule that can rapidly transition between leaflets, does not
automatically eliminate a tension difference between them.

INTRODUCTION
Lipid membranes are indispensable in all domains of life.
Especially in eukaryotes their ability to dynamically com-
partmentalize cells into functionally distinct organelles and
to coordinate the flow of matter and information between
those (as well as the environment) through finely orchestrated
remodeling events (1) occupies many branches of cell biology
(2–4).

From a materials point of view, biomembranes are self-
assembled two-dimensional fluid bilayers comprising many
types of lipids and proteins. On scales only mildly exceeding
their thickness, they behave with astonishing accuracy like
curvature elastic surfaces (5), which enables a differential
geometric description that is both efficient and elegant (5–10).

Looking beyond shape, a biomembrane’s lipid composi-
tion is increasingly recognized as a fundamental degree of

freedom responsible for many of its functions: lipid bilayers
do not just passively solubilize membrane proteins, as initially
posited in the fluid mosaic model (11); they can affect protein
function (12, 13), and even laterally organize membranes into
compositionally distinct “rafts” (14–17). While the thermo-
dynamic nature of these “domains” remains debated (18–23),
their lateral extension is generally agreed-upon: several tens
of nanometers. This exceeds membrane thickness by about an
order of magnitude, which renders rafts mesoscopic environ-
ments that are not just chemically but also elastically distinct,
thereby entangling composition with geometry.

Equally well known, but much less studied, is the fact that
biomembranes are also compositionally asymmetric: even
if we ignore the proteins, a bilayer’s lipid makeup differs
across the two leaflets (24–28). In fact, even if we ignore the
proteins and the lipids, different solution conditions across
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the separating membrane suffice to effectively induce a bilayer
asymmetry, often with consequences identical to explicit lipid
asymmetry (29–33).

To be clear, the dearth of biophysical research into com-
positionally asymmetric membranes does not reflect a lack
of importance. Rather, until very recently it was essentially
impossible to artificially create well-controlled asymmetric
model membranes, in which the consequences of asymmetry
could be explored while sidesteppingmany of the confounding
factors present in living systems. But this has changed with
the advent of two preparation techniques: the phase transfer
protocol (34–37), in which vesicles are essentially assembled
“one monolayer at a time”, and the lipid exchange protocol
(38–41), in which lipids on the outside of a vesicle are partially
replaced by other ones that are loaded into a soluble exchange
agent, typically methyl-β-cyclodextrin.

Recent experimental work on asymmetric membranes has
largely focused on optimizing these protocols and exploring
novel applications. For instance, the phase transfer protocol
has been used for cargo compartmentalization (42, 43) and
in synthetic biology (44–49). Less emphasis has been placed
on probing the materials properties of these systems, even
though the broken up-down symmetry could have profound
consequences for them. Indeed, recent experiments that mea-
sured the bending rigidity of asymmetric membranes have
found that these can be more than twice as rigid as their
symmetric counterparts (50, 51). This is surprising for at
least two reasons. First, leaflet asymmetry obviously affects
a bilayer’s spontaneous curvature; but this only enters the
curvature energy at the linear level, whereas the bending rigid-
ity multiplies the square of the curvature and hence involves
qualitatively different physics. And second, if asymmetry does
not change the bending rigidity of an individual leaflet from
the value it would have in a symmetric membrane, then it
is hard to see why the rigidity of an asymmetric membrane
would not be the average rigidity of the two corresponding
symmetric bilayers.

In this paper we show that leaflet asymmetry can indeed af-
fect a bilayer’s resistance to bending. However, we propose that
this does not come about because asymmetry somehow breaks
the additivity of individual monolayer rigidities. We instead
argue that monolayers in asymmetric membranes generally
differ in their physical characteristics from those in symmetric
bilayers. Specifically, we show that asymmetric membranes
constitute (at least) a one-parameter non-equilibrium family
of states in which spontaneous curvature can be traded for
differential stress—a term we propose to describe a situation
in which the difference between the lateral tensions of the
two leaflets does not vanish. Indeed, we argue that it is this
differential stress that is responsible for stiffening. When ex-
perimentally preparing such membranes, the balance point
between composition- and stress-asymmetry likely depends
on both thermodynamic and kinetic details of the formation
protocol. With the help of coarse-grained molecular dynamics
simulations (using the MARTINI model (52, 53)), we show

that membranes may stiffen beyond some minimum differen-
tial stress; in fact, we show that terms beyond quadratic order
become noticeable in the energy functional. We will explain
why this scenario is compatible with the null-result in the
control presented in Ref. (50), where symmetric membranes
created via the phase transfer protocol did not display any
stiffening. We will also argue that the presence of a lipid
species that can rapidly transition between leaflets (such as
cholesterol) does not automatically eliminate a bilayer’s dif-
ferential stress. Hence, our main conclusions hold beyond
the case of simple model system; they are relevant for ac-
tual biomembranes, which are generally asymmetric but may
contain a very sizable fraction of cholesterol.

Our findings have implications beyond the opening ques-
tion of what the rigidity of an asymmetric membrane is. They
also emphasize that the very notion of an asymmetric mem-
brane is more subtle: we need to know more than the two
leaflet compositions—namely: the differential stress—in order
to fully classify its state, and this information may profoundly
affect its emergent elastic properties. This not only matters
for the above described strategies to purposefully engineer
asymmetric membranes (34–40), but also for more common
vesicle preparation techniques that were recently shown to
inadvertently induce asymmetry (54), or for the question how
to choose the area per lipid when simulating asymmetric
membranes. Ultimately, we wish to invite a new view on
actual biological membranes, which are known to be highly
compositionally asymmetric, but for which the possibility
of an accompanying stress asymmetry is not yet routinely
deliberated, let alone that this could significantly affect their
elastic properties.

METHODS
Coarse-grained simulations
We used the coarse-grained (CG) MARTINI model of lipids
(52) to represent membranes, and specifically worked with
the following four glycero-phosphocholine-lipids: DLPC (1,2-
dilauroyl-sn-glycero-3-phosphocholine), which has two fully
saturated C12 chains; DPPC (dipalmitoyl-sn-glycero-3-phos-
phocholine), which has two fully saturated C16 chains; POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), which
has a saturated C16 sn1-chain and a singly (cis-)unsaturated
C18 sn2-chain; and finally DLiPC (dilinoleoyl-sn-glycero-3-
phosphocholine), a lipid with two doubly (cis-)unsaturated
C18 chains. Since MARTINI cannot properly distinguish
between 16 or 18 carbons, the latter lipid is typically referred
to as DIPC in the MARTINI lipidome, and we will do so, too.

Some of our simulations also contain additional choles-
terol. While this lipid has been part of the original MARTINI
suite (52), its parametrization was known to have numerical
stability issues (due to the rigid ring structure) and exhibited
several physical shortcomings; for instance, it failed to pre-
serve fluidity of liquid-ordered domains (55, 56). These issues
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DLPC DPPC POPC DIPC Cholesterol

Figure 1: Illustration of the MARTINI versions of the four
phospholipids and cholesterol used in this paper. The different
bead colors represent: choline group (blue); phosphate group
(magenta); glycerol backbone (yellow); C4H8 hydrocarbon
repeatwith single bonds (light gray); C4H6 hydrocarbon repeat
with a cis double bond (dark gray). In the cholesterol figure,
the small white beads are smaller versions of the hydrocarbon
beads, the gray bead is slightly more polar, and the orange
bead is the hydroxyl group.

were successfully addressed in a recent reparametrization by
Melo et al. (57). Unfortunately, their new force field relies on
virtual sites, which are not supported in the present version of
GROMACS-LS (58, 59) (the package we use to calculate the
lateral stress profile—see below). We hence employed a revi-
sion of the Melo force field, created by Ingólfsson (60), which
strives to capture the improvements achieved in Ref. (57)
without the need for virtual sites.

Fig. 1 illustrates the four phospholipids we use, together
with the cholesterol model. For completeness, we recall that
water is modeled explicitly with CG beads, each of which
represents four atomistic water molecules.

To run the simulations, we employed GROMACS 5.1 (61,
62), using a time step of δt = 20 fs and a 1.4 nm Verlet cutoff
neighbor list updated every 10 steps. Cutoffs for Lennard-
Jones and Coulomb interactions were set to their standard
value of 1.2 nm, and the relative dielectric constant was set to
εr = 15. A Berendsen thermostat (63) was used with a time
constant τT = 1 ps to fix the temperature at T = 300 K (for all
our simulations). If we needed constant pressure conditions
along some coordinate direction i, we used a Berendsen
barostat (63) with reference pressure Pi = 1 bar, time constant
τP = 3 ps, and isothermal compressibility κT = 3 × 10−5 Pa.

The coarse-grained nature of MARTINI tends to speed
up the dynamics, and MARTINI times are often scaled by an
additional factor of 4 to account for this. We do not follow this
practice in this paper and instead quote unscaled bare times.

