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ABSTRACT. We study the positions in the Weihrauch lattice of parallel prod-
ucts of various combinatorial principles related to Ramsey’s theorem. Among
other results, we obtain an answer to a question of Brattka, by showing that
Ramsey’s theorem for pairs (RT%) is Weihrauch-incomparable to the parallel
product of the stable Ramsey’s theorem for pairs and the cohesive principle
(SRTZ x COH).

1. INTRODUCTION

Reverse mathematics is a foundational area of logic devoted to calibrating the
precise axioms needed to prove a given theorem of ordinary mathematics. For a
standard reference, see Simpson [34]. A particularly fruitful line of research in this
endeavor has been looking at theorems from combinatorics, particularly Ramsey’s
theorem and its many variants. See Hirschfeldt [20] for an introduction to the area.
One recent way of extending the scope of this analysis is to replace the traditional
framework of reverse mathematics, which is provability in fragments of second-order
arithmetic, by Weihrauch reducibility. The latter is a tool that has been widely
deployed in computable analysis and complexity theory; see the recent survey article
by Brattka, Gherardi, and Pauly [4]. Recently it has gained prominence also in the
study of computable combinatorics, and it is currently seeing a surge of activity;
see, e.g., [1, 10, 13, 15, 18, 22, 24, 25, 28, 30, 31, 32]. See also Brattka [2] for an
updated bibliography.

In this paper, we turn the lens of Weihrauch reducibility on various results
concerning Ramsey’s theorem and its products with other mathematical principles.
We begin with some background on Weihrauch reducibility and Ramsey’s theorem.

Definition 1.1. A problem P is a partial multifunction from 2“ to 2%, written
P:C2¥ = 2% We call each X € dom(P) an instance of P, or P-instance for short,
and each Y € P(X) a solution to X as an instance of P, or just a P-solution to X.

In general, a problem may be a partial multifunction between other kinds of repre-
sented spaces. We shall consider such problems in Section 4, and refer the reader
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to [4, Section 2] for definitions. Elsewhere in this paper, the above definition will
be sufficient. (To be precise, we do work with represented spaces, since we code ob-
jects such as colorings of n-tuples of natural numbers as elements of Cantor space,
but our codings are transparent enough that we can safely ignore this distinction,
which we believe will improve clarity for most readers.)

We assume familiarity with standard computability-theoretic notation. For a
partial function v, we write ¥ (z) ~ y to mean that ¢(z) is equal to y if defined.

A Dbroad class of problems comes from reverse mathematics, where a typical
object of study is a mathematical principle of the syntactic form

(VX)[p(X) = (V)X Y)]],

where ¢ and 6 are arithmetical formulas of second-order arithmetic. Such a principle
gives rise to the problem whose instances are the sets X such that ¢(X) holds, and
where the solutions to any such X are the Y such that (X,Y) holds. In general,
the formulas ¢ and 6 above need not be unique for a given principle, but in practice,
each principle one studies has a natural such pair of formulas associated to it. We
adopt this terminology for specifying problems in this paper.

Definition 1.2. Let P and Q be problems.

(1) Q is computably reducible to P, written Q <. P, if every instance X of Q
computes an instance X of P, such that for every solution Y to X , we have
that X &Y computes a solution Y to X.

(2) Q is strongly computably reducible to P, written Q <. P, if every instance
X of Q computes an instance X of P, such that every solution Y to X
computes a solution Y to X.

(3) Q is Weihrauch reducible to P, written Q <y P, if there exist Turing
functionals ® and W such that for every instance X of Q, we have that :I>X
is an instance of P, and for every solution Y to ®X we have that UX®Y s
a solution to X.

(4) Q is strongly Weihrauch reducible to P, written Q <.w P, if there exist
Turing functionals ® and ¥ such that for every instance X of Q, we have
that ®X is an instance of P, and for every solution Y to ®X we have that
UY is a solution to X.

We write P =, Q if P <. Q and Q <. P, and similarly for the other reducibilities
above. All of these reducibilities are transitive, so the resulting notions of equiv-
alence are in fact equivalence relations, which yield degree structures in the usual
way. Figure | summarizes the relationships that hold between these reducibilities.
We refer the reader to Hirschfeldt and Jockusch [22, Section 4.1] for a more thor-
ough discussion of these reducibilities, and for various generalizations of them with
applications to reverse mathematics.

The following two definitions list several important operations one can perform
on problems.

Definition 1.3. Let Py and Py be problems.

(1) The (parallel) product of Py and Py, written Py x Py, is the problem whose
instances are pairs (Xo, X;) with X; a P;-instance, and where the solutions
to (Xo, X1) are all pairs (Y, Y7) with Y; a P;-solution to Xj.
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F1cURE 1. Relations between notions of reduction. An arrow from
one reducibility to another means that whenever Q is reducible to
P according to the first then it is also reducible according to the
second. In general, no relations hold other than the ones shown.

(2) The coproduct of Py with Py, written PoUPy, is the problem whose instances
are all pairs (i, X) for ¢ < 2 such that X is a P;-instance, and where the
solutions to (i, X) are just the P;-solutions to X.

(3) The meet of Py with Py, written Po M Py, is the problem whose instances
are all pairs (Xp, X;) such that for each ¢ < 2, X, is a P;-instance, and
the solutions to (Xo, X;) are all pairs (i,Y) for ¢ < 2 such that YV is a
P;-solution to X;.

It is easy to see that the above operations lift to the =w-, =4w-, =.-, and =~
degrees. Furthermore, it is easy to see that the =w-, =.-, and =,.-degrees form a
lattice with L as join and 1M as meet. Recently, Dzhafarov [16] has shown that the
=.w-degrees also form a lattice, with M as meet but using a different operation for
the join than U.

In this paper, all problems we consider will have some computable instance. It
is easy to see that the coproduct of such problems is Weihrauch reducible to their
parallel product.

Definition 1.4. Let Py and P; be problems.

(1) The composition of Py with Pg, written Py o Py, is the problem whose
instances are all the Pyp-instances X such that every solution to X is a P;-
instance, and whose solutions to such an instance X are all the P;-solutions
to the Pg-solutions to X.

(2) The compositional product of Py with Py, written Py x Pg, is defined as
maxgy, {Q1 0 Qo : Qi <w Pi}.

The compositional product Py * Py, first defined by Brattka, Gherardi, and Mar-
cone [3, Definition 4.1], captures exactly what can be achieved by applying Py and
P; consecutively in series (possibly with some intermediate computation). Brat-
tka and Pauly [9] showed that the compositional product is always defined. The
definition of P; x Py above does not yield a specific problem, of course, but only a
Weihrauch degree. We will not use this notion except in the context of Weihrauch
reducibility, however, so this fact will pose no problems.

The following proposition summarizes the relationships between the above op-
erations on problems.
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Proposition 1.5. If Py and Py are problems with some computable instance, then
Po M Py <w PoUP; <w Pg x Py <w PoxPy.

To illustrate the definition of x, we provide a proof of the last reduction. Observe
that Pg x Py is the same problem as (P x id) o (id x P1). Since Py x id <w Po and
P1 x id <w P31, we have that (Pg x id) o (id x P1) <w Po *P1, completing the proof.

Our focus here will be on Ramsey’s theorem and its various combinatorial rela-
tives. We begin with some definitions.

Definition 1.6. Let X be a subset of w and k a positive number.

1) (X2 ={(z,y) e X x X :z <y}

(2) A k-coloring of pairs (frequently just coloring) is a function ¢ : [w]? — k.
We write c(z,y) instead of ¢((z,y)) for (z,y) € [X]?. The coloring is stable
if for every x there is an i < k such that c(x,y) =4 for all sufficiently large
y, in which case we write lim,, ¢(z,y) = 1.

(3) A set H C X is homogeneous for such a c if ¢|[H]? is constant. A set
Y C X is almost homogeneous for c if there is a finite set F' such that
Y — F is homogeneous for c.

(4) A set L C X is limit-homogeneous for c¢ if there is an ¢ < k such that
c(xz,y) =i for all € L and all sufficiently large y € L, in which case we
write limyer, c(z,y) =14. A set Y C X is almost limit-homogeneous for c if
there is a finite set F' such that Y — F' is limit-homogeneous for c.

If i < k is the color witnessing that some set is homogeneous or limit-homogeneous
then we say the set is homogeneous/limit-homogeneous with color i. Note that if ¢
is stable and L is limit-homogeneous for ¢ with color i then also lim,, c(z,y) = i for
all z € L.

The following mathematical principles are well-known, and have been studied
extensively in computability theory, reverse mathematics, and more recently, in the
context of Weihrauch reducibility.

Ramsey’s theorem for k-colorings of pairs (RT:). For every coloring c :
[w]? — k, there is an infinite homogeneous set for c.

Stable Ramsey’s theorem for k-colorings of pairs (SRT%). For every stable
coloring c : [w]? — k, there is an infinite homogeneous set for c.

A} k-partition subset principle (D?). For every stable coloring c : [w]* — k,
there is an infinite limit-homogeneous set for c.

(So, for concreteness, the instances of RT; are all colorings ¢ : [w]> — k, and the
solutions to a given such c are its infinite homogeneous sets. Similarly for the other
problems.) One additional principle that has been studied extensively alongside
RT3 and SRT} is the following:

Cohesive principle (COH). For every sequence {(cg,c1,...), where ¢; : w — 2 for
each i € w, there exists an infinite set X that is almost homogeneous for each c;.

It is an easy exercise to see that D7 is strongly Weihrauch equivalent to the
problem asserting that for every AY k-partition (Ag, ..., Ax_1) of w, there exists
an infinite subset X of some A;, and in the sequel, we will use whichever formula-
tion is more convenient. It is obvious that D% <ow SRT% <sw RTi. While every



RAMSEY’S THEOREM AND PRODUCTS IN THE WEIHRAUCH DEGREES 5

computable instance of SRT? has a A solution, Jockusch [26, Theorem 3.1] con-
structed a computable instance of RT; with no AJ solution. Thus, RT3 Lw SRT;.
Dzhafarov [15, Corollary 3.3] showed that SRT? Z£w D?. An independent proof can
be found in [10, Corollary 6.12]. Note that if j < k then the version of each of the
above principles for j-colorings is strongly Weihrauch reducible to the version for
k-colorings. Patey [32] showed that the converse is false; in fact, if j < k, then even
D? £ RT?. Further relationships between SRT%, D3, and related principles under
the various reductions from Definition 1.2 have been investigated by Nichols [30].

