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Abstract. The SRT
2

2
vs. COH problem is a central problem in computable

combinatorics and reverse mathematics, asking whether every Turing ideal
that satisfies the principle SRT

2

2
also satisfies the principle COH. This paper

is a contribution towards further developing some of the main techniques in-
volved in attacking this problem. We study several principles related to each
of SRT2

2
and COH, and prove results that highlight the limits of our current

understanding, but also point to new directions ripe for further exploration.

1. Introduction

One of the most fruitful programs of research in computability theory over the
past few decades has been the investigation of the logical strength of combinatorial
principles, particularly Ramsey’s theorem and its many relatives. Ramsey’s theo-
rem is, of course, a far-reaching result, broadly asserting that in any configuration
of objects, some amount of order is necessary. Understanding this order has been
the objective of much research in combinatorics and logic. In computability theory,
and even more so reverse mathematics, it has spawned a long and productive line
of research. See Hirschfeldt [16, Chapter 6] for an introduction.

For many years, a central problem surrounding this analysis has been to clarify
the relationship between two important variants of Ramsey’s theorem for pairs;
specifically, whether the Cohesiveness principle (COH) is implied by the stable
Ramsey’s theorem for pairs (SRT2

2) over the weak fragment RCA0 of second-order
arithmetic. This question was finally answered in 2014 by Chong, Slaman, and
Yang [6], who gave a negative answer, but remarkably, using a nonstandard model
for the separation of these principles. What has come to be called the SRT

2
2 vs.

COH problem is the question of what happens in -models (models with standard
first-order part), and this question remains open. Over the past several years,
work on the e ective content of variants of Ramsey’s theorem, including towards
a solution of the above problem, has driven much of the progress in computable
combinatorics and the reverse mathematics of combinatorial principles. It has also
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been an important impetus for the fruitful and growing intersection of these subjects
with computable analysis (see, e.g., [1, 3, 7, 11, 14, 17, 20, 21, 27, 28, 31, 34]).

In this paper, we study several aspects of this problem. We assume familiar-
ity with computability theory and reverse mathematics, and refer the reader to
Soare [39] and Simpson [38], respectively, for background. We also refer to Brat-
tka, Gherardi, and Pauly [2] for a survey of Weihrauch reducibility and computable
analysis, though we include a brief summary of the most relevant concepts below.

Note. Since the submission of this article, Monin and Patey [26] have announced
a solution to the SRT

2
2 vs. COH problem, exhibiting an -model in which SRT

2
2

holds but COH fails. Their proof proceeds by entirely di erent methods than those
explored within this paper. Hence, it does not supersede any of the results below,
which we feel are of independent interest concerning the degree-theoretic content
of the SRT

2
2 and COH problems. In addition, Monin and Patey’s result still leaves

open Question 2.3, which may be regarded as the purely combinatorial variant of
the SRT

2
2 vs. COH problem, as well as the open questions in Section 6.

Throughout, we will be dealing with 1
2 statements of second-order arithmetic,

which are examples of the more general concept of a problem, as defined below.

Definition 1.1.

(1) A problem P is a subset of 2 2 .
(2) Each X 2 for which there is a Y 2 such that P(X,Y ) holds is an

instance of P.
(3) Each Y such that P(X,Y ) holds is a solution to X as an instance of P.

When no confusion can arise, we will speak just of instances and solutions, without
explicitly referencing the problem. When necessary, we may call an instance of P a
P-instance for short, and a solution to some instance of P a P-solution.

Throughout, we follow the standard practice of coding mathematical objects and
structures by numbers and sets of numbers. This makes our definition of problem
very broad, since it permits us to deal with any instances and solutions that admit
some kind of countable presentation. For all the objects we consider here, these
codings will be obvious and/or well understood, so we will do so implicitly and
informally. But we refer the reader to [17, Remarks 1.4 and 1.5] for a more thorough
discussion of this issue, along with some explicit examples.

All of the 1
2 principles we will look at can be naturally put into the syntactic

form

( X)[ (X) ( Y )[ (X,Y )]],

where and are arithmetical formulas. We can then view such a principle as a
problem in the above sense, with the instances being all the X 2 such that (X)
holds, and the solutions to any such X being all the Y 2 such that (X,Y )
holds. We shall make this identification without further mention in the sequel.

To compare problems, we will employ the following reductions.

Definition 1.2. Let P and Q be problems.

(1) P is computably reducible to Q, written P c Q, if every instance X of P

computes an instance X of Q, such that for every solution Y to X, we have

that X Y computes a solution Y to X.
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Figure 1. Relations between notions of reduction. An arrow from
one reducibility to another means that whenever Q is reducible to
P according to the first then it is also reducible according to the
second. In general, no relations hold other than the ones shown.

(2) P is strongly computably reducible to Q, written P sc Q, if every instance

X of P computes an instance X of Q, such that every solution Y to X
computes a solution Y to X.

(3) P is Weihrauch reducible to Q, written P W Q, if there exist Turing
functionals and such that for every instance X of P, we have that X

is an instance of Q, and for every solution Y to X we have that X Y is
a solution to X.

(4) P is strongly Weihrauch reducible to Q, written P sW Q, if there exist
Turing functionals and such that for every instance X of P, we have

that X is an instance of Q, and for every solution Y to X we have that
Y is a solution to X.

We say P and Q are computably equivalent, and write P c Q, if P c Q and Q c P.
We analogously define strong computable equivalence, Weihrauch equivalence, and
strong Weihrauch equivalence, denoted by sc, W, and sW, respectively.

The relationships between these reductions are easy to see, and are summarized
in Figure 1. Weihrauch reducibility was introduced by Weihrauch [41], and com-
putable reducibility by Dzhafarov [10]. The connection with reverse mathematics
comes from the fact that all of these reducibilities are stronger than implication over
-models for 1

2 principles. That is, if P and Q are 1
2 principles and (when viewed

as problems) P is reducible to Q in any of the senses above, then every -model of
Q also satisfies P. And while implication over -models is a strictly more general
notion, it is a well-known empirical fact that most such implications found in the
literature are due to one of the stronger reducibilities above. For a more thorough
discussion of this phenomenon, see Hirschfeldt and Jockusch [17, Section 4.1].

To state the SRT
2
2 vs. COH problem, we now review some standard definitions

from Ramsey theory.

Definition 1.3. Fix a set X , and integers n, k 1.

(1) [X]n denotes the set { x0, . . . , xn 1 Xn : x0 < · · · < xn 1}.
(2) A k-coloring of [X]n is a map c : [X]n {0, . . . , k 1}.
(3) A set Y X is a homogeneous set for c if c [Y ]n is constant.

As the number of colors typically will not matter for our purposes, we shall usually
speak only of colorings, rather than explicitly about k-colorings for a given k.
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Except in the statements of definitions, we will usually be working with k = 2
anyway. We abbreviate colorings c : [X]n {0, . . . , k 1} by c : [X]n k, as usual,
and for x0, . . . , xn 1 [X]n we write c(x0, . . . , xn 1) in place of c( x0, . . . , xn 1 ).

Ramsey’s theorem (RTn
k). Every coloring c : [ ]n k has an infinite homoge-

neous set.

Of particular interest in computability has been Ramsey’s theorem for pairs, i.e.,
RT

2
2. The principles SRT

2
2 and COH come from a prominent approach, pioneered

by Cholak, Jockusch, and Slaman [4], of splitting combinatorial principles into a
stable and a cohesive half.

Definition 1.4.

(1) A coloring c : [ ]2 k is stable if limy c(x, y) exists for every x .
(2) An infinite set L is limit-homogeneous for such a c if there is an i < k

such that limy c(x, y) = i for all x L.

The stable form of RT2
k takes two natural forms.

Stable Ramsey’s theorem for pairs (SRT2
k). Every stable c : [ ]2 k has an

infinite homogeneous set.

0
2 subset principle (D2

k). Every stable c : [ ]2 k has an infinite limit-
homogeneous set.

The name of the second principle derives from the observation that, by the limit
lemma, computing an infinite limit-homogeneous set for a given computable stable
2-coloring is exactly the same as computing an infinite subset of a given 0

2 set
or its complement. It is well-known that SRT

2
2 and D2

2 are equivalent over RCA0.
This equivalence is easy to see for -models (see, e.g., [4, Lemma 3.5], which in fact
gives a computable equivalence), but requires a delicate argument, due to Chong,
Lempp, and Yang [5], to formalize with limited induction. Dzhafarov [11, Corollary
3.3 and Corollary 3.6] showed that SRT

2
2 W D2

2 and SRT
2
2 sc D2

2. As discussed

further below, D2
2 is just a less e ective version of RT1

2. In practice, this often makes
D2

2 easier to work with than SRT
2
2.

For sets X and Y , let X Y denote that there is a finite set F such that
X F Y .

Definition 1.5. Let R = R0, R1, . . . be a sequence of sets. A set C is cohesive

for R if for every n , either C Rn or C Rn.

Cohesiveness principle (COH). Every sequence of sets admits an infinite cohe-
sive set.

The relevant fact for us, due to Cholak, Jockusch, and Slaman [4, Lemma 7.11],
with the use of 0

2-induction later eliminated by Mileti [25, Claim A.1.3] and
Jockusch and Lempp (unpublished), is that RT

2
2 is equivalent over RCA0 to the

conjunction SRT
2
2 + COH. Each of SRT2

2 and COH is combinatorially simpler than
RT

2
2 in a number of ways. Part of this simplicity comes from the fact that both

principles can be viewed in terms of the more elementary principle RT1
2. For SRT

2
2,

in the form D2
2, this is because finding a limit-homogeneous set for a stable coloring

c : [ ]2 2 is the same as finding an infinite homogeneous set for the coloring
d : 2 defined by d(x) = limy c(x, y). Note, by the way, that d is c -computable,
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so D2
2 can be characterized as the jump of RT1

2. For COH, the connection with RT
1
2

follows by a result of Jockusch and Stephan [22, Theorem 2.1], who characterized
the degrees containing an infinite cohesive set for every computable family of sets
as precisely those degrees a satisfying a 0 . Relativizing this result, it is easy
to see that COH is computably equivalent to the assertion that given a sequence
d0, d1, . . . of colorings 2, there exists a sequence H0, H1, . . . of infinite sets
such that eachHn is, up to finite error, homogeneous for dn. In the parlance of com-
putable analysis, this says that COH is computably equivalent to the parallelization
of the principle (RT1

2)
fe asserting that for every coloring of singletons there is an

infinite set that is homogeneous modulo finitely many elements.
We can now formally state the main problem we are interested in.