Determining various observables
Bending rigidity
We measured the curvature modulus κ of simulated lipid
membranes by buckling them (64–66). Briefly, we set up an
anisotropic cuboid box with a dimension Lx along which we

then buckle the membrane. This length exceeds both the box
and membrane width Ly (which is fixed) as well as the box
height Lz (which adjusts to the external pressure) by a factor
of around 6 (see Table. 2 for the actual simulation parameters).
We first determined the zero-tension relaxed rest length L of
the membrane by also creating constant pressure conditions
along the x-direction and measuring the corresponding expec-
tation value of the box length: L = 〈Lx〉Σ=0. We then buckle
the membrane along x by imposing a fixed box-length Lx < L,
which corresponds to a dimensionless buckling strain

γ =
L − Lx

L
. (1)

The force fx(γ) per unit length along the x-direction (the
so-called “stress-strain-relation”) is measured from

fx(γ) =
[
Px(γ) − Pz

]
Lz , (2)

and assuming quadratic curvature elasticity, it can be expressed
as a series expansion in γ (65):

fx(γ) = κ
(

2π
L

)2 {
1 +

1
2
γ +

9
32
γ2 +

21
128

γ3 + · · ·

}
. (3)

Once membranes exhibit a sufficiently large stress-asymmetry
between the leaflets, we found it necessary to extend this
theory to permit for curvature softening, as previously used by
Diggins et al. to quantitatively model the significant deviations
from conventional curvature elasticity found in gel-phase
membranes (66). Briefly, the quadratic curvature elastic energy
density of 1

2 κK2 (where K is the total curvature, i. e. the sum
of the two principal curvatures) is replaced by the softened
expression

e(K) = κ`−2 [√1 + K2`2 − 1
]

, (4)

where the new material parameter ` is a cross-over length
that indicates below which curvature radius softening sets in.
This empirical functional has the properties that (i) it reduces
to the original quadratic theory in the limit ` → 0; (ii) it
has a negative quartic contribution − 1

8 (κ`
2)K4 that promotes

softening; and (iii) its post-quartic terms render the complete
functional bounded below—in fact, convex. The modified
stress-strain relation for Eqn. (4) is (66)

fx(γ, δ) =κ
(

2π
L

)2 {
1 +

1
2

(
1 − 3δ2

)
γ (5)

+
3

32

(
3 − 14δ2 + 31δ4

)
γ2

+
1

128

(
21 − 129δ2 + 447δ4 − 779δ6

)
γ3 + · · ·

}
,

where δ = 2π`/L is a dimensionless smallness (or “soften-
ing”) parameter: δ→ 0 implies ` → 0 and reduces this more
complicated expression to the simpler one from Eqn. (3). We
always used Eqn. (5) to fit the stress-strain-relation measured
in our simulations (using the parameters κ and δ); finding
δ = 0 within error bars indicates that the membrane exhibits
conventional curvature elasticity.
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Stress profile and associated observables
We used the GROMACS-LS package (58, 59) to calculate the
lateral stress profile σ0(z) of a bilayer spanned in the xy-plane.
Briefly, this stress is defined as

σ0(z) = Pzz(z) −
1
2
[
Pxx(z) + Pyy(z)

]
, (6)

where the Pii(z) are the diagonal components of the local
pressure tensor in a thin slice at position z. For reasons of
mechanical stability Pzz(z) must actually be constant (67),
which is a good first test for correctness and convergence. To
avoid fluctuation blurring of σ0(z), it is best to simulate small
membranes with only O(100) lipids (68).

The tension per leaflet, Σ±, is the integral of σ0(z) over
the respective leaflet, ranging from the bilayer midplane into
the bulk water phase. Since σ0(z) rapidly decays to zero for z
values outside the membrane, the precise location of the outer
boundary is immaterial, provided it is sufficiently far away
from the membrane:

Σ± =

∫ +· · ·

0
dz σ0(±z) , (7)

where z = 0 marks the location of the midplane. Notice that
for asymmetric membranes the latter need not coincide with
the z-coordinate of the membrane’s center of mass, which is
the location to which GROMACS-LS shifts the membrane if
one chooses to center it. The integral itself can be easily done
numerically by a Gaussian quadrature of the local stresses
calculated by GROMACS-LS for each individual z-bin.

Another observable of interest is the first moment of the
stress profile, the torque density T (31):

T =

∫ +· · ·

−···

dz σ0(z) z , (8)

because in the absence of both net and differential stress it
is connected to the bilayer’s spontaneous materials curvature
K0b (see Eqn. (13) below) (31, 69–71):

κK0b = −T if Σ± = 0 . (9)

Orientational order parameter
A standard measure for assessing the degree of lipid orienta-
tional order is the so-called P2 order parameter, defined as

P2 = 〈P2(cos ϑi)〉 =
1
2

(
3
〈
cos2 ϑi

〉
− 1

)
, (10)

where P2(x) is the second Legendre polynomial, and ϑi is
the angle between the orientation of a lipid i and the average
membrane normal (here: the z-direction). The average is taken
over all lipids in a membrane, or all lipids in one of the leaflets.
A lipid’s orientation is defined through the vector pointing
from the midpoint between the two tail-endbeads to the head
bead. Larger values of P2 indicate stronger lipid alignment;
P2 = 1 indicates perfect alignment, P2 = 0 signals completely
random directions, and P2 = −

1
2 occurs when lipids align

perpendicularly to the chosen axis.

Specific heat
As a common means to probe for phase transitions, we also
calculated the isobaric specific heat cP for a membrane (in the
flat state). The classical fluctuation-response theorem teaches
that cP is proportional to the enthalpy fluctuations:

cP
kB
=

σ2
H

N(kBT)2
, (11)

where kBT is the thermal energy, σ2
H = 〈H

2〉 − 〈H〉2 is the
variance of the enthalpy H = E + PV , and N the total number
of particles, which in our case is the total number of beads.

Two small comments are in order. First, even though we
simulate our aqueous membrane systems at fixed pressure,
their tiny compressibility renders the difference between
the isobaric and isochoric specific heat negligible—we find
(cP − cV )/kB ∼ O(10−4). And second, it is well known that
the Berendsen thermostat does not precisely reproduce the
canonical ensemble, since it suppresses fluctuations in the
kinetic energy (62). For us this matters only insofar as the
value of cP calculated via Eqn. (11) will miss part of its
kinetic contribution (we found it to be about 0.75kB too
small). However, the impact on the configurational degrees
of freedom vanishes like 1/N , and so the thus calculated cP
is still an excellent indicator for phase transitions, which are
driven by the potential contribution to the Hamiltonian.

RESULTS—THEORY
Asymmetry and spontaneous curvature
We start with a general review of the connection between
bilayer asymmetry, spontaneous curvature, and differential
stress. While this subject has been discussed in a number
of recent publications (31, 32, 72–74), we nevertheless wish
to revisit the key ideas, because some of the implications,
especially when both spontaneous curvature and differential
stress are present, appear not to have been explicitly spelled
out yet. As a graphical summary, Figure 2 illustrates the main
ingredients that enter this discussion.

From two individual monolayers to a single bilayer
Consider a compositionally asymmetric membrane whose
two leaflets are characterized by monolayer bending rigidities
(κm+, κm−) and spontaneous curvatures (Km+, Km−). In what
follows we will use the subscript “m” to indicate monolayer
observables and labels “+” and “−” for the upper and lower
leaflet, respectively. Bilayer quantities will follow the same
sign convention as the upper leaflet. To assist with parsing
the subsequent theoretical part, we collect a list of the more
frequent symbols and notations in a Glossary at the end of the
paper.

If we impose a weak curvature K , permit the two leaflets
to slide past each other, ensure that they are individually
tensionless, and ignore (here, and in all following discussions)
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shape−driven stress dominates

area−driven stress dominates

relax

relax

introduce lipid curvature

introduce differential stress

shape−driven bending
(curvature stress relaxed)

area−driven bending
(differential stress relaxed)

Figure 2: Illustration of the interplay between a spontaneous curvature K0b driven by lipid shape and a spontaneous curvature
K0s driven by area strain. An initially flat and relaxed membrane can be asymmetrically stressed either by a leaflet imbalance of
lipid shape, or a leaflet imbalance in the area density. Such membranes relax by assuming a shape- or area-driven spontaneous
curvature. When both effects occur simultaneously (see right hand side), the resulting spontaneous curvature K0 arises as the
balances expressed in Eqn. (18), which can include an asymmetric, flat, and differentially stressed membrane as a special case.

the topological Gaussian contribution, then the energy density
comprises only two bending terms and is given by

e0(K) =
1
2
κm+(K − Km+)

2 +
1
2
κm−(K + Km−)

2 . (12)

The first term captures the upper leaflet, the second term the
lower one, and the swapped sign of Km− allows for the fact
that the lower leaflet curvature is flipped with respect to the
upper one.

Minimizing this energy yields the bilayer’s spontaneous
materials curvature K0b at which the net bending stress van-
ishes (hence the subscript “b”), namely, the rigidity-weighted
difference of the two spontaneous leaflet curvatures:

∂e0(K)
∂K

����
K=K0b

= 0 ⇒ K0b =
κm+Km+ − κm−Km−

κm+ + κm−
. (13)

Using it, the bending energy can be written as

e0(K) = const. +
1
2
κ(K − K0b)

2 , (14)

where the bilayer curvature modulus is the sum of the mono-
layer curvature moduli, κ = κm+ + κm−, and the constant can
be absorbed into the net tension.