Definition 1.7. For a problem P, let P be the problem whose instances are the
same as those of P, but such that Y is a P*™-solution to X if there is a P-solution
Z to X such that Y =* Z (i.e., such that Y and Z agree on a cofinite domain).

Thus, for instance, (D?)™ asserts that every stable coloring ¢ : [w]> — k has an
infinite almost limit-homogeneous set. For some well-behaved principles P, we can
express P™ in terms of the implication operation introduced by Brattka and Pauly
in [9, Section 3.3]. In lieu of a definition, we use the following property (see [9,
Theorem 3.13]): for problems P and Q, the infimum inf<, {R: P <w Qx R} exists
and is Weihrauch equivalent to Q — P. We also recall the following choice principle
(see [4, Section 7]).

Definition 1.8. Cy is the problem whose instances are functions e : w? — 2 such
that

o for all z, e(x,0) = 0 and there is at most one s with e(z, s) # e(x,s + 1);
e there is at least one x with e(x,s) =0 for all s.

A solution to such an e is any x € w such that e(x, s) = 0 for all s.

Thus the instances of Cy are enumerations of sets with nonempty complements,
and the solutions are the elements of these complements.

Proposition 1.9. Let P € {RT:,SRT;}. Then P = Cy — P.

Proof. To show that P™ <y Cy — P, it suffices to show that for any R such that
P <w Cy * R, we have that P™ <y R. Equivalently, we will show that for any
Q <w Cy and R such that P <w Q o R, we have that P™® <w R. Let ® and ¥
witness that P <y Qo R. Let I and A witness that Q <w Cn. We describe a
uniform procedure for reducing P™ to R. Given a P-instance ¢, we use ¢ to convert
this to an instance X of Q o R. Any R-solution Y to X is also a Q-instance, so we
can use I' to convert it into an instance Z of Cy. More precisely, I'Y enumerates
a set Z such that Z # (). And given any Cy-solution to Z, i.e., a point z € Z,
A((Y,z)) is a Q-solution to Y. Hence ¥({c, A((Y,z)))) must be a solution to P.
Thus, to uniformly compute a PF®-solution H to ¢ from a given R-solution Y to
X, we proceed as follows. To determine H(n), we choose the least x not yet
enumerated by I'Y at stage n, and wait for = either to be enumerated, in which
case we let H(n) =0, or for ¥((c, A((Y,x))))(n) to converge, in which case we let
H(n) =¥ ({c, A({Y,2))))(n). It is easy to see that H is then an infinite set and is
almost homogeneous for c.

In the other direction, it suffices to show that P < Cy % P*™. Consider the
following uniform procedure. Given an instance c : [w]?> — k of P, we regard it also
as an instance of P™®. Now, given any P'®-solution Y to ¢, i.e., an infinite almost
homogeneous set, define

Z={zecY:Fi<k)Vyzx)Vz>yly,z€Y — c(y,z) =1}
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Note that Z agrees with Y on all but finitely many elements, and so is in particular
nonempty. Moreover, Z is a H?’Y subset of N, and hence can be passed as an
instance to Cy. Let = be any Cy-solution to this instance. Then {y € Y : y > x} is
a P-solution to c.

We use the above uniform procedure to show that P <\ Cy x P™. Let G be
a computable function that takes in a pair (¢,Y) and produces an enumeration
of the complement of Z, as defined above. Then the above procedure shows that
P <w CyoGo(id x P™). Since G o (id x P™) <y P, this proves the desired
result. [

2. RAMSEY’S THEOREM FOR PAIRS

Our starting point is the following summary of known facts concerning relation-
ships between RT%, SRT%, and COH under Weihrauch reducibility.

Theorem 2.1.
(1) SRT2 U COH <w RT2 <y SRT3 « COH;
(2) SRT3 U COH <w SRT3 x COH <y SRT3 x COH.

Proof. Part (1) follows by the proof of Cholak, Jockusch, and Slaman [11, Lemma
7.11] that SRT3 ACOH and RT3 are equivalent in the formal system RCAg, together
with the proof of their Theorem 12.5, which is needed because the argument that
RT3 implies COH in the proof of Lemma 7.11 was not correct, as noted in [12] (see
also [13, Section 5.2]). Part (2) follows from Proposition 1.5. O

Our main motivation for this section is the following question, asked during the
workshop “Measuring the Complexity of Computational Content: Weihrauch Re-
ducibility and Reverse Analysis”, at the Leibniz-Zentrum fiir Informatik at Schloss
Dagstuhl in September, 2015.

Question 2.2 (Brattka, see [7]). What additional reductions hold between the
problems SRT3 LI COH, SRT5 x COH, SRT3 x COH, and RT3 in Theorem 2.17

We will answer this question by showing that RT3 and SRT3 x COH are Weih-
rauch-incomparable, and hence there are no Weihrauch reductions between the
above principles other than the ones given in Theorem 2.1.

We begin by recalling some ancillary notions.

Definition 2.3. Let c: [w]?> — k be a coloring, and let X be a set.

(1) The coloring c is unbalanced on X if for some i < k, every infinite homoge-
neous set for ¢ contained in X has color i. If ¢ is not unbalanced on X, it
is balanced on X.

(2) The coloring ¢ avoids the colori < k on X if ¢(z,y) # i for all z,y € X.

If, in the definition above, X = w, we shall say simply that ¢ is unbalanced /
balanced / avoids the color ¢, without further qualification.

The following lemma will allow us to prove our main result, from which we will
derive a number of consequences, including an answer to Question 2.2.

Lemma 2.4. Let ¢ : [w]?> — k be a computable coloring, A an infinite com-
putable set, and C C 2% a nonempty 11\ class of k-partitions of A. If, for every
(Po,...,Py_1) €C, cis unbalanced on P; for every j <k, then c has a computable
infinite homogeneous set.
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Proof. Fix ¢ and C, and suppose that ¢ has no computable infinite homogeneous
set. We construct aset G = {G;; : i,j < k}, and exhibit a (Fp, ..., Py_1) € C, such
that G; ; C P; for all 4, j < k, and c avoids the color 7 on G; ;. We will furthermore

satisfy the following requirement for each n € w and all o € k*:
Rina: (37 < k)(Fzx = n)[z € Gogy) ;-

The claim is that c is then balanced on some P;. For if not, define o € k* by letting
a(j) be the color i < k such that every infinite homogeneous set for ¢ contained in
P; has color i. Since G satisfies Ry, o for all n, there must be a j < k such that
Ga(j),; 1s infinite. Let H be any infinite homogeneous set for ¢ contained in G ;) ;-
As c avoids the color a(j) on Gy, it follows that H has some other color than
a(j), which is a contradiction since Gy(;),; € P;.

The construction of G is by a forcing notion whose conditions are tuples

p= ({El,j : Za.] < k}aXaD)7
such that for all 7, j < k:

E; ; is a finite subset of A;

X is a computable infinite subset of A such that max E; ; < min X;

for every x € X, ¢ avoids the color i on E; ; U {z};

D is a nonempty I1{ subclass of C such that for every (Py,..., Py_1) € D,
A condition ¢ = ({F;; : i,j < k},Y,E) extends pif Y C X, £ C D, and E; ; C
Fi’j - Ei’j UX forall 4,5 < k.

Say a condition p as above satisfies Ry, o if there are some j < k and some x > n
such that x € E,(;) ;. We claim that the set of conditions satisfying R, o is dense.
Fixp= ({E;; : i,j < k}, X, D). First, suppose there are some (Qo, ..., Qr-1) € D,
some ¢ < k, and some x € X NQy such that Y = {y € X : ¢(x,y) # «(¢)} is infinite.
Let ¢ = ({Fi,j 2i,j < k},Y,E), where Fa(@),[ = Ea([),é U {z}, F;; = E;; for all
i,j < k with i # «a(f) or j # (, and € = {(Py,...,Py—1) € D : x € Pp}. Then
g is an extension of p satisfying R, .. So suppose now that there are no such
(Qoy--.,Qr-1), ¢, and . We derive a contradiction. The assumption implies that
for every x € X, limye x ¢(z,y) exists, since given any (Qo, ..., Qr—1) € D, we have
that lim,ex c(z,y) = «(f) for the unique ¢ with © € Q. So the map g : X — k
defined by g(z) = limye x c(z,y) for all z € X is computable from every member of
D. By the cone-avoidance basis theorem (see, e.g., [17, Theorem 2.1]), this implies
that g is computable. But then ¢ has a computable infinite homogeneous set, which
we assumed it did not.

To complete the proof, let G = (go, q1,-..) be a sufficiently generic sequence on
our forcing poset, where for each s,

g = ({E}; :i,j < k}, X*, D),

and ¢; is extended by gsy1. Define
Gij=U B,
SEw

for all 4,5 < k. Let (Fo,...,P,_1) be any element of [ .,

intersection of a mnested sequence of IIY classes and hence is nonempty. Then
G={G,; 4,7 <k}and (P,...,Py_1) have the desired properties. a

Ds, which is an
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The following important problems arise frequently in the study of Weihrauch
degrees.

Definition 2.5.

(1) LPO is the principle whose instances are all infinite binary sequences of the
form 0“ or 01 for some n € w, and the solutions are either the singleton
{0} if the instance is 0“, or {1} if the instance is 01 for some n.

(2) NON is the principle whose instances are all sets, and the solutions to an
instance X are all sets Y &£ X.

Viewed as a II} principle, NON is thus equivalent over RCA to the principle AST
considered by Hirschfeldt, Shore, and Slaman [23, Section 6]. (See specifically [23,
Theorem 6.3].)

Theorem 2.6. LPO x NON %, RT3.

