
Attention Please: Your Attention CheckQuestions in Survey
Studies Can Be Automatically Answered
Weiping Pei

Colorado School of Mines, Golden, Colorado
weipingpei@mines.edu

Arthur Mayer∗
Colorado School of Mines, Golden, Colorado

arthurmayer@mines.edu

Kaylynn Tu∗
Colorado School of Mines, Golden, Colorado

kaylynntu@mines.edu

Chuan Yue
Colorado School of Mines, Golden, Colorado

chuanyue@mines.edu

ABSTRACT
Attention check questions have become commonly used in online
surveys published on popular crowdsourcing platforms as a key
mechanism to filter out inattentive respondents and improve data
quality. However, little research considers the vulnerabilities of
this important quality control mechanism that can allow attackers
including irresponsible and malicious respondents to automatically
answer attention check questions for efficiently achieving their
goals. In this paper, we perform the first study to investigate such
vulnerabilities, and demonstrate that attackers can leverage deep
learning techniques to pass attention check questions automatically.
We propose AC-EasyPass, an attack framework with a concrete
model, that combines convolutional neural network and weighted
feature reconstruction to easily pass attention check questions. We
construct the first attention check question dataset that consists of
both original and augmented questions, and demonstrate the effec-
tiveness of AC-EasyPass. We explore two simple defense methods,
adding adversarial sentences and adding typos, for survey designers
tomitigate the risks posed by AC-EasyPass; however, thesemethods
are fragile due to their limitations from both technical and usability
perspectives, underlining the challenging nature of defense. We
hope our work will raise sufficient attention of the research commu-
nity towards developing more robust attention check mechanisms.
More broadly, our work intends to prompt the research community
to seriously consider the emerging risks posed by the malicious
use of machine learning techniques to the quality, validity, and
trustworthiness of crowdsourcing and social computing.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing; • Security and privacy → Human and societal
aspects of security and privacy.
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1 INTRODUCTION
Survey is widely used by researchers and decision makers to access
vital information such as thoughts, opinions, and feelings from a cer-
tain population. For example, psychologists and sociologists make
extensive use of surveys to drive their important studies. Market
research companies, which globally produce $45 billion in revenue
each year [35], leverage surveys as a key quantitative technique to
obtain valuable feedback from customers for business strategies.
Government agencies, politicians, and news media conduct public
opinion polls to derive new policies or make important predictions.
The growth and the vast accessibility of the Web have significantly
facilitated the popularity of online surveys over the years. Different
from traditional surveys, online surveys could easily access to a di-
verse population and greatly reduce the time and cost of collecting
data [50]. Online surveys are usually published on crowdsourcing
platforms such as Amazon Mechanical Turk (MTurk) [41].

As online surveys play an important role in research and decision-
making, the quality of survey data becomes a crucial concern for
crowdsourcing service providers and researchers. Some crowdsourc-
ing service providers do have relevant mechanisms for helping sur-
vey requesters improve the data quality. For example, MTurk uses
a qualification mechanism to keep tabs on HIT workers and allow
survey requesters to pre-select qualified workers [52]. However,
service-side support alone is far from enough, and it is still essential
for requesters to evaluate the data quality [18, 26] and filter out
poor quality data [21, 23, 36] for individual surveys.

Poor data quality could be caused by either legitimate respon-
dents or adversaries [23]. For legitimate respondents, they may
submit survey answers in an irresponsible manner. For example,
MTurk workers who value money over responsibility would find
the fastest and easiest way to complete more HITs with less efforts.
For adversaries, they may complete surveys with malicious pur-
poses such as simply polluting the data or purposefully injecting
false information. In August 2018, MTurk had a “bot” scare [3]:
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psychology researchers have noticed a spike in poor quality survey
responses collected on MTurk, which created a “bot” panic about
data quality and potential attacks on crowdsourcing platforms. Data
collected from either irresponsible or malicious respondents would
have a significant impact on the reliability of the survey results, and
cause a variety of severe consequences such as polluting important
research studies and misleading decision makings.

Several approaches have been proposed to identify low-quality
survey data and filter them out. One approach relies on the re-
spondents’ response patterns [21]. For example, those respondents
who rush through a survey by selecting the first option in the
entire survey would be considered unqualified due to this homoge-
neous pattern. However, this approach is not dependable because
respondents may randomly select survey options without showing
suspicious patterns. Another approach is time-based. It assumes
that unreliable respondents will spend less effort and thus time than
reliable respondents to complete a survey [62]. However, this ap-
proach is not dependable either because respondents could be very
diverse in their behaviors, and may even switch to other tasks [17].

The third approach is attention checking, which embeds in a
survey with the attention check questions that have obvious cor-
rect answers to identify inattentive respondents. For example, in a
multiple choice question “We want to test your attention, so please
click on the answer Agree”, the correct answer is explicit and those
respondents who select other options will be considered as inat-
tentive. Because they are specially designed for attention checking
and they are easy to be deployed simply by requesters, attention
check questions have become commonly used in online surveys as
a key mechanism to filter out inattentive respondents and improve
the data quality [2, 16, 18, 51].

However, little research considers the vulnerabilities of this im-
portant quality control mechanism that can allow attackers in-
cluding irresponsible and malicious respondents to automatically
answer attention check questions for efficiently achieving their
goals. We consider both types of respondents as attackers because
their data are not reliable (e.g., inaccurate, invalid, untrustworthy,
or even harmful) to survey requesters, and they are essentially
compromising the integrity of the corresponding studies.

In this paper, we propose AC-EasyPass, an attack framework
with a concrete model, to easily answer attention check questions.
We construct the first attention check question dataset that consists
of both original and augmented questions. We demonstrate that AC-
EasyPass achieves 84.42% mean average precision (MAP), 84.83%
mean reciprocal rank (MRR), and 75.65% accuracy on the original
attention check questions. It achieves 79.69% MAP, 79.87% MRR,
and 68.10% accuracy as well as 86.03% MAP, 86.61% MRR, and
78.54% accuracy on two sets of augmented questions, respectively.
Finally, we explore two simple defense methods, adding adversarial
sentences and adding typos, for survey designers to mitigate the
risks posed by AC-EasyPass. However, these defense methods are
fragile due to their limitations from both technical and usability
perspectives, underlining the challenging nature of defense.