The SRT
2
2 vs. COH problem. Does every -model of SRT2

2 satisfy COH?

Conventional wisdom suggests the answer ought to be negative, since implications
between relatively straightforward combinatorial principles are usually quite ele-
mentary. The only possible di culties one expects to encounter are induction is-
sues, but these are precisely the ones that are absent when working over -models.
On the other hand, the continued resistance of this problem to a separation, in
spite of a string of recent advances that did confirm other long-conjectured non-
implications (e.g., Liu [24], and Lerman, Solomon, and Towsner [23]), means we
should probably keep an open mind.

Our paper is a contribution to the study of this problem. In Section 2 we
introduce a weaker form of COH, and show it to be a combinatorial consequence
of SRT2

2. This is a step towards resolving a question of Patey [30, Question 2.10],
as well as the longstanding question of whether COH is computably reducible to
SRT

2
2 (see [17, Question 5.3]). In Sections 3 and 4, we prove results about the

complexities of instances of COH and solutions to SRT
2
2, respectively. The aim

is to identify the precise features of cohesiveness and homogeneity that might be
responsible for a separation or implication, as the case may be. Section 4 also
presents a new method of constructing e ective solutions to SRT

2
2/D

2
2 that we hope

will find further applications. In Section 5, we study variants of hyperimmunity,
to better understand the class of instances of SRT2

2 having solutions that do not
compute cohesive sets. Finally, in Section 6, we lay out some additional questions
and directions for future research related to the SRT

2
2 vs. COH problem.

2. Weakening COH

One way of attacking the SRT
2
2 vs. COH problem has been by showing that

COH is at least not reducible to SRT
2
2 in a typical way, i.e., via any of the notions

in Definition 1.2. Such results lend credence to a negative answer, since a full
-model separation of COH from SRT

2
2 would in particular yield all such non-

reductions. Recent examples along these lines include work by Dzhafarov [10, 11],
Patey [34], and Dzhafarov, Patey, Solomon, and Westrick [14], establishing, among
other results, that COH W SRT

2
2 and COH sc SRT

2
2. As already remarked, it

remains open whether COH c SRT
2
2.

In showing that some principle P is not, say, computably or Weihrauch reducible
to some other principle Q, we must exhibit an instance X of P, and for each instance
of Q computable from X, we must exhibit one solution against which to diagonalize.
But in some cases, we can in fact do this for all instances of Q, whether computable
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from X or not. The first results along these lines were obtained by Hirschfeldt and
Jockusch [17, proofs of Lemma 3.2 and Theorem 3.3] and Patey [34, Theorem 3.2].
Conversely, even when we know that P is not reducible to Q according to any of
the notions in Definition 1.2, it may still be that P is reducible to Q in this stronger
sense, where the instances of Q are allowed to be arbitrary. Intuitively, we can
think of P as being a combinatorial consequence of Q. This notion was first isolated
and studied by Monin and Patey [27] under the name of omniscient computable
reducibility.

Definition 2.1 ([27], Section 1.1). Let P and Q be problems. Then P is om-
nisciently computably reducible to Q if for every instance X of P there exists an

instance X of Q, such that for every solution Y to X we have that X Y computes
a solution Y to X.

We start with the following relatively straightforward result, which nicely illus-
trates the power of this reducibility. As we will see, this is also a very insightful
example for studying the SRT2

2 vs. COH problem. For notational convenience, given

any set R we write R0 for R and R1 for R. Given a family of sets R = R0, R1, . . .
and a finite string 2< , we also write

R =
n<| |

R (n)
n .

Proposition 2.2. COH is omnisciently computably reducible to SRT
2
2.

Proof. Let R = R0, R1, . . . be a sequence of sets. Define c : [ ]2 2 as follows:
for all x < y,

c(x, y) =
0 if ( 2x)( z > y)[z R and R is finite],

1 otherwise.

Given x, letmx > x be least such that maxR mx for all 2x+1 for which R is
finite. Then c(x, y) = 1 for all y mx, and c(x, y) = 0 for all y with x < y < mx. In
particular, limy c(x, y) = 1 for all x, so c is stable, and every infinite homogeneous
set for c must have color 1. Furthermore, if H = {h0 < h1 < · · · } is any such
homogeneous set, then necessarily mx mhx

hx+1 for all x.

We can thus use R H to compute a sequence of binary strings 0 1 · · ·
(ordered by extension) such that | x| = x and R x is infinite. Let 0 = , and
suppose by induction that we have defined x for some x 0 and that R x is
infinite. Since either R x R0

x or R x R1
x is infinite, there must be a z > hx+1 in

one of these two sets. Search for the least such z, and let x+1 = xb for whichever
b {0, 1} has z R x Rb

x. Since z mx, we know that R x+1 is infinite, as
desired.

Finally, from 0 1 · · · we can R-computably define an infinite cohesive set

C for R in the standard way. For completeness, we give the details. Given x ,
and having defined integers dy for all y < x, we let dx be the least element of R

x+1

larger than all these dy. We then let C = {d0 < d1 < · · · }. To see that this set is

cohesive for R, consider any y and let b = y+1(y). Then for each x y we

have that dx R x+1(y)
y = Rb

y, so C Rb
y.

In the above proof, the constructed coloring c has complicated homogeneous
sets essentially because they must all be very sparse, which allows us to code in
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jump information. Computing the jump is enough to produce cohesiveness, but it
is in fact much stronger. Thus, coding using sparseness is not helpful for under-
standing the true relationship between SRT

2
2 and COH. A better approach might

be through limit-homogeneity, where sparseness is not so easily forced. Indeed,
notice that c above has very uncomplicated limit-homogeneous sets: in particu-
lar, is limit-homogeneous for c. This observation prompted Patey [30] to ask
whether Proposition 2.2 still holds if SRT2

2 is replaced by D2
2. Notice that this is

equivalent to replacing SRT
2
2 by RT

1
2, since as pointed out above, D2

2 is just RT
1
2

with instances given by limit approximations, and thus the two are omnisciently
computably equivalent.

Question 2.3 ([30, Question 2.10]). Is COH omnisciently computably reducible
to RT

1
2?

As a way to show how, in principle, cohesiveness can be coded into the homoge-
neous sets of colorings of singletons, we introduce the following weakening of COH,
and show it to be a combinatorial consequence of RT1

2.

Definition 2.4. Let R = R0, R1, . . . be a sequence of sets. A set C is Ramsey-

cohesive for R if for infinitely many n , either C Rn or C Rn.

Ramsey-type cohesiveness principle (RCOH). Every sequence of sets admits
an infinite Ramsey-cohesive set.

Theorem 2.5. RCOH is omnisciently computably reducible to RT
1
2.

Proof. Given an instance R = R0, R1, . . . of RCOH, we define c : 2 induc-
tively. Fix n , and suppose we have defined c n, which we regard as an element
of 2< of length n. We let c(n) = 0 if Rn Rc n is infinite, and otherwise we let
c(n) = 1. By induction, it follows that Rc n is infinite for each n. Now let H be
any infinite homogeneous set for c, say with color i < 2. Then, in particular, for
each n we have that

m H n

Ri
m Rc n,

so the intersection on the left is infinite. We can thus compute an infinite Ramsey-

cohesive set C for R from R H, as follows: having defined C n for some n ,
choose the least element of m H n+1 R

i
m larger than max(C n), and add it to

C. Clearly, C is infinite, and for each m H we have C Ri
m.

Obviously, RCOH is a restriction, and hence a logical consequence, of COH.
Unfortunately, it is also strictly weaker than COH, which we show next, after a few
auxiliary lemmas. Thus, the above result does not settle Question 2.3.

Definition 2.6. Let R = R0, R1, . . . be a sequence of sets. We let

C(R) = {P 2 : ( P )[R is infinite]}.

Note that if R is computable, then C(R) is a 0,
1 class.

Lemma 2.7 (Patey [34, Lemma 2.4]). For every 0
2 infinite tree T 2< , there

is a computable sequence of sets R such that C(R) = [T ].

Definition 2.8. Let T 2< be an infinite tree.
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(1) A set H is homogeneous for a string 2< if there is some i < 2 such
that ( x < | |)[x H (x) = i].

(2) A set H is homogeneous for T if the set { T : H is homogeneous for }
is infinite.

Lemma 2.9. Let T 2< be an infinite 0
2 tree, and let R = R0, R1, . . . be

a computable sequence of sets such that C(R) = [T ]. Then the sets computing an

infinite Ramsey-cohesive set for R are exactly those whose jumps compute infinite
homogeneous sets for T .

Proof. Let C be a Ramsey-cohesive set for R. The sets U = {i : C Ri} and

V = {i : C Ri} are 0,C
2 , and one of them is infinite. Say U is infinite, the

other case being symmetric. Then U has an infinite 0,C
2 subset U1. The set U1 is

homogeneous for T .
Conversely, let H be an infinite set homogeneous for T , say for color 1, and let

f : 2 2 be a stable function such that limy f(x, y) = H(x). Define the set
C = {x0 < x1 < · · · } f -computably as follows. First, let x0 = 0. Then, having
defined xn, search for some stage s > n and some xn+1 i<n,f(i,s)=1 Ri such that

xn+1 > xn. Such s and xn+1 must be found. Indeed, let s be large enough so that
( i < n)f(i, s) = limy f(i, y). Then the set F = {f(i, s) : i < n} is a subset of H,

hence is homogeneous for T with color 1. Since [T ] = C(R), there is some P C(R)
such that F P . In particular, i<n,f(i,s)=1 Ri = i F Ri RP maxF is infinite,

so there is some xn+1 > xn in it. It is easy to check that C is Ramsey-cohesive for

R.