Proof. Assume otherwise, and fix functionals ® and ¥ witnessing the reduction. We
build an instance S of LPO such that the pair (S, 0) contradicts this assumption.
We have that @59 is a coloring [w]?> — 2, and for every infinite homogeneous set
H for this coloring, US®P®H — ({p1 V) where b is 0 or 1 depending on whether
S =0vor S = 0" for some n, and Y s 0. (We think of PSOISH 49 the
characteristic function of {b} @Y, so that US®PSH (0)| = 1 if and only if b = 0.)
We show that the coloring ®5®? necessarily has an infinite homogeneous set H
satisfying one of the following properties:

(1) H is computable;

(2) WSEVSH (0) ~ 0 and S = 0;

(3) WSHIEH ()| =1 and S = 0"1“ for some n.
In the first case, S @ () @ H obviously cannot compute a solution to our NON-
instance. And in the remaining cases, we have a contradiction to WS®P®H giying
us a solution to our LPO-instance.

Let ¢ be the coloring ®°“®? . [w]? — 2. Define C to be the I class consisting of

all 2-partitions (P, P1) of w such that

(Vi < 2)(¥ finite F C P))[(Va,y € F)le(x,y) = i] — ¥O°9F(0) ~ 0].

We consider two cases. First, suppose C is nonempty. By Lemma 2.4 with k = 2
and A = w, if ¢ is unbalanced on Py and P; for every (Py, P1) € C, then ¢ has a
computable infinite homogeneous set. We can then take this to be H, set S = 0¥,
and satisfy Property (1) above. So assume not. Fix (Py, P;) € C and i < 2 such
that c is balanced on P;, so that in particular, P; is infinite. Let H C P; be any
infinite homogeneous set for ¢ with color ¢. If we then take S = 0%, it follows by
the definition of C that WS®Y$H (0) ~ 0, so we satisfy Property (2).

So now, suppose C = ). By compactness, choose m so that for every partition
(Py, P1) of w, there are an i < 2 and a finite ' C P; ['m such that c(x,y) = ¢ for
all z,y € F and U097 ()| = 1. Note that there are only finitely many such F
across all possible partitions, so there is a global bound u on the uses of all these
computations. Without loss of generality, u > m. Choose n > u large enough so
that ®0"1“® agrees with ¢ = ®°“®? below u. Let S = 0"1%, and let d = $599,
By repeatedly taking subsets, we see that there is a computable infinite set Y
such that minY > m and for each z < m, lim,cy d(z,y) exists. For each i < 2, let
Qi = {z <m: limyey d(z,y) = ¢}, so that for some partition (Py, P1) of w, we have
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Qo= PFPy[mand Qy = P, [m. Choose i < 2 and F C (; as above. If Y contains no
infinite homogeneous set for d with color ¢, then by [26, Theorem 5.11], Y contains
a computable infinite homogeneous set with color 1 — i, and we satisfy Property
(1) again. Otherwise, we can take an infinite homogeneous set H for d having F
as an initial segment, and by construction, this set satisfies WoS0SH (0)} =1 even
though S # 0¥. Thus, we satisfy Property (3). a

Trivially, LPO < RT%, since every instance of LPO can be regarded as an
instance of RT3, so we have the following.

Corollary 2.7. RT} x NON % RT3.

Clearly RT} < SRT3, and there is a uniform construction of an X-computable
instance of COH with no X-computable solution, so we also have the following.

Corollary 2.8. SRT3 x COH % RT5.
Corollary 2.9. No additional relations hold between the problems in Theorem 2.1.

Proof. Since every computable instance of each of COH and SRT; admits a A9
solution, so does every instance of COH x SRT3. By contrast, it is known that RTj5
has a computable instance with no A solution. Thus, RT3 %w COH x SRT3. The
remaining non-reductions follow from this fact and Corollary 2.8 by transitivity. [

Let lim be the problem where an instance is a convergent sequence of elements
of NN, and the unique solution to this problem is the limit of this sequence. The
following fact about lim is well-known, but it is worth mentioning that it follows
directly from Theorem 2.6, since LPO x NON <y lim.

Corollary 2.10. lim £y RT;.

It is an interesting open question whether LPO can be replaced by an even weaker
combinatorial principle in Theorem 2.6. A first candidate would be LLPO =
Cy (see [5, §3]). Already LLPO x NON s RT3 would imply WKL % RT3,
which is known by Liu’s celebrated result [27]. An even further improvement to
ACC,, x NON RTZ would have as a consequence that DNC,, Lw RTZ (see [,
§3, §5], which also has definitions of ACCx and DNCx). On the other hand, it is
the case that ACCy x NON <w DNCy <w RT% (the latter reduction having been
shown in [21, Theorem 2.3]).’

Note that Theorem 2.6 also cannot be improved to show that LPO x NON £y
RT% for arbitrary k > 2. Indeed, each of LPO and NON is Weihrauch reducible to
RT3, and so LPO x NON <y, RT3 x RT3 <w RT3.

We can improve on this reduction with the following strong counterpoint to
Theorem 2.6, which shows that the theorem fails as soon as the number of colors
is allowed to increase from two, even via a stable coloring. It is easy to see that
LPO <w SRT; and NON <y SRT3, so the following result also follows from [10,
Theorem 3.24], which has as a special case that SRT} x SRT3 <y SRT3.

Proposition 2.11. LPO x NON <y SRT;.

1The remarks in this paragraph were kindly provided by an anonymous referee.



10 DZHAFAROV, GOH, HIRSCHFELDT, PATEY, AND PAULY

Proof. Let S be an arbitrary instance of LPO, and let X be any set. Let ¢ : [w]* — 2
be the result of applying a standard uniform construction of an X-computable stable
coloring ¢ : [w]?> — 2 with no X-computable infinite homogeneous set (e.g., as in [26,
Theorem 2.1]). Define d : [w]? — 3 by

i,y = {c(m) if 5(x) = S(y),

2 otherwise.

Clearly, d is uniformly computable from S & X. If S = 0“ then d = ¢, while if
S = 0™1% for some n then lim,d(z,y) = 2 for all z < n, and d(z,y) = c(z,y)
for all z > n. Hence, every infinite homogeneous set for d has color 0 or 1, and
is also homogeneous for c¢. In particular, no infinite homogeneous set for d is X-
computable. Moreover, for any such infinite homogeneous set H, we have that
S =0"1% if and only if (3 < min H)[S(x) = 1]. Hence, ({b}, H), where bis 0 or 1
depending as S = 0% or S = 0™1% for some n, is a uniformly (S®X @ H)-computable
solution to the LPO x NON-instance (S, X). O

We do not know whether SRT% above can be replaced by D%. However, we have
the following related result, which does work for D3. The proof uses a novel coding
mechanism.

Theorem 2.12. For every k > 1, (RT;)™ x NON < D?_,.

Proof. Let ¢: w — k be a coloring and X a set. We describe a uniform procedure
to define an X-computable stable coloring d : [w]? — k + 1 with no X-computable
solution (i.e., no X-computable infinite limit-homogeneous set), and a uniform pro-
cedure for turning any such solution into an almost limit-homogeneous set for c.
Fix a canonical (¢ @ X)-computable enumeration of (¢ @ X)’, and let

S0 < 81 < -

be a (¢ ® X)'-computable sequence such that for all e, we have that (¢ & X)[s.]
and (c® X))’ agree on all < e. Using (¢ ® X)’, choose

To,0 < Xo,1 <T1,0 <T1,1 < T2 < T2 < -

with Zeq10 — Te1 > se for all e, and such that either @f(aze,oN =0X (2. 1)) =1,
or ®X(x) ~ 0 for all sufficiently large x.

Now define a (¢® X )'-computable (k + 1)-partition PyU---U Py, of w as follows.
For each e, put z¢ o into Py, and put every other x into P.,). Thus, for all e, we
have that z. ¢ and z.,; belong to different parts of the partition, so by construction,
if ®X defines an infinite set, this set cannot be an infinite subset of any P;. We
also have that if 29 < --- < 2z,-1 € P, then ze11 — 2. = s for all e < n, so any
infinite subset of Py, computes (¢® X)'. We can regard Py U---U Py as a (¢ ® X)-
computable stable coloring d. Clearly, d is defined uniformly from X and ¢, and no
infinite limit-homogeneous set for d is X-computable.

Consider any D ,-solution to d, i.e., any infinite set Z = {29 < 21 < ---} con-
tained in one of Py, ..., P;. We construct a set Y = {yo < y1 < -} inductively by
stages, defining y,, at stage n. At any stage, we may choose to exit the construction,
which simply means to let m be the maximum of all ¥, defined thus far, and let
the rest of our set be {z, € Z : z,, > m}. At stage n =0, let yo = 0, and declare
no color ¢ < k forbidden. If we have not exited the construction by stage n + 1,
assume we have defined y,, and there is at least one ¢ < k that is still not forbidden.
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For the least such 4, we compute a number e such that e € (¢ ® X)’ if and only if
(3y > yn)[c(y) = 7], which we can do uniformly from y,,, the color i, and an index
for ¢ as a (¢ ® X)-computable coloring. If e € (¢ ® X)'[2¢+1 — 2] then certainly
e € (c®dX), sowe can find a y > y, with ¢(y) = ¢, and we let y,+1 be the least
such y. If e ¢ (¢ ® X)'[ze41 — 2], we declare i forbidden and restart the process
with the next smallest non-forbidden color. In this case, we promise that if at any
future stage we see a y > y, with ¢(y) = i, we exit the construction. Note that
this can happen only if 2,11 — z. < se. Note also that it must happen if all i < k
become forbidden.

It is easy to see that Y is uniformly computable from ¢® X @ Z. We claim that
Y is almost limit-homogeneous for ¢. This is clear if we never exit the construction,
because in that case there must be some least ¢ that is never declared forbidden, and
then c¢(y,) = ¢ for almost all n. If, on the other hand, we do exit the construction,
then as noted above we must have 2,11 — z. < s, for some e, and hence Z cannot
be a subset of Py. In this case, Z is therefore a subset of P; for some i < k, and by
construction, if z € P; for such an ¢ then ¢(z) = 4. As Y =* Z, it follows that Y is
almost limit-homogeneous for c. O

3. STABLE RAMSEY’S THEOREM FOR PAIRS

As mentioned above, every instance of LPO can be regarded as an instance of
RT%. The latter instance, however, is consequently unbalanced. It is interesting
to ask whether this is the only possible reduction, or whether LPO can in fact
be reduced to RT% via a balanced coloring. The following proposition shows that
the answer is no. It also points to an additional point of disagreement in the
uniform strengths of SRT3 and D3, to complement the aforementioned result that
SRT3 £ D3 for all k.

