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Abstract

We consider two combinatorial principles, ERT and ECT. Both are
easily proved in RCAg plus 39 induction. We give two proofs of ERT
in RCA, using different methods to eliminate the use of ¥ induction.
Working in the weakened base system RCA{, we prove that ERT is
equivalent to Y induction and ECT is equivalent to %9 induction.
We conclude with a Weihrauch analysis of the principles, showing
ERT =w LPO* <w TC{ =w ECT.

In their logical analysis of vertex colorings of hypergraphs, Davis, Hirst,
Pardo, and Ransom [6] isolate the combinatorial principle ERT, and relate
it to the nonexistence of finite conflict-free colorings for a particular hyper-
graph. The principle asserts that for any finite coloring of the natural num-
bers N there is a tail of the coloring such that every color appearing in the
tail appears at least twice in the tail. ERT stands for eventually repeating
tail, and can be formulated as follows.

ERT. If f: N — k for some k& € N, then there is a b € N such that for all
x > b, there is a y > b such that  # y and f(x) = f(y).

The principle ERT is an immediate consequence of the principle ECT
introduced by Hirst [7]. ECT stands for eventually constant palette tail, and
asserts that for any finite coloring of N there is a tail of the coloring such
that the colors appearing in any final segment of the tail are exactly those
appearing in the entire tail. A more formal version follows.



ECT. If f: N — k for some k € N, then there is a b € N such that for all
x > b, there is a y > x such that f(x) = f(y).

Both Davis et al. [6] and Hirst [7] work in the usual framework of reverse
mathematics. In particular, they prove equivalences over the subsystem of
second order arithmetic RCAy. This axiom system includes basic natural
number arithmetic axioms, an induction scheme restricted to %{ formulas
(denoted 1%?), and a recursive comprehension axiom that essentially asserts
that computable sets of natural numbers exist. See Simpson’s book [12] for
more about RCA( and reverse mathematics. Theorem 6 of Hirst [7] shows that
over RCA, ECT is equivalent to IX9, an induction scheme for 9 formulas.
RCA, can prove that ECT implies ERT, so RCA( proves that X9 implies ERT.
As we will see in the next section, IX9 is not necessary in this proof.

1. RCA, proves ERT

Davis et al. [6] show that IX9 is not needed in the proof of ERT by deriving
ERT from a restricted form of Ramsey’s theorem and applying a result of
Chong, Slaman, and Yang [4]. There, Ramsey’s theorem is restricted to
stable colorings of pairs, that is to functions f : [N]* — k such that for all
x, lim, . f(x,y) exists. Stable Ramsey’s theorem for pairs and two colors
is denoted by SRT3 and can be formalized as follows.

SRT3. If f : [N]? — 2 is stable, then there is an infinite set # C N and a
color ¢ € {0, 1} such that for all (z,y) € [H]?, f(x,y) =c.

The next result appears as Theorem 11 in Davis et al. [6]. The RCA, in
parentheses indicates that the proof can be carried out in the formal system
RCAy. For completeness, we give a minimal sketch of the proof.

Lemma 1. (RCA,) SRT3 implies ERT.

Proof. Working in RCA, let f : N — k be a coloring of N as in the statement
of ERT. Define a coloring of pairs, ¢ : [N]> — 2 by g(a,b) = 1 if and only if
for some z in the half open interval of natural numbers [a, b), f(z) appears
exactly once in the range of f restricted to [a,b). Because g is stable, by
SRT3 there is an infinite homogeneous set H. An argument based on the first
3 - 281 elements of H shows that g is identically equal to 0. Consequently,
the minimum element of H satisfies the requirements of the bound b in the
statement of ERT. (For a more complete proof, see Davis et al. [6]). O
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By Corollary 2.6 of Chong, Slaman, and Yang [4], SRTg cannot prove
129, so neither can ERT. Thus although RCAq + IX9 proves ERT, the full
strength of 139 is not necessary. Using a recent conservation result of Patey
and Yokoyama [10], together with an alternative formalization of ERT, we
can show that RCAy proves ERT, completely eliminating the use of 139.

Lemma 2. (RCAq) The following are equivalent.
(1) ERT.

(2) ERT' : If f : N — k for some k € N, then there is a number b € N,
a set I C [0,k) consisting of the range of f on [b,00), and a witness
set {(x;,y;) | © € I} such that for every z > b, we have f(z) € I,

b< w5y <Yrz), and f(2) = f(r52) = [(Yy)-

Proof. We will work in RCAy. Note that for any f, the number b provided
by ERT' also satisfies the statement of ERT. Thus ERT follows immediately
from ERT'.