Overall, our work makes the following contributions: (1) We per-
form the first study to investigate the vulnerabilities of the attention
check mechanism in online surveys, and highlight that they can
allow attackers including irresponsible and malicious respondents
to automatically answer attention check questions. (2) We propose

and design AC-EasyPass, an attack framework with a concrete
model, that combines convolutional neural network and weighted
feature reconstruction to easily pass attention check questions. We
evaluate and analyze the effectiveness of AC-EasyPass. (3) We con-
struct the first attention check question dataset. (4) We explore and
evaluate two simple defense methods, adding adversarial sentences
and adding typos, but further show that both methods are fragile
and defense remains a challenging task. (5) More broadly, we in-
tend to prompt the research community to more seriously consider
the emerging security risks posed by the malicious use of artificial
intelligence techniques to the quality, validity, and trustworthiness
of crowdsourcing and social computing.

2 BACKGROUND AND RELATEDWORK
2.1 Background
2.1.1 Quality Control in Crowdsourcing Services. With the increas-
ing popularity of crowdsourcing services, quality control becomes
a critical challenge because HIT workers are very diverse in abil-
ities, skills, interests, personal objectives, and technological re-
sources [9]. Researchers have proposed several quality control
approaches which mainly fall into two categories: “up-front task
design” and “post-hoc result analysis” [29]. The former focuses
on preparing well-designed tasks that are resistant to low-quality
workers [7, 11]. The latter improves data quality by evaluating
results and filtering out those results of low quality, for example,
based on gold questions [73], based on consistency on the same
questions [54, 61], or based on consensus labels that are inferred
by using aggregation methods [58] such as the majority voting
model [32] and the Dawid-Skene model [10].

However, those approaches are often inappropriate for subjective
tasks such as collecting opinions in surveys because ground-truth is
not available. For most survey tasks, whether respondents answer
the survey questions attentively is a critical factor for evaluating
the validity of the survey results. Based on such nature of surveys,
attention checking has become a popular mechanism for improving
the quality of survey results. It embeds attention check questions
that are easy for attentive respondents to answer but are the “traps”
for careless respondents. It has been widely used by researchers for
quality control in important online surveys [2, 8, 20].

2.1.2 Two Forms of Attention CheckQuestions. Two major forms
of attention check questions exist [30]:

Instructional Manipulation Checks (IMCs) [42] were first
proposed in 2009 and have been widely employed in online surveys
since then [16, 18, 43]. IMC is elaborated as a “trick” question with
a large block of text. Figure 1 shows an example of IMC [42]. The
large block of text describes the purpose of the current question
and it ends with a straightforward question: “Please check all words
that describe how you are currently feeling”. However, the lengthy
description of the purpose instructs respondents to ignore this
question by clicking the “none of the above” option to pass this
IMC. Careless respondents may miss the cue or instruction hidden
in the lengthy description and fail this attention check.

Instructed-response Items [4, 25, 60] are designed to also trap
respondents who are rushing through a survey. Those items are
embedded into the survey and require a specific answer, such as “We
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Recent research on decision making shows that choices are affected
by context. Differences in how people feel, their previous knowledge
and experience, and their environment can affect choices. To help us
understand how people make decisions, we are interested in information
about you. Specifically, we are interested in whether you actually take
the time to read the directions; if not, some results may tell us very much
about decision making in the real world. To show that you have read the
instructions, please ignore the question below about how you are feeling
and instead check only the none of the above option as your answer.
Thank you very much.

Please check all words that describe how you are currently feeling.

A. Excited B. Afraid C. Scared D. None of the above

Figure 1: An Example of Instructional Manipulation Check.

We want to test your attention, so please click on the answer Agree.

A. Strongly disagree B. Disagree C. Neutral D. Agree
E. Strongly agree

Figure 2: An Example of Instructed-response Item.
want to test your attention, so please click on the answer Agree” as
shown in Figure 2. Different from IMCs, instructed-response items
are simpler and require less effort since they do not have the lengthy
description to trick respondents. Meanwhile, they often have the
similar format as survey questions, while IMCs may sometimes
stand out from the typical survey questions [30].

Our constructed dataset (Section 4.1.1) contains both forms of
questions. Note that attention check questions are different from
gold questions, which are questions with the ground-truth answers
provided by domain experts. A survey designer would filter out
workers who cannot correctly answer gold questions because they
may not have sufficient background knowledge or capability to take
some specific-topic surveys. Gold questions were rarely observed
in our dataset, and are not what our AC-EasyPass aims to answer.

2.2 Related Work
2.2.1 Research on Attention CheckQuestions. Attention check ques-
tions are common in online surveys and their usefulness has been
studied bymany researchers especially psychologists. Oppenheimer
et al. [42] first proposed IMCs to identify inattentive respondents,
and their study demonstrated that the inclusion of an IMC could
increase the reliability of the collected data. Since then, attention
checking has been considered as a desirable feature in online sur-
veys [39, 43, 49, 49]. Berinsky et al. [2] further discussed the power
of the attention check questions and demonstrated that it is more
desirable to use multiple attention check questions than using a
single one. Gould et al. [17] found that multitasking is a potential
source of inattentiveness in crowd-working settings, so certain in-
tervention can help reduce the frequency of task-switching and
also improve on existing attention checks. To investigate whether
attention check questions would be a threat to scale validity in
psychological testing, Kung et al. [30] conducted two studies and
found no evidence about the threat.

2.2.2 Related Attacks and Malicious Surveys. Crowdsourcing en-
ables the solving of many important problems by gathering the
crowd’s intelligence and wisdom. Correspondingly, attackers are
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Figure 3: Crowdsourcing Platform with Quality Control.

very interested in compromising or manipulating crowdsourcing
services. Besides, even legitimate workers may exhibit malicious
behaviors in crowdsourcing [13]. Yao et al. [67] identified crowd-
turfing attacks which can generate fake comments automatically in
online review systems. Our work differs from theirs from multiple
perspectives such as the attack goals and attack techniques. Mao et
al. [37] designed attacks targeting at the aforementioned Dawid-
Skene model [10], which is an important aggregation method used
for deriving the true labels. Unlike ours, their attacks target at
crowdsourcing tasks that have the ground-truth for each item.

Checco et al. [6] proposed an attack for identifying gold ques-
tions by using a group of colluding crowd workers. They focused
on identifying gold questions without providing correct answers,
while our work focuses on attention check questions and aims to
automatically answer them. Kharraz et al. [27] proposed Survey-
lance to identify websites involved in survey scam services. In this
case, the attacks are triggered by malicious survey designers, while
in our work the attacks are triggered by malicious workers.