The following principle was introduced by Flood [15].

Ramsey-type weak König’s lemma (RWKL). Every infinite binary tree has an
infinite homogeneous set.

Our interest below will be in a relativized form of the above principle. Namely,
we will look at RWKL , which is the assertion that for every function g : 2< 2
such that lims g( , s) exists for all and T = { : lims g( , s) = 1} is a tree, there
exists an infinite homogeneous set for T . Let JI be the problem whose instances are
all X , and the solutions to any such X are all functions f : 2 such that
( x) X(x) = lims f(x, s). Below, JI RWKL denotes the problem whose instances
are all RWKL -instances, and given any such instance g, a JI RWKL -solution to it
is any JI-solution to any RWKL -solution to g, i.e., a function f : 2 2 such that
lims f(x, s) exists for all x and {x : lims f(x, s) = 1} is an infinite homogeneous set
for the tree { : lims g( , s) = 1}.

Lemma 2.10. JI RWKL c RCOH.

Proof. To see that JI RWKL c RCOH, let g : 2 2< be a stable function
such that T = { 2< : lims g( , s) = 1} is a binary tree. By Lemma 2.7, there

is a g-computable sequence of sets R such that [T ] = C(R). Let C be a Ramsey-

cohesive set for R. By Lemma 2.9, there is a g C-computable function f : 2 2
such that the set H = {x : lims f(x, y) = 1} is infinite and homogeneous for T . In
particular, f is a solution to T viewed as an instance of JI RWKL .

Now to see that RCOH c JI RWKL , let R be an instance of RCOH. Then there

is a 0,R
2 tree T such that [T ] = C(R). Let f : 2 2 be a function such that the
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set H = {x : lims f(x, y) = 1} is infinite and homogeneous for T . By Lemma 2.9,

f R computes a Ramsey-cohesive set C for R.

Theorem 2.11. There is an -model of RCOH that is not a model of COH.

Proof. We build an increasing sequence of sets X0 T X1 T · · · such that for
every i, the jump of Xi is not of PA degree relative to 0 , and for every i and every

Xi-computable sequence of sets R, there is a j such that Xj computes an infinite

Ramsey-cohesive set for R. The Turing ideal M = {Z : ( i) Z T Xi} is then a
model of RCOH, but not a model of COH. Indeed, the instance of COH composed
of all the primitive recursive sets belongs to M, but by Jockusch and Stephan [22,
Theorem 2.1], any cohesive set for this sequence has jump of PA degree over 0 .

Start with X0 = . Having defined X0, . . . , Xi, let R be the next Xi-computable
sequence of sets in an order chosen so that we eventually consider every sequence

of sets computable in any Xj . By Lemmas 2.7 and 2.9, there is an R-computable
instance f of RWKL such that for every set Y whose jump computes a solution to

f , we have that Y R computes an infinite Ramsey-cohesive set for R. Let P be
a path through the tree T = { : limy f( , y) = 1}. Since Xi is not of PA degree
relative to 0 by inductive hypothesis, it follows by Liu’s theorem [24, Theorem 1.5]
that there is an infinite set H P or H P such that H Xi is not of PA degree
over 0 . By the relativized Friedberg jump inversion theorem (see [8, Theorem
2.16.1]), there is a set Xi+1 T Xi such that Xi+1 T H Xi. In particular, Xi+1

computes an infinite Ramsey-cohesive set for R and Xi+1 is not of PA degree over
0 .

3. COH and Cohen forcing with locks

An important feature of COH is that it has a universal instance. More precisely,

for each set A there is an A-computable instance R = R0, R1, . . . of COH such

that for any other A-computable instance S = S0, S1, . . . and any solution C

to R, we have that A C computes a solution to S. This fact follows by the
aforementioned result of Jockusch and Stephan [22, Theorem 2.1], which can be
restated as follows: for any set X, there is an A X-computable solution to every
A-computable instance of COH precisely when deg(A X) deg(A) . Thus,

an A-computable instance R of COH is universal just in case every solution C to

R satisfies deg(A C) deg(A) . As first pointed out in [22], the sequence of
primitive A-recursive sets has this property.

The existence of universal instances means that, in principle, there is no need
to ever construct complicated instances of COH—such as for separation or non-
reduction results—since there exists a maximally complicated one. In practice,
however, constructing the instance explicitly often gives more flexibility. This is
done, for example, by Dzhafarov [11, Theorem 5.2] to prove that COH W SRT

2
2,

and by Dzhafarov, Patey, Solomon, and Westrick [14, Corollary 1.6] to prove that
COH sc SRT

2
< . Both of these arguments use a forcing notion, sometimes called

Cohen forcing with locks, which is very natural for building instances of COH.
However, we show in this section that this forcing does not produce maximally
complicated (i.e., universal) instances. Thus, while the instances it does produce
su ce for certain separations, they may not be adequate for all.

Cohen forcing with locks is the following forcing notion.
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Definition 3.1. Let P be the following notion of forcing.

(1) A condition is a tuple p = ( 0, . . . , k 1, f), where:
• 0, . . . , k 1 are binary strings;
• f is a function from {0, . . . , k 1} to {0, 1, u}.

(2) A condition q = ( 0, . . . , 1, g) extends p, written q p, if:
• k;
• f g;
• i i for all i < k;
• for all i < k such that f(i) {0, 1} and every x with | i| x < | i|,

we have i(x) = f(i).

From any generic filter G on P we can define sets RG
i = { i : ( 0, . . . , k 1, f)

G} for each i , where we identify binary strings with the finite sets they define,

as well as RG = RG
0 , R

G
1 , . . . , which is naturally an instance of COH. Similarly,

we can define fG = {f : ( 0, . . . , k 1, f) F}, which is a total function
{0, 1, u}. Notice that for any i such that fG(i) = b {0, 1}, we necessarily have
that RG

i (x) = b for cofinitely many x, so we think of RG
i as being “locked” to the

value b from some point on. For any i such that fG(i) = u, there will be infinitely
many x such that RG

i (x) = 0, and infinitely many x such that RG
i (x) = 1, so we

think of RG
i as being “unlocked”.

We will exploit an atypical feature of RG , namely that merely knowing which
columns are unlocked allows us to compute a cohesive set for the instance.

Proposition 3.2. Let G be a su ciently generic filter on P. Let U = {i :

fG(i) = u}. Then RG U computes an infinite cohesive set for RG.

Proof. Clearly, each RG
i for i U is Cohen generic, and so is the join of any finite

number of such RG
i . By genericity, U is infinite, so we can list out its elements as

i0 < i1 < · · · . We now define a set C = {x0 < x1 < · · · } computably from RG U ,
as follows. Fix k , and suppose we have defined xj for all j < k. Let xk be the

least x such that x > xj for all j < k, and RG
ij
(x) = 1 for all j k. This x exists

because j k R
G
ij

is generic. Thus, for each i U we have that almost all the xj

belong to RG
i , hence C RG

i . On the other hand, for any i / U , we have that

RG
i = or RG

i = , so trivially also C RG
i or C RG

i . Hence, C is cohesive

for RG , as desired.

Of course, the set U in the above proposition is computable from fG , so in partic-

ular, RG fG always computes an infinite cohesive set for RG .
Our main goal in this section is to prove the following result.

Theorem 3.3. Let G be a su ciently generic filter on P. Then (RG fG) is not
of PA degree relative to 0 .

Combining this theorem with the preceding proposition, we immediately get the
following.

Corollary 3.4. Let G be a su ciently generic filter on P. Then there is an RG-

cohesive set C such that (RG C) is not of PA degree relative to 0 . In particular,

(RG C) is not of PA degree relative to deg(RG) , so RG is not a universal instance.
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We turn to proving the theorem. In what follows, let R and f be names in

the P forcing language for the generic objects RG and fG , respectively. Let
denote the forcing relation, as usual. We refer the reader to Shore [37, Chapter
3] for further background on forcing in arithmetic. The following is the main
combinatorial ingredient of our proof.

Lemma 3.5. Let be a {0, 1}-valued Turing functional. The set of conditions p
such that

p ( x) (R f) (x) ( x) (R f) (x) = x (x) .

is dense in P.

Proof. Fix a condition p, and suppose there is no p p forcing ( x) (R f) (x) .

Then for each x, the set of conditions p forcing that (R f) (x) is dense below

p. Now, for each x and b {0, 1}, the sentence (R f) (x) = b is 0
2 in the

forcing language. As P is a computable notion of forcing, forcing 0
2 sentences is

0
2-definable (see, e.g., [37, Theorem 3.2.5]). Thus, given x, we can find a p p

and a b {0, 1} such that p (R f) (x) = b uniformly -computably. That
means that computably in , we can define an infinite sequence of conditions

p = p0 p1 · · ·

and an infinite sequence of bits

b0, b1, . . . {0, 1}

such that px
(R f) (x) = bx for each x. But then there must be an x such that

x (x) = bx, as otherwise could compute a diagonally non-computable function

relative to itself. Thus, px is the desired extension of p forcing (R f) (x) =

x (x) .

We can now prove our theorem.

Proof of Theorem 3.3. Let G be a su ciently generic filter on P. Fix any {0, 1}-

valued Turing functional, and suppose (RG fG) is total. By genericity, Lemma 3.5

implies there is some p G forcing ( x) (R f) (x) = x (x) . Then by genericity

again, we must have that (RG fG) = x (x) for some x. In particular, (RG fG)

is not diagonally non-computable relative to , hence not of PA degree relative to
0 . Since was arbitrary, this completes the proof.

4. Symmetric and asymmetric constructions

There exist two main techniques for constructing computability-theoretically
weak solutions to SRT

2
2. The first comes from the original proof by Seetapun that

RT
2
2 does not imply ACA0 over RCA0 (see Seetapun and Slaman [36, Theorem 2.1]).