To prove the converse, let f : N — k and apply ERT to obtain b. The set
I={j<k|3tlt>bA f(t) = j)} exists by bounded ©9 comprehension, a
consequence of RCAq [12, Theorem 11.3.9]. For each i € I, there are at least
two distinct values x; > b and y; > b such that f(z;) = f(y;) = i. Picking
the least such witness pair for each i, recursive comprehension proves the
existence of the witness set {(z;,v;) | ¢ € I'}. Routine arguments verify that
b and this witness set satisfy the requirements of ERT'. O

Applying the two lemmas and using a result of Patey and Yokoyama [10],
we can easily prove ERT in RCAq, answering a question of Davis et al. [6].
An alternative direct proof of Theorem 3 is included in the next section in
the proof of Theorem 6.

Theorem 3. RCAq proves ERT.

Proof. (RCAq) By Lemma 1, RCAy + SRT3 proves ERT. Thus, by Lemma 2,
RCA, + SRT3 proves ERT’. By Theorem 7.4 of Patey and Yokoyama [10],
RCA, + SRT3 is a conservative extension of RCA, for formulas of the form
VXp(X), where ¢ is TI3. ERT’ has this form, so RCAy proves ERT'. By
Lemma 2, RCA proves ERT. n

The conservation result of Patey and Yokoyama is a powerful tool for
eliminating the use of X9 induction in the proofs of combinatorial principles.
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Their result actually holds for Ramsey’s theorem for pairs and two colors,
so it is not necessary to limit ourselves to stable colorings. The principle
ERT’ can be formalized in the form VX¢(X) where ¢ is 9. Clearly, we
have made use of less than the full strength of this technique in our example.
On the other hand, if ERT is directly formalized in the form VX6(X), the
formula 6 is 9, so Patey and Yokoyama’s result does not apply. Lemma 2
is a necessary step in the argument.

2. Reverse mathematics: ERT is IX{ and ECT is 1%

In this section, we prove that our combinatorial principles are equivalent to
induction schemes over the weakened base system RCA;. The axioms of RCA;
are those of RCAy less the XY induction scheme, with the addition of a 3 in-
duction scheme and function symbols and axioms for integer exponentiation.
The subsystem is described in Chapter X of Simpson’s book [12]. The fol-
lowing lemma incorporates results from an early work of Simpson and Smith
[13]. Note the change in the base system at the beginning of the statement
of the lemma.

Lemma 4. (RCA() The following are equivalent.
1) 139, the X0 induction scheme.

2) The universe of total functions is closed under primitive recursion.

(1)
(2)
(3) Bounded X comprehension.
(4) Bounded TI comprehension.

Proof. The equivalence of items (1), (2), and (3) are included in Lemma 2.5
of the article of Simpson and Smith [13]. Recursive comprehension proves the
existence of complements of sets, so items (3) and (4) are also equivalent. [J

For our arguments, it is useful to formalize the concept of a partial func-
tion. Working in RCA{, we can define a code for a finite partial function
as a set of ordered pairs f C [0,k) x N such that for all i, n, and m, if
(i,n) € f and (i,m) € f, then n = m. Using this notion, we can state
another equivalent form of 13,

Lemma 5. (RCA;) The following are equivalent:



(1) 1.

(2) Flinite partial functions have bounded ranges. That is, if f C k x N is
a finite partial function, then

Vi < kVn((i,n) € f —n <b).

Proof. To prove (1) implies (2), working in RCA;, assume IX{ and let f be
a finite partial function contained in £ x N. By Lemma 4, we may apply
bounded ¢ comprehension and find the set D = {z < k| Jy(z,y) € f}. By
recursive comprehension, there is a total function f’ satisfying

f%w:{mﬁm\meeﬁ if ne D

0 otherwise.

By Lemma 4, we may apply primitive recursion to find the summation func-
tion g(n) = > ., f'(i). The integer g(k—1) is a suitable bound for the range
of f.

To prove the converse, we will use (2) to prove bounded X9 comprehen-
sion. Let 6(m,n) be a X) formula and fix a bound k. We will prove that the
set {m < k| Inf(m,n)} exists. Using recursive comprehension, we can find
the set of pairs

f=4{(m,n)|0(m,n) A\Vy <n—-0(m,y)}.

Note that f is a partial function from & into N. By (2), there is a bound b for
the range of f. Thus, for all m < k, Inf(m,n) if and only if In < bO(m,n).
So {m < k| Inf(m,n)} is identical to {m < k | In < bO(m,n)}, and its
existence follows from recursive comprehension. O]

We can now show that ERT is equivalent to IX9 over RCAj. Because
RCA; plus 1339 is RCA, this provides a direct proof of ERT in RCAq, without
the use of conservation results. Following the proof of the theorem, we will
comment on this as a technique for eliminating 139 in proofs of combinatorial
results.