3 DESIGN OF AC-EASYPASS
3.1 Threat Model
Crowdsourcing lets requesters leverage the crowd’s intelligence and
wisdom to solve problems. Figure 3 illustrates how a typical crowd-
sourcing platform with quality control works. First, requesters
would create and publish their tasks on the crowdsourcing plat-
form. Then the crowdsourcing platform would distribute the tasks
to workers and aggregate the data provided by the workers who
completed the tasks. Finally, the aggregated data would be sent
back to the requesters for them to filter out unreliable data by using
some quality control mechanism.

Let’s consider an example scenario in which a requester posts a
survey task on the MTurk crowdsourcing platform and some work-
ers (respondents) take this survey. The posted survey is to collect
public opinions on a specific political topic, and all its questions
are Likert-scale statements on which workers are asked to indicate
their agreement or disagreement levels. To increase the quality
of the survey, the requester randomly embeds an attention check
question with the instruction “Please select Completely Agree” into
the sequence of the questions presented to each worker.

Reliable workers would pay attention to the survey and pass this
attention check question easily. However, irresponsible workers
and adversarial workers are likely to fail this attention check. Ir-
responsible workers want to rush through the survey to get paid
quickly and get more pay by completing more tasks, so they may
randomly select their responses to all the questions. Adversarial
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workers may always select negative options such as “Strongly Dis-
agree” or “Disagree” for questions in this survey aiming to influence
the potential political decision. After the requester gathers all the
raw survey data from workers, unreliable responses (i.e., those
without selecting “Completely Agree” for the attention check ques-
tion) will be filtered out. Those workers who selected other options
for this attention check question would further get their submis-
sions rejected, get their rewards to this task denied, and get their
qualification deteriorated (e.g., with the increased rejection rate).

Therefore, both irresponsible workers and adversarial workers
have the strong desire to pass attention check questions, so that
they can be continuously qualified and can continuously achieve
their financial or political goals. In this paper, we consider both
irresponsible workers and adversarial workers as attackers because
their data are not reliable (e.g., inaccurate, invalid, untrustworthy,
or even harmful) to survey requesters, and they are essentially
compromising the integrity of the corresponding studies. They
can of course manually answer those attention check questions;
however, taking an automated approach will enable attackers to
maximize their gains while still maintaining undetected. This will be
especially true if other survey questions are largely subjective and
do not have the ground-truth answers.

3.2 Automated Answer Selection Approaches
In this paper, we focus on investigating attention check questions
that provide multiple choices, among which one is typically the
correct answer. Attackers aim to automatically analyze an attention
check question and derive the correct answer. We formulate this
problem as an answer selection problem.

One important characteristic of attention check questions is that
the correct answer is hidden in the question (Section 2). A simple
approach to selecting the correct answer is by word matching. For
example, Word Count and Weighted Word Count are two repre-
sentative matching methods [66]. However, these methods do not
work well for attention check questions that do not have the option
words appearing in the question, such as “Which of the following is
a vegetable?” with options “Egg”, “Steak”, “Peach”, and “Asparagus”.

More advanced answer selection approaches exist. For exam-
ple, the lexical semantic approach [69] finds the answer option by
pairing the words (in questions and answers) that are semantically
related. This approach is not ideal for answering attention check
questions either. First, attention check questions are often diverse
in length. For example, an instructed-response item question may
have less than 10 words, while an IMC question may have more
than 100 words. So it would be burdensome and error-prone for this
approach to analyze each sentence in a lengthy question. Second,
most attention check questions provide words or phrases instead
of sentences as their candidate answers. So it is difficult for this
approach to extract lexical semantics from short candidate answers.

3.3 Proposed AC-EasyPass Model
To build an automatic answer selection model that is appropriate
for attention check questions, we take the deep learning approach.
One significant advantage of deep learning approach over the tra-
ditional machine learning approach is that it works directly on raw
data to eliminate the need of tremendous manual feature extraction

AC-EasyPass Model Training Trained AC-EasyPass Model

AC question

Questions Answers

External Answer Selection Dataset
Ranks of 

Answer Options

Figure 4: AC-EasyPass Framework.
effort. We propose AC-EasyPass, an attack framework with a con-
crete model, to easily answer attention check questions. Figure 4
illustrates the high-level structure of AC-EasyPass. In the left-side
training component, a concrete AC-EasyPass machine learning
model is trained for automatically extracting features from ques-
tions and answers as well as ranking candidate answer options
based on the similarities between questions and answers. In the
right-side testing component, the trained model analyzes each ques-
tion and selects its top-ranked answer option as the final answer.

However, the biggest challenge to our approach and the AC-
EasyPass framework is the lack of a large attention check question
dataset for training. We address this challenge by training the AC-
EasyPass model using an external answer selection dataset
WikiQA [66], and more specifically, we only use its training dataset
which includes 2,118 questions and 20,360 sentences. In our evalua-
tion of the trained AC-EasyPass model, we test it on our constructed
attention check question dataset as detailed in Section 4.1.1.

3.3.1 Training Dataset. Several answer selection related bench-
mark datasets exist such asWikiQA [66],MCTest [47],MovieQA [56],
and InsuranceQA [12]. We choose WikiQA as our training dataset
for three reasons. First, WikiQA is an open domain answer selec-
tion dataset while other datasets are very domain specific. Second,
similar to attention check questions, WikiQA questions often con-
tain the correct answers in short sentences, while other datasets
may have very lengthy paragraphs (much longer and complicated
than the description in IMCs) to contain the answers. Note that in
this work, we consider the description in an IMC as a part of the
question. Third, the size of the WikiQA dataset is large enough to
train our deep learning model and make it converge.

3.3.2 AC-EasyPass Model. Recently, there have been significant ad-
vances in answer selection tasks [31, 69, 72]. Especially, researchers
have leveraged convolutional neural networks (CNNs) to build
machine comprehension models, and shown that CNNs are more
effective and efficient than recurrent neural networks (RNNs) in an-
swer selection tasks [59, 70, 71]. Yin et al. [70] proposed the BCNN
and ABCNN models that analyze sentence pairs to rank answer
options for the answer selection problem. BCNN constructs the
representations for different levels of the sentences by using con-
volution and pooling operations. Compared with BCNN, ABCNN
adopts an attention architecture to reweight the representations of
sentences. The key idea of their attention architecture is to lever-
age learnable attention matrices to reweight the representations.
Their attention matrices have fixed shapes, thus are more suitable
for modeling the sentences with the similar length. Note that in
this section, attention architecture and matrices are related to the
attention mechanism in neural networks [1] that helps improve the
model accuracy; they are not about the “attention” check questions.