The second is due to Cholak, Jockusch, and Slaman [4, Section 4]. Both have found
wide application in the literature (e.g., [6, 10, 11, 12, 13, 27, 32, 34]). And while
both methods use Mathias forcing with similar conditions, the combinatorial cores
of the two approaches are somewhat di erent, and this fact is reflected in their
e ectivity. For computable instances, Seetapun’s proof requires a oracle, while
Cholak, Jockusch, and Slaman get away with an oracle of PA degree over 0 . The
latter thus has a number of advantages. For example, it can be used to show that
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every computable instance of SRT2
2 has a low2 solution ([4, Theorem 3.7]). There

is no known proof of this fact using Seetapun’s combinatorics.
But Seetapun’s method seems to have some advantages of its own. Hirschfeldt,

Jockusch, Kjos-Hanssen, Lempp, and Slaman [18, Theorem 4.5] introduced a ver-
sion of Seetapun’s argument that works below . They used this to prove the
following result, which answered a question of Mileti [25, Question 5.3.8].

Theorem 4.1 ([18, Theorem 4.5]). Let A and C be 0
2 sets such that C T .

Then computes an infinite subset H of A or A such that C T H.

In particular, every computable instance of D2
2 (and hence of SRT2

2) has an incom-
plete 0

2 solution. This is the first example of an upper bound on the strength of
SRT

2
2 that is not known to be provable with the Cholak, Jockusch, and Slaman

technology. An essential key here is to use an asymmetric proof: one construction
that fully builds a homogeneous set of color 0, and a separate backup construction
that builds a homogeneous set of color 1. The original construction of Seetapun,
as well as the construction of Cholak, Jockusch, and Slaman, are both symmetric:
they build the two homogeneous sets together, playing one o against the other.

In this section, we present one symmetric and one asymmetric construction of a
homogeneous set, somewhat more directly comparing the strengths of the two. We
begin with a symmetric argument in the style of Cholak, Jockusch, and Slaman.

Theorem 4.2. Let A and C be 0
2 sets such that C T . If G is any 2-generic

set, then G computes an infinite subset H of A or A such that C T H.

While this is only a slightly weaker version of Theorem 4.1, the underlying combi-
natorics of the proof are new. The main takeaway is that there are still unexplored
aspects of this technique that can be exploited to (at least partially) reprove results
that could previously only be obtained by more ad-hoc methods.

First, we recall the following results, which we will make use of.

Lemma 4.3 (Lawton, see [18, Theorem 4.1]). Let C 2 be a non-empty 0
1 class,

and let C0, C1, · · · >T 0 be uniformly 0
2. Then C has a low member P such that

i(Ci T P ).

Lemma 4.4 (Simpson [38, Lemma VIII.2.9]). Every set X of PA degree com-
putes a countably coded Scott set, i.e., a countable sequence Z0, Z1, . . . such that
{Z0, Z1, . . .} is an -model of WKL.

We will also need the following simple but useful fact about genericity. For
completeness, we recall that a function g : is hyperimmune relative to a set
Z, or Z-hyperimmune, if for every Z-computable function f there is an n such that
f(n) < g(n).

Lemma 4.5. Suppose that G is 2-generic. Then G uniformly computes a
countable sequence of functions f0, f1, . . . such that for every i , the function fi
is hyperimmune relative to j=i fj.

Proof. Write G as i Gi, and for each i, let fi = pGi
, the principal function of

Gi. By 2-genericity, each fi = pGi
is hyperimmune relative to j=i pGj

=

j=i fj , as desired.

We now come to the proof of the theorem, which is a priority construction. For
partial functions f and g, we shall write f(x) g(x) to mean that f(x) = g(x) if
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both f(x) and g(x) are defined. We shall also follow the convention that if a Turing
functional converges on some input using a finite oracle F , then its use is bounded
by maxF .

Proof of Theorem 4.2. Fix A, C, and G, and let A0 = A and A1 = A. By Lem-
mas 4.3 and 4.4, there is a countable Turing ideal M = {Z0, Z1, . . . } as follows:

• M |= WKL0;
• i Zi is low;
• C T i Zi.

We may assume neither A0 nor A1 has any infinite subset in M, since otherwise
we can take this subset and be done.

Recall that a lowness index for a low set X is a natural number e such that

e = X . In what follows, we write “X is (a lowness index for) a set”, etc., to
mean that X is a low set specified by a lowness index. In this way, we identify a
given lowness index for X with X itself.

Conditions. A condition is a tuple (F0, F1, X), where F0 A and F1 A are
finite sets, X is (a lowness index for) an element of M, and maxF0, F1 < minX.
A condition (E0, E1, Y ) extends (F0, F1, X), written (E0, E1, Y ) (F0, F1, X), if
Fi Ei and min(Ei Fi) > maxFi, for each i < 2.

Note that unlike Mathias conditions, we do not demand the reservoir X to be
infinite, or that an extension only add new elements to the finite initial segments
from the reservoir, or that Y X in the definition of extension. It may seem from
this definition that we do not need the reservoirs, but their role will become apparent
in the construction. We use the terms “reservoir” and “condition” here by analogy
with Mathias forcing, even though our argument is not a forcing construction.

We will build an infinite G -computable sequence of conditions

(F0,0, F1,0, X0) (F0,1, F1,1, X1) · · · (F0,s, F1,s, Xs) · · · .

We then let H0 = s F0,s and H1 = s F1,s. We aim to satisfy the following
requirements: for all e0, e1 ,

Re0,e1 : H0

e0
= C H1

e1
= C;

and for all n ,
Sn : |H0| > n |H1| > n.

Thus, H0 and H1 will be infinite subsets of A0 and A1, respectively, and at least
one Hi will not compute C. The requirements will be satisfied by a finite injury
priority argument, with a moveable marker procedure. The requirements are given
the usual order.

Hyperimmune functions. Let f0, f1, . . . be the G -computable functions
given by Lemma 4.5. Thus, each fi is hyperimmune relative to j=i fj . To
each requirement Re0,e1 , we associate f e0,e1 . Each function will be called finitely
often in the construction of the sequence of conditions, and therefore the sequence
will be j= e0,e1

fj-computable. In particular, f e0,e1 will be hyperimmune

relative to this sequence.

Reverting the reservoir. At a stage s, we may need to revert the reservoir.
This means that we look for the largest t < s such that Xt (s, ) = . Such a
t must exist because we will have X0 = . We then set (F0,s+1, F1,s+1, Xs+1) =
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(F0,s, F1,s, Xt (maxF0,s F1,s, )). In this case, we also say that the reservoir
was reverted to stage t at stage s. Note that the finite initial segments F0,s and F1,s

are unchanged.

Movable marker procedure. To each requirement Re0,e1 , we shall associate
a marker me0,e1 , which represents a stage at which the reservoir Xme0,e1

is

infinite, and after which no requirement of higher priority requires attention (to
be defined below). Initially, me0,e1 = 0. At the end of each stage s at which a
requirement Re0,e1 requires attention, we set me0,e1 = s+1 and also me

0
,e

1
= s+1

for every requirement Re
0
,e

1
of lower priority. Moreover, if the reservoir is reverted

to some stage t, then we set me0,e1 = s + 1 for every requirement Re0,e1 with
me0,e1 t. The construction will ensure that each marker eventually stabilizes to
a value, and that at any stage s, if me0,e1 s, then Xme0,e1

Xs. Indeed, the
only time Xs Xs+1 is when a reservoir is reverted or when a strategy acts.

Requiring attention. At a stage s, having (F0,s, F1,s, Xs) already defined, a
requirement Sn requires attention if either |F0,s| n or |F1,s| n. A requirement
Re0,e1 requires attention if the following two properties hold:

(1) for each i < 2 and x < minXme0,e1
, we have

Fi,s
ei (x) C(x);

(2) for each i < 2 and x < minXme0,e1
, there exists E Xme0,e1

(maxFi,s, )

such that
Fi,s E
ei (x) = C(x).

A requirement that does not require attention is called satisfied. In other words,
Re0,e1 requires attention if it is not already satisfied by either ensuring disagreement
with C (negation of property 1) or ensuring non-agreement with C (negation of
property 2). Note also that if we ever ensure the negation of property 1 then this
will continue to hold whether the reservoir is later reverted or not. If we ever ensure
the negation of property 2, then this will continue to hold if we never revert the
reservoir again.

Construction. We let (F0,0, F1,0, X0) = ( , , ). At the beginning of a stage s, we
assume we have already defined (F0,s, F1,s, Xs). Initially, we -computably check
whether Xs (s, ) = . If this is not the case, then we revert the reservoir, and
do nothing else at this stage. If Xs (s, ) = , then we pick the highest-priority
requirementRe0,e1 withme0,e1 s or Sn with n s that requires attention at stage
s. If there is no such requirement, we set (F0,s+1, F1,s+1, Xs+1) = (F0,s, F1,s, Xs),
and go to the next stage. If this requirement is Sn, then we search computably in

for numbers x0, x1 such that xi Xs Ai for each i < 2, or for a number u
such that Xs (u, ) = . The search must succeed, because if Xs is infinite then
its intersection with both A0 and A1 must be non-empty (and in fact, infinite).
Otherwise, one of the Ai would have Xs as a subset, contrary to our assumption
that Ai has no infinite subset inM. If x0 and x1 are found we let Fi,s+1 = Fi,s {xi}
for each i < 2, and let Xs+1 = Xs (max{x0, x1}, ). If u is found instead, we
revert the reservoir.

Now suppose the highest priority requirement that requires attention is Re0,e1 .
Let us write m = me0,e1 for the sake of notation. Note that since m s, we have

already defined Xm in the construction. Let D be the 0,Xm

1 class of all B0 B1

such that B0 B1 = , B0 B1 = Xm, and

( i < 2)( x)( E0, E1 Bi)
Fi,s E0

ei
(x) Fi,s E1

ei
(x).
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We consider two cases. Note that we can -computably determine which case we
are in.