Since the individual Km± can be large, this can be true for
K0b, too. As a numerical example, let us look at the membrane
parameters reported in Table 1. For an asymmetric DOPC

POPC
membrane we get K0b ≈ −0.017 nm−1; a sphere with this
curvature would have a radius of R0,b = 2|K−1

0b | ≈ 120 nm, a
typical size for a large unilamellar vesicle (LUV) or many
intracellular transport vesicles. But if we take a DOPC

DOPE mem-
brane, we get K0b ≈ 0.1 nm−1, or a curvature radius of
R0,b = 2|K−1

0b | ≈ 20 nm, typical for small unilamellar vesicles
(SUV) or synaptic vesicles.

Table 1: Material parameters for a few standard lipid systems,
determined from atomistic simulations (75). The length d
is the distance between the mean C2 carbon position in the
two leaflets and is a measure of the membrane’s hydrophobic
thickness.

lipid T [K] κm [pN nm] Km [nm−1] d [nm]
DOPC 298 59 −0.0714 2.737
POPC 303 66 −0.0317 2.752
DOPE 298 59 −0.2703 2.996

Varieties of metastability

Even a bilayer satisfying K = K0b is generally not in an
equilibrium state, for the underlying asymmetric lipid distri-
bution can relax into a symmetric one when lipids flip-flop
between leaflets. However, the associated time scales tend
to be very long, and even though the matter is still actively
debated, times between many hours and many days have been
repeatedly measured for not-too-short lipids in unsupported
membranes (see Ref. (76) for a recent review). This means
that on time scales much shorter than the typical flip-flop time,
the asymmetric distribution can be treated as a metastable
equilibrium.

But if so, then othermetastable states rendered possible by
slow flip-flop must also be considered—chiefly among them
differentially stressed states in which the mechanical tensions
Σ± in the two leaflets are unequal (31, 77–79). The easiest
situation to contemplate, and to which we will restrict here, is
one in which the net bilayer tension Σ = Σ+ + Σ− vanishes,
but in which the two leaflets individually exhibit a nonzero
tension that is equal in magnitude but opposite in sign: one
layer being subject to tensile stress (positive tension), the
other one subject to compressive stress (negative tension).
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Spontaneous curvature under differential stress
Like bimetallic strips, differentially stressed membranes can
relax by bending. We will assume that this happens as illus-
trated in Fig. 2; specifically, we demand that the two leaflets
share a common midplane before and after a change in curva-
ture. Assume therefore that at some particular spontaneous
curvature K0s the differential area strain vanishes (hence the
additional subscript “s”). Notice that unlike K0b, which by
Eqn. (13) is a material parameter, K0s instead characterizes
the lipid packing in the two leaflets, which is likely set by
whatever kinetics process creates the bilayer.

Using the parallel surface theorem (10, 80), it is easy to
see that changing the curvature from K0s to K , we create a
local differential area strain

γ±(K) = ±(K − K0s)z± + O(z2
±) (15)

in leaflet reference surfaces a distance z± away from the
bilayer midplane. But since individual leaflets can slide, the
physically meaningful strain is not the local one, but the one
distributed over the whole membrane. This yields a nonlocal
curvature elastic energy density that has been included in
numerous membrane models (81–86)

enl =
1
2

KA,m+γ
2
+(K̄) +

1
2

KA,m−γ
2
−(K̄) (16a)

=
1
2
κnl(K̄ − K0s)

2 , (16b)

which quadratically penalizes the deviation of the surface-av-
eraged curvature

K̄ =
1
A

∫
S

dA K (16c)

from the differential stress curvature K0s with the nonlocal
bending rigidity1

κnl = KA,m+z2
+ + KA,m−z2

−

∗
≈ KAz2

0 . (16d)

At “∗” we made the additional simplifying assumption that
z+ = z− ≡ z0 and defined the bilayer area expansion modulus
KA = KA,m+ + KA,m−.

If we choose z± to be the neutral surfaces (i. e., the surface
at which bending and stretching deformations decouple (87)),
then—by definition—the associated elastic energy (16b) of
stretching or compression simply adds to the curvature energy
from Eqn. (12). Up to a constant, which we can subsume in
the net tension, this leads to the total energy density

etot(K , K̄) =
1
2
κ(K − K0b)

2 +
1
2
κnl(K̄ − K0s)

2 . (17a)

These are two quadratic curvature terms, a local and a nonlocal
one, for which K0b and K0s are the respective spontaneous

1A similar non-local bending rigidity κ′ is defined in Refs. (84, 86),
however with a curious extra factor of π, so that we have κnl = πκ′.

curvatures. The first term is traditionally referred to as the
“spontaneous curvature model” (5), and the second as the
"area difference elasticity” model (86). These are usually
viewed as two alternative models for describing curvature
elasticity in the presence of an asymmetry that prefers a
nonzero bilayer curvature. Notice, though, that not only do
these two models describe conceptually very different origins
of such an asymmetry, they also describe different elastic
energies: bending versus stretching. As such, it is legitimate
to write the total elastic energy as their sum.

If, for simplicity, we specialize to constant mean curvature
surfaces (such as spheres, cylinders, or unduloids), for which
K ≡ K̄ , and again ask when the overall curvature energy is
minimized, we get

∂etot(K , K)
∂K

����
K=K?

0

= 0 ⇒ K?
0 =

κK0b + κnlK0s
κ + κnl

. (18)

A new spontaneous curvature, K?
0 , once again arises as a

weighted mean—this time of the curvatures associated with
optimal bending, K0b, and optimal stretching, K0s, for which
κ and κnl are the respective weighting factors.2

In the balance condition (18) the stretching penalty should
dominate, because bending is the softer degree of freedom,
and so we should expect κ/κnl to be small. Indeed, from
the polymer brush model (88) we know that a reasonable
approximation for a bilayer’s bending rigidity is κ ≈ KAd2

h/24,
where dh is the bilayer’s hydrophobic thickness (typically
about 2/3 of its total width d). Since furthermore z0 ≈ dh/2
(89, 90) and κnl ≈ KAz2

0 , we find κ/κnl ≈ 1/6.

A one-parameter family of asymmetric membranes
Despite being energy minimized, the curvature-relaxed state
from Eqn. (18) with K = K?

0 exhibits a differential strain
γ± = ±(K?

0 − K0s)z± and a concomitant differential stress

Σ± = KA,m±γ± ≈ ±
κ

2z0

K0b − K0s
1 + κ/κnl

. (19)

Only in the special case K0s = K0b does this stress vanish. But
we can imagine other scenarios—for instance a flat membrane
in which the differential stress exactly cancels the bending
moment induced by the spontaneous curvature K0b; in other
words, an asymmetric bilayer that nevertheless has a vanishing
spontaneous curvature: K?

0 = 0. From Eqn. (18) this implies
K0s = −(κ/κnl)K0b and hence

Σ±(K?
0 = 0) = ±

κK0b
2z0

. (20)

2Incidentally, up to a constant the energy has the form 1
2C(K − K?

0 )
2

with some “effective” bending rigidity C = κ + κnl. This is not surprising,
since Eqn. (17a) essentially describes two springs in parallel. However, C
should not be interpreted as a local bending rigidity, since the derivation
relied on constant mean curvature surfaces in order to trivially combine the
local and the nonlocal bending part.
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Physically, the sign can be understood as follows: if from a
spontaneous curvature point of view we have K0b > 0, so
that the upper leaflet is convex, it also needs to be under
a positive tension to pull it back into a flat state. Using
the numbers discussed before, a DOPC

POPC membrane in such a
state would then end up with a noticeable differential stress
of |Σ± | ≈ 0.8 mN/m, while for a DOPC

DOPE membrane we get
|Σ± | ≈ 4 mN/m, which is very large.

Of course, the two particular states of stress just discussed
are simply special cases in a continuum of states that can
be parametrized by K0s, or (at least for K0b , 0) by the
dimensionless stress-curvature parameter

αsc :=
1 − K0s/K0b

1 + κ/κnl
, (21)

which labels states with the differential stress

Σ±(αsc) = ±αsc ×
κK0b
2z0

. (22)

Our two cases from above correspond to αsc = 0, a membrane
that assumes its “materials-based” curvature K0b and is free
of differential stress, and αsc = 1, a flat membrane that
exhibits differential stress. Since αsc can vary continuously,
asymmetric membranes really constitute (at least) a one-para-
meter family of metastable states, and for this reason they are
insufficiently characterized by their compositional asymmetry
alone. Stated differently, there is no particular value for the
differential stress (say, zero) that is the “right” one, unless there
is some independent argument that would permit reducing
this one-parameter family of legitimate states to that special
case.

Residual differential stress
The interplay between asymmetry and tension in lipid bilayers
gives rise to another intriguing issue, recently identified in
simulations (91, 92): the state point at which the areas per lipid
in each leaflet of an asymmetric membrane agree with those
in their tensionless symmetric counterparts need not coincide
with the point where the differential stress vanishes. This is
of practical relevance: if one wishes to simulate asymmetric
membranes whose leaflets are individually tensionless (recall:
a possible choice, even though not the only valid one), then it
is insufficient to match the specific lipid areas in each leaflet to
those in the cognate symmetric bilayers. (Ref. (91) proposes
a method to correct for this, if zero tension is indeed what one
wants.) Let us attempt to rationalize this empirical finding
within the framework developed in the preceding sections.