Inspired by the BCNN and ABCNN models, we propose our AC-
EasyPass model to also leverage CNNs for extracting features from
questions and answers as shown in Figure 5. Our AC-EasyPass
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Figure 5: AC-EasyPass Model.
model has three layers: word embedding layer, feature extraction
layer, and classifier layer. Words of questions and answers are
mapped to vectors of real numbers in the word embedding layer.
Then the feature extraction layer extracts features from both a CNN
and a weighted feature reconstruction component. Based on the
features derived from the feature extraction layer, the final logistic
regression (LR) layer identifies the correct answer.

There are two main differences between our proposed model and
the BCNN/ABCNN models. First, we do not include the sentence
lengths (either the question length or the answer length) informa-
tion as our additional features because attention check questions
have a large range of length values (i.e., too distinct to be useful)
and answer options are largely words or phrases with very similar
length values (i.e., too resembling to be useful). Our experimental
results confirmed that adding sentence length information as addi-
tional features makes no improvement in performance. Second, we
propose a Weighted Feature Reconstruction component to extract
additional features by reconstructing the sentence representations.
Many attention check questions are lengthy (especially in IMCs),
and it is difficult for a model to concentrate on the key information
of a lengthy question. To capture the most relevant information
in a question, we reconstruct the sentence representations based
on the distance between the question and each answer option. Our
weighted feature reconstruction component also leverages atten-
tionmatrices to reweight the representations of sentences. However,
different from that in ABCNN, we do not need to train those at-
tention matrices, and the shapes of our matrices are not fixed but
varying for different questions.

Let a question be a sequence (wq1,wq2,wq3, ...,wqm ) ofmwords,
and a candidate answer be a sequence (wa1,wa2,wa3, ...,wan ) of n
words. We now describe how our AC-EasyPass model automatically
processes a question and a candidate answer in three layers.

Word Embedding Layer. In this layer, words of a question and
a candidate answer are converted to informative vectors. We use
the pre-trained word2vec embeddings [38] to represent each word
wi as a d0-dimension vector, where d0 = 300 is the value chosen
in [38]. As a result, we can useQ = (q1,q2,q3, ...,qm ) ∈ Rd0×m and
A = (a1,a2,a3, ...,an ) ∈ Rd0×n to formally represent the question
and the candidate answer, respectively.

Feature Extraction Layer. In this layer, we extract features
from both a CNN and the weighted feature reconstruction compo-
nent. In the CNN, we utilize convolution operations to model the
representations of local phrases. Let ci ∈ Rwd0 be the concatenated
embeddings of w consecutive words, i.e., either qi−w+1, ...,qi in
Q or ai−w+1, ...,ai in A. We generate the phrase representation

pi ∈ Rd1 for ci in the convolution layer based on Formula (1):
pi = tanh(Wci + b) (1)

where W ∈ Rd1×wd0 is the learnable weights, b ∈ Rd1 is the bias,
and d1 is the number of filters in the CNN (which is 50 in our ex-
periments). Then we apply the w average pooling (w-ap) and all
average pooling (all-ap) for p. Here w-ap is the average pooling
with the filter widthw , while all-ap uses the length of the sentence
as the filter width. The w-ap models the question phrase represen-
tations Qw−ap ∈ Rd1×m and the answer phrase representations
Aw−ap ∈ Rd1×n , which will be used as the input to the next con-
volution layer. The all-ap is used to generate two representation
vectors Qall−ap ∈ Rd1 and Aall−ap ∈ Rd1 for the question and the
candidate answer, respectively. The cosine similarity between these
two representation vectors, denoted as Fcnn shown in Formula (2),
will be used as the feature for the final layer:

Fcnn = cos_sim(Qall−ap ,Aall−ap ) (2)
For the weighted feature reconstruction, we reconstruct a sen-

tence vector for the question and the candidate answer, respectively.
We generate the attention matrix based on the Euclidean distance
between two words. We calculate the distance-based attention ma-
trix M ∈ Rm×n as shown in Formula (3):

Mij =
1

1 + | |qi − aj | |
(3)

where | |·| | is the Euclidean distance, andMij represents the attention
value between the ith word inQ and the jth word inA. The smaller
the Euclidean distance between two words, the larger the attention
value. We then reconstruct Q and A based on the attention matrix
M as shown in Formulas (4) and (5):

Q′ = Af (MT) (4)
A′ = Qf (M) (5)

where f (·) is the column-wise softmax function. In this step, we
reconstruct the question representationQ′ ∈ Rd0×m in the answer’s
space, and reconstruct the answer representation A′ ∈ Rd0×n in
the question’s space.

Finally, we apply max pooling for each constructed representa-
tion, and calculate the similarity between the question and the can-
didate answer in the same space as shown in Formulas (6) and (7):

FQ = cos_sim(max_pool(Q),max_pool(A′)) (6)
FA = cos_sim(max_pool(Q′),max_pool(A)) (7)

where FQ represents the cosine similarity between the question and
the candidate answer in the question’s space, while FA represents
the similarity in the answer’s space.With themax pooling operation
instead of average pooling, we would filter out the less significant
information and retain the more important information.

Logistic Regression (LR) Classifier Layer. All the features
obtained from the previous feature extraction layer will be the
inputs to the LR classifier layer. All the candidate answers will be
ranked based on their probability to be the correct answer.

4 EVALUATION OF AC-EASYPASS
4.1 Setup of the Experiments
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4.1.1 Datasets. Our dataset consists of three sub-datasets: AC-
Original, Ans-Augmented, and Ques-Augmented. AC-Original con-
sists of 115 original attention check questions that we collected
largely fromMTurk. Tomore comprehensively evaluate AC-EasyPass,
we further propose two methods to augment AC-Original, and con-
struct Ans-Augmented and Ques-Augmented. We use lowercasing
and stop word removal to preprocess our training dataset and these
testing datasets.