Theorem 6. (RCA;) The following are equivalent.
(1) 129,
(2) ERT.



(3) VJERT(j). Here ERT(j) generalizes ERT, requiring that at or after the
bound b, any value of f that appears must appear at least j times.

Proof. To show that (1) implies (2), we could simply cite Theorem 3. We
present a direct proof using sequential applications of bounded comprehen-
sion that will be adapted to prove Theorem 8 below. Working in RCA],
assume X9, By Lemma 4, we may apply bounded ©¢ comprehension. We
will prove ERT for f : N — k. By bounded X! comprehension, we can find
the set of (codes for) non-repeating finite sequences of values less than k
such that the colors appear in this order somewhere in the range of f. More
formally, bounded XY comprehension proves the existence of a set S of (codes
for) sequences such that o € S if and only if

e length(o) < k,

o Vi < length(o) (o(i) < k),

o Vi < length(o)Vj < length(o) (o(i) = o(j) — i = j),
and there is a finite witness sequence 7 such that

e length(o) = length(r),

o Vi < length(7)Vj < length(7) (i < 7 — 7(i) < 7(j)),

o Vi < length(7)(f(7(i)) = o(7)).

By Lemma 4, we may also use bounded 1% comprehension. Using S as a
parameter and applying bounded I1{ comprehension, we can find a subset T'
of S consisting of the empty sequence and all those sequences o such that
the first time the colors appear in the specified order, the last color never
reappears. When selecting the first witness sequence, we assume that for
sequences differing in a single entry, the sequence with the smaller entry
appears first. Thus, ¢ is in T if and only if ¢ is empty, or ¢ € S and for
the first witness sequence 7 for ¢ and any j > 7(length(7) — 1), we have
f(4) # o(length(7) — 1). The set T is a subset of the finite set of non-
repeating sequences of numbers less than k, so RCA can answer questions
about whether or not sequences are in 7. In particular, we can define a
subset Ty C T of sequences o such that no extension of ¢ is in 7" and every
initial segment of o is in 1. Suppose oy € Ty. If 0 is empty, then every color
in the range of f appears at least twice, and b = 0 is the desired bound for
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ERT. If ¢ is nonempty, let 79 be the first witness sequence for oy, and define
b = 7o(length(og) — 1) + 1. Because oy is in 7" and none of its extensions are,
every color appearing at or after b must appear at least twice. Summarizing,
the bound b satisfies the requirements of ERT.

Next, we will show that (2) implies (1) by proving the contrapositive.
Suppose RCA; holds and 13! fails. By Lemma 5, there is a finite partial
function ¢ C k x N with an unbounded range. Define the function f : N —
k+1 by

Fn) = {j ifj <kA(jn) €g
k otherwise.

The function f exists by recursive comprehension, and for any b there is an
n > b such that f(n) < k and the value of f(n) appears only once in the
range of f. Thus no b can be a bound for ERT applied to f, and ERT fails.

Because (2) is a special case of (3), to complete the proof of the theorem,
it suffices to show in RCA{ that VjERT(7) follows from ERT. By our previous
work, 139 follows from ERT, so we may work in RCA,. Fix j and suppose
f N — k. Our goal is to find a b such that every color appearing at or after
b appears at least j times in the range of f at or after b. Define g : N — kx j
by setting

g(n) = (f(n),mod;|{i <n | f(i) = f(n)}).

Intuitively, if f takes the value ¢ at locations xg, x1, . . . z; (and nowhere before
or in between), then g(zo) = (¢,0), g(z1) = (4,1), ..., g(z;—1) = (4,5 — 1),
and g(z;) = (¢,0). Using a bijection between k x j and the natural numbers
less than k- j, we can view g as a function from N into k- j. Let b be a bound
for ERT applied to g. Suppose color i appears at or after b in the range of
f. Let xy be the first such location. Then for some m < j, g(z¢) = (i,m).
Note that z( is the first location at or after b where g takes this value. By
ERT for g, there is an #; > o such that g(z1) = g(x¢). By the definition of
g, there are at least j places in [zg,z;) where f takes the value i. Thus b is
a bound for ERT(j) for f. This completes the proof of (3) from (2) and the
proof of the theorem. O

