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ABSTRACT. The SRT3 vs. COH problem is a central problem in computable
combinatorics and reverse mathematics, asking whether every Turing ideal
that satisfies the principle SRT% also satisfies the principle COH. This paper
is a contribution towards further developing some of the main techniques in-
volved in attacking this problem. We study several principles related to each
of SRT% and COH, and prove results that highlight the limits of our current
understanding, but also point to new directions ripe for further exploration.

1. INTRODUCTION

One of the most fruitful programs of research in computability theory over the
past few decades has been the investigation of the logical strength of combinatorial
principles, particularly Ramsey’s theorem and its many relatives. Ramsey’s theo-
rem is, of course, a far-reaching result, broadly asserting that in any configuration
of objects, some amount of order is necessary. Understanding this order has been
the objective of much research in combinatorics and logic. In computability theory,
and even more so reverse mathematics, it has spawned a long and productive line
of research. See Hirschfeldt [16, Chapter 6] for an introduction.

For many years, a central problem surrounding this analysis has been to clarify
the relationship between two important variants of Ramsey’s theorem for pairs;
specifically, whether the Cohesiveness principle (COH) is implied by the stable
Ramsey’s theorem for pairs (SRT3) over the weak fragment RCA, of second-order
arithmetic. This question was finally answered in 2014 by Chong, Slaman, and
Yang [6], who gave a negative answer, but remarkably, using a nonstandard model
for the separation of these principles. What has come to be called the SRT% vS.
COH problem is the question of what happens in w-models (models with standard
first-order part), and this question remains open. Over the past several years,
work on the effective content of variants of Ramsey’s theorem, including towards
a solution of the above problem, has driven much of the progress in computable
combinatorics and the reverse mathematics of combinatorial principles. It has also
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been an important impetus for the fruitful and growing intersection of these subjects
with computable analysis (see, e.g., [1, 3, 7, 11, 14, 17, 20, 21, 27, 28, 31, 34]).

In this paper, we study several aspects of this problem. We assume familiar-
ity with computability theory and reverse mathematics, and refer the reader to
Soare [39] and Simpson [38], respectively, for background. We also refer to Brat-
tka, Gherardi, and Pauly [2] for a survey of Weihrauch reducibility and computable
analysis, though we include a brief summary of the most relevant concepts below.

Note. Since the submission of this article, Monin and Patey [26] have announced
a solution to the SRT3 vs. COH problem, exhibiting an w-model in which SRT3
holds but COH fails. Their proof proceeds by entirely different methods than those
explored within this paper. Hence, it does not supersede any of the results below,
which we feel are of independent interest concerning the degree-theoretic content
of the SRT% and COH problems. In addition, Monin and Patey’s result still leaves
open Question 2.3, which may be regarded as the purely combinatorial variant of
the SRT% vs. COH problem, as well as the open questions in Section 6.

Throughout, we will be dealing with IT3 statements of second-order arithmetic,
which are examples of the more general concept of a problem, as defined below.

Definition 1.1.

(1) A problem P is a subset of 2¢ x 2¢.

(2) Each X € 2¢ for which there is a Y € 2% such that P(X,Y) holds is an
instance of P.

(3) Each Y such that P(X,Y) holds is a solution to X as an instance of P.

When no confusion can arise, we will speak just of instances and solutions, without
explicitly referencing the problem. When necessary, we may call an instance of P a
P-instance for short, and a solution to some instance of P a P-solution.

Throughout, we follow the standard practice of coding mathematical objects and
structures by numbers and sets of numbers. This makes our definition of problem
very broad, since it permits us to deal with any instances and solutions that admit
some kind of countable presentation. For all the objects we consider here, these
codings will be obvious and/or well understood, so we will do so implicitly and
informally. But we refer the reader to [17, Remarks 1.4 and 1.5] for a more thorough
discussion of this issue, along with some explicit examples.

All of the IT3 principles we will look at can be naturally put into the syntactic
form

(VX)[p(X) = (FY)O(X, V)],

where ¢ and 6 are arithmetical formulas. We can then view such a principle as a
problem in the above sense, with the instances being all the X € 2% such that ¢(X)
holds, and the solutions to any such X being all the ¥ € 2 such that ¥(X,Y)
holds. We shall make this identification without further mention in the sequel.

To compare problems, we will employ the following reductions.