Case 1: D = . Computably in , we search for a side i < 2, an x, and a finite

set E Ai Xm such that
Fi,s E
ei (x) = 1 C(x), and set Fi,s+1 = Fi,s E, set

F1 i,s+1 = F1 i,s, and set Xs+1 = Xs (maxE, ). Such a set E must be found
since in particular, (A0 Xm) (A1 Xm) D. Now Re0,e1 will be permanently
satisfied. Indeed, we have ensured that the property (1) above can never hold again.

Case 2: D = . Since M |= WKL0 and Xm is low, we can -computably choose
some B0 B1 M D. In particular, B0 B1 is low, and knows a lowness
index for this set. There are two subcases.

Case 2a: Bi (f e0,e1 (k), ) = for some i < 2, where k is the number of times
Re0,e1 has required attention prior to stage s. Computably in , we search for an

x such that
Fi,s E
ei (x) 1 C(x) for all E B1 i. If B1 i is finite, the search

will trivially succeed by our use conventions. On the other hand, if B1 i is infinite
but no such x exists, then because B0 B1 D, it follows that B1 i computes C,
contradicting that B1 i M. So we may assume x has been found. We then set
F0,s+1 = F0,s, set F1,s+1 = F1,s, and set Xs+1 = B1 i (x, ). In this case, if Xm

is infinite, so is B1 i and hence also Xs+1. So Re0,e1 will be permanently satisfied
because property (2) will never hold again. (Of course, it may still be that Xm,
hence Xs+1, is actually finite, in which case the latter will later be reverted.)

Case 2b: otherwise. In this case, we assume (possibly wrongly) that both B0

and B1 are infinite. Computably in , we search for an x such that
F0,s E
e0 (x)

1 C(x) for all E B0. Again, the search must succeed. Once x is found, we set
F0,s+1 = F0,s, set F1,s+1 = F1,s, and set Xs+1 = B0 (x, ). And again, if we
were right that B0 is infinite, Re0,e1 will be permanently satisfied as above.

Each stage is concluded by updating the markers and going to the next stage.
This completes the construction.

Verification. We claim that every requirement is satisfied from some stage on-
wards. Seeking a contradiction, fix the highest priority requirement that requires
attention infinitely often. Clearly, this is some requirement Re0,e1 . Let s be a stage
after which no requirement of higher priority requires attention.

First, note that if Re0,e1 is satisfied by Case 1 at some stage, then it never later
requires attention again. This is because here we force disagreement, as witnessed
by the finite initial segments of our conditions, and these grow monotonically even
when the reservoirs are reverted. Thus, by our assumption, we must conclude that
Case 1 never occurs.

In other words, each time Re0,e1 requires attention, we end up satisfying it by
Case 2. By construction, whenever we do this at some stage s > s, it is by refining
the reservoir to a final segment of some set B0 or B1 with B0 B1 = Xm, where m
is the value of me0,e1 at stage s . Our choice of s implies that so long as we believe
this refined reservoir to be infinite, the rest of the construction draws all further
reservoirs from within it, and Re0,e1 continues to be satisfied. Thus, at the first
stage s > s at which Re0,e1 requires attention again, we will have just reverted
the reservoir to some stage ts m.
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Let s0 < s1 < · · · be all the stages s s at which Re0,e1 requires attention.
As noted above, this means that ts0 ts1 · · · . Fix sn such that tsn = tsl
for all l n. We show that after stage sn, Case 2a never applies again in the
construction, so that Re0,e1 is ever after only satisfied by Case 2b. Indeed, suppose
Re0,e1 requires attention at some stage sl sn, and suppose we satisfy it by Case
2a. Then at this stage, we choose B0 and B1 as above, and refine the reservoir to
a final segment of some B1 i because we already know that Bi is finite. When we
revert the reservoir right before stage sl+1, it is because we discover that B1 i is
also finite, meaning that in fact B0 B1 is finite. But B0 B1 is the entire reservoir
at the start of stage sl, so when we revert right before the start of stage sl+1 it
must be to a stage strictly before sl. That is, tsl+1

< tsl , which is a contradiction
since tsl+1

= tsl = tsn .
Hence, after stage sn, the case analysis between Cases 2a and 2b is no longer

necessary forRe0,e1 . Since this is the only point in the construction where we use the
function f e0,e1 it follows that the construction is computable in j= e0,e1

fj .

Now define a partial function h : , as follows. Let k0 be the number of times
Re0,e1 requires attention prior to stage sn, and let h(k) = 0 for all k < k0. Now for
k k0, let B0 and B1 be the sets we consider refining the reservoir to under Case
2 at stage sn+k k0

, and define

h(k) = (µp )( i < 2) Bi (p, ) = .

Note that this definition only requires knowing the construction, so h is partial

j= e0,e1
fj-computable.

Now if h(k) for some k k0 then both the sets B0 and B1 considered at
stage sn+k k0

are infinite, so B0, which is (up to finite di erence) the reservoir we
refine to under Case 2b at that stage, will never be reverted. Hence, Re0,e1 will
remain satisfied, which is a contradiction. It follows that h is total. Since f e0,e1 is
hyperimmune relative to j= e0,e1

fj , there must be some k k0 such that

fe0,e1(k) h(k). But then at stage sn+k k0
, Case 2a will correctly identify an i < 2

such that Bi is finite, and we will satisfy Re0,e1 . This contradicts our assumption
that Case 2a never applies again after stage sn.

This contradiction completes the proof of our claim, and we conclude that all
requirements are eventually permanently satisfied. This completes the verification
and the proof of Theorem 4.2.

Patey [35, Theorem 28] proved that for every set A and every hyperimmune
function g, there is an infinite subset H of A or A such that g is H-hyperimmune.
A natural question is whether this result can be e ectivized in the case of A and f
being 0

2. We adapt the asymmetric construction from [18] to give an a rmative
answer.

Theorem 4.6. Let A be a 0
2 set and g be a 0

2 hyperimmune function. Then
computes an infinite subset H of A or A such that g is H-hyperimmune.

Note that the set H above is necessarily incomplete as a 0
2 set, since obviously no

0
2 function can be hyperimmune relative to . Thus, our theorem also properly

strengthens the result of [18, Theorem 4.5].
Before proceeding to the proof, we need the following basis theorem.

Lemma 4.7. Let D 2 be a non-empty 0
1 class, and let g be a 0

2 hyperimmune
function. Then D has a low member P such that g is P -hyperimmune.
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Proof. We build computably in an infinite decreasing sequence of non-empty 0
1

classes
D = D0 D1 · · ·

such that for every s ,

(i) either ( P Ds+1)
P
s (s) or ( P Ds+1)

P
s (s) ;

(ii) for some x , either ( P Ds+1)
P
s (x) < g(x) or ( P Ds+1)

P
s (x) .

Suppose such a sequence exists. Since (i) forces the jump, it follows that s Ds =
{P} for some P . Since the sequence is 0

2, it also follows that this P is low. Finally,
by (ii), g will be P -hyperimmune, as desired.

We now explain how to construct this sequence. At stage s, suppose we have
defined Ds. We define Ds+1. Let T 2< be an infinite computable binary tree
such that [T ] = Ds. Let T1 T be the outcome of forcing the jump on s, in the
standard way. Thus, any 0

1 subclass of [T1] satisfies (i). To satisfy (ii), we search
computably in for some x such that T2 = { T1 : s (x) } is infinite, or such
that ( )( 2 )[ T s (x) < g(x)]. Such an x must be found, since if
the former case does not hold, the function h : that on input x searches
for the least such that ( 2 ) [ T s (x) ] and outputs a bound on all
these computations is total computable, and by hyperimmunity of g, we must have
h(x) < g(x) for some x. In the former case, let Ds+1 = [T2], and in the latter case,
let Ds+1 = [T1]. The class Ds+1 therefore satisfies (i) and (ii). This completes the
construction and the proof.

Let (n,E, v) be a 0
1 formula of second-order arithmetic, where n, v are number

variables and E is a number variable coding a finite set. For an infinite set X, we
say is essential in X if for every n there is a sequence En

0 , E
n
1 , . . . X such that

for all k we have maxEn
k < minEn

k+1 and ( v) (n,En
k , v).

Proof of Theorem 4.6. Fix A and g. By Lemmas 4.4 and 4.7, there exists M =
{Z0, Z1, . . . } as follows:

• M |= WKL0;
• i Zi is low;
• g is i Zi hyperimmune.

As usual, we may assume neither A nor A has any infinite subset inM. We consider
two cases.

Case 1: there is an infinite set X M such that for every 0
1 formula (n, F, v)

that is essential in X, there is some n and some finite set E X A such that
( v < g(n)) (n,E, v). We build an infinite -computable subset H of A such that
g is H-hyperimmune. More precisely, we build an infinite -computable sequence
of finite sets F0, F1, . . . such that |Fe| < |Fe+1| and Fe X A for all e, and such
that g is e Fe-hyperimmune. We set H = e Fe.

Let F0 = , and suppose by induction that we have defined Fe X A for some
e. Let (n,E, v) be the formula

maxFe < minE Fe E
e (n) = v,

which is obviously 0
1. Now, either is essential in X or it is not. If it is not, then

there must be an n and an x maxFe such that for all E X (x, ) we have
¬( v) (n,E, v). If is essential, then by assumption there is some n and some
E X A such that maxFe < minE and Fe E

e (n) < g(n). We can search for
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this data computably in . We consider two subcases, according to which we find
first.

Case 1a: there is an n and an x maxFe such that for all E X (x, ) we
have ¬( v) (n,E, v). Since A has no infinite subset in M, we can find a y > x
in X A. Let Fe+1 = Fe {y}. By construction and the definition of , we have
ensured that H

e (n) .

Case 1b: there is some n and some E X A such that maxFe < minE and
Fe E
e (n) < g(n) We then let Fe+1 = Fe E. Thus, we have ensured that H

e

will not dominate g.