For use in the proof of Theorem 11, note that the set T' defined in the
preceding proof can be used to compute the minimum bound satisfying ERT.
Because we are making a computability theoretic argument, we are not re-
stricted to RCAy. If every color in the range of f appears at least twice, then
no sequences of length one appear in Tj, so oy is the empty sequence and



b = 0 is the minimum bound. Otherwise, define finite sequences o and 7
as follows. Let o(0) be the last appearing among colors that appear exactly
once, and let 7(0) be the location where o(0) appears. Let o(i + 1) be the
last appearing among colors that appear exactly once after 7(i) if such a
color exists, and let 7(i + 1) be the last location where (i) appears. If no
such color exists, terminate the sequences. Routine verifications show that
o € Ty and that 7 is the first witness for o, so that b = 7(length(c) — 1) + 1
is a bound for ERT. From the construction, if & is any bound for ERT, then
b > 7(0), and for i < length(o), if ¥ > 7(i) then & > 7(i + 1). Thus b
is minimal. Consequently, the minimum bound can be calculated by listing
Ty, calculating the value b for each sequence in Tp, and then selecting the
minimum bound.

The existence of the set T in the proof that (1) implies (2) above used
an application of bounded X9 comprehension followed by an application of
bounded T1Y comprehension. Naively concatenating the associated formulas
to construct 7' with a single application results in a use of bounded XY com-
prehension, a principle equivalent to 139 [12, Exercise 11.3.13]. Conversely, it
may be possible to eliminate unnecessary uses of 139 in proofs, particularly in
the guise of bounded %9 or bounded IT5 comprehension, by using a sequence
of applications of bounded ¥? or bounded I19 comprehension. In the case
of the preceding proof, the sequential applications can be combined into a
single application, as in the second part of the proof of Theorem 8 below.

We complete this section with a proof of the equivalence of 1X9 and ECT,
showing that ERT is strictly weaker than ECT over RCAj. This result differs
from those in the article of Hirst [7] in the use of the weaker base system
RCA;. The arguments here sidestep the tree colorings used for [7, Theorem 6]
and in the alternative argument following [7, Theorem 7], which is based on
the conservation result of Corduan, Groszek, and Mileti [5].

Theorem 7. (RCA;) The following are equivalent.
(1) 129.
(2) ECT.

Proof. To prove that (1) implies (2), assume 139 and fix f : N — k. Because
129 implies 12?, we may work in RCAg. By bounded I19 comprehension, a
consequence of 1% ([12, Exercise 11.3.13], plus complementation via recursive
comprehension), the set

T={j<k|Yndz(z>nA f(z)=j)}
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exists. If j ¢ T, then after some point j ceases to appear in the range of f.
Formally,
Vi<k3sVe((j T ANz >s)— f(z) # 7).

By the II{ bounding principle, a consequence of 1X9 [12, Exercise 11.3.15],
there is a b such that

Vi<kVx((j¢T Nz >0b)— f(x)# 7).

In particular, if j ¢ T then for all x > b we have f(x) # j. Summarizing, the
range of f at or after b is exactly T', and every value of T appears infinitely
often in the the range. Thus b satisfies the requirements of ECT.

We will prove that (2) implies (1), by a two stage bootstrapping argu-
ment. For the first step, working in RCA{, note that ECT implies ERT. By
Theorem 6, we may deduce 139, so from now on we can work in RCA,.

For the second step, we will use ECT to prove bounded I3 comprehension,
and then deduce IX9. Fix k and consider T' = {j < k | V23Iyb(j, z,y)} where
6 is a ) formula. Our goal is to prove the existence of T'. Suppose (J,z,y)
is the n' triple in a bijective enumeration of k¥ x N x N. Define f(n) = j if
y is the first witness that Vs < 23t < y0(j, s,t), and let f(n) = k otherwise.
The function f exists by recursive comprehension. For any j < k, j appears
infinitely often in the range of f if and only if Yz3y6(j, z,y). Apply ECT to
f and obtain a bound b. Then

T={j<k|3x(z>bA f(x)=7)}.