AC-Original dataset. The AC-Original dataset is constructed
mainly by logging into MTurk as a worker and searching for survey
HITs periodically with about two times per week. Two native Eng-
lish speakers who are not involved in the design of AC-EasyPass
performed this search and then manually browsed over 1,000 HITs.
They read all the questions in each survey to identify unique atten-
tion check questions. Roughly 25% of the surveys contain attention
check questions, and they are largely related to important studies
such as psychological, political, and marketing research. We notice
that the diversity of the attention check question in practice is lim-
ited. Between July 2018 and January 2019, 91 unique attention check
questions are collected from MTurk. We further included another
24 attention check questions mentioned in literature [18, 22, 42]
and used in online forums like Reddit [46]. And to avoid overfitting,
those representative and effective attention check questions are
only used for testing (and the model is trained on a general answer
selection dataset, the WikiQA). In total, AC-Original consists of 115
unique questions, among which 34 are IMCs and 81 are instructed-
response items. The average length of IMCs is 102 words, while
that of instructed-response items is only 12 words. Some questions
have multiple correct answers.

Ans-Augmented dataset. This dataset is constructed by using
our answer-based augmentation method that creates new questions
based on the diversity of the answer options. In this method, we
replace the correct answer that is mentioned in the question with
another candidate answer. For example, for the attention check
question “Please answer Rarely to this question” with the answer
options (“Never”, “Rarely”, “Occasionally”, “Almost every time”),
we could replace the correct answer “Rarely” in the question with
another answer option “Never” to derive a new question “Please
answer Never to this question”. Depending on the number of an-
swer options in each original question, we can derive multiple new
questions. Based on the AC-Original dataset, we eventually derived
442 new attention check questions in the Ans-Augmented dataset.

Ques-Augmented dataset. This dataset is constructed by us-
ing our question-based augmentation method that creates new
questions by paraphrasing the original questions. We adopt the
backtranslation method [71] which leverages neural machine trans-
lation (NMT) techniques to paraphrase questions. The basic idea
of this augmentation is to use two translation models, one from
English to German and the other from German to English, to ob-
tain paraphrases of the questions. The publicly available codebase
provided by Luong et al. [34] has replicated Google’s NMT (GNMT)
system [64]. So we utilize a pretrained 4-layer GNMT model pro-
vided by this codebase on 4.5 million English-German sentence
pairs [63] to paraphrase questions. We obtain four augmented ques-
tions for each original question from the AC-Original dataset, and
combine those augmented questions with the original answer op-
tions as our Ques-Augmented dataset. Considering the fact that

backtranslation is not perfect and sometimes causes grammatical
errors or information absence, we revise the augmented questions
to ensure that their expressions are correct and their correct an-
swers can be easily identified by us. To simplify our augmentation
and guarantee its precision, we do not use those questions with
the length greater than 160. Finally, we derived 424 new attention
check questions in the Ques-Augmented dataset.

4.1.2 Reference Methods for Comparison. We compare our pro-
posedAC-EasyPassmodel with two baselinemethods Baseline_fixed
and Baseline_rand as well as a reference method BCNN.

In the Baseline_fixed method, a survey respondent simply selects
a specific such as the first option for all questions. This method
requires the least effort from attackers and is easy to implement by
them. Attackers may also adopt this basic method to achieve some
specific purposes. For example, they may select the first answer
option such as “Strongly Disagree” for all the questions to damage
the reputation of a company or product. In our experiments, we
implement this method by selecting the first option as the answer.

In the Baseline_rand method, a survey respondent simply selects
a random option for each question. This is a common method for
respondents who want to rush through a survey with less effort
and want to avoid being detected as abnormal. Attackers can easily
implement and use it to manipulate the overall survey results.

We also implement the BCNN model proposed by Yin et al. [70]
as a reference method for comparison. Our implemented BCNN
model achieves an almost identical performance as theirs on the
WikiQA dataset. We could not implement ABCNN as a reference
because its parameters are not described in their paper and their
code is not publicly available.

4.1.3 Metrics for Evaluation. For evaluation, we rank answer op-
tions based on their predicted scores for being the correct answer.
We leveragemean average precision (MAP) andmean reciprocal rank
(MRR) as the metrics for evaluation, which are commonly used in
the answer selection related research [45, 57, 65]. The definition of
MRR is shown in Formula (8):

MRR =
1
|Q |

|Q |∑
i=1

1
ranki

(8)

where |Q | is the number of the questions and ranki is the rank
position of the first correct answer for the i-th question. MRR is
based on the rank position of the first correct answer, thus it is
suitable for questions with only one correct answer. However, we
have questions that have more than one correct answer, so we also
consider MAP as shown in Formula (9):

MAP =
1
|Q |

|Q |∑
i=1

AP(i) (9)

whereAP(i) is the average precision similarly defined as that in [28]
for the i-th question. MAP takes all correct answers into account,
thus it is suitable for all multiple-choice questions.

We also report the results using the traditional accuracy metric,
which is defined as the percentage of attention check questions
that a model ranks the correct answer as the top option.
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4.2 Effectiveness of AC-EasyPass
To evaluate our AC-EasyPass model, we compare it with the two
baseline methods and the BCNN model on three datasets: AC-
Original, Ans-Augmented, and Ques-Augmented. Table 1 provides
the detailed evaluation results.

Overall Results and Analysis. We can see that on the AC-
Original dataset, Baseline_fixed achieves the worst performance,
which means that selecting the same option (the first one in our
experiments) is not a good strategy to pass the attention check,
with only 13.91% of attention check questions being passed. Al-
though Baseline_rand achieves a better result in comparison with
Baseline_fixed, its performance is still quite poor with around 0.42
in both MAP and MRR. BCNN achieves 0.7889 MAP and 0.7901
MRR on the AC-Original dataset, which confirms that it is feasi-
ble to leverage machine comprehension techniques to pass atten-
tion check questions with high accuracy. Our AC-EasyPass model
achieves the best performance with 0.8442 MAP and 0.8483 MRR
on the AC-Original dataset in which 75.65% of questions are passed,
far surpassing the baseline methods and also outperforming the
BCNN model. On the two augmented datasets constructed from
the AC-Original dataset, AC-EasyPass still outperforms those three
methods, which further validates the effectiveness of our approach.