We first give a definition.

Definition 3.1. For P € {RT},SRT,D?}, let b-P be the restriction of P to bal-
anced colorings (on w), and u-P the restriction to unbalanced colorings.

Proposition 3.2. LPO <w b—SRTg, but LPO %y b-D? for all k.

Proof. For the positive reduction, let S be any instance of LPO. Let par(z) be 0 or
1 depending on whether z is even or odd, and define ¢ : [w]?> — 2 by

e(w,y) = {par(x) if (v2 < y)[5(2) = 0],

1 — par(z) otherwise.

Thus, if S = 0¥ then lim, ¢(x,y) = par(z) for all z, and if S = 0"1“ for some
n then limy ¢(z,y) = 1 — par(z) for all z. In either case, for each i < 2, there
are infinitely many « with lim, c¢(z,y) = ¢, so c is balanced. Now, every element
in an infinite homogeneous set for ¢ has the same parity. So if H is any such
homogeneous set, and if x¢ and z; are its least two elements, then S = 0% if and
only if ¢(xg,x1) = par(zp). Thus, we have the desired uniform reduction.

For the negative reduction, assume towards a contradiction that LPO < b—D%
via some ® and U. Then ¢ = ®°” is a computable balanced stable coloring [w]? — k.
Define C to be the II{ class of all partitions (P, ..., P,_1) of w such that

(Vi < k)(V finite F C P;)[®°°®F(0) ~ 0].
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First, we claim that C # (). Otherwise, by compactness, there is an m such that for
every partition (P, ..., Py—1) of w, there are an i < k and a finite F* C P; [ m such
that WO“®F(0)] = 1. Let u > m be a bound on the uses of all these computations,
for all possible such F. Choose n > u large enough so that ®°"” and ¢ = ®°” agree
below u. Let S = 0"1¢% and d = ®°, which is another balanced stable coloring. For
the partition (P, ..., Py—1) of w given by P; = {z : lim, d(z,y) = i}, fix i < k and
F C P;'m as above. As d is balanced, there is an infinite homogeneous set H for
d with color i that has F as an initial segment. But then we have WS®H(0)] = 1
even though S # 0%, a contradiction. So C # 0. Choose any (P, ..., Py_1) € C.
Since Py U---U P,_1 = w, there is an ¢ < k such that P; is infinite. Let L be any
infinite limit-homogeneous set for ¢ contained in P;. Then ¥ ®L(0) ~ 0, which
contradicts the choice of . O

Corollary 3.3. LPO s b-RT}, for all k.
Proof. The usual proof that RTi <w D7 shows that b—RTi <w b-Di. O

One generalization of the notion of unbalanced coloring is the following, in which
merely one of the possible colors of homogeneous sets—rather than, all but one—is
omitted.

Definition 3.4. Let ¢ : [w]> — k be a coloring and X a set. The coloring c is
thin-unbalanced on X if for some i < k, there is no infinite homogeneous set for ¢
contained in X with color ¢. The color i is called a witness of thin-unbalancing for
c on X. If ¢ is not thin-unbalanced on X, it is thin-balanced on X.

When X = w, we shall simply say ¢ is thin-unbalanced / thin-balanced. Note
that if k£ = 2, then c is thin-unbalanced on a set if and only if it is unbalanced on
that set in the sense of Definition 2.3, which in turn holds if and only if ¢ avoids
one of its two colors on that set.

Definition 3.5. For P € {SRT;,D?}, we define the following variations on P:

o AJ-wtu-P is the problem whose instances are pairs (c,£) where c is a thin-
unbalanced instance of P and ¢ : w — k is a function such that lim, ¢(y)
exists and is a witness of thin-unbalancing for ¢, and the solutions to such
a pair are the P-solutions to c.

e wtu-P is the problem whose instances are pairs (c,i) where ¢ is a thin-
unbalanced instance of P and i is a witness of thin-unbalancing for ¢, and
the solutions to such a pair are the P-solutions to c.

The above are arguably not natural problems from a combinatorial point of
view, and we will not study them in their own right. Rather, our interest is in what
they can reveal about SRT% and Dz. As we will see, the above restrictions capture
various elements of standard proofs of the latter principles.

Proposition 3.6.

1) For P € {SRT%,D? , we have LPO <w wtu-P <. AJ-wtu-P.
ko Pk 2
2) wtu-SRT? x wtu-SRT? <ow Wtu-SRT 2 and wtu-D2 x wtu-D2 <ow wtu-D2.
k 2 k k 2 k

Proof. For part (1), it is enough to show that LPO <y wtu-D2, the rest of the
reductions being obvious. This is proved much like Proposition 2.11. Given an
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instance S of LPO, define ¢ : [w]? — 2 by
1 if S(z) = S(y),
d%w—{ () = 5(v)

0 otherwise.

If § = 0% then c(z,y) =1 for all < y, and if S = 0"1“ then lim, ¢(x,y) = 1 for
all z > n and lim, ¢(z,y) = 0 for all z < n. Either way, c is an instance of wtu-D3
with witness of thin-unbalancing 0. Now if L is any limit-homogeneous set for ¢
then S = 0“ if and only if there is an # < min L such that S(z) = 1.

For part (2), we prove the result for SRT%, the proof for Di being similar. Let
¢:|w]?> = kand d: [w]?> — 2 be instances of wtu-SRT7 and wtu-SRT3, respectively.
Say the witnesses of thin-unbalancing for ¢ and d are i, < k and ¢4 < 2, respectively.
Define e : [w]? — k by

e(w,y) = ic if ¢(x,y) =i or d(z,y) = iq4,
W= c(z,y) otherwise.

Notice that e is stable. We claim that e is thin-unbalanced as witnessed by ..
Indeed, if H were infinite and homogeneous for e with color i, then we could define

f:[H?—=2by
)0 if e(x,y) = i,
Hy) = {1 otherwise.

Any infinite homogeneous set for f contained in H with color 0 would be homoge-
neous for ¢ with color i., and any infinite homogeneous set for f contained in H
with color 1 would be homogeneous for d with color i4. Neither of these is possible
by assumption, so the claim holds. Hence, e is an instance of WtU—SRT%, and it is
clear that any infinite homogeneous set for e is homogeneous for both ¢ and d. O

As we will see in Proposition 4.3, wtu-P =y AY-wtu-P for P € {SRT3,D3}.
Note that in part (1) above, the reduction from LPO to wtu-P cannot be improved

from <w to <.w. Indeed, it follows from a result of Brattka and Rakotoniaina [10,
Corollary 3.15] that LPO £.w RT}, for all n, k > 1.

Theorem 3.7. Let P be a problem. Then P <w AY-wtu-D? if and only if LPO x
P <w D}.

Proof. For the forward direction, we prove that LPO x AS-wtu-Df <w Dj. Again,
we emulate the proof of Proposition 2.11. Let S € 2¥ be an instance of LPO. Let
(c,€) be an instance of AS-wtu-D?, so that c is a stable coloring [w]?> — k, and
¢:w — kis a function with lim, {(y) = ¢ < k a witness of thin-unbalancing for c.
Define d : [w]?> — k by

ﬂ%w:{dnw if () = 5(y),

L(y) otherwise.

Thus, if S = 0% then d = ¢, and if S = 0™1% for some n then c¢(z,y) = d(z,y) for
all > n and lim, d(z,y) = lim, ¢(y) = i for all £ < n. Since ¢ has no infinite
limit-homogeneous set with color 4, it follows that every infinite limit-homogeneous
set L for d is also limit-homogeneous for ¢. Moreover, we have that S = 0™1% if
and only if (3z < min L)[S(x) = 1]. Hence, ({b}, L), where b is 0 or 1 depending
on whether S = 0% or S = 0"1% for some n < L, is a uniformly S & L-computable
solution to the LPO x A%-wtu-D?-instance (S, (c,)).
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For the reverse direction, fix a problem P such that LPO x P <y D3, say via
functionals ® and ¥. Fix an instance X of P. We describe a uniform procedure
to define an X-computable thin-unbalanced stable coloring d : [w]?> — k with a
witness given in a A way, and a uniform procedure for turning any infinite limit-
homogeneous set for d into a P-solution for X. To begin, let ¢ = ®°"®X which is
a stable coloring [w]? — k by assumption. Define C to be the H?’X class consisting
of all partitions (Pp, ..., Py—1) of w such that

(Vi < k)(¥ finite F' C P;)[w°" ®X@F(0) ~ 0].

(As in the proof of Theorem 2.6, we think of U0 ®X®F a5 the characteristic function
of a join.)

It must be that C = ). For suppose otherwise, and choose any (P, ..., Px_1) € C
and an ¢ < k such that P; is infinite. Let L C P; be an infinite limit-homogeneous
set for c. Then by the definition of C, we have WO"®X®L(0) ~ 0, which is a
contradiction because (0“, X) is an instance of LPO x P, and we should thus have
PO OXDL(0)| = 1. So C is empty, as claimed. By compactness, we can uniformly
X-computably find an m such that for every partition (P, ..., Px_1) of w, there
are an i < k and a finite ' C P; | m such that U0 ®X9F(0)| = 1. Let u > m be a
bound on the uses of all these computations, for all possible such F. Choose n > u
large enough so that ®°"1"®X and ¢ = ®%"®X agree below u. Let S = 0"1¢, and
let d = ®99X . Note that d is uniformly X-computable.