This finishes the construction. Clearly, the resulting set H is infinite and com-
putable in , and g is H-hyperimmune, as desired.

Case 2: otherwise. In this case, we build an infinite -computable subset H of A
such that g is H-hyperimmune. We construct H by stages, as we now describe. In
some ways, this construction is similar to (but simpler than) that of Theorem 4.2.
Thus, we omit some of the details below.

Conditions. A condition is a pair (F,X), where F A is a finite set, X is (a
lowness index for) an element of M, and maxF < minX. A condition (E, Y )
extends (F,X), written (E, Y ) (F,X), if F E and min(E F ) > maxF .

We build a -computable sequence of conditions

(F0, X0) (F1, X1) · · ·

and let H = e Fe. Our goal is to satisfy the following requirements: for all e ,

Re : ( n) H
e (n) ( n) H

e (n) < g(n);

and for all n ,

Sn : |H| > n.

Clearly, these requirements su ce for our needs. We assign the requirements pri-
orities as usual.

0
3 approximation. Since we are in Case 2, for every infinite X M there exists

a 0
1 formula essential in X such that for every n and every finite set E X,

if ( v < g(n)) (n,E, v) then E A = . Now, can find such a uniformly
from a lowness index for X. So if we fix a computable indexing 0, 1, . . . of all

0
1 formulas, then there is a -computable function f : such that for every

(lowness index for a) low set X, if X is infinite then f(X) is the 0
1 formula we

want, and if X is finite then f(X) is some arbitrary value. Let f be a -computable

approximation to f , so that for every X we have f(X) = lims f(X, s).

Movable marker procedure. To each requirement Re, we associate a marker
me . This marker represents a stage such that Xme

is infinite, and after
which no requirement of higher priority requires attention (as defined below). We
approximate f(Xme

) in order to satisfy Re, as detailed in the construction. At the
end of each stage s at which Re is the highest-priority requirement that requires
attention, we set me = s + 1 for every requirement Re of strictly lower priority.
Also, whenever the reservoir is reverted to some stage me (defined below), we set
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me = s for every requirement Re of strictly lower priority than the requirement
that has caused the reservoir to be reverted. Initially, we set me = 0 for all e. Thus,
at the start of a stage s, we will have me s for all e.

Reverting the reservoir. At a stage s > 0, we will sometimes need to revert the
reservoir. This means that we look for the least e s such that our approximation

to f(Xme
) changes at stage s, i.e., f(Xme

, s) = f(Xme
, s 1). We then say the

reservoir has been reverted to stage me, and redefine Xs = Xme
(maxFs, ). We

do this, rather than defining Xs+1 to be Xme
(maxFs, ), because unlike in the

construction of Theorem 4.2, we do not want resetting the reservoir to cause us to
go to the next stage. This definition will allow us to reset the reservoir and then
continue with other actions at stage s.

Requiring attention. At stage s, a requirement Sn requires attention if |Fs| n.
A requirement Re requires attention if the following properties hold:

(1) for each x < minXme
, if Fs

e (x) then Fs
e (x) g(x);

(2) for each x < minXs, there exists E Xme
(maxFs, ) such that

Fs E
e (x) g(x).

A requirement that does not require attention is called satisfied.

Construction. Initially, let (F0, X0) = ( , ). At stage s, assume we have defined

(F0, X0), . . . , (Fs, Xs). If s > 0 and there is an e s such that f(Xme
, s) =

f(Xme
, s 1), then we revert the reservoir. However, unlike in the construction

in Theorem 4.2, we do not end the stage if this happens. Instead, whether this
happens or not, we now consider the highest-priority requirement Sn or Re for
n, e s that requires attention at stage s. If there is no such requirement, let
(Fs+1, Xs+1) = (Fs, Xs). If such a requirement exists, and it is Sn, then we search

for the least x Xs A, or for a number u such that f(Xme
, u) = f(Xme

, s) for

some e s. The search must succeed, because as we will see, if f(Xme
, s) = f(Xme

)
for all e s then Xs must be infinite, and if Xs is infinite then it must intersect
A by our assumption that A has no infinite subset in M. Now if x is found, we
let Fs+1 = Fs {x} and Xs+1 = Xs (x, ). If u is found instead, we revert
the reservoir, and we start our search for the highest-priority requirement requiring
attention again.

Now suppose the highest-priority requirement requiring attention is Re. Write
=

f(Xme ,s)
for ease of notation. Computably in Xme

, we build for each n a

sequence En
0 , E

n
1 , . . . Xme

such that maxFs < minEn
k and maxEn

k < minEn
k+1,

and ( v) (n,En
k , v) for all k. Note that if Xme

is infinite and f(Xme
, s) = f(Xme

)
then each of these sequences is actually infinite. Otherwise, we may not be able to
find En

k for some n and k, so some of the sequences may be finite (partial). For
each n, let Tn be the set of all < such that (k) En

k for all k < | |. Thus,
if En

0 , E
n
1 , . . . is infinite, then Tn is an infinite Xme

-computable, Xme
-computably

bounded tree. Otherwise, Tn may be only partially defined. But either way, we can

uniformly find a
0,Xme

1 index for Tn as a (possibly partial) tree. Using this index
and the lowness index of Xme

, we can ask whether

Un = { Tn : ( E ran( )) Fs E
e (n) }
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is finite, by which we mean that there is a level k at which Tn is defined, but such
that Un has no elements of length k. If the answer is yes, then Un is actually a
finite tree, regardless of whether the sequence En

0 , E
n
1 , . . . is infinite or not. If the

answer is no, then Un is a bona fide infinite tree, provided En
0 , E

n
1 , . . . is infinite

as well. Of course, if the answer is no but En
0 , E

n
1 , . . . is finite, so that Tn is only

partially defined, then we will be incorrectly assuming that Un is infinite. But if
this is so, we will eventually revert the reservoir.

Define a partial Xme
-computable function h : as follows. On input n, the

function h first searches for the least such that En
k is defined for all k < and

( Tn) [| | = = ( E ran( )) Fs E
e (n) ],

and then outputs the least w bounding the values of all the relevant computations
Fs E
e (n) as well as all the witnesses v such that (n,En

k , v) for k < .
We now -computably search for the least n such that either h(n) < g(n) or

such that Un is not finite in the sense described above. As mentioned above, if
thinks that Un is finite then it is actually so, so h(n) will be defined. Hence, if we
never find an n such that Un is not finite then h will be a total Xme

-computable
function, and there will have to be an n such that h(n) < g(n) since g is Xme

-
hyperimmune. It follows that our search must succeed. So fix n; we have two
subcases.

Case 2a: Un is not finite. Then can produce (a lowness index for) a low path
X [Un] M. Note that if Tn is really infinite (i.e., not partially defined) then the
range of every path of Un is infinite. So it makes sense to identify X with its range.
Also, since each En

k was a subset of Xme
, so is X. We let (Fs+1, Xs+1) = (Fs, X).

Now if the reservoir is never again reverted, we will have satisfied Re by ensuring
that property (2) in the definition of requiring attention never holds again.

Case 2b: h(n) < g(n). Let be the level of Tn witnessing that h(n) . Then for all
k < we have that ( v < h(n)) (n,En

k , v), and hence that ( v < g(n)) (n,En
k , v).

Since we are in Case 2, this means that for every k < there is some xk En
k A.

Then = x0 · · ·x 1 is an element of Tn of length , hence there exists some
E ran( ) A such that Fs E

e (n) , and by definition, we have Fs E
e (n)

h(n) < g(n). In this case, we set Fs+1 = Fs E and Xs+1 = Xme
(maxE, ).

We have now permanently satisfied Re, because property (1) in the definition of
requiring attention will never hold again.

Each stage is concluded by going to the next stage. This completes the construc-
tion.

Verification. This verification is similar to (but simpler than) that of Theorem 4.2.
Seeking a contradiction, fix the highest-priority requirement that requires attention
infinitely often. Let s be a stage after which no requirement of higher priority
requires attention again. First, note that this requirement cannot be Sn. Otherwise,
at the first stage s s at which Sn requires attention, we would by construction
have to end up resetting the reservoir infinitely many times. But that is impossible,
because eventually our approximations to f(Xme

) for all e s are correct, and
Sn is then (permanently) satisfied. So, the requirement in question must be some

Re. Without loss of generality, assume f(Xme
, s ) = f(Xme

) for all s s and
all e such that Re has higher priority than Re or is equal to Re. By induction
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on all such e , it follows that me never changes again after stage s and that Xme

is infinite. Now consider any stage s s at which Re requires attention (after
any resets of the reservoir). Since Xme

is infinite, all the sequences En
0 , E

n
1 , . . .

that we define at this stage will be infinite, and all the trees Un will thus either
be actually finite or actually infinite. This means that whether Case 2a applies or
Case 2b applies, we will end up permanently satisfying Re at this stage, which is a
contradiction.

Thus, all requirements are eventually permanently satisfied, so H = s Fs is an
infinite -computable subset of A and g is H-hyperimmune.

The original asymmetric proof of Theorem 4.1 in [18] breaks into two cases,
depending on whether the set A is or is not hyperimmune. In the former case, the
construction actually produces an infinite subset of A that is low (see [18, Corollary
4.9]), while in the latter, it produces an infinite subset of A that is merely incomplete

0
2. By Downey, Hirschfeldt, Lempp, and Solomon [9], we cannot improve this proof

to obtain a low set in either case. In particular, there is no hope of proving that
every non-hyperimmune 0

2 set A has an infinite low subset. However, as we show
next, we can obtain this conclusion if we work with a variation on the notion of
hyperimmunity.

Definition 4.8. Let M be a Turing ideal.

(1) Let (D) be a formula of second-order arithmetic, where D is a number
variable coding a finite set. For an infinite set X M, we say is M-
densely essential within X if for every infinite Y X in M there is a
non-empty finite set D Y such that (D) holds.