PerformanceDiscrepancy on theAns-AugmentedDataset.
Baseline_rand, BCNN, and AC-EasyPass all perform better on the
AC-Original dataset and the Ques-Augmented dataset than on the
Ans-Augmented dataset. This discrepancy is mainly caused by the
unbalanced augmentation in the Ans-Augmented dataset, in which
the number of the newly derived questions depends on the number
of the answer options. An attention check question that contains
only one correct answer with k answer options could be used to
derive k − 1 Ans-Augmented questions. The expectation of MAP
for this question is shown in Formula (10):

EMAP =
1
k
× (1 +

1
2
+ ... +

1
k
) (10)

A larger k would lead to a smaller expectation of MAP. Fig-
ure 6a shows the distribution of questions with k options in the
AC-Original dataset and the Ans-Augmented dataset. We can see
that the unbalanced augmentation method decreases the propor-
tion of questions with less answer options (k < 6) and increases
the proportion of questions with more options (k ≥ 6). Figure 6b
shows the expectation of MAP on questions with no larger than k
options. This chart clearly illustrates that an unbalanced augmen-
tation would decrease MAP because questions with larger k values
would have a larger impact on the final MAP expectation result.
Note that our answer-based augmentation slightly increased the
percentage of the questions with the first option as the correct an-
swer, thus the Baseline_fixed method which always selects the first
option performs a little bit better on the Ans-Augmented dataset
than on the other two datasets.

Analyzing Failure Cases. AC-EasyPass and BCNN both found
the correct answers for most of attention check questions such
as the aforementioned “Which of the following is a vegetable?”
and “We want to test your attention, so please click on the answer
Agree”. We now focus on analyzing the types of the questions that
AC-EasyPass and BCNN models failed to rank a ground-truth an-
swer as the top option. On the AC-Original dataset that contains
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(b) Expectation of MAP questions with no larger than k options

Figure 6: Comparison between the AC-Original and Ans-
Augmented datasets from two different aspects: (a) distribu-
tion of questions, and (b) expectation of MAP.

115 attention check questions, our AC-EasyPass model fails on 28
(24.3%) questions. Among the 28 failure questions, 8 of them have
answer options related to some number (e.g., the correct answer is
the concatenated word “thirtyfour” and the option is “34”), 6 of them
have lengthy descriptions (e.g., IMCs or reading comprehension
given a story), 5 of them are more difficult questions that require
some advanced comprehension ability (e.g., selecting the word start
with the letter ‘b’), 4 of them are caused by some very distracting
information embedded in the questions, and the rest 5 are due to
the limitations of the model on discerning subtle differences such as
between “strongly agree” and “agree” sometimes. The BCNN model
has 39 (33.9%) failure cases, among which 27 cases also fail AC-
EasyPass. However, 12 failure questions for the BCNN model are
correctly answered by our AC-EasyPass model. The BCNN model
mainly focuses on learning phrase representations by leveraging
the average pooling operation, which may make it fail to handle
the answer options that are not phrases. For example, it fails on
questions such as “please select 4 as your answer” with the options
“1”, “2”, “3”, and “4”. Besides, due to the small edit distance between
“agree” and “disagree”, the BCNN model also fails to correctly an-
swer questions such as “please choose the strongly disagree option
for this question” with the options “strongly agree”, “agree”, “dis-
agree”, and “strongly disagree”. Our AC-EasyPass model answers
these questions correctly with its Weighted Feature Reconstruction
in which the significant information would be extracted by lever-
aging the max pooling operation. These results validate the better
performance of AC-EasyPass over BCNN.

4.3 Usefulness of Weighted Feature
Reconstruction

Our proposed weighted feature reconstruction component aims to
filter out less significant and retain more important information
so that the ground-truth answer would be closer to the question
than other wrong options. We now explore how this component
contributes to the answer selection results. We first analyze the
similarities between a question and the answer options before and
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Table 1: AC-EasyPass Evaluation Results on Three Datasets.

AC-Original Ans-Augmented Ques-Augmented

Method MAP MRR Accuracy MAP MRR Accuracy MAP MRR Accuracy

Baseline_fixed 0.3851 0.3877 0.1391 0.3979 0.4016 0.1719 0.3787 0.3861 0.1439
Baseline_rand 0.4231 0.4264 0.2043 0.3960 0.3978 0.1672 0.4146 0.4212 0.1995
BCNN 0.7889 0.7901 0.6609 0.7262 0.7270 0.5837 0.8078 0.8101 0.7028
AC-EasyPass 0.8442 0.8483 0.7565 0.7969 0.7987 0.6810 0.8603 0.8661 0.7854

after the feature reconstruction. Then we investigate the difference
between the top-ranked option and the other options in BCNN and
AC-EasyPass to compare the confidence of these two models on
selecting the ground-truth answer.

Similarity rank improvement in reconstructed spaces. For
a specific question, our model ranks the answer options based on
their probabilities to be the ground-truth answer. The probability to
be the ground-truth answer depends on the similarities between the
answer options and the question. The higher the similarity value,
the higher the probability for an answer option to be the ground-
truth answer. We hypothesize that the reconstructed features would
make the ground-truth answer closer to the question comparedwith
other wrong options. Since we are concerned about the relative
ranks of answer options for a given question, we compare the
rank change of the ground-truth answer based on similarities in
different spaces (original space and reconstructed spaces).We define
a similarity rank improvement (SRI) metric as in Formula (11):

SRI = Ror iдinal − Rr econstructed (11)
where Ror iдinal is the rank of the ground-truth answer based on
the similarity before reconstruction while Rr econstructed is the
rank after reconstruction. A positive SRI value implies that the
reconstruction process makes the similarity between the question
and the ground-truth answer higher than other options.

We analyze the SRI in the reconstructed question and answer
spaces. In the question space, 51 (44.3%) questions keep the same
similarity rank before and after the reconstruction process, 54
(47.0%) questions have a positive SRI, while 10 (8.7%) questions
have a negative SRI. Among questions with a positive SRI, 27 ques-
tions rise by one in rank and 18 questions rise by two in rank. In
the answer space, 52 (45.2%) questions have a positive SRI and 30
(26.1%) questions have a negative SRI. The average SRI in the ques-
tion space and the answer space is 0.7217 and 0.4174, respectively,
with the former greater than the latter. We used the paired sample t-
test to compare the pairs of SRI in question space and answer space,
and found this average SRI difference is not statistically significant.
Therefore, the reconstructed features within the question and an-
swer spaces improve the model performance almost equivalently,
and we adopt both of them in our model.