We claim that d is thin-unbalanced. To see this, let (Py,..., Py_1) be the par-
tition of w given by P; = {z € w : limyd(z,y) = i}. Let i < kand FF C P;[m
be as above. If P; were infinite, then there would be an infinite limit-homogeneous
set L for d having F' as an initial segment, and by construction, this set would
satisfy US9XOL(0)] = 1 even though S # 0“. Thus, P; is finite, so 4 is a witness to
thin-unbalancing for d. Moreover, since i depends only on lim, d(x,y) for < m,
it follows that i can be approximated from d, and hence from X, in a uniform A
way. So d is an instance of AS-wtu-D?. Now if L is any infinite limit-homogeneous
set for d, we must have U99X®L — ({11 V) where Y is a P-solution to X. Hence,
there is a uniform way to convert X @ L into a P-solution for X, as desired. (Il

A succinct way to express the characterization given by the preceding theorem
is that AS-wtu-Dj =w supg {P: P x LPO <w Dj}. We can obtain several other
results of this sort, the proofs of which are similar to the preceding theorem.

Proposition 3.8. The following all exist and are all Weihrauch equivalent:
(1) AY-wtu-Di;
(2) sup, {P: P xLPO <w D} };
(3) sup, {P: P x LPO <w A9-wtu-D7};
(4) supgw{P : P x AS-wtu-Df <w AY-wtu-D?};
(5) sup<, {P: P x AJ-wtu-Df <w Dj}.

We do not know a similar characterization for SRT%, nor even an answer to the
following question. (It is worth noting that the Weihrauch lattice is not complete.
Indeed, by [19, Proposition 3.15], it does not have any nontrivial infinite suprema.)

uestion 3.9. Does su P x <w exist”
Question 3.9. D Pey {P: P X LPO <y SRT}} exist?

As a partial step, we have the following:
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Proposition 3.10. Let P be a problem.
(1) If P <w A9-wtu-SRT} then LPO x P < SRT;.
(2) If LPO x P < SRT} then P is Weihrauch reducible to the problem whose
instances are pairs (c,{) where ¢ is an instance of SRT: and £ :w — k is a
function such that lim, ¢(y) exists and is a witness to thin-unbalancing for

c on some set that is low relative to ¢, and the solutions to such a pair are
the SRT3-solutions to c.

Proof. Part (1) is proved just like the forward direction of Theorem 3.7. For part
(2), we proceed as in the proof of the reverse direction of Theorem 3.7, only the
H(IJ’X class C now consists of all partitions (Py, ..., Py_1) of w such that

(Vi < k)(Y finite F C P)[(Vz,y € F)[e(z,y) = i] — 0O 8XSF(0) ~ 0].

We can assume that ¢ = X, because we can replace it by the coloring ¢’ obtained
by letting ¢/(n,n 4+ 1) = X(n) and ¢/(z,y) = c(x,y) for all other pairs. An infinite
solution to ¢ can be uniformly transformed into one to ¢ by thinning.

Now, if C = (), let n be as in the corresponding case in the proof of Theorem
3.7. For each i < k, let P; = {x : lim, ®*"1"®X(z,y) = i}. Then for some i < k,
there exists a finite F C P; such that F is homogeneous for ®9"1“®X with color i
and WO"1“®XOF ()| = 1. Moreover, this F and i can be approximated in a AY™
way (i.e., A9 relative to the instance (0"1¢, X)). Now if ®°"1“®X had any infinite
homogeneous set with color ¢, then ¢ would have such a set extending F', which
would produce the same contradiction as in Theorem 3.7. Thus, it must be that
PO 18X has no homogeneous set with color 7, so in particular, it is thin-unbalanced
(on the low set w).

If, on the other hand, C # 0, then let (P,..., Px—1) be the canonical low-
over-X element of it (given by the proof of the low basis theorem). Clearly, we
can approximate in a Ag’X way (in fact, in a H(IJ’X way), the least ¢ such that P; is
infinite. Then ¢ = ®°“®X must be thin-unbalanced on P; with witness i. Otherwise,
we could take a homogeneous set H for ¢ with color ¢ contained in P; and have, by
the definition of C, that W0 ®X®H () ~ 0, which is a contradiction because (0, X)
is an instance of LPO x P, and we should thus have W0“®X®H ()| = 1. O

Remark 3.11. With a view to some of the recent work on the algebraic structure
of the Weihrauch degrees ([9, 16]), Theorem 3.7 suggests a natural parallel quotient
operator on problems, given by P/Q = sup. {R: R x Q <w P}. We have no
reason to think this operator is total, but studying the kinds of problems for which
it is defined ought to be interesting in its own right.

4. THE COFINITE-TO-INFINITE PRINCIPLE

In this section, we briefly depart from studying products, to investigate wtu-D3
(in the guise of a Weihrauch-equivalent principle introduced below) in the context
of other weak Weihrauch degrees. Some of our terminology will be specific to the
Weihrauch literature, and we refer the reader to [4] for any definitions we omit.

We begin by introducing the following “cofinite set to infinite set” principle.

Definition 4.1. CFl,g is the restriction of D3 to colorings ¢ : [w]? — 2 such that
lim, ¢(x,y) = 1 for almost all x.
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Thus, informally, CFlxg is the problem of finding an infinite subset of a cofinite set
given by a AY approximation. This leads to the following initial observation:

Proposition 4.2. CFlxg <w lim.

Proof. Fix an instance ¢ : [w]? — 2 of CFlag. For each z, we have that lim, c(z, y)
exists, and hence the sequence (¢, )yew, where for each y the function ¢, : w — w
is given by c¢,(z) = ¢(x,y), is an instance of lim. Apply lim to find a solution
to (¢y)yew, 1-e., the function d : w — w defined by d(z) = lim, c(x,y) for all .
By assumption, the d-computable set {z € w : d(z) = 1} is infinite, and so is a
CFlag-solution to c. O

The connection to the previous section is provided by the following result.
Proposition 4.3. CFl g =w wtu-D% = AJ-wtu-D3.

Proof. 1t is clear that CFlag <w wtu-DZ <y AY-wtu-D3. In the other direction,
suppose we are given an instance {(c,f) of AJ-wtu-D3. Define d : [w]?> — 2 by

x? = .
4 0 otherwise.

Now for all z, we have that lim, c(z,y) = 1 — lim, {(y) if and only if lim, d(z,y) =

1. In particular, since lim,c(z,y) = 1 — lim, ¢(y) for almost all =, we have
lim, d(z,y) = 1 for almost all z. Clearly, every limit-homogeneous set for d is
also limit-homogeneous for c. O

Notice that a similar proof shows that wtu-SRT3 =y A%-wtu-SRT3.
We now compare CFI ag with the choice principle Cy defined in Section 1.

Proposition 4.4. CFIAg * Cy =w CFIAg.

Proof. First we show that CFIAg *Cy <w CFIAS x Cy. Note that Cy is computable
with finitely many mindchanges, and these mindchanges can be incorporated into
the AY instances of CFI ag- Thus, we can compute directly the impact Cy has on
the CFI Ag-instance, and do not need to use them sequentially.

Then we argue that CFlag x Cy <w CFlag. We identify an instance e of Cy
with the complement of the set enumerated by e, and an instance ¢ of CFl AY with

the corresponding Ag’c set. As shown in [33, Lemma 2.3], we may assume without
loss of generality that the instances of Cy are of the form {n | n > k} for some
k € w. Given instances of Cy and of CFlag, we can compute the intersection of
these instances, and think of it as an instance of CFlrg. Any infinite subset of this
intersection is a solution to the original CFI Ag instance, and any element a solution
to the Cy instance. O

We can think of the instances of CFI Ag as being functions p : w — w such that
Hi € w:p(i) =n+1} < oo for all n, and such that [{i € w: p(i) = n+ 1} is even
for cofinitely many n. Then, a solution is any infinite set Y such that if n € Y then
{i € w:p(i) =n+1}| is even. It is easy to see that this formulation is Weihrauch
equivalent to the one given in Definition 4.1. However, we shall find this version
more convenient for our results below.

Given p € w” as above, let ¢¥(p) = {n: |{i € w: p(i) = n+ 1}| is even}. For
each p € w<* Uw®, let [p] = {n : Fi p(i) = n+ 1}. For 0 € w<¥, let & be the
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length-lexicographically least extension of ¢ such that|{i € w : 5(i) = n + 1}| is
even for all n € [o].

Definition 4.5. For o € w<%, let CFlg denote the restriction of CFlag to instances
op such that [o] N [p] = 0.

Proposition 4.6. For every o € w<%, we have CFIZg =w CFIAB.

Proof. Let h : w — {z € w : > max[o]} be a computable bijection. Let h :
w¥ — w® be defined pointwise via h(p)(n) = h(p(n)). Then CFlag(p) = h=1o
CFIZg(EE(p)). O

We can now prove that CFlxg has properties very similar to being a total fractal
(see Brattka, Gherardi, and Pauly [4, Section 4]; see also Theorem 7.15 in that
paper). In the context of Weihrauch degrees, a fractal may be thought of as a
problem that retains its full power on arbitrarily small (clopen) restrictions of its
domain. Since CFI Ag is defined on AY-approximations, it is clear that it is a fractal.

Proposition 4.7. Let P be any problem. If CFlag <w P * Cy, then CFlag <w P.

Proof. Let ® map instances of CFlag to instances of Cy. If there is no string
o € w<¥ such that <I>3(0, s)} =1 for some s, then 0 is always a valid answer to the
Cn-instances used in the reduction, and the Cy-call is useless. So suppose otherwise,
and let oo be such a string.

Assume now that we have defined og,...,0,_1 € w<¥, and choose the least
n ¢ J;<ploi]. Suppose there is no string o with n € [o] and [o] N [o;] = 0 for all
i < k, and such that @ao"'akfla(k,s)i = 1 for some s. Then choose any o with
n € [o] and [o] N [oy] = O for all i < k. Now CFI7 7" < P because we can
replace the output of Cy by k. By Proposition 4.6, this fact implies the claim. So
suppose otherwise, and let o be a string with the desired properties.

If this procedure never stops, then we construct some p = 690103 . ... By induc-
tion, all the [o;] are mutually disjoint, and every n € w appears some even number
of times in some [o;], so certainly p is an instance of CFl AY- However, by construc-
tion we also find that for each k there is an s such that ®P(k,s) = 1, so ®? is not
an instance of Cy, which is a contradiction. (I

This proposition allows us to deduce a number of non-reduction facts about
CFlag, which point to its strength. We begin with the following. Neumann and
Pauly [29] introduced the sorting principle, Sort, whose instances are all elements of
2% such that the instance p € 2¢ has the unique solution 0”1 if p contains exactly
n many 0’s, and 0¥ if p contains infinitely many 0’s. We refer to [4, Definition 1.2]
for the definitions of the k-fold product and the star operation, .