Taking the specific area from simulations of a flat sym-
metric membrane is equivalent to imposing K0s = 0; but the
bending torque that arises in the asymmetric case induces
a nonzero spontaneous bilayer curvature and associated dif-
ferential stress, given by Eqns. (18) and (19), respectively
(while setting K0s = 0 in both equations). However, for such
a membrane to be spontaneously flat, it would need to be

subject to the slightly larger differential stress from Eqn. (20).
The difference between these two is

∆Σ± = Σ±(K?
0 = 0) − Σ±(K0s = 0) (23a)

= ±
κK0b
2z0

1
1 + κnl/κ

. (23b)

In other words, forcing the membrane to be planar requires this
much more differential stress. Of course, we cannot “summon”
additional intrinsic stress; but spanning a membrane patch
into a simulation box amounts to externally imposing the
negative of this differential stress via the applied periodic
boundary conditions. This results in the observed residual
differential stress of

Σ
(res)
± = −∆Σ± = ∓

κK0b
2z0

1
1 + κnl/κ

≈ ∓
κK0b
14z0

, (24)

where in the last stepwe used the previously discussed estimate
κnl/κ ≈ 6.

Notice that Σ(res)± and K0b strive to bend the membrane
in the same direction. Hence, the sign of a membrane’s
residual differential stress conforms to what we would expect
based on its spontaneous curvature. But its magnitude does
not: it is smaller than the torque couple associated stress
∓κK0b/2z0 by the sizable factor (1 + κnl/κ). This shows that
the residual differential stress does not merely embody a
bilayer’s spontaneous materials curvature but instead reflects
a more subtle balance between bending and stretching—as
quantified by the difference between K?

0 and K0s. Notice in
particular that it incorporates a specific choice of boundary-
and initial conditions (namely: a simulation box and K0s = 0).

If we wanted to calculate κK0b as the first moment of
the stress profile belonging to the area-matched membrane,
using Eqns. (8) and (9), we encounter the slight complication
that this system has differential stress and so Eqn. (9) does
not strictly apply, as there are now two physical sources of
spontaneous curvature. However, we can self-consistently
correct for that. If we denote the actual stress profile by σ(z)
and assume that the residual stress Σ(res)± acts approximately
evenly over the thickness dm± of each leaflet, then the profile
with the residual differential stress removed is given by

σ0(z) = σ(z) −

Σ
(res)
+ /dm+ 0 < z < dm+

Σ(res)− /dm− dm+ < z < 0
. (25)

Combining this “de-stressing” correction with Eqns. (8), (9),
and (24) then leads to

Σ
(res)
± = ±

T

2z0(1 + κnl/κ) + d/2
≈ ±

T

15.5 z0
, (26)

where the torque density T is the first moment of the actual
stress profile σ(z) (i. e., the one that has a differential stress)
and d = dm+ + dm− is the bilayer thickness. Also, since
the neutral surface can typically be found one-third of the
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distance along the hydrocarbon chain from the polar head
group (89), meaning z0 ≈

2
3 dm, we estimated d = 2dm ≈

3z0 in the last step. Had we alternatively assumed that the
residual stress localizes at the neutral surface, and accordingly
subtracted Σ(res)± δ(z ∓ z0) from each bare leaflet stress, the
extra term “+d/2” in the denominator of Eqn. (26) would have
been replaced by “+z0”, and the numerical value in the last
expression then drops from 15.5 to 15. The precise functional
form of the residual stress is dictated by the z-dependence
of the area expansion moduli KA,m±(z) (93), but our two
limiting cases (entirely even vs. delta-localized) yield fairly
similar results. In fact, the change with respect to Eqn. (24) is
minor: simply replacing κK0b with −T gives an answer only
about 10% too big. This is almost certainly less than the error
incurred by empirical estimates such as κnl/κ ≈ 6 or d = 3z0.

To test Eqns. (24) or (26), one would have to measure
both the residual differential stress Σ(res)± as well as either the
spontaneous materials curvature K0b or the torque density
T . Luckily, all of these are reported—over a range of spon-
taneous bilayer curvatures—in a recent paper by Miettinen
and Lipowsky (92): For their “lollipop-like” model of GM1,
their Fig. 5 shows that κK0b ≈ 0.15φ pN for a membrane
that contains a fraction φ of GM1 lipids only in its upper
leaflet (hence giving the membrane a positive spontaneous
curvature). Estimating z0 ≈ 1.5 nm from their Fig. 1, our
Eqn. (26) then predicts residual single leaflet tensions of
Σ
(res)
± ≈ ∓0.0065φmN/m, or a difference between these of
−0.013φmN/m. For comparison, their Fig. 3 reports about
−0.016φmN/m for this difference, which agrees fairly well
with our estimate.

Partial flip-flop equilibrium: the role of
cholesterol
While the relaxation times for asymmetric lipid compositions
are very long for typical charged or zwitterionic phospholipids,
cholesterol is believed to flip-flop several orders of magnitude
faster (76, 94). Hence, there exists a physiologically rele-
vant time window within which phospholipids maintain their
compositional asymmetry, while the cholesterol distribution
is equilibrated between the leaflets. How does this change
our considerations for spontaneous curvature and differential
stress?

A comprehensive discussion of this situation goes be-
yond the scope of the present paper, since it would require
a much more careful treatment of the equation of state of
lipid-cholesterol mixtures, as for instance recently given by
Allender et al. (74). But there is one important point we wish
to emphasize: even if the cholesterol distribution can relax,
this does not automatically imply that any previously existing
differential stress will decay to zero, in contrast to a recent
claim by Miettinen and Lipowsky (92). This is because stress
equilibration is not the thermodynamic condition that deter-
mines the distribution of cholesterol between the leaflets. The
correct condition is equilibration of chemical potential (74),

and this will not entail a stress relaxation, any more than the
ability of water to cross a semipermeable membrane between
two different osmolytes will relax the osmotic pressure.

Let us illuminate this point with a strongly simplified
model. Consider a bilayer that contains L± lipids of type
± and specific area a± in its ± leaflets, and also add N±
cholesterol molecules of specific area a to these leaflets.
Making the rather crude assumption that lipid areas add,
we expect an equilibrium total area A± = L±a± + N±a for
each leaflet. Since generally A+ , A−, the membrane will
be differentially stressed even at zero net tension. If the
“normal” lipids stay in their leaflets, but cholesterol flip-flops
to equilibrate its chemical potential (subject to the constraint
N+ + N− = N), what is then the equilibrium area A, the final
cholesterol distribution, and the resulting differential stress?

We propose that, for the purpose of the present argument,
the relevant physics can be captured by an approximate em-
pirical free energy that accounts for the following three major
physical effects: (i) the partitioning free energy g± per choles-
terol molecule into the two leaflets; (ii) the elastic energy
of leaflet stretching or compression; and (iii) the entropy of
cholesterol’s distribution between the leaflets:

G(A, N+) = −g+N+ − g−N−

+
1
2

KA,m+
(A − A+)2

A+
+

1
2

KA,m−
(A − A−)2

A−

+ NkBT
[
ϕ log ϕ + (1 − ϕ) log(1 − ϕ)

]
, (27)

where ϕ = N+/N is the cholesterol fraction in the+-leaflet and
the last line is an entropic term that measures the distribution
of cholesterol between the two leaflets (which is not considered
part of g±).

The condition ∂G/∂A = 0 ensures zero net tension and
gives the equilibrium area Aeq = (α+/A++α−/A−)

−1, where
α± = KA,m±/KA. Notice that deriving this condition involves
only the elastic contribution (second line) to the free energy,
which upon inserting it back simplifies to

Gelast(A = Aeq, N+) =
1
2

KAα+α−
(A+ − A−)

2

α+A− + α−A+
. (28)

Since this is proportional to the square of the difference of the
original leaflet areasA±, the elastic part of the free energy by
itself is minimized when A+ = A−.

The cholesterol distribution now follows from equili-
brating cholesterol’s chemical potential between the leaflets,
which is equivalent to demanding (∂G/∂N+)Aeq,N = 0. Unfor-
tunately, this expression is very messy; but it simplifies consid-
erably under the fairly good assumption that KA,m+ = KA,m−,
or α+ = α− = 1

2 . Expressing the cholesterol distribution via
its deviation from even, ψ := ϕ − 1

2 , and expanding the en-
tropy term to linear order around ψ = 0, we find after a short
calculation

ψ(∆g,∆A0, T) =
∆g − φ0KA∆A0/N
4kBT + 2φ0KAa

, (29)
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with the convenient abbreviations

∆g = g+ − g− , (30a)
∆A0 = L+a+ − L−a− , (30b)
φ0 = Na/(L+a+ + L−a− + Na) . (30c)

These three terms signify, in turn, the partitioning free energy
difference per cholesterol molecule, the leaflet area differ-
ence in the absence of cholesterol, and cholesterol’s average
area fraction in tensionless leaflets. The differential stress
associated with this cholesterol distribution is

Σ± =

(
∂G±
∂A

)
T ,Aeq,N

=
1
2

KA
A− − A+

A− +A+
(31a)

= ∓φ0KA

(
∆A0
2Na

+ ψ(∆g,∆A0, T)
)

(31b)

= ∓
1
2
φ0KA

∆A0/Na + ∆g/2kBT
1 + φ0KAa/2kBT

. (31c)

To elucidate the meaning of these predictions, it is in-
structive to examine two limiting cases. Let us first look at a
situation in which both the partitioning free energy difference
and entropic effects vanish (i. e., ∆g = 0 and T = 0). In this
special case, Eqn. (29) simplifies to

ψ(∆g = 0,∆A0, T = 0) = −
∆A0
2Na

. (32)

The cholesterol asymmetry is proportional to the bare-lipids
area difference in the two leaflets, and it is easy to check
that Eqn. (32) implies A+ = A−. In other words, the areas
are balanced and, within the framework of our model, the
differential stress vanishes exactly—as either Eqn. (31a) or
Eqn. (31b) readily show.