The probability gap between the top-ranked option and
other wrong options. A larger probability gap implies that a
model has higher confidence on choosing the top-ranked option.
Instead of measuring all possible combinations between the top-
ranked option and other wrong options, we only need to examine
the probability gap between the top-ranked and the second-ranked
options, which is the lower bound of the difference between the
top-ranked option and the other options. We only consider the
successful cases where the ground-truth answer is selected as the
top-ranked answer in BCNN and AC-EasyPass models. We first

normalize the probabilities of all options so that their sum becomes
one. We then define the probability gap metric as in Formula (12):

probability дap = Ptop−ranked − Psecond−ranked (12)
where Ptop−ranked and Psecond−ranked are the probabilities of the
top-ranked option and the second-ranked option to be the ground-
truth answer, respectively.

Figure 7 shows the distributions of probability gap in BCNN and
AC-EasyPass models. On average, the probability gap is 9.9% in
BCNN, while it increases to 14.8% in AC-EasyPass. We used the
Wilcoxon signed-rank test to compare these two distributions, and
found that their difference is statistically significant. This result
demonstrates that the weighted feature reconstruction process even
gives AC-EasyPass more confidence than BCNN on selecting a
ground-truth answer.

Figure 7: Probability gap of the top-ranked and second-
ranked options in BCNN, and AC-EasyPass.

5 DEFENSES AGAINST AC-EASYPASS
We now explore potential defenses for improving the robustness
of the attention check mechanism. That is, attackers would use
our proposed AC-EasyPass or other answer selection models to
automatically pass attention check questions, while our goal in this
section is to make those attacks less effective in deriving correct
answers. Especially, inspired by the recent research on fooling
machine learning models, we explore and evaluate two simple
defense methods: adding adversarial sentences and adding typos.

Recently, researchers found that machine comprehension models
are vulnerable to adversarial examples [24, 33, 48]. In these research
efforts, adversarial examples or sentences are created by attackers to
fool the legitimate machine learning models. Inspired by them but
starting from a defense perspective, we consider to defend against
AC-EasyPass by adding adversarial sentences or phrases.

Besides, some researchers showed that attackers can use typos
to fool machine comprehension models [19, 33, 48]. For example,
“United States” in a sentence could be written as “Un1ted Sta8tes”.
Those words with typos are still easily recognizable by humans, but
could be identified by machine comprehension models as unknown
words because they are not in the dictionary and they would be
mapped to random word vectors. Therefore, we consider to add
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typos into attention check questions for disguising the meanings
of words and decreasing the accuracy of attackers’ models.

5.1 Adding Adversarial Phrases or Sentences
Jia et al. [24] demonstrated that on the SQuAD dataset [44], adver-
sarial sentences can incur an over 50% decrease to the F-measure
score of the machine comprehension models. Different from the
questions in the SQuAD dataset, attention check questions do not
have relevant (or relevant enough) sentences that could be useful for
deriving the correct answers. In more details, instructed-response
items do not have any relevant sentences, while IMC questions are
spurious and their sentences cannot be used to derive the final cor-
rect answers as shown in the “Please check all words that describe
how you are currently feeling” example in Figure 1.

Therefore, we cannot generate adversarial sentences based on
relevant sentences as Jia et al. [24] did.We instead add perturbations
such as some words, phrases, or sentences as noises to distract
AC-EasyPass without distorting the semantics and purpose of an
attention check question. So we define three rules to follow for
adding perturbations: (1) the added perturbations should not be
perceptible as irrelevant information to attentive respondents; (2)
adding perturbations would not change the correct answer to be
identified by attentive respondents; (3) adding perturbations would
likely fool AC-EasyPass to select an incorrect answer.

Guided by these rules, we come up with a concrete strategy
to add perturbations, i.e., carefully including some incorrect an-
swer option(s) into the question to distract an attacker’s model
without adding too much outstanding information. This strategy
is applicable to both IMCs and instructed-response items, but its
implementation in them is different due to the differences between
these two forms of attention check questions:

IMCs. A lengthy description exists in each IMC before its ques-
tion as shown in Figure 1. Most of those lengthy descriptions would
give a brief introduction about answer options and provide the
cue or instruction to the correct answer. We can add perturbations
by smoothly mentioning some wrong option(s) in the question.
Figure 8 illustrates how we add an adversarial phrase (in bold font)
to the IMC example shown in Figure 1. In this example, all answer
options are about “words” that describe feelings, so we mention one
of wrong answers “Excited” near “words”. Mentioning an incorrect
option as an example for explanation not only retains the semantics
of the original question but also distracts the attacker’s model.

Recent research on decision making shows that choices are affected by
context...... Thank you very much.

Please check all words below such as Excited that describe how you
are currently feeling.

A. Excited B. Afraid C. Scared D. None of the above

Figure 8: Adding an Adversarial Phrase (in bold font) to the
IMC example shown in Figure 1. Note the first paragraph is
shrunk to save space, but is identical to that in Figure 1.

Instructed-response Items. Instructed-response items aremore
straightforward than IMCs. They do not have lengthy descriptions,
so it is hard to find related information about options as in IMCs.

In this case, we add a short descriptive sentence about how to com-
plete a task. Figure 9 illustrates how we add an adversarial sentence
(in bold font) to the instructed-response item example shown in
Figure 2. The added sentence contains one of the incorrect answer
options “Disagree” to distract the attacker’s model.

Please click on one of options such as Disagree. We want to test
your attention, so please click on the answer Agree.

A. Strongly disagree B. Disagree C. Neutral D. Agree
E. Strongly agree

Figure 9: Adding an Adversarial Sentence (in bold font) to
the Instructed-response Item example shown in Figure 2.

5.2 Adding Typos
Pre-trained word embeddings have been shown to boost the per-
formance in natural language processing tasks. However, any typo
would make a word be identified as an unknown word, and would
fail the mapping from the word to a unique and meaningful word
embedding. Our goal is to add simple typos to fool an attacker’s
model while still making it easy for humans to ignore the typos.
Specifically, we add typos to some keywords of a question that are
significant to the derivation of the correct answer; meanwhile, we
only change one letter in each keyword by replacing it with a simi-
lar character. However, not all letters have similar characters, so
we give a high priority to the letters that do have similar characters.
Table 2 lists some of the high-priority letters that we identified.
Table 2: SomeHigh-priority Letters and their Replacements.

Original Letter Similar Character Replacement Example

q 9 question → 9uestion
o 0 other → 0ther
z 2 zero → 2ero
l 1 select→ se1ect
u v true → trve
s 5 classified→ cla5sified

Besides adding a typo, we also add “(forgive the typos)” at the
end of the question to help lessen the possible ambiguity introduced
by the typo to a respondent. In comparison with adding adversar-
ial sentences or phrases, adding typos requires less effort from a
requester to design an attention check question, but may require
more effort for a respondent to ignore the typos. So both methods
have pros and cons.