Theorem 4.8. CFlyg %w Sort™.

Proof. Assume that CFlag <w Sort*. Then there is a Turing functional mapping
instances of CFl,g to instances of Sort*, and hence there are a o and a k such that
CFI"A(Z) <w Sort”. Choose k minimal for which there is such a o. By Proposition
4.6 we also have CFlrg <w Sort”. Let ® and ¥ witness the reduction.

Suppose there is a 7 such that ®7 outputs at least n many 0’s for each input to
Sort and the output of ¥ on input (7, (0",...,0")) contains some | € N. Then there
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is some p such that [ ¢ ¢ (7p), which is a contradiction. Thus for each p, there is
some d < k such that the dth input to Sort given by ®P has finitely many 0’s. The
set of pairs (d,n) such that the dth input has some 0 in a position greater than n
is c.e. in p, so from p we can obtain an instance of Cy whose solutions are pairs
(d,m) such that the dth input has no 0’s at positions greater than n. It follows that
CFIAg <w Sort* "1« Cy. By Proposition 4.7, this in turn implies CFIAg <w Sort" 1
contradicting the minimality of k. O

In the next proposition, Ky denotes the choice problem for compact subsets of
N (see [1]). We refer the reader to [4, Section 6] for the definition of the jump
operator, /', on Weihrauch degrees. Definitions of the countable coproduct || and
the problems Cy, .. ) used in the proof below can also be found in that paper, in
Sections 4 and 7, respectively.

Proposition 4.9. CFlyg <w Cyy but CFlag £w K.

Proof. For the reduction, fix some enumeration (o;);e, of w<¥. Given some input
d to CFlag we define a sequence (€n)new With e, : w? — 2 by e, (z,s) = 0 iff for all
y < n we have that d(y, s) = 0 iff y occurs in o,. The sequence (e, )ne, converges
to some e : w? — 2 with the property that e(z,s) = 0 for all s € w precisely when
o, lists exactly those k with lim, d(k,y) = 0. Clearly, from such a finite tuple we
can compute an infinite subset of its complement.

For the non-reduction, note that K <w (LT, Clo...ny ) * Cav 50 if CFlag <w

new ’{07___%}). As CFlpg is a
fractal (as discussed above), then there is some k € w with CFlag <w Cf{o k)
But this is impossible for reasons of cardinality.

Kj, then by Proposition 4.7, we have CFlag <w (H

The connected choice problem of the next theorem was introduced by Brattka, Le
Roux, Miller, and Pauly [8]. The instances of CCy are nonempty closed subintervals
of the real unit interval (see [8] for details on how the elements of the collection
A([0,1]) of such subintervals are represented), and the solutions to any such instance
are the points inside it.

Theorem 4.10. CC; gy CFlag.

Proof. Assume that CC; <w CFIAg via ® and V. Let pg € w“ be a name for
[0,1] € A([0,1]). There have to be some finite set By C w and a prefix o¢ of pg
such that upon reading oy and By, the functional ¥ outputs a 2~ 2-approximation
of some zy € [0,1]. We can find some 1op; such that og7yp; is a name for some
interval I; with |I;| > 272 and such that for any q extending o7y and representing
some A € A([0,1]), we have that AN B(xg,272) = () (where B(xg,272) is the ball
of radius 272 around ). It follows that for any ¢ extending o7, the set 1)(®?)
must not contain By, for if it did, there would be a solution to ®? containing By
that would trick ¥ into outputting a 2~ 2-approximation of xy, which cannot be
correct.

In the next step, ¥ has to output some 2~ %-approximation of some z; upon
reading some prefix ogm9oy of ogTop; and a finite set By with max B; > min By.
We pick 71 to exclude B(z1,2~*) from the solution set, and thus conclude that for
any ¢ extending 790171, the set (®?) must not contain By (nor By).
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By iterating the procedure, we obtain some input ogrgo1m10272 - - - € w*, which
is in the domain of CC; (as this has a total domain if represented in a suitable
way ), but such that ¢($707071719272") excludes countably many disjoint finite sets
By, By, . ... Hence, y(®70701m1o272) ¢ dom(CFl,g), and we have derived a con-
tradiction. (]

Brattka, Holzl, and Kuyper [6, Proposition 16] showed that CC; <w Sort, so it
follows that Sort Zw CFl Ag- An alternate proof of this fact can be given by using
the following technical notion.

Definition 4.11. Suppose G : CX = Z is a partial multifunction of represented
spaces. Then G is low for functions if, for every f : Y — w® that satisfies f <w
lim % G, we have f <y lim.

Proposition 4.12. Let G : X = O(w) (where O(w) consists of the subsets of w
represented by enumerations of their elements) be such that

(Vo € X)(Tko € w)(Vk = ko)[{n : n = k} € G(x)].
Then G is low for functions.

Proof. Let f : Y — w® be such that f <w limx G. Without loss of generality,
we may assume that X,Y C w*. As lim is transparent (see Brattka, Gherardi,
and Marcone [3, Fact 5.5]), we can obtain f(z) = lim; oo ¥;(z, G(®(x))) for some
functionals ® and ¥,;. Let wsy = {n € w: n > k} € O(w). Now for any z € X,
we have that Uy (z,w>y) is defined and is an element of ¥y (x, G(®(x))) for almost
all k. As f is a function, in lim; o, ¥;(z, G(®(x))) it does not matter whether we
choose from G(®(x)) once for the entire expression, or separately for each i. Thus,
we can compute f(x) as limy_, o Yp(2, wsk). (While finitely many of these values
may be undefined, this problem can be resolved with a standard argument.) (I

Lemma 4.13. Let G be low for functions, and f : X — w* with f <w G. Then
limx f <y lim.

Proof. As f is a function, so is limx f. Moreover, f <w G implies limx f < limxG,
so limx f < lim. O

Corollary 4.14. Sort £ CFlag.

Proof. By Proposition 4.12, CFl5g is low for functions. As Sort is a function,
Lemma 4.13 shows that if we had Sort <w CFlg we would also have lim x Sort <w
lim. However, it is not difficult to check that LPO’" <y LPO x Sort <w lim %
Sort, but LPO’ £y lim. (That lim % Sort %y lim also follows from [6, Proposition
21].) To see that this non-reduction holds, first note that there is a uniformly
computable sequence Sg,S1,. .. of instances of LPO’ such that for each e, the eth
Turing functional ®. is total if and only if S = 0“. Thus, for each e, to determine
whether S, has solution 0 is I13-hard. On the other hand, every computable lim-
instance has a uniformly A9 solution. O

Note that while the proof above shows that lim x Sort £ lim, it was shown by
Neumann and Pauly [29, Corollary 32] that lim % lim x Sort <y lim * lim.

We conclude with one final reduction. Recall that WWKL is the problem whose
instances are closed subsets of 2¢ of positive measure, with solutions being the
members of the given set. We refer the reader to Downey and Hirschfeldt [14,
Chapter 6] for background on Martin-Lof randomness.
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"

WWKL' % Cf;

lim WWKL' c

P——C el

WKL SORT CFlag Ky

N T

FIGURE 2. Location of CFlag in the Weihrauch lattice. An arrow
from P to Q represents the reduction Q <w P. No additional ar-
rows can be added other than those that follow by transitivity. For
(non-)reductions not explicitly mentioned above, see [6, Sections 4
and 5 and Figure 5].

N

Proposition 4.15. CFlag <w WWKL'.

Proof. Let Cy be a fixed H?’W class all of whose members are 2-random. Given
an instance ¢ : [w]? — 2 of CFlag, let C consist of all X € Co such that for all
i, if X(¢) = 1 then lim,c(é,s) = 1. Then C is a H(l)’c/ subclass of Cy, and it still
has positive measure since, e.g., if X is any 2-random real and n is least such that
c(i,s) = 1 for all i > n, then C contains the 2-random real 0" "1 X (n)X(n +1)---.
Thus, C may be regarded as an instance of WWKL', and if X is any element of C
then {i : X (i) = 1} is infinite and is therefore a CFlg-solution to c. O

We summarize the results of this section in Figure 2.

5. RAMSEY’S THEOREM FOR SINGLETONS

In this section, we investigate Ramsey’s theorem for singletons and different
numbers of colors, and how these problems behave under Weihrauch reducibility
with respect to products. A motivating toy example is the fact that RT% X RT% <w
RTL and in fact, it is easy to see that for all n > 1 and kg, ..., k, > 2,

H RT,, <aw RTll—[

m=0

n .
m=0 K,

We show below that the right-hand side is optimal. Our results extend a number of
similar investigations, including by Dorais, Dzhafarov, Hirst, Mileti, and Shafer [13],
Hirschfeldt and Jockusch [22], Patey [32], and Brattka and Rakotoniaina [10].

In the sequel, we will regard RT,IC as the problem whose instances are colorings
¢ : w — k and whose solutions are colors that appear infinitely often in ¢. Note
that this formulation of RT}, is Weihrauch equivalent to the more usual one given in
Definition 1.6, so we will not distinguish these versions when discussing Weihrauch
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reducibility. In the context of strong Weihrauch reducibility, we will refer to the
new version as rt}c. The principle rt}, can be understood as the Bolzano-Weierstrass
theorem for the discrete space k, and was indeed studied as BWT, by Brattka,
Gherardi and Marcone [3]. A central result there is that rt}, =, Cj, which tells
us that we could alternatively strive to understand the principles rt}, by studying
the finite choice principles Ci, and transferring the results using the jump of strong
Weihrauch degrees.”

Given this formulation, the backward functionals of our strong Weihrauch re-
ductions will have single numbers or tuples of numbers as oracles, and hence can
be regarded as partial functions. For such a functional ¥, we write ¥(n) instead of
wn,

We begin with the following lemma:

Lemma 5.1. Suppose that P <w Q and these problems satisfy the following prop-
erties:

e P has finite tolerance, i.e., there is some © such that if Cy and Cy are
P-instances, Co(x) = Ci(x) for all x above some m, and Sy is a P-solution
to Cy, then ©509™ js ¢ P-solution to Ci;

e any finite modification of a P-instance is still a P-instance;

e solutions to all instances of P and Q lie in some fixed finite set.