Notice, though, that a full stress cancellation only occurs if
we neglect entropic effects, because back-filling the expanded
leaflet with cholesterol diverted from the compressed leaflet
will imply a deviation from the true free energy minimum.
Even if cholesterol prefers no leaflet over the other, entropic
effects will create a partitioning shift ∆ψ away from the stress
free state:

∆ψ = ψ(∆g = 0,∆A0, T) − ψ(∆g = 0,∆A0, T = 0) (33a)

=
∆A0 kBT
Nφ0KAa2 + O(T

2) , (33b)

or

∆ψ

ψ(∆g = 0,∆A0, T = 0)
= −

2 kBT
φ0KAa

+ O(T2) . (34)

This expression is negative, showing that the shift always
counteracts the cholesterol displacement from Eqn. (32) that
would fully eliminate the differential stress. Hence, in the
presence of entropy, stress cancellation is incomplete, even
when ∆g = 0.

In the general case cholesterol will of course prefer one
of the two leaflets of an asymmetric membrane over the other.
Let us hence look at the second limiting case, in which a finite
preference ∆g exists, but where the bilayer creation process
achieved ∆A0 = 0, i. e., a bilayer which in the absence of
cholesterol harbors no differential stress. Notice that (within
our model) this would stay true if we added cholesterol evenly
to the two leaflets: N/2 molecules to each leaflet, or, ψ = 0.
But if we now permit the cholesterol to flip-flop and find its
true free energy minimum, we get

ψ(∆g,∆A0 = 0, T) =
∆g

4kBT + 2φ0KAa
, (35)

showing that if the +-leaflet is preferred by ∆g, then a choles-
terol asymmetry proportional to ∆g arises. In other words: the
addition of cholesterol may not only fail to fully balance the
stresses, as in the previous case; it may actually create a dif-
ferential stress that was not there in the absence of cholesterol.
Notice that this is opposed by two different phenomena: first,
the entropy (the first term in the denominator); and second,
the fact that the emerging asymmetry creates new stresses
that cost elastic energy (the second term in the denominator).

To estimate the magnitude of this asymmetry, let us
take ∆g ≈ 2 kBT , a recently determined partitioning free
energy difference for cholesterol between a saturated stearoyl-
sphingomyelin bilayer and an unsaturated POPC bilayer (95).
Using furthermore KA ≈ 250 mN/m ≈ 60 kBT/nm2 (88),
a ≈ 0.25 nm2 (96), and φ0 = 20%, this leads to a large
partitioning asymmetry of ψ ≈ 36% and, from Eqn. (31c),
an associated differential stress of |Σ± | ≈ 10 mN/m for the
parameters chosen above—a very large value. This is most
likely outside the regime of validity of our linear expansions,
but it indicates that small partitioning differences can drive
large stresses.

We hasten to add that this model has many weaknesses.
For instance, we assume our partitioning free energies g± to
be independent of the cholesterol content in each leaflet. This
is incorrect not just because of the obvious role played by the
chemical environment; there is also an elastic effect: even flat
membranes have bending stresses due to nonzero spontaneous
curvatures Km±, and since Km± generally depends on the
cholesterol mole fraction, this creates another thermodynamic
driving force, as recently emphasized by Allender et al. (74).
An even more subtle issue is the assumption of area additivity,
and the prerequisite of giving meaning to the notion of specific
lipid area. This is fraught with numerous complications,
because the presence of cholesterol in a bilayer changes
the conformational ensemble of the host-phase lipids (97),
affecting area per lipid (96, 98–101) as well as other material
parameters, such as the spontaneous curvature (74, 97, 102)
and the bending rigidity (103–107). In particular, addition of
cholesterol can actually contract a membrane, leading to a
negative partial specific area (96, 101). To do better, we need
a quantitative understanding of the underlying equations of
state, but this is not presently our goal.
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Let us now return to the claim by Miettinen and Lipowsky
that the presence of a species with a high flip-flop rate will
render the individual leaflets tensionless (92). In their sim-
ulations, these authors studied an asymmetric membrane
containing POPC in one leaflet, and a mixture of POPC with
(two slightly different versions of) the ganglioside GM1 (the
glycosphingolipid monosialotetrahexosylganglioside). Since
POPC has one monounsaturated tail, and GM1 contributed
with its saturated tails at most up to 25 mol% in one of the
leaflets, the partitioning free energy difference ∆g is likely
very small. These simulations hence appear closer to the first
limit discussed above, in which cholesterol fosters an (incom-
plete) differential stress relaxation. This is indeed what the
authors find, even if the stress in question is slightly more sub-
tle in nature (namely: a residual differential stress). However,
whether cholesterol would also undo a bilayer’s differential
stress in the presence of a noticeable ∆g cannot hence be
inferred from these simulations.

RESULTS—SIMULATION
Measuring rigidities in coarse-grained
simulations
We begin by measuring the bending rigidity κ of symmetric
DLPC and POPC bilayers that are tensionless and hence, due
to their symmetry, also free of differential stress. Our results
indicate that both membranes have basically the same3 value
of κ within error bars and show only weak (albeit statistically
significant) signs of curvature softening (see Tab. 2 for these
and all subsequent measurement results).

Let us now investigate an asymmetric membrane in which
one leaflet is pure DLPC and the other one pure POPC
and first choose the specific lipid areas in each leaflet to
match those in their cognate symmetric tensionless system
(DLPC: a` = 0.5709(3) nm2; POPC: a` = 0.6212(3) nm2).
This results in a a quite sizable residual differential tension
ΣDLPC ≈ −5.7 mN/m that puts the DLPC leaflet under com-
pression. Nevertheless, the resulting asymmetric membrane
has a bending rigidity that does not differ statistically signifi-
cantly from the two pure cases and (more generally relevant)
from their average. To test whether the sizable differential
stress creates any artifacts, we also performed a simulation
for a system in which this stress was relaxed by reducing the

3Our MARTINI DLPC lipid is in terms of structure and force field
identical to the MARTINI DMPC lipid studied in Ref. (65); even though here
we use the updated martini_2.1 force field, while Ref. (65) used martini_2.0,
the relevant bead-parameters are identical. Considering this, one may ask
why the rigidity determined in the present paper is almost 6 kBT (or 20%)
larger. We attribute this to the new version of Gromacs, v5.1, and refer the
reader to Reißer et al. (108) for a detailed discussion how this version differs
in some important ways from its predecessors. To minimize artifacts due
to time-saving measures (such as pushing for large integration time steps)
we use conservative parameters whenever options arise. Nevertheless, the
situation remains unfortunate, and so we profess ourselves agnostic about the
“true” value of the rigidity of MARTINI lipids. However, this does not affect
the relative changes we discuss in the present paper.

overabundance of DLPC lipids, resulting in a system with the
differential stress ΣDLPC,0 ≈ −0.03(6)mN/m. We found its
curvature rigidity to be κ = 32.9(4) kBT , which again agrees
with the pure systems within statistics.

Having investigated stress-free compositional asymmetry,
let us now explore the opposite case: a compositionally sym-
metric DLPC membrane in which the number of lipids differs
between the two leaflets, thus rendering them stress-wise
asymmetric. As a measure of number asymmetry we use the
relative excess δn, defined as

δn :=
N> − N<
N> + N<

, (36)

where N> and N< are the number of lipids in the more or less
populated leaflet, respectively. This measures the percentage
by which each leaflet is over- or underfilled compared to the
balanced average.

Our simulation results, summarized in Tab. 2 and illus-
trated in Fig. 3, show that for an asymmetry up to about
δn = 3.2% the rigidity does not significantly differ from
that of a stress-balanced bilayer, nor does it show any more
curvature softening. (Observe that the differential stress at
that point, about ±8 mN/m, is larger than the stress of our
asymmetric area balanced DLPC

POPC system.) However, for larger
lipid number asymmetry there is a noticeable and sudden rise
of κ, which increases by almost 50% at the largest asymmetry
we tested, δn = 6.7%. Near the transition, the fit to Eqn. (5),
which is nonlinear in the curvature softening parameter δ,
exhibits metastable minima (indicated as open symbols in
Fig. 3). Together with the stable solutions, they support the
scenario of a discontinuous stiffening transition, as illustrated
by the drawn curve (an empirical guide to the eye, for which
we have no descriptive theory). This transition is accompanied
by a significant (and equally abrupt) increase in curvature
softening, i. e. a jump to larger values of δ, leading to a
length ` that is comparable to bilayer thickness, about 2.5
times larger than in the stress-balanced case. Remarkably, the
sudden increase in curvature rigidity is not accompanied by
jumps in the lipid order parameters P2,> and P2,< in the over-
and under-filled leaflets, respectively. Instead, P2,> increases
continuously (but slowly) up to about 5% asymmetry, while
P2,< decreases by a comparable amount. Only at around 6%
do these order parameters change more dramatically. The
latter is driven by the gel transition, which is easily recognized
by its strong signal in the specific heat, see Fig. 3a. However,
by then the bilayer stiffening transition has long happened.