Definition 1.2. Let P and Q be problems.

(1) P is computably reducible to Q, written P <. Q, if every instance X of P
computes an instance X of Q, such that for every solution Y to X, we have
that X @Y computes a solution Y to X.
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F1cURE 1. Relations between notions of reduction. An arrow from
one reducibility to another means that whenever Q is reducible to
P according to the first then it is also reducible according to the
second. In general, no relations hold other than the ones shown.

(2) P is strongly computably reducible to Q, written P <y Q, if every instance
X of P computes an instance X of Q, such that every solution Y to X
computes a solution Y to X.

(3) P is Weihrauch reducible to Q, written P <w Q, if there exist Turing
functionals ® and ¥ such that for every instance X of P, we have that :I>X
is an instance of Q, and for every solution Y to ®X we have that UX®Y ig
a solution to X.

(4) P is strongly Weihrauch reducible to Q, written P <sw Q, if there exist
Turing functionals ® and ¥ such that for every instance X of P, we have
that ®X is an instance of Q, and for every solution Y to ®X we have that
UY is a solution to X.

We say P and Q are computably equivalent, and write P = Q, if P <. Q and Q <. P.
We analogously define strong computable equivalence, Weihrauch equivalence, and
strong Weihrauch equivalence, denoted by =4, =w, and =qw, respectively.

The relationships between these reductions are easy to see, and are summarized
in Figure 1. Weihrauch reducibility was introduced by Weihrauch [41], and com-
putable reducibility by Dzhafarov [10]. The connection with reverse mathematics
comes from the fact that all of these reducibilities are stronger than implication over
w-models for I1} principles. That is, if P and Q are II3 principles and (when viewed
as problems) P is reducible to Q in any of the senses above, then every w-model of
Q also satisfies P. And while implication over w-models is a strictly more general
notion, it is a well-known empirical fact that most such implications found in the
literature are due to one of the stronger reducibilities above. For a more thorough
discussion of this phenomenon, see Hirschfeldt and Jockusch [17, Section 4.1].

To state the SRT% vs. COH problem, we now review some standard definitions
from Ramsey theory.

Definition 1.3. Fix a set X C w, and integers n,k > 1.

(1) [X]™ denotes the set {(xo,...,Tn-1) € X" 120 < -+ < Tp_1}.
(2) A k-coloring of [X]™ is a map c: [X]|* — {0,...,k —1}.
(3) Aset Y C X is a homogeneous set for ¢ if ¢ [[Y]™ is constant.

As the number of colors typically will not matter for our purposes, we shall usually
speak only of colorings, rather than explicitly about k-colorings for a given k.
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Except in the statements of definitions, we will usually be working with k£ = 2
anyway. We abbreviate colorings ¢ : [X]|* — {0,...,k—1} by ¢: [X]™ — k, as usual,
and for (zq,...,2,_1) € [X]|™ we write ¢(xo, ..., Tn_1) in place of c((zg, ..., Tp_1)).

Ramsey’s theorem (RT}). FEvery coloring ¢ : [w]® — k has an infinite homoge-
neous set.

Of particular interest in computability has been Ramsey’s theorem for pairs, i.e.,
RT%. The principles SRT% and COH come from a prominent approach, pioneered
by Cholak, Jockusch, and Slaman [4], of splitting combinatorial principles into a
stable and a cohesive half.

Definition 1.4.

(1) A coloring c: [w]? — k is stable if lim, c(z,y) exists for every z € w.
(2) An infinite set L C w is limit-homogeneous for such a c if there is an i < k
such that lim, ¢(z,y) =i for all z € L.

The stable form of RT} takes two natural forms.

Stable Ramsey’s theorem for pairs (SRT3). Every stable ¢ : [w]> — k has an
infinite homogeneous set.

AY subset principle (D?). Every stable ¢ : [w]?> — k has an infinite limit-
homogeneous set.

The name of the second principle derives from the observation that, by the limit
lemma, computing an infinite limit-homogeneous set for a given computable stable
2-coloring is exactly the same as computing an infinite subset of a given AY set
or its complement. It is well-known that SRT3 and D3 are equivalent over RCA.
This equivalence is easy to see for w-models (see, e.g., [4, Lemma 3.5], which in fact
gives a computable equivalence), but requires a delicate argument, due to Chong,
Lempp, and Yang [5], to formalize with limited induction. Dzhafarov [11, Corollary
3.3 and Corollary 3.6] showed that SRT5 w D% and SRT3 % D2. As discussed
further below, D2 is just a less effective version of RTS. In practice, this often makes
D3 easier to work with than SRT3.