(2) A set A is densely M-hyperimmune if for every infinite set X M and
every 0

1(X) formula that is M-densely essential within X, there is a
finite set D X A such that (D) holds.

Theorem 4.9. Fix a Scott ideal M coded by a low set and a 0
2 set A that is not

densely M-hyperimmune. Then there is a low infinite set G A.

Proof. Let X M be an infinite set and (D) be a 0
1(X) formula witnessing that

A is not densely M-hyperimmune. Thus is M-densely essential within X, and
for every set D X such that (D) holds, we have D A = . We build a 0

2

decreasing sequence of Mathias conditions

( , X) = (F0, X0) (F1, X1) · · ·

such that Fe A and Xe M for all e. We then take G = e Fe.
The sequence is defined inductively. Suppose we have already defined (Fe, Xe).

Let D0, D1, . . . Xe be an infinite X Xe-computable sequence of non-empty
finite sets such that maxDn < minDn+1 and (Dn) holds for each n . Such
a sequence exists since is M-densely essential within X. Let T be the X Xe-
computable tree of all strings < such that (n) Dn for each n < | |. Thus,
T is an infinite, X Xe-computable, X Xe-computably bounded tree, and (the
range of) every path through T is an infinite set. Moreover, our assumption on
implies that there is such a path that is a subset of A. Now, define

U = { T : ( E ran( )) Fe E
e (e) }.

We have two cases:
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Case 1: U is finite. Since T has a path that is an infinite subset of A while U has
no paths, we can fix T U such that ran( ) A. Then we can choose a finite
set E ran( ) such that Fe E

e (e) . Since A is not densely M-hyperimmune and
Xe X, we can find x > maxE in A Xe. Define Fe+1 = Fe E {x} and
Xe+1 = Xe (x, ). The condition (Fe+1, Xe+1) now forces e G .

Case 2: U is infinite. Since U M, we can uniformly -computably find (a low-
ness index for) a path Y through U in M. Since A is not densely M-hyperimmune
and Y X, we can find x A Y . Define Fe+1 = Fe {x} and Xe+1 = Y (x, ).
Then the condition (Fe+1, Xe+1) forces e / G .

This completes the construction of our sequence of conditions, which is clearly a
0
2 sequence. As the case distinction above is uniform in , it follows that G is

low. And since we add at least one new element to G at each stage, G is infinite.
This completes the proof.

The following immediate corollary points, in some sense, to the narrowness of
the class of examples of 0

2 sets having no low infinite subsets in them or their
complements.

Corollary 4.10. Let A be a 0
2 set with no low infinite subset in it or its comple-

ment. Then neither A nor A is hyperimmune, but each is M-densely hyperimmune,
for every Scott ideal M coded by a low set.

In conclusion, we note that we do not know if Theorem 4.9 could be used as
part of a new proof of Theorem 4.1, i.e., if there is such a proof where the case
distinction could be based on whether or not A is densely M-hyperimmune, rather
than just plain hyperimmune, as in the original proof. More specifically, we do not
know the answer to the following question:

Question 4.11. Fix a Scott ideal M coded by a low set and a 0
2 set A that is

densely M-hyperimmune. Must A have an incomplete 0
2 infinite subset?

5. Cohesiveness and variants of hyperimmunity

In this section, we study variations of hyperimmunity notions to broaden the
class of computable instances of SRT2

2 that are known to have solutions that do not
compute a solution to every computable instance of COH. As mentioned above, by
Jockusch and Stephan’s result [22, Theorem 2.1], these are precisely the computable
instances of SRT2

2 having solutions H satisfying deg(H) 0 .
For the purposes of the definition below, we say a collection C of sets is downward

closed if it is downward closed under inclusion. Also, we use array to mean a
sequence of canonical indices of finite sets D0, D1, . . . such that limn minDn = .

Definition 5.1. Fix X,Z . A downward closed collection C of finite sets is
Z-hyperimmune within X if for every Z-computable array D0, D1, . . . X, there
is some n such that Dn C.

Whenever X = , we simply say that C is Z-hyperimmune. This general notion
can be used to define many notions of hyperimmunity. For example, we can say that
a set A is Z-hyperimmune within X if {F : F A} is Z-hyperimmune within
X. When X = , this agrees with the usual definition of A being Z-hyperimmune
(see [39, Definition 5.3.1 (iii)]).
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Our starting point is the following theorem, which is a variation on the afore-
mentioned result of Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [18,
Corollary 4.9] that the complement of any 0

2 hyperimmune set A has an infinite
subset of low degree.

Theorem 5.2. Fix X . Let C0 and C1 be 0,X
2 downward closed collections of

finite sets such that C0 C1 is hyperimmune within X, and let f be a 0,X
2 function

from the set of (canonical indices of) all finite sets to . There is an i < 2 and a
sequence of non-empty finite sets F0, F1, . . . Ci as follows:

• Fs X for all s;
• maxFs < minFs+1 for all s;
• f(Fs) < minFs+1 for all s;
• there is an infinite set G s Fs that is low over X.

Proof. We prove the result forX = . The general case follows by a straightforward
relativization of our proof. Uniformly in , we build a sequence of pairs of binary
strings

( 0,0, 1,0), ( 0,1, 1,1), . . . .

For each i, let Ei,0 = , and for each s let

Ei,s+1 = {| i,s| x < | i,s+1| : i,s+1(x) = 1}.

Also, let Gi = s Ei,s.
We will ensure that for each i and s the following hold:

• i,s i,s+1;
• Ei,s Ci;
• f(Ei,s) < minEi,t for all t > s for which Ei,t is non-empty.

We let 0,0, 1,0 = , , and then proceed by stages. We define i,s+1 at stage
s, and ensure that at stage s = e0, e1 there is an i < 2 such that

i,s+1

ei
(ei) ( 2 ) i,s+1

ei
(ei) .

It follows that there is an i < 2 such that for each e there is an s so that

i,s
e (e) ( 2 ) i,s

e (e) .

Hence, Gi is low. Moreover, Gi must be infinite. To see this, suppose not, and let
k = maxGi. Consider an e such that for all oracles X and inputs x we have
that X

e (x) if and only if X (k, ) = . Then for all s we have that i,s
e (e) ,

yet there is always a 2< such that i,s
e (e) . This is a contradiction. Now

since G s Ei,s, it follows that we can computably pick out those Ei,s that are
non-empty, renaming the new sequence F0, F1, . . . . Taking this sequence together
with G = Gi yields the theorem.

We have thus only to construct the i,s. At stage s = e0, e1 , assume inductively

that we have already defined ( 0,s, 1,s). For each i, let i = i,s0
f(Ei,s)+1, so that

i,s i. Now, computably in , we search for an i < 2 such that one of the
following holds:

(1) there is some finite string 2< such that {| i|+ x : (x) = 1} Ci and
i

ei
(ei) ;

(2) there is some n such that i0
n

ei
(ei) for all 2< .
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In the first case, we let i,s+1 = i , and in the second case, we let i,s+1 = i0
n.

We let 1 i,s+1 = 1 i,s0. Clearly, these extensions are of the desired sort. Thus,
the only thing left is to show that the search above must succeed. Indeed, if (2)
fails for each i < 2, then for each n we can computably find strings 0, 1 such that

i0
n

i
ei

(ei) for each i < 2. Let

Di,n = {| i|+ n x < | i|+ n+ | i| : i(x | i| n) = 1},

and let Dn = D0,n D1,n. This defines a computable array D0, D1, . . ., so by
hyperimmunity of C, we must have Dn C for some n. Fix i < 2 so that Dn

Ci. By downward closure, we also have Di,n Ci. But then = 0n i witnesses
that (1) above holds for i, which proves the claim. This completes the proof of
Theorem 5.2.

The following special case of the theorem is perhaps the more noteworthy re-
sult here, though we shall make use of the full technical version in our proof of
Proposition 5.8 below.

Corollary 5.3. Let C0 and C1 be 0
2 downward closed collections of finite sets such

that C0 C1 is hyperimmune. Then there is a low infinite set H and an i < 2 such
that H = s Ds for some D0, D1, . . . Ci.

Of particular interest is the case when C0 = {F : F is finite F A} and
C1 = {F : F is finite F A}.

Corollary 5.4. For every 0
2 set A such that the collection of finite subsets of A

and A is hyperimmune, there is a low infinite subset H of A or A.

In the context of the SRT
2
2 vs. COH problem, the fact that the complement of a

hyperimmune 0
2 set always has an infinite low subset stands out next to the fact

that no low set can compute a solution to every computable instance of COH. This
motivates the following definition, and makes the subsequent result surprising.

0
2 hyperimmunity (DHYPk). For every set Z and every 0,Z

2 k-partition A0

· · · Ak 1 = , there is some i < k and an infinite set X such that Ai is Z X-
hyperimmune within X.

Proposition 5.5. COH c SRT
2
2 if and only if COH c DHYP2.

Proof. First, note that DHYP2 c SRT
2
2, since every solution to any instance of

SRT
2
2 is also a solution to it viewed as an instance of DHYP2. Thus, if COH c

DHYP2, then COH c SRT
2
2. For the other direction, suppose that COH c DHYP2,

and fix an instance R = R0, R1, . . . of COH witnessing the fact. By adding all the

primitive R-recursive sets to R if necessary, we can assume that every infinite R-

cohesive set C satisfies deg(R C) deg(R) . We claim that R also witnesses

that COH c SRT
2
2. Indeed, consider any R-computable instance c : [ ]2 2 of

SRT
2
2, and let Ai = {x : limy c(x, y) = i} for each i < 2. By choice of R, there

is an infinite set X and an i < 2 such that Ai is R X-hyperimmune within X, but

R X does not compute any infinite R-cohesive set. Thus, deg(R X) deg(R) .
Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [18, Corollary 4.8]

showed that for sets U and V , if U V and U is V -hyperimmune, then there is a
set W with the following properties:

• U W V ;
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• W is low over V ;
• V W is infinite.