By bounded X! comprehension, a consequence of RCAq [12, Theorem I1.3.9],
the set T exists, proving bounded ITJ comprehension. To complete the proof,
recall that by the first step above, we may work in RCAy. By complemen-
tation, bounded II comprehension implies bounded X9 comprehension. Ap-
plying Exercise 11.3.13 of Simpson [12], ¥ induction follows from RCA, and
bounded X9 comprehension. O

3. Weihrauch analysis

The goal of this section is to analyze ERT and ECT using Weihrauch re-
ductions. Because ERT and ECT have number outputs rather than set out-
puts, Weihrauch reducibility yields meaningful results where other forms of
computability-theoretic reducibility would not. We will consider Weihrauch
problems defined by subsets of N¥ x N. Each problem P can be viewed
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as a multifunction mapping instances I € domain(P) into solutions S with
(I1,S) € P. A problem P is Weihrauch reducible to a problem @, written
P <w @, if instances of P can be uniformly computably transformed into
instances of () whose solutions can be uniformly computably transformed
into solutions of the problem P. This last transformation may make use of
the original instance of P. More formally, P <\ @ if there are computable
functionals ® and W such that for all I € domain(P), ®(/) € domain(Q),
and for all S such that (®(/),S) € @, we have (I,V([,S)) € P. We write
P=w Qif P<w @Q and Q <w P, and write P <w @ if P <w @ and
Q £Lw P.

The relation =y is an equivalence relation on the Weihrauch problems.
The equivalence classes are called Weihrauch degrees, and many have well-
known representing problems. For example, many Weihrauch problems are
known to be equivalent to the Weihrauch problem LPO (Limited Principle of
Omniscience). This problem takes as an instance any f € N¥, and outputs 0
if 3nf(n) = 0 and 1 otherwise. For an introduction to Weihrauch reducibility
and many Weihrauch degrees, see the article of Brattka and Gherardi [1] and
the survey of Brattka, Gherardi, and Pauly [3].

Many operators on Weihrauch problems preserve reducibility. For exam-
ple, for a problem P, the problem P" is the result of n parallel applications
of P. The problem P* is the result of an arbitrary finite number of parallel
applications of P. Thus, for each n, we have P" <w P*. Pauly introduces
the concept of P* in [11] and in Theorem 6.5 shows that P <y @ implies
P* <y @Q*. Thus -* can be viewed as an operator that preserves Weihrauch
reducibility.

We may view ERT as a Weihrauch problem, where the input is a number
k and a function f : N — k, and the solution is a value b as provided by
ERT, that is,

Vn>b3dm>b(m#nA f(m)= f(n)).

In a similar fashion, ECT can be viewed as a Weihrauch problem. Our goal
is to find a known Weihrauch problems equivalent to ERT and to ECT, and
to separate ERT and ECT in the Weihrauch setting. As a first step, we can
state the following theorem.

Theorem 8. ERT =y LPO".

Proof. First we show that LPO™ <y ERT. Given k£ LPO instances fy, ... fr_1
we define a coloring g : N — k + 1 as follows. For i < k, let g(nk +1i) =i
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if and only if fi(n) = 0 and Vm < n(fi(m) # 0). Else, set g(nk + i) = k.
Note that by construction, all colors but k& appear at most once in the range
of g. Thus any solution to ERT for g must be an upper bound for the first
occurrence of 0 in the range of any f;, which allows us to solve LPO for each
fi.

For the converse reduction, we can adapt the first part of the proof of
Theorem 6, substituting LPO™ for the uses of bounded comprehension. Given
f N — k we can use finitely many parallel applications of LPO to find the
non-repeating sequences of colors in the set S. Simultaneously, we can use
finitely many parallel applications of LPO to find those sequences that appear
and whose last color reappears. Call the set of these sequences T”. A sequence
is in the set T" defined in the proof of Theorem 6 if and only if it is in S and is
not in 7”. Given the set T, we can find the bound b satisfying ERT for f by
the construction in the proof of Theorem 6. This shows that ERT <y LPO*.
Summarizing, ERT =y LPO™. O

Next, we turn to the Weihrauch analysis of ECT. The principle Discrete
Choice, denoted Cy, takes as an input an enumeration of the complement
of a nonempty set A and outputs an element of A. The article of Neumann
and Pauly [9] introduces and studies TCy, the total continuation of Cy. TCy
accepts the enumeration of the complement of any set A, empty or not, and
outputs a number, which will be an element of A if A is nonempty. Clearly,
Cy <w TCy, and consequently Cy <w TCy. Lemma 5 of Neumann and
Pauly [9] includes LPO* <y Cy. Concatenating the relations, LPO* <w TC§.
The next theorem links TCy and ECT.

Theorem 9. ECT =y TC,.

Proof. To see that ECT <w TCg, suppose the coloring f : N — £k is an
instance of ECT. Our goal is to use finitely many applications of TCy to
find a value b such that every color appearing at or after b appears infinitely
often in the range of f. For each ¢ < k construct an enumeration of the
complement of the set

A= {n | Ym > n(f(m) # )},

Apply TCy to each of these sets to obtain numbers b; such that if the color
1 appears only finitely often, then it no longer appears after b;. The number
b= 1+ max{b; | i < k} is a solution to the ECT instance.
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For the converse direction, suppose A; for 1 < ¢ < k is a finite list of
TCy instances, where for each 7, e; enumerates the complement of A;. Fix a
bijective pairing function (-,-) : Nx k — N, and define the coloring ¢ : N — k
by

, i ifi#£0ANe(s) =min{n |Vt < s(e;(t) #n)}
c((s,1)) = {

0 otherwise.