For sets X and Y, let X C* Y denote that there is a finite set F' such that
XNFCY.

Definition 1.5. Let B = (Ro, R1,...) be a sequence of sets. A set C is cohesive
for R if for every n € w, either C C* R, or C C* R,.

Cohesiveness principle (COH). Every sequence of sets admits an infinite cohe-
sive set.

The relevant fact for us, due to Cholak, Jockusch, and Slaman [4, Lemma 7.11],
with the use of X9-induction later eliminated by Mileti [25, Claim A.1.3] and
Jockusch and Lempp (unpublished), is that RT3 is equivalent over RCAy to the
conjunction SRT% + COH. Each of SRT% and COH is combinatorially simpler than
RT% in a number of ways. Part of this simplicity comes from the fact that both
principles can be viewed in terms of the more elementary principle RT%. For SRT%,
in the form D3, this is because finding a limit-homogeneous set for a stable coloring
¢ : [w]?> — 2 is the same as finding an infinite homogeneous set for the coloring
d : w — 2 defined by d(x) = lim, c¢(z,y). Note, by the way, that d is ¢’-computable,
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so D2 can be characterized as the jump of RT4. For COH, the connection with RT3
follows by a result of Jockusch and Stephan [22, Theorem 2.1], who characterized
the degrees containing an infinite cohesive set for every computable family of sets
as precisely those degrees a satisfying a’ > 0’. Relativizing this result, it is easy
to see that COH is computably equivalent to the assertion that given a sequence
(do,ds, . ..) of colorings w — 2, there exists a sequence (Hy, Hy,...) of infinite sets
such that each H,, is, up to finite error, homogeneous for d,,. In the parlance of com-
putable analysis, this says that COH is computably equivalent to the parallelization
of the principle (RT%)fe asserting that for every coloring of singletons there is an
infinite set that is homogeneous modulo finitely many elements.
We can now formally state the main problem we are interested in.

The SRT2 vs. COH problem. Does every w-model of SRT3 satisfy COH?

Conventional wisdom suggests the answer ought to be negative, since implications
between relatively straightforward combinatorial principles are usually quite ele-
mentary. The only possible difficulties one expects to encounter are induction is-
sues, but these are precisely the ones that are absent when working over w-models.
On the other hand, the continued resistance of this problem to a separation, in
spite of a string of recent advances that did confirm other long-conjectured non-
implications (e.g., Liu [24], and Lerman, Solomon, and Towsner [23]), means we
should probably keep an open mind.

Our paper is a contribution to the study of this problem. In Section 2 we
introduce a weaker form of COH, and show it to be a combinatorial consequence
of SRT%. This is a step towards resolving a question of Patey [30, Question 2.10],
as well as the longstanding question of whether COH is computably reducible to
SRT3 (see [17, Question 5.3]). In Sections 3 and 4, we prove results about the
complexities of instances of COH and solutions to SRT%, respectively. The aim
is to identify the precise features of cohesiveness and homogeneity that might be
responsible for a separation or implication, as the case may be. Section 4 also
presents a new method of constructing effective solutions to SRT5/D3 that we hope
will find further applications. In Section 5, we study variants of hyperimmunity,
to better understand the class of instances of SRT3 having solutions that do not
compute cohesive sets. Finally, in Section 6, we lay out some additional questions
and directions for future research related to the SRT3 vs. COH problem.

2. WEAKENING COH

One way of attacking the SRT% vs. COH problem has been by showing that
COH is at least not reducible to SRT% in a typical way, i.e., via any of the notions
in Definition 1.2. Such results lend credence to a negative answer, since a full
w-model separation of COH from SRTZ would in particular yield all such non-
reductions. Recent examples along these lines include work by Dzhafarov [10, 11],
Patey [34], and Dzhafarov, Patey, Solomon, and Westrick [14], establishing, among
other results, that COH £w SRT3 and COH £.. SRT3. As already remarked, it
remains open whether COH <, SRT%.