Now, the fact that Ai is R X-hyperimmune within X implies that Ai X is R X-

hyperimmune. (Indeed, given any R X-computable array each of whose terms

intersects Ai we could form a new R X-computable array by intersecting each term
of the original with X. Since Ai X, this new array would then witness that Ai is

notR X-hyperimmune withinX, a contradiction.) Taking U = Ai X and V = X,

we can relativize the above result to R to find a set W such that Ai X W X
and such that W is low over R X and X W is infinite. Let Y = X W . Then Y
is still low over R X, and since Y = X W Ai X = A1 i X, it follows that Y
is an infinite subset of A1 i. To conclude, we can c-computably thin out Y to obtain

an infinite homogeneous set H Y for c. Then H T R X Y , and as such, is

low over R X. In particular, (R H) T (R X) , so deg(R H) deg(R) .

Thus, R H does not compute an infinite R-cohesive set.

Since DHYP2 c SRT
2
2, one might expect the question of whether COH c

DHYP2 to be more combinatorially accessible than that of whether COH c SRT
2
2.

We can extend this situation a bit further. The following definition is essentially
due to Wang [40, Section 3.4].

Definition 5.6. Let c : [ ]2 2 be a stable coloring. Say a set F is c-
compatible if for all x < y in F ,

• if c(x, y) = 0 then limz c(x, z) limz c(y, z),
• if c(x, y) = 1 then limz c(x, z) limz c(y, z).

Definition 5.7. Fix Z . A stable coloring c : [ ]2 2 is Z-hypertransitive
within X if {F : F finite and c-compatible} is Z-hyperimmune within X.

0
2 hypertransitivity (DHYT). For every set Z and every 0,Z

2 stable coloring
c : [ ]2 2, there is an infinite set X such that c is Z X-hypertransitive within X.

Notice that if limy c(x, y) is the same for all x in some F , then F is compatible
for c. From this fact, it follows at once that DHYT c DHYP2. Furthermore, if F0

and F1 are non-empty, c-compatible, finite sets with maxF0 < minF1, and if for
each x F0 the color c(x, y) has stabilized by minF1, then F0 F1 is compatible
for c as well. We shall make use of this observation in the proof below.

We will need one additional fact. Recall that a set T is transitive for a coloring
c if for all x < y < z in T we have that c(x, y) = c(y, z) = c(x, y) = c(x, z). In
computability, this notion was first studied by Hirschfeldt and Shore [19, Section 5].
For us, an important fact is that if c is stable and S is an infinite c-compatible set
then there exists an infinite c S-computable transitive set T for c contained in S.
To show this, we build T inductively. Let x0 be the least element of S, and assume
that for some n we have already chosen x0 < · · · < xn in S, and that these form
a transitive set. Let xn+1 be the least x > xn in S such that x0 < · · · < xn < x
forms a transitive set. Such an x must exist. Indeed, fix s so that for each j n
the color of c(xj , y) stabilizes by s. Now for any j < k n, any i < 2, and any
x > s, if c(xj , xk) = c(xk, x) = i then limy c(xk, y) = i by choice of x and s, so
limy c(xj , y) = i by c-compatibility, so c(xj , x) = i.

In the proof below, we invoke the principle SEM, first introduced by Lerman,
Solomon, and Towsner [23, Section 1], which states that every stable coloring c :
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[ ]2 2 has an infinite transitive set. Patey [29, Corollary 3.7] showed that
COH c SRT

2
2 if and only if COH c SEM.

Proposition 5.8. COH c SRT
2
2 if and only if COH c DHYT.

Proof. Since DHYT c DHYP2, if COH c DHYT then by Proposition 5.5, COH c

SRT
2
2. In the other direction, suppose that COH c DHYT, as witnessed by the

COH instance R = R0, R1, . . . . Without loss of generality, we can assume that every

infinite R-cohesive set C satisfies deg(R C) deg(R) . We claim that R also
witnesses that COH c SEM, and hence that COH c SRT

2
2. Let c : [ ]2 2 be

any R-computable instance of SEM, i.e., a stable coloring. By choice of R, there is

an infinite set X such that c is R X-hypertransitive within X, but R X does not

compute any infinite R-cohesive set. Let C0 = and C1 = {F : F is c-compatible}.
Thus C0 and C1 are 0

2 downward closed collections of finite sets whose union is

R X-hyperimmune within X. Let f be the 0
2 function that, on input of a finite

set F , outputs the least s such that for each x F the color of c(x, y) stabilizes

by s. We can then relativize Theorem 5.2 to R and apply it to C0, C1 and f to
obtain a sequence of sets F0, F1, . . . X and an infinite set G s Fs such that

all the Fs are c-compatible, f(Fs) < minFs+1 for all s, and G is low over R X.
By the remark above, it follows that s Fs is c-compatible, hence G is as well. As
also noted above, this means G contains a c G-computable infinite transitive set

T for c. So T is also low over R X, and hence R T cannot compute any infinite

R-cohesive set.

The previous techniques rely on the 0
2 approximations of the instance of D2

2.
In the general setting, the following question remains open:

Question 5.9. Is there a hyperimmune set A such that every infinite subset H A
satisfies deg(H) 0 ?

For completeness, we mention also that it would be good to figure out the precise
relationships between the principles DHYT, DHYP2, SEM, and SRT

2
2. It is not

di cult to see that DHYT c SEM. By results of Lerman, Solomon, and Towsner
[23, Theorem 1.15] we know that SRT2

2 c SEM, and so SRT
2
2 c DHYT. However,

the other reductions remain open.

Question 5.10.

(1) Is it the case that SEM c DHYT?
(2) Is it the case that DHYP2 c DHYT?
(3) Is it the case that SRT2

2 c DHYP2?

6. Questions and further directions

We conclude with a couple of questions not already mentioned above or elsewhere
in the literature. As with our results in the preceding sections, the significance of
these questions for the SRT2

2 vs. COH problem is methodological. There is still much
about the interplay between combinatorics and computability in the construction
of infinite homogeneous sets that we do not understand, but will almost certainly
need to understand to find a solution to the problem. The questions and directions
for further research below are thus aimed at enhancing this understanding.

Our first question concerns the problem of solving two instances of the pigeon-
hole principle in parallel. We recall the following terminology from the study of
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Weihrauch degrees. Given two problems P and Q, the parallel product of P and Q

is the problem P Q whose instances are pairs (I, J) with I a P-instance and J a
Q-instance, where a solution to such a pair (I, J) is a pair (X,Y ) such that X is a
P-solution to I and Y a Q-solution to J .

Question 6.1. Is it the case that D2
3 c D

2
2 D2

2?

Note that if above is replaced by the compositional product (see [2, Section 5]),
then the answer above is yes (see, e.g., [17, Section 4]).

The closest result we know in the direction of resolving this question is that
D2

3 c D2
2, which is due to Patey [34, Corollary 3.3]. The proof of this result

is by a cardinality argument. For j k, say a problem P preserves j among
k hyperimmunities if for every collection of hyperimmune functions g0, . . . , gk 1,
every instance X of P has a solution Y such that at least j many of the gi are
Y -hyperimmune. It is easy to see that this property is closed downwards under c,
and the proof in [34] shows that while D2

2 can preserve 2 among 3 hyperimmunities,
D2

3 cannot. This argument will not work to settle the above question, because
D2

2 D2
2 does not even preserve 2 among 4 hyperimmunities. To see this, consider

a 4-partition A0 A1 A2 A3 = such that Ai is hyperimmune for each i < 4.
Define the first D2

2-instance to be A0 A1, and the second to be A0 A2. Any
solution to this pair as a D2

2 D2
2 instance will necessarily compute a function

(namely, the principal function of either of its halves) that dominates at least three
of the gi. Note that the same argument can be made for D2

4, and indeed we have
D2

3 c D2
4. A negative answer to our question would probably involve a variant

of Mathias forcing with multiple reservoirs, since sharing the same reservoir would
likely produce a solution to a given instance of D2

2 D2
2 as an instance of D2

4.
On a di erent note, there is still much we do not know about building 0

2 so-
lutions to computable instances of SRT2

2/D
2
2. For example, a longstanding open

question is whether every such instance has a low2
0
2 solution (see, e.g., [16, Ques-

tion 6.46]). We propose a new line of study. The following definitions appear in
several specific contexts in the literature. (See also [33, Chapter 12].) We state
them here in complete generality since they seem like useful concepts in their own
right. Given an instance X of a problem P, we write P(X) for the set of all its
solutions, and degP(X) for the set of degrees of its solutions.

Definition 6.2. Let P be a problem, C a class of P-instances, and d a Turing
degree. We say:

(1) C is d-bounding (for P) if for every P-instance X of degree at most d, there

is an X C such that every element of P(X) computes a P-solution to X.
(2) C is a d-basis if it is d-bounding and ( X C) deg(X) d.
(3) C is a uniform d-basis if it is a d-basis and there is a sequence X0, X1, . . .

of degree at most d such that C = {X0, X1, . . .}.

Definition 6.3. Let P be a problem.

(1) P admits a universal instance if every degree d bounds the degree of a
singleton d-basis.

(2) P admits a uniform basis if every degree d bounds the degree of a uniform
d-basis.

Every problem trivially has a d-basis, namely, the collection of all instances of
the problem of degree at most d. So the interest here is really in smaller bases,
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and in particular, in uniform ones. In the case of D2
2, we know the following. By

relativizing and iterating the proof in Cholak, Jockusch, and Slaman [4, Theorem
3.7] that every computable D2

2 instance admits a low2 solution, we can obtain, for
any finite collection C of computable D2

2 instances, a single low2 degree bounding
a solution to each instance in C. However, Mileti [25, Corollary 5.4.6] has shown
that there is no low2 degree bounding a solution to all computable D2

2 instances.
It follows that D2

2 has no finite 0-basis, or indeed, by relativizing this observation,
a finite d-basis, for any degree d. In particular, D2

2 does not admit a universal
instance. These facts motivate the following question:

Question 6.4. Does D2
2 admit a uniform basis?
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