5.3 Evaluation of the Two Defense Methods
We evaluate the two defense methods by comparing the perfor-
mance of AC-EasyPass on the AC-Original dataset with that on
two variations of the AC-Original dataset (one with an adversar-
ial sentence or phrase added, called the AC-Original-Adversarial
dataset, and the other with a typo added, called the AC-Original-
Typos dataset, for each attention check question in the AC-Original
dataset). Table 3 lists the evaluation results.

Overall Results and Analysis. We can see that both methods
can to some extent decrease the accuracy of our AC-EasyPass at-
tacks. Adding adversarial sentences contributes to an over 10%
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Table 3: Effectiveness of the Two Defense Methods on De-
creasing AC-EasyPass Performance.

Dataset MAP MRR Accuracy

AC-Original 0.8442 0.8483 0.7565
AC-Original-Adversarial 0.7144 0.7178 0.5478
AC-Original-Typos 0.5247 0.5326 0.2957

decrease in both MAP and MRR, while adding typos leads to a more
than 30% decrease in both MAP and MRR. Adding typos outper-
forms adding adversarial sentences, and one reason is that typos
directly affect the correct answer while adversarial sentences just
distract AC-EasyPass from paying attention to the correct answer.

Analyzing Failure Cases. As mentioned in Section 4.2, there
are 28 failure questions on the AC-Original dataset. It is not a sur-
prise that 26 of those 28 failure questions are still failure questions
after being added with adversarial sentences or typos. On the AC-
Original-Adversarial dataset, AC-EasyPass now fails on 52 (45.2%)
out of 115 questions. Excluding those 26 failure questions and for 17
of the rest 26 failure questions, AC-EasyPass selects the wrong op-
tion mentioned in an adversarial sentence as the top-ranked option.
On the AC-Original-Typos dataset, AC-EasyPass now fails on 81
(70.4%) out of 115 questions. Excluding those 26 failure questions, 55
failure cases are caused by the added typos. Both defense methods
can be useful in decreasing the accuracy of AC-EasyPass.

5.4 Limitations of the Two Defense Methods
Although adding adversarial sentences and adding typos could to
some extent decrease the accuracy of our AC-EasyPass attacks,
these two defense methods are fragile due to their limitations from
both technical and usability perspectives.

For adding adversarial sentences, this defense method will be-
come less effective if attackers include some adversarial sentences
to train AC-EasyPass and improve its robustness. This is similar to
the approach of adversarial training [15, 55], but is now performed
by attackers instead of defenders. We conducted some preliminary
experiments to evaluate the effectiveness of adversarial training.
We first apply our adding adversarial sentences method to the Ques-
Augmented dataset to generate an adversarial dataset, called the
Ques-Augmented-Adversarial dataset. Then this dataset is added
to the WikiQA training dataset for adversarial training. Our adver-
sarially trained AC-EasyPass model can now obtain 75.41% MAP,
76.07% MRR, and 60.87% accuracy on the AC-Original-Adversarial
dataset. These results show that even a simple adversarial training
can help AC-EasyPass regain (to certain extent) the accuracy lost to
the adding adversarial sentences defense method. Meanwhile, if not
properly designed and tested, adversarial sentences may confuse
humans and decrease the accuracy of attentive survey respondents
on answering attention check questions.

For adding typos, attackers can leverage spelling check tech-
niques to correct those typos and improve the robustness of AC-
EasyPass. To evaluate the effectiveness of this idea, we used a con-
text aware spelling check service provided by Microsoft Azure [53]
to correct typos. Our experiments show that, 59.7% of the questions
in the AC-Original-Typos dataset can be completely corrected by
this single spelling check service, while 8.4% of the questions can be
partially corrected; therefore, this second defense method becomes

less effective too. Moreover, while our added typos could be easily
ignored by humans, they are still perceptible to humans and may
negatively affect the survey answering process. This is perhaps the
biggest limitation of the adding typos defense method.

6 DISCUSSION
Based on the analysis of failure cases in Section 4.2, attackers may
include more answer selection datasets besides WikiQA to train
AC-EasyPass. This is because more comprehensive training data
can often help improve the generalization ability of neural network
models. For the same reason and based on the experiments in Sec-
tions 5.3 and 5.4, attackers can always perform adversarial training
to improve the robustness of AC-EasyPass. In addition, some at-
tention check questions repeatedly occur in different surveys as
we observed in our data collection process; this characteristic can
be leveraged by attackers to collectively identify attention check
questions in multiple surveys similar to what Checco et al. did in
identifying gold questions by using colluding crowd workers [6].

In terms of the defense, using CAPTCHAs as a solution is not
desirable because less difficult CAPTCHAs could be easily compro-
mised by advanced solvers [14, 40, 68] while more difficult ones
would cause selection bias and incur usability concerns [5]. We
may also ask if we can use questions that AC-EasyPass could not
correctly answer as reliable attention check questions. This may
not be a long-term solution because attackers can incorporate those
questions to further train their models. On the other hand, non-
intrusive bot detection techniques such as anomaly detection based
on user behavior profiling could be a potential defense.

It is crucial to defend against AC-EasyPass or similar attack
models to protect this important quality control mechanism, yet
it seems that currently everything strongly favors attackers. Re-
searchers need to design effective defense schemes to protect the
existing attention checking mechanism, or perhaps need to design
new attention checking mechanisms that are secure and usable.

7 CONCLUSION
In this paper, we performed the first study to investigate the vul-
nerabilities of the attention check mechanism. We proposed AC-
EasyPass, an attack framework with a concrete model, that com-
bines convolutional neural network and weighted feature recon-
struction to easily pass attention check questions. We constructed
the first attention check question dataset that consists of both origi-
nal and augmented questions, and demonstrated that AC-EasyPass
is effective on those questions. We also explored two simple defense
methods, adding adversarial sentences and adding typos, for survey
designers to mitigate the risks posed by AC-EasyPass. However,
these two defense methods are fragile due to their limitations from
both technical and usability perspectives, underlining the challeng-
ing nature of the defense task. We hope that our work will raise
sufficient attention of the research community towards develop-
ing more robust attention check mechanisms. More broadly, our
work intends to prompt the research community to seriously con-
sider the emerging risks posed by the malicious use of machine
learning techniques to the quality, validity, and trustworthiness of
crowdsourcing and social computing.
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