In showing that some principle P is not, say, computably or Weihrauch reducible
to some other principle Q, we must exhibit an instance X of P, and for each instance
of Q computable from X, we must exhibit one solution against which to diagonalize.
But in some cases, we can in fact do this for all instances of Q, whether computable
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from X or not. The first results along these lines were obtained by Hirschfeldt and
Jockusch [17, proofs of Lemma 3.2 and Theorem 3.3] and Patey [34, Theorem 3.2].
Conversely, even when we know that P is not reducible to Q according to any of
the notions in Definition 1.2, it may still be that P is reducible to Q in this stronger
sense, where the instances of Q are allowed to be arbitrary. Intuitively, we can
think of P as being a combinatorial consequence of Q. This notion was first isolated
and studied by Monin and Patey [27] under the name of omniscient computable
reducibility.

Definition 2.1 ([27], Section 1.1). Let P and Q be problems. Then P is om-
msczently computably reducible to Q if for every instance X of P there exists an
instance X of Q, such that for every solution Y to X we have that X &Y computes
a solution Y to X.

We start with the following relatively straightforward result, which nicely illus-
trates the power of this reducibility. As we will see, this is also a very insightful
example for studying the SRT2 vs. COH problem. For notational convenience, given
any set R we write R for R and R' for R. Given a family of sets B = (R, Ry,...)
and a finite string o € 2<% we also write

m RZ(")

n<|o|
Proposition 2.2. COH is omnisciently computably reducible to SRT%.

Proof. Let R= (Ro, R1,...) be a sequence of sets. Define ¢ : [w]? — 2 as follows:
for all x < y,

0 if (30 €2%)(3z > y)[z € R° and R is finite],
(z,y) = .
1 otherwise.

Given z, let m, > x be least such that max R° < m,, for all 0 € 2°*! for which R is
finite. Then ¢(z,y) = 1 for all y > m,, and ¢(z,y) = 0 for all y with 2 < y < m,. In
particular, lim, c(z,y) = 1 for all z, so c is stable, and every infinite homogeneous
set for ¢ must have color 1. Furthermore, if H = {hg < hqy < ---} is any such
homogeneous set, then necessarily m, < my, < hy41 for all 2.

We can thus use R & H to compute a sequence of binary strings o9 < o7 < - --
(ordered by extension) such that |o,| = x and R°= is infinite. Let o¢ = (), and
suppose by induction that we have defined o, for some x > 0 and that R%= is
infinite. Since either R%» N RY or R%= N R} is infinite, there must be a z > h, 1 in
one of these two sets. Search for the least such z, and let 0,41 = 0,0 for whichever
b € {0,1} has z € R°* N RY. Since z > m,, we know that R%=+! is infinite, as
desired.

Finally, from op < 01 < --- we can ﬁ—computably define an infinite cohesive set
C for R in the standard way. For completeness, we give the details. Given x € w,
and having defined integers d, for all y < x, we let d be the least element of R, __,
larger than all these d,,. We then let C' = {dy < d1 < ---}. To see that this set is
cohesive for FE, consider any y € w and let b = o,41(y). Then for each z > y we

have that d, € RZ”“(y) =R}, s0o C C* R, O

In the above proof, the constructed coloring ¢ has complicated homogeneous
sets essentially because they must all be very sparse, which allows us to code in
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jump information. Computing the jump is enough to produce cohesiveness, but it
is in fact much stronger. Thus, coding using sparseness is not helpful for under-
standing the true relationship between SRT% and COH. A better approach might
be through limit-homogeneity, where sparseness is not so easily forced. Indeed,
notice that ¢ above has very uncomplicated limit-homogeneous sets: in particu-
lar, w is limit-homogeneous for ¢. This observation prompted Patey [30] to ask
whether Proposition 2.2 still holds if SRT% is replaced by D3. Notice that this is
equivalent to replacing SRT% by RT%, since as pointed out above, D3 is just RT%
with instances given by limit approximations, and thus the two are omnisciently
computably equivalent.

Question 2.3 ([30, Question 2.10]). Is COH omnisciently computably reducible
to RT4?

As a way to show how, in principle, cohesiveness can be coded into the homoge-
neous sets of colorings of singletons, we introduce the following weakening of COH,
and show it to be a combinatorial consequence of RTj.

Definition 2.4. Let R = (Ro, Ry,...) be a sequence of sets. A set C is Ramsey-
cohesive for R if for infinitely many n € w, either C C* R,, or C C* R,,.