Then P <.w Q.

Proof. Fix functionals ® and ¥ witnessing that P <w Q. Since solutions to all
instances of P lie in some fixed finite set, we may assume that for each P-instance
C and each s that is a Q-solution to ®¢, we have that TC®* outputs a number that
codes a P-solution to C. Fix a functional ©® witnessing that P has finite tolerance.
Fix a finite solution set S for Q. We define functionals that witness that P <,w Q.

First, we construct a 7 that is a finite initial segment of some P-instance, such
that 7 decides (in the sense of Cohen 1-genericity) for each s € S whether WC®s
converges for P-instances C' extending 7. Since S is finite, such a 7 exists.

We define ® by € = ', where C" is obtained from C' by replacing its initial
segment of length |7| by 7 itself. By our assumption on P, this C’ is still a P-
instance. R R R R

We define ¥ by ¥(s) = 0¥ **®I7l . We show that ® and ¥ witness that P <w Q.

Take any P-instance C. Since C’ is a P-instance, 3¢ = 3% isa Q-instance. Let
s be any Q-solution to ®C". Then ¥ ®s is a P-solution to C’. In particular, g es
converges. Since C’ extends 7, by our construction of 7, we have that ¥79¢| =
WO'®s | Hence UT®* is a P-solution to C’. We conclude that ¥(s) = 0% “ @l i
a P-solution to C. O

It is easy to see that rt,lc (and finite parallel products of rt,lﬁ) satisfy the properties
of P and Q in Lemma 5.1. Therefore we have the following.

Corollary 5.2. If[[_(RT, <w RTy, then [[_orth <o rth.
Optimality then follows from a counting argument:
Proposition 5.3. If [] _, rt,lcm <aw rth, then N > [0 _, k

m=0 "vm-

2This approach seems very promising, but is left to future work.
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Proof. Fix ® and ¥ witnessing that [} _;rty <. rty. We show that for each
(a0, ... an) € [1_o km, there is some i < N such that U (i) = (ag,...,an).
Consider the tuple of constant colorings (ag,...,as). This is a [ _rty -

instance, so ®(% %) is an rth-instance with some solution i. Then ¥() must be
a solution to (af,...,a¥), so V(i) = (ao, ..., an). O

Corollary 5.4. If [ _ RT, <w RTy, then N =T _o k.

Therefore the right-hand side of [ _, rt,lCm <ew rti—m o b is optimal, with re-
gards to both <w and <.w. However, we will see that RTll_[ZL:o ke Ew [mo RT,lCm

for all n > 1 and ko, ..., k, > 2 (Proposition 5.13). In the rest of this section, we
attempt to find the smallest N such that

RTx &w [] RTk,.-

m=0

We start by giving a lower bound for N.

Proposition 5.5. For alln > 1 and ko, ..., k, > 2,

n
1 1
st Sew ] rt,-
m=0
. . 1
Proof. Suppose we are given an instance ¢ of rt1+Z?n:o(km*1)' For 0 < m < n, we
define colorings

A i W — {’mz_l(k‘l—l),,i(k’z—l)}

i=0 i=0
as follows. Note that for each m, d,, will be a k,,-coloring.

For each m and z, we define d,,(z) as follows. First check which color among
0,...,> 1" 5 (k; — 1) appears most often among ¢(0),...,c(z). (Resolve ties by pick-
ing the smallest color.) If this color is among O, ..., Z?Z)l(kz — 1), let dp,(z) =
S (ki — 1). Otherwise, let d,, (z) be this color.

Now, given (ao,...,a,) such that, for each m, the color a,, appears infinitely
often in d,,, we want to compute a color that appears infinitely often in c¢. Start
by considering a,. If a, # E?:_Ol(ki — 1), then for infinitely many z, the color a,
appears most often among ¢(0),...,c(x). In particular, a,, appears infinitely often
in c.

On the other hand, if a, = Z;ZOI (k; — 1), then for infinitely many x, some
color among 0, .. .,Zygol(ki — 1) appears most often among ¢(0),...,c(z). By
the pigeonhole principle, some color among 0, ..., Z?:_Ol(ki — 1) appears infinitely
often in ¢. We then proceed to consider a,_; and repeat the above case division.
Eventually we either reach some a,, that is not equal to z;’:ol(k;i — 1), in which
case a,, appears infinitely often in ¢, or we reach ag = 0, in which case 0 appears
infinitely often in c. ([l

In order to obtain upper bounds for N, we begin by restricting the reductions
that we need to diagonalize against. Firstly, by Lemma 5.1, we need only handle
strong Weihrauch reductions:

Proposition 5.6. If RTy <w [[,_oRTi , then rtky <aw [T rth -



RAMSEY’S THEOREM AND PRODUCTS IN THE WEIHRAUCH DEGREES 23

We can impose a further restriction:

Lemma 5.7. Suppose rty <.w [ _o rtim via some forward functionals ®,,, 0 <
m < n, where ®,, computes the m™ coloring in the H;ZZO rtkm -instance, and a

backward functional ¥. Then for any i < N, there exists (ao,...,a,) where each
G <k, and ¥(ag,...,a,) =1.

Proof. Given ¢ < N, consider the coloring ¢ that is constantly i. Then the tuple
(®G,...,®5) isa ] _ort; -instance. Hence it has some solution (ao, . .., a,). The
only solution to ¢ is ¢, so ¥(ao,...,a,) must be i. O

Combining the previous two facts, we obtain:

Corollary 5.8. Suppose RTy <w [[,_oRTi. . Then rthy < [ _orth . as
witnessed by some ®p,, 0 < m < n, and ¥ where ¥ : HZ:O km — N is a surjective
partial function.

Henceforth, we will always assume that our reductions of rt} to [ _, rt,lCm have
the above special form. In order to diagonalize against such reductions, it will be
convenient to have the following notion of covering a tuple of colors using a set of
tuples of colors.

Definition 5.9. If X C [[" &k and (io,...,in) € [[,_okm, we say that X
covers (ig, . ..,ip) if for each 0 < m < n, there is an (ag,...,a,) € X such that

A = T

Observe that if cis a [} _, rt}cm -instance whose solution set contains X, and X
covers (ig,...,0,), then (ig,...,4,) is also a solution to c.
The following terminology will also be useful.

Definition 5.10. For a surjective partial function ¥ : HZ@:O k., — N, we refer to
each W~1(i) as a fiber. We call a fiber of size one a singleton.

We now work towards an upper bound (= %) for N. Suppose we want to
show that RTy %w [10_o RT,lcm for some N. Towards a contradiction, we may (by
Corollary 5.8) fix ®,,, 0 < m < n, and ¥ witnessing that rty, <.w IL. rt,lcm such
that ¥ is a surjective partial function from Hnm:0 kn, to N. We aim to construct
¢:w — N and some (ag,...,a,) such that (ag,...,ay,) is a solution to @, ..., P,
yet ¥(ag,...,a,) is not a solution to c.

Our basic strategy is to choose IV large enough so that the following combina-
torial property holds for all surjective partial functions ¥ : HZ@:O km — N:

There is some nonempty S C N such that for any set

=

of (ag,...,a,)’s whose image under ¥ is exactly S, the (+)
(ag, - .., an)’s cover some (b, ...,by,) that maps outside S un-
der .

Assuming (*), we may construct ¢ by repeatedly looping through colors in S:
for each i € S, extend constantly by 4 until there is some (ag, ..., a,) that maps to
¢ under ¥, such that for all 0 < m < n, we have that ®¢, has some new element
of color a,,. (This must happen eventually: if ¢ is the rth-instance produced by
extending the current finite coloring by ¢ forever, then ®§,..., @S is a anzo rt,lcm—
instance with some solution (ag,...,a,). Then ¥(ag,...,a,) = 4, and for each
0 < m < n, some new element of color a,, must appear at some finite stage of ®¢,.)
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Then for each i € S, there is some (ag,...,a,) such that ¥(ag,...,a,) = i
and (ag,...,a,) is a solution to ®§,...,P5. But then the (ag,...,an)’s cover
some (bg, ..., b,) that maps outside S under U. It follows that (b, ...,by) is also a
solution to ®§, ..., 5. But U(by,...,b,) ¢ S and is hence not a solution to ¢, which
is a contradiction. Thus rtl €.w [h,_orth , and hence RT}y w [[_o RT} .

The above strategy may be applied as follows:

Proposition 5.11. If N > max{£e} kg + k; — 1}, then RT)y £w RTj, x RT},.

Proof. By the previous discussion, it suffices to show that (x) holds. Since N >
%7 by a counting argument, ¥ must have at least one singleton (ag,a1). Note
that there are 1+ (kg — 1) + (k1 — 1) = ko + k1 — 1 many pairs in kg X k1 that share
some color with (ag,a1). But N > kg + k1 — 1, so there is some fiber G such that
none of its pairs share any colors with (ag, a1). In other words, for every pair in G,
the set containing it and (ag,a1) covers a pair outside G. Let S be the image of

(ap,a1) and G under ¥. Then S witnesses that (x) holds. O
Corollary 5.12. We have that

RT} £w RT) x RT3, RT: £w RT) x RT3,

RT¢ £w RT) x RT}, RT¢ £w RT} x RT3,

RT: £w RT) x RT3, RT: £w RT} x RT},

RTs £w RT) x RT, RTg £w RT3 x RT;.

Note that Proposition 5.5 implies that RTj ., _; <w RT;, x RT;, . Hence all
of the non-reductions in Corollary 5.12 are sharp. We will address the missing case
of RTg and RT} x RT} in Proposition 5.16.

We can derive more results using variations of the argument in Proposition 5.11.