Apply ECT to ¢ to find a bound b. If some color i # 0 appears infinitely
often in the range of ¢, then A; = (). Otherwise, if 7 never appears after b
and s is sufficiently large that (s,i) > b, then min{n | Vt < s(e;(t) # n)} is
in A;. In either case, min{n | V¢t < s(e;(t) # n)} is a valid output for TCy
applied to the input A;. n

Summarizing, we have shown that ERT =w LPO*, LPO* <y TC, and
TCy =w ECT, so ERT <w ECT. We have captured the strength of ERT and
ECT in terms of known Weihrauch degrees, and shown that ERT is strictly
weaker than ECT in the Weihrauch degrees.

Both Theorem 8 and Theorem 9 fail for strong Weihrauch reducibility.
In strong reducibility, the solution to the input problem must be computed
from any solution of the transformed problem without further reference to the
original input. Using the notation from the first paragraph of this section,
P <,w @ if there are computable functionals & and ¥ such that for all
I € domain(P), ®(I) € domain(Q), and for all S such that (®(I),S) € @,
we have (I, ¥(S9)) € P.

As an example using familiar problems, we will show that LPO" <w TCg.
To see that LPO < w TCy, given an instance f of LPO, construct an instance
g of TCy by setting g(n) = n+ 1if f(n) # 0 and g(n) = 0 otherwise. If
the solution for ¢ is positive, then the solution for f is 0. If the solution for
g is 0, then the solution for f is 1. Similarly, sequences of LPO problems
can be transformed to sequences of TCy problems, so LPO* <,y TCy. We
know TCy £w LPO*, so TCY £sw LPO*, and thus LPO* < w TCy. The next
theorem summarizes strong reducibility relations for ERT and ECT.

Theorem 10. ERT <uv ECT < TCi, LPO Zaw ECT, and ERT Zuw
LPO".

Proof. Identity functionals witness ERT <,w ECT. We know ECT £ ERT,
so ECT £Lsw ERT and thus ERT <. w ECT.
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The first paragraph of the proof of Theorem 9 shows that ECT < w TCg.
The failure of the converse relation and ECT <gw TCy both follow from
LPO Lsw ECT, which we prove next.

To see that LPO £Lw ECT, suppose by contradiction that ® and ¥ witness
LPO <w ECT. Suppose f; and f, are LPO problems with distinct solutions.
Let ®(f1) = g1 and ®(fy) = g2 be the associated ECT problems. Let by
be a solution for g; and by be a solution for go. Then b = max{by, by} is
a solution for both g; and go. Then W(b) is a solution for both f; and f,
yielding a contradiction. This is an example of the principle that appears as
Proposition 3.6 of Brattka, Gherardi, and Holzl [2].

To see that ERT Lsw LPO*, we again argue by contradiction, supposing
that ® and ¥ witness ERT <iw LPO*. Let f; be the instance of ECT consist-
ing of a two-coloring that is constantly zero. Suppose ®(f1) = (g1, .-, 9n)
is a sequence of n instances of LPO. The computation of ®(f;) uses only a
finite initial segment of f;. Denote the length of this segment by k. The LPO
problems gy, ..., g, have solutions sq,...,s,. Thus ¥U(sy,...,s,) computes
a bound m satisfying ERT for f;. Now consider the ERT problem f,, con-
sisting of a two-coloring that contains k + m zeros, followed by a single one,
followed by an infinite string of zeros. Because f; and f; agree on the first
k values, ®(f2) = ®(f1) = (g1,-..,9n). These LPO problems are the same
as before, and so still have the solutions sy, ...,s,. Thus U(sy,...,s,) =m
should be a bound satisfying ERT for f,. However, by the construction of fs,
any bound for f; must be at least k£ +m + 1, which is strictly larger than m.
Thus ® and ¥ cannot be witnesses of ERT <;w LPO*, and we have shown
that ERT £Lgw LPO™. O

Minor alterations in the formulations of ERT and ECT can result in in-
teresting variations in their Weihrauch strengths. For example, let minERT
denote the principle that outputs the minimum bound satisfying ERT. Define
minECT similarly.

Theorem 11. ERT =w minERT and RCA{ proves ERT <> minERT.