Ramsey-type cohesiveness principle (RCOH). Every sequence of sets admits
an infinite Ramsey-cohesive set.

Theorem 2.5. RCOH is omnisciently computably reducible to RT%.

Proof. Given an instance R = (Ro, R1,...) of RCOH, we define ¢ : w — 2 induc-
tively. Fix n € w, and suppose we have defined ¢ [ n, which we regard as an element
of 2<% of length n. We let ¢(n) = 0 if R,, N R°!™ is infinite, and otherwise we let
c(n) = 1. By induction, it follows that R°'™ is infinite for each n. Now let H be
any infinite homogeneous set for ¢, say with color ¢ < 2. Then, in particular, for
each n we have that
(| RL, 2RI
meH [n

so the intersection on the left is infinite. We can thus compute an infinite Ramsey-
cohesive set C for R from R ® H , as follows: having defined C [ n for some n € w,
choose the least element of (), ¢y |41 Rl larger than max(C'[n), and add it to

C. Clearly, C is infinite, and for each m € H we have C' C* R! . (]

Obviously, RCOH is a restriction, and hence a logical consequence, of COH.
Unfortunately, it is also strictly weaker than COH, which we show next, after a few
auxiliary lemmas. Thus, the above result does not settle Question 2.3.

Definition 2.6. Let B = (R, Ry,...) be a sequence of sets. We let
C(R) = {P €2¥: (Vo < P)[R’ is infinite]}.
Note that if B is computable, then C(R) is a H?’W class.

Lemma 2.7 (Patey [34, Lemma 2.4]). For every AY infinite tree T C 2<%, there
is a computable sequence of sets R such that C(R) = [T].

Definition 2.8. Let 7' C 2<% be an infinite tree.
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(1) A set H is homogeneous for a string o € 2<% if there is some i < 2 such
that (Vo < |o|)[x € H — o(z) =1].

(2) A set H is homogeneous for T if the set {o € T : H is homogeneous for o}
is infinite.

Lemma 2.9. Let T C 2<% be an infinite AY tree, and let R = (Ro, Ry,...) be
a computable sequence of sets such that C(R) = [T']. Then the sets computing an

infinite Ramsey-cohesive set for R are exactly those whose jumps compute infinite
homogeneous sets for T.

Proof. Let C be a Ramsey-cohesive set for R. The sets U = {i : C C* R;} and
V = {i:C C* R;} are ©5°, and one of them is infinite. Say U is infinite, the
other case being symmetric. Then U has an infinite AS’C subset U;. The set U is
homogeneous for T

Conversely, let H be an infinite set homogeneous for 7', say for color 1, and let
[+ w? = 2 be a stable function such that lim, f(z,y) = H(x). Define the set
C ={xg <z < - -} f-computably as follows. First, let 2o = 0. Then, having
defined x,,, search for some stage s > n and some z, 41 € ﬂKn’f(i’s):l R; such that
Tp41 > Tp. Such s and x,+1 must be found. Indeed, let s be large enough so that
(Vi < n)f(i,s) = lim, f(i,y). Then the set F' = {f(i,s) : i < n} is a subset of H,
hence is homogeneous for T' with color 1. Since [T] = C(R), there is some P € C(R)
such that F' C P. In particular, ﬂi<n7f(ivs)=1 Ri = (V;cp Ri 2 Rpmax F is infinite,
so there is some x,1 > x, in it. It is easy to check that C' is Ramsey-cohesive for

—

R. O
The following principle was introduced by Flood [15].

Ramsey-type weak Ko6nig’s lemma (RWKL). Every infinite binary tree has an
infinite homogeneous set.

Our interest below will be in a relativized form of the above principle. Namely,
we will look at RWKL’, which is the assertion that for every function g : 2<% xw — 2
such that limg g(o, s) exists for all o and T = {0 : lim, g(0, s) = 1} is a tree, there
exists an infinite homogeneous set for T'. Let JI be the problem whose instances are
all X € w*, and the solutions to any such X are all functions f : w? — w such that
(Vr) X(x) = lim, f(z,s). Below, Jl o RWKL' denotes the problem whose instances
are all RWKL'-instances, and given any such instance g, a Jl o RWKL-solution to it
is any Jl-solution to any RWKL'-solution to g, i.e., a function f : w? — 2 such that
lim; f(x, s) exists for all z and {x : lim, f(z,s) = 1} is an infinite homogeneous set
for the tree {o : lim; g(o, s) = 1}.