DISCUSSION
Compositional asymmetry alone does not
stiffen membranes
We find that a compositionally asymmetric DLPC

POPC membrane
with sufficiently small differential stress is no stiffer than (the
average of) its two symmetric counterparts, DLPC

DLPC and POPC
POPC .
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Table 2: Simulated systems and results for measured observables. Buckle length L, number of lipids in overfilled (N>) and
underfilled (N<) leaflet, asymmetry, lipid order parameter in overfilled (P2,<) and underfilled (P2,>) leaflet, tension Σ+ in the
upper leaflet, bending rigidity κ, cross-over length ` in the curvature-softened energy density (4) and corresponding softening
parameter δ = 2π`/L. In all simulations the box width is Ly = 8 nm.

leaflets L [nm] N>/N< δn [%] cp/kB P2,> P2,< Σ+ [mN/m] κ [kBT] ` [nm]
DLPC/DLPC 41.39 ± 0.02 580/580 0 0.85 ± 0.02 0.699(1) 0.699(1) 0.07 ± 0.07 34.8 ± 1.1 2.0 ± 0.8
POPC/POPC 45.03 ± 0.02 580/580 0 n.d. n.d. n.d. 0.03 ± 0.07 34.4 ± 1.3 2.6 ± 0.9
DLPC/POPC 40.60 ± 0.03 568/522 4.22 n.d. n.d. n.d. −5.68 ± 0.08 34.1 ± 0.9 1.7 ± 0.7
DLPC/POPC 40.02 ± 0.01 540/530 0.93 n.d. n.d. n.d. −0.03 ± 0.06 32.9 ± 0.4 1.1 ± 0.4
DLPC/DLPC 39.50 ± 0.01 580/552 2.47 0.84 ± 0.01 0.715(1) 0.683(1) −5.64 ± 0.08 33.6 ± 0.7 1.5 ± 0.7
DLPC/DLPC 40.17 ± 0.01 580/544 3.20 0.83 ± 0.01 0.718(1) 0.678(1) −6.97 ± 0.07 34.5 ± 0.7 2.0 ± 0.5
DLPC/DLPC 39.91 ± 0.01 580/536 3.94 0.84 ± 0.01 0.722(1) 0.672(1) −8.46 ± 0.08 44.1 ± 0.3 6.7 ± 0.2
DLPC/DLPC 39.50 ± 0.01 580/522 5.26 0.87 ± 0.01 0.729(1) 0.663(1) −11.18 ± 0.09 47.0 ± 0.5 5.5 ± 0.1
DLPC/DLPC 37.38 ± 0.21 580/515 5.94 8.68 ± 4.63 0.765(6) 0.686(5) −12.59 ± 0.06 47.0 ± 0.8 5.4 ± 0.1
DLPC/DLPC 33.93 ± 0.10 580/507 6.72 1.23 ± 0.31 0.853(1) 0.625(1) −13.93 ± 0.09 50.2 ± 0.6 4.6 ± 0.1

Granted, a single example for the absence of stiffening does
not rule it out for all conceivable cases. But it must be recalled
that this is the expected outcome: as long as the two leaflets can
freely slide, and their individual structure matches that of their
symmetric bilayer counterparts, basic elasticity considerations
demand that leaflet rigidities simply add. Hence, the burden
of proof lies with any claim of stiffening, and our particular
negative result merely establishes the expected baseline.

One might worry that our two lipids were elastically too
similar to begin with, but the experimentally observed increase
in bending modulus (factor ∼ 2.5, or about 150% stiffer) is
much bigger than the disparity between the moduli of the two
individual lipids (factor ∼ 1.3, or about 30% stiffer) (50, 51),
and so it is unlikely that this is a major factor. In contrast,
the two leaflets might influence each other more directly via
their free energy of adhesion, which depends on their area
per lipid. Since our two CG lipids differ by about 9% in that
regard, this effect would be even slightly bigger than what
the experimental difference between the lipids used in the
stiffening studies (50, 51) (POPC and DOPC) would be—with
DOPC having an area about 6% larger, when measured by the
same technique (109).

Differential stress can stiffen membranes

What we instead find is that differential stress, if large enough,
increases a bilayer’s curvature modulus. Before addressing the
origin of this effect, let us first rule out an incorrect attempt
at a geometric explanation: could it be that the buckle of a
differentially stressed membrane assumes some potentially
asymmetric shape that strains the leaflets differently, thereby
giving rise to a nonzero additional stretching contribution
to the overall energy? The answer is no, because buckling
does not globally strain the leaflets at all. To see why, let us
calculate the membrane area A± of the upper and lower leaflet
(taken for instance at their neutral surfaces ±z±), using the

parallel surface theorem (10, 80):

A± =
∫

dA
{
1 ± z±K + z2

±KG

}
(37a)

= Amid ± z±

∫
dA K + z2

±

∫
dA KG , (37b)

where the integral is taken over the buckle’s midplane, which
has area Amid, and where KG is the Gaussian curvature. By
the Gauss-Bonnet theorem (80), the integral over KG is a
topological invariant and hence coincides with its value for
the unbuckled membrane, for which KG = 0; hence this
term vanishes. And the integral over K can be rewritten
to an excellent approximation by assuming that the buckle
only significantly curves along the buckling direction, not
perpendicularly to it.4 In that case, we can describe the buckle
by a single function ψ(s), the angle against the horizontal as a
function of arc length s. The curvature can then be expressed
as K = −∂ψ(s)/∂s, and so we can simplify Eqn. (37b) to

A± = Amid ∓ z±Ly

∫ L

0
ds

∂ψ(s)
∂s

(37c)

= Amid ∓ z±Ly

[
ψ(L) − ψ(0)

]
(37d)

= Amid , (37e)

where in the last step we exploited periodic boundary con-
ditions: ψ(0) = ψ(L). We hence see that in fact any leaflet
reference surface (not just the neutral surface) keeps its area
when buckled under periodic boundary conditions. Notice
that this dos not even require the buckle’s geometry to be the
solution of some shape equation; any shape will do. The two
additions in Eqn. (37b) both vanish identically—for (different)
topological reasons. Evidently, this same argument also shows

4This is ensured in simulations by making the transverse direction Ly

much smaller than the buckle’s length L. Since the buckling threshold scales
inversely with the square of the buckle’s length, see Eqns. (3) or (5), the
force at which the y-direction would buckle is bigger than the membrane’s
x-buckling threshold by a factor of (L/Ly )

2. It is hence easy to ensure that
the membrane will be flat along the y-direction.
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Figure 3: Several observables of differentially stressed MAR-
TINI DLPC membranes as a function of asymmetry δn. Open
symbols denote metastable states in the nonlinear fit; curves
are guides to the eye. a) specific heat; b) orientational order
parameter P2; c) softening parameter δ; d) curvature modulus
κ. The bold dashed vertical line suggests the approximate
location of the stiffening transition, the dotted vertical line sug-
gests the location at which the compressed leaflet transitions
into the gel phase.

that the buckling protocol is insensitive to the spontaneous
bilayer curvature: this only contributes a linear term in K
to the energy density, which then vanishes under periodic
boundary conditions.

Stressed leaflets differ elastically from
unstressed ones
While our simulations clearly show that differential stress
can stiffen a bilayer, the data by themselves do not yet offer
an explanation for this observation. However, based on our
collective findings we suggest that a stress-induced change
in the elastic properties of the individual leaflets lies at the
heart of the phenomenon. Recall that a major puzzle of the
experimental results was the apparent “lack of additivity” (50):
the rigidity of an asymmetric membrane is not the average
of the corresponding two symmetric parent membranes. And
yet, our own theoretical analysis always assumed additivity—
see Eqns. (12) and (16a). This is no contradiction, though,
because the differential stress generally present in asymmetric
bilayers puts each of their leaflets into a thermodynamic state
that differs from its counterpart in a stress-free symmetric
bilayer. This of course also affects the leaflet rigidities, but
it is unfortunately difficult to anticipate the magnitude of
this change from measurements performed on symmetric
membranes: the higher lipid density in the compressed leaflet
cannot be recreated by laterally compressing a symmetric
membrane, since it would relax the area strain via buckling;
and while the lower lipid density in the expanded leaflet can
in principle be produced by applying tension to a symmetric
membrane, it is then difficult to measure its rigidity (for
instance because tension would strongly suppress bending
modes in a flicker spectroscopy experiment). This observation
shows that additivity might well hold, but we do not know
what leaflet-rigidities we actually have to add.

Nevertheless, it seems highly plausible that, ceteris paribus,
membranes with a smaller area per lipid are stiffer than those
with a larger one. But if this dependency were linear, then it
would cancel in a differentially stressed membrane, in which
to a very good approximation the area strains are simply
opposite in sign. However, there are good reasons to believe
that for dense systems the relation is not linear. Recall that for
an ideal gas the isothermal bulk modulus KT = −V(∂P/∂V)T
is proportional to the density, but in the liquid phase of a
van der Waals gas it grows much more strongly with density
(in fact, it diverges at the maximal “close-packing” density).
The same physics reappears in fluid lipid bilayers: polymer
brush theory (88) shows that the lateral leaflet pressure Π is
proportional to 1/a3

`
, where a` is the specific lipid area; hence

KA = −a`(∂Π/∂a`)T = 3Π shows the same strong increase
with compression.