Proof. Every solution of minERT is a solution of ERT, so ERT <y minERT.
For the converse, apply the second paragraph of the proof of Theorem 8§,
using LPO* to find the set T'. By the note following the proof of Theorem 6,
T can be used to calculate the minimum bound. Thus minERT <y LPO*.
By Theorem 8, LPO* <y ERT, so minERT <y ERT.
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For the reverse mathematics result, RCA; proves minERT implies ERT
trivially. To prove the converse, assume ERT and let f : N — k. By ERT,
we can find a bound b. By Theorem 6, ERT implies ¥¢ induction, so by
Lemma 4 we can use bounded XY comprehension to find Y = {¢ < k |
Jz(x > b A f(z) = c}, the range of f on [b,00). By the XJ least element
principle, there is a least n < b such that for all ¢ € [n, b], either f(t) € Y or
f(t) appears at least twice in [n,b]. This least n satisfies minERT. ]

In contrast to Theorem 11, we will prove below that ECT <w minECT.
Our proof uses the following characterization of minECT in terms of TCy and
isInfinite. The principle isInfinite takes an infinite binary string as input, out-
puts 1 if it has infinitely many ones, and outputs 0 otherwise. The notation
P x @ denotes the principle corresponding to solving P and () in parallel.

Theorem 12. minECT =y TC{ X isInfinite™.

Proof. To see that minECT <y TC{ xisInfinite®, let f : N — & be an instance
of minECT. For each j < k, we can use one instance of isInfinite to determine
if 7 appears infinitely many times in the range of f, and one instance of TCy
to find the last occurrence of j in the case that j appears only finitely many
times. Adding one to the maximum of the positions for the values that do
not appear infinitely many times yields the desired output for minECT.

The converse relation takes a few steps. By Theorem 9, TCy =w ECT.
Trivially, ECT <w minECT, so TC}; <w minECT.

To see that isInfinite <y minECT, let p denote an infinite binary sequence.
Let r be the sequence consisting of a 1 followed by the result of alternating
0 with digits from p. Then minECT(r) is 0 if and only if 1 appears infinitely
many times in p.

Next, we show that minECT is idempotent, or to be more precise, that
minECT x minECT <y minECT. Let (-,) : N x N — N be a bijective map
such that if mg < my and ng < nq, then (mg,ng) < (mq,ny). Let p and
q be instances of minECT. Replace p(0) with a color not appearing in the
range of p. This increases the value of minECT by one only in the case
that every color appears infinitely often in the original sequence. We can
now assume that at least one color appears only finitely many times in p.
Make the same adjustment and assumption for q. Define the coloring r by
r({n,m)) = (p(n),q(m)). If ng is the last time some color ¢y appears in p,
and ny is the last time that some color ¢; appears in ¢, then (ng,n;) is the
last time that (cg, c;) appears in r. Conversely, if (co, ¢c1) appears for the last
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time at position (ng,n;), then ¢y must appear last in p at ng, and ¢; must
appear last in ¢ at n;. Thus, solutions for p and ¢ can be extracted from the
solution for 7.

Iterated applications of the idempotence of minECT (or an application of
Proposition 4.4 of [3]) show that minECT* <w minECT. Because isInfinite <y
minECT, we have isInfinite® <y minECT" <y minECT. We have already
shown that TC <w minECT, so TCy x isInfinite® <y minECT x minECT <y
minECT, completing the proof of the theorem. m

The next result assists in separating ECT and minECT. Note that Theo-
rem 13 fails if isInfinite is replaced by isInfinites, another principle discussed
by Neumann and Pauly [9]. The summary diagram near the end of their
article is particularly helpful.

Theorem 13. islnfinite Zw TCY.

Proof. Suppose by way of contradiction that & and ¥ witness isInfinite <y
TC. The function mapping sequences p to the number of instances of TCy
in ®(p) is computable and therefore continuous. Let oy and n be such that
®(p) consists of n instances of TCy for all p = 0, that is for all p extending
0. Denote the ranges of these instances by ®(p)1, ..., ®(p),. For i <n and
m € N, define Cy,,; = {0 = 0o | m € ®(0);}. Let oy be an extension of o
such that for each ¢ € [1,n], either every C,,; is dense below oy, or there is
an m,; such that C,, ; contains no extension of o;. Let F' be the set of all ¢
such that m; is defined.