Proposition 5.13. If
max ky, + [ [ _o km

N
> B) )

then RTy %w [1h_o RT} -

Proof. As before, we show that (%) holds. By a counting argument, ¥ must have
at least 1+ max k,, many (ao, ..., a,) that are singletons. Among these singletons,
there must be two of them that differ in at least two entries, i.e., the set consisting
of these two singletons covers a new tuple of colors. We can then take S to be the
image of two such singletons under V. (I

We can improve on this bound asymptotically, but even then this result seems
to be far from optimal.

Proposition 5.14. If

n km
N > max{, max k,, — 1+Hm:o},

2+ Lo fm
9 3
then RT}V %W HZLZO RT’im .

Proof. As before, we show that (%) holds. Since N > Wﬁ%km, the reduction ¥
must have at least three singletons.
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Case 1. If there are two singletons that differ in at least two entries, then we may
take S to be the image of two such singletons under ¥, as in Proposition 5.13.

Case 2. Otherwise, all of the singletons share exactly one common entry. So
there are some 0 < m < n and 3 < ! < k,,, such that there are exactly | many
singletons and all of them are of the form (ag,...,am-1,0,@m41,-..,a,), where
b < k.

We claim that there are at least k,, + 1 many fibers of size < [. If not, by a
counting argument, there are at least

1142 (k= 1)+ 1 (N — k)
=1+ 2k — 20 + IN — Uiy,

[0 ki
3

>l<maka—1—|— >+2km—l—lkm

> Uk — L+ [ ko + 2k — 1= Uk,

m=0

many tuples, which is a contradiction.
By the claim, there is a fiber U of size < [ that does not contain any tuple

of the form (ag,...,am—1,0,ams1,---,an). Since |U| < [, there is a singleton
(agy .-y @m—1,b,am+1,...,a,) such that b does not appear in any tuple in U. Then
for any tuple in U, the set containing it and (ag, ..., am—1,b, @m+1,-..,a,) covers

some tuple outside U, so we can take S to be the image of U and said singleton. [

The lower bound in Proposition 5.5 is, in general, much smaller than the upper
bounds in Propositions 5.11, 5.13, and 5.14. Observe that in all of our proofs, the
sets S consist of two elements, at least one of which is the image of a singleton
under V. However, ¥ may not have any singletons, for example in a hypothetical
reduction witnessing that RT% <w RT} x RT}. Also, there may not be any S that
has exactly two elements and satisfies (x), e.g., consider ¥ : 4x4 — 8 as represented
in the grid below. Here ¥ maps (i, j) € 4 x 4 to the number in the (i, j)*" position.

0 3 2 6
0 4 5 7
1 2 3 7
1 4 5 6

One can check that for any ¢,d < 8, there is a point labeled ¢ that shares a row or
column with a point labeled d. That means that S = {c,d} fails to satisfy ().

Therefore, new techniques will be required to close the gap between our lower
and upper bounds. We conclude this section by giving an ad hoc proof that RTé Lw
RT} x RT}, which is the smallest case not resolved by Corollary 5.12. In order to
do so, we will show that there exists some S that satisfies () and has exactly three
elements.

Before specializing to the case of RT% Lw RT; x RT., we consider a more general
context: let ko, k1 > 2 and fix a surjective partial function ¥ : kg x k1 — N (i.e., a
potential backward reduction for rth, <.w rt,lCO X rt,lﬁ). We say that a collection of
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three fibers is bad if its image under ¥ does not satisfy (x). We can characterize
the bad collections of three fibers:

Lemma 5.15. Let ko, k1 > 2 and let U : kg X k1 — N be a surjective partial
function. A collection of three fibers is bad if and only if their union contains
either:
(1) three pairs in a row/column (e.g., (a,by), (a,b1), (a,bs)), with one pair
from each of the three fibers;
(2) four pairs that form a rectangle (i.e., (ag,bo), (ao,b1), (a1,b0), (a1,b1)),
with at least one pair from each of the three fibers.

Proof. (<). If (1) holds, the three pairs in question do not cover any new pair. If
(2) holds, pick three out of the four pairs such that one pair from each of the three
fibers is picked. Then these three pairs cover exactly one other pair (the fourth).
But the fourth pair is already contained in the union of the three fibers.

(=). Suppose that we have a bad collection of three fibers. Without loss of
generality, we may pick one pair (a;,b;) from each fiber such that the three pairs
(a0, bo), (a1,b1), and (aq, by) witness badness.

Case 1. (ag,bp), (a1,b1), and (ag,b2) lie in the same row or column. Then they
satisfy (1).

Case 2. Two out of the three pairs, say (ag, bg) and (a1,b1), lie in the same row
or column (i.e., ag = a3 or by = by). Without loss of generality, suppose that
by = b1. Note that (ag, bo), (ag,b1), and (ag, b2) cover (ag, by), (ag, b2), and (az, by).
Therefore by badness, the latter three pairs lie in the union of the three fibers.

If (ag, by), (a1,b1), and (az, ba) are vertices of a rectangle (i.e., by = by or be = by),
then we satisfy (2). Otherwise, we consider cases depending on which fiber contains
(az,bo). In all cases, we satisfy either (1) or (2). See Figure 3 for an illustration.

Case 3. None of the three pairs lie in the same row or column. Note that by
badness, (ag, b1), (a1,bo), (ao,b2), (az,bo), (a1,b2), and (as,b;) all lie in the union
of the three fibers. We consider cases depending on which fiber contains (asq, by).
See Figure 4 for an illustration.

Case 3a. (a2,b1) and (ag, bo) lie in the same fiber. Then we satisfy (2): (a1, b2),
(a1,b1), (az,b1), and (ag,bs) form a rectangle with at least one pair from each of
the three fibers.

Case 3b. (az,b1) and (aq,by) lie in the same fiber. Then we consider cases de-
pending on which fiber contains (ag,bp). In all cases, we satisfy either (1) or (2).

Case 3c. (ag,b1) and (ag, bs) lie in the same fiber. We consider cases depending
on which fiber contains (ag, b1). The argument is symmetric to Case 3b. O

Proposition 5.16. RT§ ¢w RT} x RT}.

Proof. Towards a contradiction, fix forward functionals @y, ®; and a surjective
partial function ¥ : 4 x 4 — 8 witnessing that rt} <.v rt; x rtl. If ¥ has any
singletons, we can derive a contradiction using the proof of Proposition 5.11. Hence
we assume that ¥ has no singletons. There are sixteen pairs in 4 x 4, so ¥ must
be total, and all of the eight fibers in ¥ must contain exactly two pairs each.

As discussed previously, we derive a contradiction by producing a set S that
satisfies (*) and consists of three elements. In other words, we show that there is a
collection of three fibers that is not bad. To that end, we give an upper bound for
the number of bad collections of three fibers. Since each fiber contains exactly two
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0 = 0 x 0 *
1 x L x 1 %
0 2 12 2 2

FIGURE 3. Case 2 in Lemma 5.15, assuming that by = b;. In the
array on the top level, 0 lies in position (ag, by) and 1 lies in position
(a1,bo), meaning that ¥(ag,by) = 0 and ¥(a1,by) = 1. We have
yet to label position (ag,bs). The middle level represents cases
depending on whether as equals some a;, or not. If a star lies in
position (a,b), then (a,b) is known (by badness) to lie in the union
of the bad collection of three fibers. Sets of pairs that satisfy (1) or
(2) are underlined. The bottom level represents cases depending
on which of the three fibers contains (as, by). For example, in the
array on the bottom right, 2 lies in positions (ag,bo) and (as, bs),
meaning that ¥(ag,by) = ¥(az,by) = 2 and hence (aq,by) and
(a2, b2) lie in the same fiber. Then (ag, bo), (a1, bo), and (az, by) lie
in a column, satisfying (1).

pairs, it is either contained in a row or column, or lies in diagonal position. Let k
be the number of fibers that are contained in some row or column.

First, we give an upper bound for the number of collections that satisfy (2) in
Lemma 5.15. Tt suffices to give an upper bound for the number of rectangles that
intersect at most three fibers. Such rectangles have two possible forms, and we
count those cases separately.

Case 1. The rectangle contains at least one of those k fibers. There are at most
(4 — 1)k = 3k many such rectangles.

Case 2. The rectangle contains at least one fiber in diagonal position. There are
at most 8 — k many such rectangles.

Therefore, there are at most 3k + (8 — k) = 2k + 8 many rectangles that intersect
at most three fibers. So there are at most 2k 4+ 8 many collections that satisfy (2).

Next, we give an upper bound for the number of collections that satisfy (1) in
Lemma 5.15.

Case 1. If a row/column contains two fibers (and hence nothing else), then said
row/column does not contribute to our upper bound. Let [ be the number of such
rows and columns. Note that 2] < k.
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apg | 0 x %
as | *  x 2
a1 * 1

\ bg b1 b

0 x % 0 * * 0 x %
*~ 0 2 * 1 2 * 2 2
* 1 % * 1 =% * 1 =%
0 = = 0 * x 0 x * 0 0 = 0 1 0 2 x
01 2 11 2 2 1 2 * 2 2 * 2 2 * 2 2
* 1 % * 1 =% * 1 x * 1 % * 1 * 1 %

FIGURE 4. Case 3 in Lemma 5.15. In the array on the top level,
for each i < 3, the number i lies in position (a;, b;), meaning that
U(a;,b;) = 4. On the middle level, we have Case 3a on the left,
followed by Cases 3b and 3c. On the bottom level, we have various
subcases. For example, in the array on the bottom right, 0 lies in
position (ag, bgp), 2 lies in position (ag,b1), and 1 lies in position
(a1,b1). Together with (a1,bp), they form a rectangle satisfying

(2).

Case 2. If a row/column contains one fiber, as well as two other vertices from
two different fibers, then said row/column contributes one collection to our upper
bound. There are k — 2] many such rows/columns.

Case 3. Finally, the remaining 8+ — k& many rows or columns contribute (g) =4
collections each.

Therefore, there are at most

1-0+(k—20)- 14+ (8+1—k)-4=32-3k+20 <32—2k

many collections that satisfy (1).
We conclude that there are at most (2k 4 8) + (32 — 2k) = 40 bad collections of
three fibers. There are (8) = 56 > 40 collections of three fibers in total, so we can

3
define S to be the image under ¥ of any collection that is not bad. Then S satisfies
(%), which is a contradiction. d
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