In simulations, a clean way to reduce the area per lipid
is to artificially increase the cohesive energy between lipids.
This can be done quite easily in coarse-grained lipid models
in which this cohesion is one of the few tuning parameters.
For instance, doing exactly this in the coarse-grained Cooke
model (110–112) shows that the curvature rigidity of fluid
Cooke-membranes scales approximately exponentially with
the lipid area density (to see this, combine the lower two
panels of Fig. 7 in Ref. (111)). Hence, the stiffening of the
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compressed leaflet overwhelms the softening of the expanded
one, leading to an overall rigidity increase of differentially
stressed membranes.

Stiffening is linked to the gel transition, but not
identical with it
That a bilayer’s curvature rigidity strongly increases with lipid
density is particularly vivid in gel phase membranes, whose
lipid density is typically about 30% higher than that of fluid
phases, but whose rigidity is easily an order of magnitude
larger (113–115). Curiously, gel phases also exhibit much
stronger curvature softening than fluid phases (` ≈ 14 nm for
MARTINI DMPC (66)); in fact, the modified curvature energy
density in Eqn. (4) that allows for softening, together with its
stress-strain relation (5), was originally developed by Diggins
et al. to describe gel phases (66). These authors also noticed
that for coarse-grained models (such as MARTINI) κgel/κfluid
is not quite as large as seen in experiments—provided both
phases are extrapolated to the transition temperature (116).
This mirrors the finding in the present paper that the rigidity
increase driven by differential stress (about 50%) is likewise
not as large as the one that is experimentally observed (about
150%). Considering that coarse-grained models are typically
designed to get the properties of fluid phases right, this
discrepancy is not overly disturbing.

While the increase in membrane rigidity upon entering the
gel phase is well established, our data nevertheless show quite
clearly that the fluid-gel transition does not coincide with the
stiffening transition: the latter happens much earlier, meaning,
at smaller asymmetries δn. A transition of the compressed
leaflet into the gel phase does ultimately happen—as evident
visually, in the order parameter P2, and the specific heat
cP—but only in our strongest asymmetric system, δn = 6.7%.

We have no microscopic explanation for why these two
transitions take place at different asymmetries or, presumably
equivalently, different differential stresses.

We can visually identify small transient gel regions in the
compressed leaflet even slightly below the transition, but not all
the way down to the actual stiffening transition. These patches
appear to prefer the vicinity of a buckle’s inflection points,
not its turning points. It is hence conceivable that their further
growth is impeded by the curvature of the buckle, and that
observations based on buckles might therefore exhibit some
finite size effects. However, the two thermodynamic pieces
of evidence we have presented for the gel-transition in the
compressed leaflet—the specific heat cP and the orientational
order parameter P2, both shown in Fig. 3—were determined
for the uncompressed flat membrane at γ = 0, indicating that
even in the absence of curvature gradients the overcrowded
leaflet does not transition into the gel phase for δn . 6%.

If transient gel or gel-like domains prefer the vicinity of
inflection points, this would bias a buckle’s shape to be flatter
in these regions than expected for classical Euler elastica.
Diggins et al. (66) captured precisely this feature in their

curvature-softened buckling theory, where it shows up as an
increase in ` or δ. This still leaves open the question whether
in the present case it arises as a consequence of a “biphasic”
membrane (as just described), or a “monophasic” membrane
comprising a material with a fairly nonlinear elastic response
(as Diggins et al. (66) concluded for pure gel phases). A
further analysis of a buckle’s position dependent orientational
order parameter or area per lipid would likely shed more light
onto this question. All the same, any flattening of the buckle
near its inflection points (irrespective of the cause), and the
associated non-Eulerian stress-strain response, prevents the
fit from misreading the still soft turning points (or “hinges”)
as being representative of the entire membrane’s rigidity.

Even more fundamentally, how a single-leaflet gel tran-
sitions takes place in such strongly differentially stressed
bilayers is likely very subtle due to the competition between
the two leaflets: upon increasing the asymmetry, the depleted
one ever more strongly tries to compress the overfilled one,
until the latter finally gives in; but when that happens, the con-
comitant reduction in area of the depleted leaflet also reduces
its driving force for this very transition. In other words, it is
not sufficient to picture the gel transition of the compressed
leaflet as being driven by a fixed imposed stress. A refined
analysis of this scenario will be left for a future study.

Creating compositionally asymmetric
membranes can induce accidental differential
stress
The experimental results of Elani et al. (50) suggest that com-
positionally asymmetric membranes are more rigid than their
symmetric counterparts, while we instead argue that differen-
tial stress lies at the core of stiffening. But Elani et al. did not
aim for differential stress; they expressly aimed for composi-
tional asymmetry, and this is what the phase transfer protocol
is supposed to produce. Moreover, Elani et al. were quite con-
scious of the possibility that the phase transfer protocol might
generate undesired artifacts, and so they devised a control
experiment in which they created symmetric membranes via
the more elaborate layer-by-layer process—finding them to
be elastically indistinguishable from symmetric membranes
made by conventional electroformation. To explain why this
negative outcome does not exclude the possibility of differen-
tial stress, we now discuss a scenario in which asymmetry is in
fact a prerequisite for the phase transfer protocol to engender
differential stress.

Consider, therefore, a compositionally asymmetric bilayer
vesicle that is built by joining two individual leaflets, each
initially present as a monolayer at an oil water interface (34–
37, 42, 43). We will assume that the area per lipid in these
monolayers is determined by some equilibrium condition
(say, the equilibrium spreading pressure set by the chemical
potential of lipids in the oil phase) and given by asj (where
j ∈ {+,−} labels the leaflets). The vesicle’s initial area is then
given by Ai = Njasj (for both j). The crucial point is that the
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monolayer areas per lipid need not coincide with those in a
stress-free leaflet of a lipid bilayer, a0j , and therefore each
leaflet harbors energy due to tangential stress, given by

Estretch =
1
2

KA,m+
(Ai − N+a0+)

2

N+a0+
+

1
2

KA,m−
(Ai − N−a0−)

2

N−a0−
.

(38)
The vesicle can lower this energy, and hence eliminate the net
stress Σ, by changing its initial area Ai to some final area Af.
The energy minimization condition Σ = ∂Estretch/∂Af = 0
then leads to

Ai
Af
= α+

as+
a0+
+ α−

as−
a0−

, (39)

wherewe again definedαj = KA,mj/(KA,m++KA,m−). Eqn. (39)
fixes the equilibrium areas per lipid, a∗j = Af/Nj , from which
we can subsequently calculate the area strain γ± in each leaflet:

γ± =
a∗±
a0±
− 1 = α∓

as±/a0± − as∓/a0∓
α+ as+/a0+ + α−as−/a0−

. (40)

Since Σ± = KA,m±γ±, we readily verify that Σ+ + Σ− = 0.
Moreover, with a fairly good approximation α+ = α− = 1/2,
which permits the further simplification

γ± = ±
r − 1
r + 1

with r =
as+/a0+
as−/a0−

, (41)

showing that at this level even the strains add to zero.
Notice now that the two ratios asj/a0j quantify the extent

to which the area per lipid differs between a monolayer and
a single stress-free leaflet in a bilayer. This ratio depends
on the lipid composition of the leaflet (and the experimental
conditions for the respective monolayers), and so the ratio r
of these two ratios generally differs from 1 when asymmetric
membranes are created in a layer-by-layer process. Eqn. (41)
then explains how the two leaflets inherit a nonzero area
strain and a differential stress, even after the net stress has
relaxed. However, if we create a symmetric membrane by this
layer-by-layer process, the two ratios asj/a0j will be identical,
implying r = 1 and γ± = 0. This shows that even though
the phase transfer protocol starts out with two monolayers,
neither of which need reproduce the correct area per lipid for
a bilayer, the symmetric control experiment actually restores
the stress balance. If stiffening really results from differential
stress, symmetric vesicles produced in this way would not
show stiffening—in agreement with the actual observation
(50).

There is another observation which suggests that at least
some differential stress ought to have been present in the
vesicles of Elani et al.: recall from our earlier discussion that
an asymmetric DOPC

POPC membrane in the absence of differen-
tial stress should have a spontaneous curvature of K0b ≈
−0.017 nm−1. Since the giant unilamellar vesicles used in
these experiments had radii of about R0 ∼ 20 µm, this implies
a huge reduced spontaneous curvature |R0K0b | ∼ 300 � 1,
which in turn indicates that these vesicles should have a very

high tendency to tubulate. The fact that this was not observed
suggests a differential stress which compensates the huge
materials-based spontaneous curvature. As we have shown
following Eqn. (20), the overall spontaneous curvature K?

0
gets reduced to zero when a tension of about 0.8 mN/m is
present.

Cholesterol need not cancel differential stress
Let us finally address the question whether a rapidly flip-
flopping lipid species, such as in particular cholesterol, will
distribute between the leaflets such as to eliminate any differ-
ential stress. This claim was recently made by Miettinen and
Lipowsky (92), but we have argued in our theory section that
the situation is likely more complex: since the elastic energy
is only one of several contributions to cholesterol’s chemical
potential, it is not the only one that guides its distribution
between leaflets. In particular, we have presented a simple
model that shows how addition of cholesterol may not just
fail to fully cancel a stress difference but actually create one—
namely, if its free energy of partitioning differs sufficiently
strongly between the leaflets.

To test the latter scenario in simulation, we have prepared a
compositionally asymmetric bilayer of two lipid species with a
significant difference in their ability to solvate cholesterol. One
is DPPC, the other one DIPC (see Fig. 1). Since cholesterol
prefers to partition into saturated phases (95), we expect it to
have a preference for the DPPC side.