Let p consist of o followed by an infinite sequence of zeros. The sequence
p has finitely many ones. There is a solution (ay,...,a,) of ®(p) such that
a; = m; for all i € F. Then VY(ay,...,a,,p) returns 0, with a computation
that depends only on a4, ...,a, and a finite initial segment oy of p that can
be chosen to extend oy. Let g > o9 be 1-generic. If ¢ ¢ F, then for every
m, Cy,; is dense below gy, so ®(g); = N. Thus, (ai,...,a,) is a solution of
®(g). But ¥(ay,...,a,,q9) = ¥(ay,...,a,,p) =0 and g has infinitely many
ones, yielding the desired contradiction. O

Theorem 14. ECT <w minECT and RCAj proves ECT <> minECT.

Proof. Trivially, ECT <y minECT. To prove the strict inequality, suppose by
contradiction that minECT <y ECT. By Theorem 12, isInfinite <y minECT,
so by Theorem 9, isInfinite <\ TCJ, contradicting Theorem 13.
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Shifting focus to reverse mathematics, trivially RCA; proves that minECT
implies ECT. For the converse, assuming ECT, by Theorem 7, we may use 39
induction. By the IT! least element principle (a consequence of Xy induction),
a minimal bound can be found in the first part of the proof of Theorem 7.
Thus, over RCAj, ECT is equivalent to minECT. H

Theorem 14 demonstrates the ability of Weihrauch reductions to make
finer distinctions in this setting.

Our final result links minECT to principles considered by Hirst and Mum-
mert [8]. The principle C¥#__takes as inputs a size n and the enumeration of

the complement of a collection of finite subsets of N, each of size at most n,
and outputs an element of the collection of maximum cardinality.

Theorem 15. minECT =y C7__.

Proof. From Theorem 12 we know minECT =w TC X isInfinite®, so it suffices
to show that
minECT <w C%_ <w TC} x isInfinite*.

a

For the first reduction, suppose f : N — k is an instance of minECT. Consider
the set A of all finite sets I C k x N such that for each j < k, if (j,n) € F
then n is the maximum natural number such that f(j) = n. Here we are
identifying pairs with their integer codes, so F' can be viewed as a subset of
N. The set A is TIY definable using f as a parameter, and its complement
can be enumerated by a function uniformly computable from f. Use this
enumeration and the size k as the input for C#__ and let F} be the resulting
maximal output set. Adding 1 to the maximum of the second coordinates of
the elements of Fj yields the desired bound for minECT.

To prove the final reduction, it is useful to note that TCy can be used
to count the numbers of ones in a binary string. Using a bijective pairing
function, given a sequence p : N — 2, we can define an enumeration ¢ of
the (codes for) pairs that omits at most one pair, so that the first coordinate
of that omitted pair corresponds to the number of ones in the range of p,
provided that number is finite. Calculation of ¢ can be viewed as a moving
marker process. Place a marker on (0,0) and then alternate enumerating
unmarked pairs and calculating values of p until a 1 appears in the range of
p. Move the marker to the first non-enumerated pair with an initial coordi-
nate of 1, enumerate (0,0), and continue enumerating unmarked pairs and
calculating values of p until the next 1 appears in the range of p. Iterate.

16



If there are infinitely many ones in the range of p, then ¢ will enumerate all
pairs. If only finitely many ones appear, TCy applied to ¢ will find a pair
with the desired first coordinate.

To prove that C# <y TCY x isInfinite*; let f : N — N<N enumerate
the complement of a set A of finite subsets of N, each of size less than k.
For each positive i < k, let e; be an enumeration of all the subsets of N of
size exactly i. For each positive ¢+ < k, define the instance p; of isInfinite
as follows. Set p;(n) = 1 if there is a ¢t < n such that f(t) = e;(¢;) where
¢t = {7 <n|pi(j) =1}, and set p;(n) = 0 otherwise. Thus f enumerates
all sets of size ¢ if and only if the range of p; contains infinitely many ones,
and the range of p; contains a total of n ones if and only if e;(n) is the first set
enumerated by e; that is in A. For each p;, let ¢; be the associated instance of
TCy that counts the ones in the range of p;. Given the solutions to isInfinite
for each p; and to TCy for each ¢; for all i < k, we can find the maximum j
such that isInfinite fails for p;. If n is the output from TCy for g;, then e;(n)

is a maximal element of A, solving the instance C#__corresponding to f. [

Hirst and Mummert [8] showed that C#_ _is Weihrauch equivalent and
provably equivalent over RCA( to several principles formalizing calculation
of bases for bounded dimension matroids and vector spaces, and finding con-
nected component decompositions of graphs with finitely many components.
Thus minECT is Weihrauch equivalent to all these principles, ECT is strictly

Weihrauch weaker, and all of them are provably equivalent over RCA,.
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