We started by simulating two symmetric mixed mem-
branes that consisted of a 4:1 mixture of either DPPC or DIPC
with cholesterol. Using the average area densities obtained
this way, we then created an asymmetric membrane with a
(4:1) DPPC+Chol mixture on one side (72 DPPC lipids and
18 cholesterols), and a (4:1) DIPC+Chol mixture on the other
(56 DIPC lipids and 14 cholesterols). Evolving this system
from this initial condition we observed a strong tendency for
cholesterol to re-partition into the DPPC leaflet, with an ap-
proximately exponential kinetics characterized by a relaxation
time of about 200 ns, as illustrated in Fig. 4. After less than
1 µs the DPPC leaflet holds about 25 cholesterol molecules,
i. e. about 80% of the total cholesterol content. Checking
the differential tension at this end point, we find that it has
the value Σ(res)± = −3.71(88)mN/m, leaving the DPPC+Chol
leaflet under a noticeable compressive stress.

The key difference to the simulation presented by Mietti-
nen and Lipowsky is our choice of lipid tails: we explicitly set
up a situation in which cholesterol experiences a large differen-
tial free energy of partitioning ∆g between the leaflets. This is
not an unphysiological scenario, though. Consider for instance
that the outer leaflet of a cell’s plasma membrane contains
all of the membrane’s sphingomyelin, a strong cholestreol
“recruiter”. In fact Allender et al. (74) have estimated that this
would drive almost 3/4 of the plasma membrane’s cholesterol
content into that leaflet, were it not for the elastic cost asso-
ciated with cholesterol’s change of a leaflet’s spontaneous
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Figure 4: Number of cholesterol molecules Nchol,± in the
upper or lower leaflet of a DPPC+Chol

DIPC+Chol bilayer as a function of
time. The initial state contained 20% cholesterol per leaflet
in an area-matched asymmetric system. Cholesterol flip-flop
leads to a 25:7 redistribution with a relaxation time of about
200 ns. The graph illustrates 20 independent simulations, four
of which are singled out in different shades of blue; the bold
red curve is the average over all of them.

curvature, which turns out to counteract the driving force due
to solvation. Under realistic situations the magnitude of this
effect will depend on many other factors, and in a biological
context it will of course be different for different membrane
systems inside cells. But for now, our simple counter-example
indicates that cholesterol will not automatically eliminate the
differential stress of a membrane.

SUMMARY AND OUTLOOK
On time scales that are short compared to lipid flip-flop time, a
membrane can exhibit two types ofmetastable asymmetry: one
due to composition, the other one due to lateral stress. Hence,
a characterization of bilayer asymmetry that merely addresses
the compositional aspect is incomplete. However, these two
asymmetries are not independent, and their interplay can
lead to sometimes unexpected phenomena. An example is the
residual tension in an area-balanced asymmetric membrane,
for which our proposed theoretical framework suggests a
simple and predictive explanation.

We have shown that asymmetric membranes can be signif-
icantly stiffer than what would be expected from their cognate
symmetric partners. This was indeed found in recent experi-
ments, but we argue that the cause of this effect is differential
stress, not the composition asymmetry by itself. The likely
mechanism involves the creation of a more highly ordered
compressed leaflet, which we expect to be much stiffer and
dominate the bilayer’s energetic response to bending. This

hypothesis is unfortunately difficult to test directly, especially
in experiment, because such compressed phases cannot be
recreated in symmetric systems, and we are not aware of
means to probe a single leaflet’s curvature elasticity directly.

Moreover, the stiffening transition appears to be linked
to the gel transition, but it does not coincide with it. Since
we have only investigated the case of DLPC at 300 K, we
cannot make a general statement how the stiffening transition
would pan out if the gel transition of the leaflet that ends up
being compressed were closer or farther away from the zero
tension state point. For instance, had we simulated the system
at a lower temperature, we would expect—by Le Chatelier’s
principle—that it takes a smaller asymmetry to drive the
compressed DLPC leaflet into the gel phase, thus decreasing
the gap between the two transitions. Conversely, had we used
a highly disordered lipid, such as DIPC, even a 6% asymmetry
might not yet trigger the fluid-gel transition, thus widening
the gap. In neither of these scenarios it is obvious how the
stiffening transition happens, or whether it would even arise.
Unveiling the interplay between these transitions should be a
rewarding subject for future studies.

A stress imbalance between bilayer leaflets, and its impact
on any number of membrane properties, is a matter of prac-
tical concern, since recently proposed methods for creating
compositionally asymmetric membranes might inadvertently
also render them differentially stressed. We have explicitly
shown how this might happen in the phase transfer protocol,
but it is not difficult to imagine causes for imbalance that
arise in the lipid exchange protocol. In fact, in many cases of
practical relevance a bilayer’s spontaneous materials curvature
K0b is so large that macroscopic membrane systems (such as
giant unilamellar vesicles, especially deflated ones) should
be unstable against tubulation without a counterbalancing
differential stress.

We have finally shown that incorporating lipid species that
can rapidly transition between leaflets, such as cholesterol,
renders the situation even more complex. One possibility
is that their redistribution expunges differential stress, as
recently observed by Miettinen and Lipowsky, but this is
not the generic outcome. The chemical potential of these
molecules may contain contributions that expressly favor their
uneven distribution between leaflets, and so adding them to a
stress-balanced membrane might actually create differential
stress. In the case of cholesterol this can easily happen when
the two leaflets differ in their tail order, as is for instance the
case in the plasma membrane.

Evidently, all this matters beyond the case of simple bio-
physical model systems, since virtually all biomembranes are
known to be compositionally asymmetric. Our observations
hence pose a number of pertinent questions: are such mem-
branes also differentially stressed? Their cholesterol content
might not protect them from such a state. If they are stressed,
is their curvature rigidity higher than what we would other-
wise deduce from their components? Maybe by a lot? Since
we know that nature deliberately controls and maintains the
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composition aspect of biomembrane asymmetry, does it also
control differential stress? If so, would it do so actively (say,
by expressly “overfilling” a leaflet), or passively by exploiting
that stress imbalance can be induced by a mismatch between
shape and spontaneous curvature?

These questions strike us as highly relevant for under-
standing the morphology and energetics of cellular membrane
systems, and so it is all the more distressing that no adequate
simulational or experimental techniques appear to exist that
can address them at this point. Simulations can of course
study any type of asymmetric membranes and hence increase
our understanding of these systems; but this cannot answer
the question what state of asymmetry is actually realized in
nature’s biomembranes. And experiments face the difficulty
that we do not know how to readily measure membrane stress
in vivo, let alone on a single leaflet basis. Recently proposed
fluorescent reporters of membrane tension (117) might be a
way into the right direction, but we would then need to know
better what these molecules actually report (most likely: local
order), and how to confine them to a single leaflet. Alterna-
tively, the force required to pull a cylindrical (“wormlike”)
micelle out of a single leaflet depends on its tension (118), but
it will then be even more important than in conventional tether
pulling experiments to disentangle the kinetic contribution
(due to inter-leaflet friction) from the stress-strain relation.

The recently developed experimental protocols for man-
ufacturing asymmetric model membranes have rightfully
sparked a renaissance of the subject, and we hence expect
that these challenges will be tackled. Until then, simulation
and theory can do two things: first, help to provide a deeper
understanding of the issues that need addressing; and second,
suggest observables that are informative about the situation
and could maybe even serve as proxies for differential stress.
Our goal in this paper was to make steps into this direction.
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GLOSSARY
For the convenience of the reader, this glossary gives a list
of the most common mathematical symbols and notations we
use. The list is not complete but focuses on those cases where
confusions are most likely to arise.
Symbol Description
± subscript denoting upper (+) or lower (−) leaflet
α± fraction of membrane expansion modulus due to ±-leaflet,

= KA,m±/KA

αsc stress-curvature parameter, Eqn. (21)
A± equilibrium area of a mixed (flat) leaflet, Eqn. (27)
d total bilayer thickness
dh thickness of a bilayer’s hydrophobic region
g± cholesterol partitioning free energy into ± leaflet, Eqn. (27)
∆g cholesterol partitioning difference, = g+ − g−
γ buckling strain, Eqn. (1)
K curvature of bilayer, measured at midplane
KA,m± monolayer area expansion modulus, Eqn. (16a)
KA bilayer area expansion modulus, = KA,+ + KA,−
K0b a bilayer’s spontaneous materials curvature, created due to

lipid curvature, Eqn. (13)
K0s bilayer curvature at which differential stress vanishes,

Eqn. (15)
K?0 bilayer curvature at which overall bending and stretching

energy is minimized, Eqn. (18)
Km± spontaneous leaflet curvature due to lipids, Eqn. (12)
κ bilayer curvature modulus, Eqn. (14)
κnl nonlocal bilayer curvature modulus, Eqn. (16d)
κm± monolayer curvature modulus, Eqn. (12)
` curvature crossover length, Eqn. (4)
Σ net bilayer tension, = Σ+ + Σ−
Σ± individual leaflet tension
Σ
(res)
± residual differential stress in an area balanced membrane,

Eqn. (24)
z± distance of upper (+) or lower (−) neutral surface from

bilayer midplane
z0 value of z± if we assume z+ ≈ z−
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