Lemma 2.10. Jl o RWKL' =, RCOH.

Proof. To see that Jl o RWKL' <. RCOH, let g : w? — 2<% be a stable function
such that T = {o € 2<% : lim, g(0,s) = 1} is a binary tree. By Lemma 2.7, there
is a g-computable sequence of sets R such that [T] = C(R). Let C be a Ramsey-
cohesive set for R. By Lemma 2.9, there is a ¢ ® C-computable function f : w? — 2
such that the set H = {x : lim; f(z,y) = 1} is infinite and homogeneous for T'. In
particular, f is a solution to T' viewed as an instance of Jl o RWKL'.

Now to see that RCOH <. JJoRWKL', let R be an instance of RCOH. Then there

is a Ag’é tree T’ such that [T] = C(R). Let f : w? — 2 be a function such that the
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set H = {x : lim, f(z,y) = 1} is infinite and homogeneous for T. By Lemma 2.9,
f @ R computes a Ramsey-cohesive set C' for R. (]

Theorem 2.11. There is an w-model of RCOH that is not a model of COH.

Proof. We build an increasing sequence of sets Xg <t X; <7 --- such that for
every 7, the jump of X; is not of PA degree relative to 0’, and for every ¢ and every
X,;-computable sequence of sets ﬁ, there is a j such that X; computes an infinite
Ramsey-cohesive set for B. The Turing ideal M = {Z : (3i) Z <rp X;} is then a
model of RCOH, but not a model of COH. Indeed, the instance of COH composed
of all the primitive recursive sets belongs to M, but by Jockusch and Stephan [22,
Theorem 2.1], any cohesive set for this sequence has jump of PA degree over 0'.
Start with Xy = (. Having defined Xp, ..., X;, let R be the next X;-computable
sequence of sets in an order chosen so that we eventually consider every sequence
of sets computable in any X;. By Lemmas 2.7 and 2.9, there is an R-computable
instance f of RWKL’ such that for every set Y whose jump computes a solution to
f, we have that Y & R computes an infinite Ramsey-cohesive set for R. Let P be
a path through the tree T = {0 : lim, f(o,y) = 1}. Since X] is not of PA degree
relative to 0’ by inductive hypothesis, it follows by Liu’s theorem [24, Theorem 1.5]
that there is an infinite set H C P or H C P such that H @ X! is not of PA degree
over 0’. By the relativized Friedberg jump inversion theorem (see [8, Theorem
2.16.1]), there is a set X;;1 >7 X; such that X7, | = H @ X]. In particular, X;
computes an infinite Ramsey-cohesive set for & and X, is not of PA degree over
0. O

3. COH AND COHEN FORCING WITH LOCKS

An important feature of COH is that it has a universal instance. More precisely,
for each set A there is an A-computable instance R = (Ro, Ry,...) of COH such
that for any other A-computable instance S = (Sy,S1,...) and any solution C
to R, we have that A @ C' computes a solution to S. This fact follows by the
aforementioned result of Jockusch and Stephan [22, Theorem 2.1], which can be
restated as follows: for any set X, there is an A & X-computable solution to every
A-computable instance of COH precisely when deg(4 & X)" > deg(A)’. Thus,
an A-computable instance R of COH is universal just in case every solution C' to
R satisfies deg(A & C)' > deg(A). As first pointed out in [22], the sequence of
primitive A-recursive sets has this property.

The existence of universal instances means that, in principle, there is no need
to ever construct complicated instances of COH—such as for separation or non-
reduction results—since there exists a maximally complicated one. In practice,
however, constructing the instance explicitly often gives more flexibility. This is
done, for example, by Dzhafarov [11, Theorem 5.2] to prove that COH g SRTZ,
and by Dzhafarov, Patey, Solomon, and Westrick [14, Corollary 1.6] to prove that
COH <, SRT2<OO. Both of these arguments use a forcing notion, sometimes called
Cohen forcing with locks, which is very natural for building instances of COH.
However, we show in this section that this forcing does not produce maximally
complicated (i.e., universal) instances. Thus, while the instances it does produce
suffice for certain separations, they may not be adequate for all.

Cohen forcing with locks is the following forcing notion.
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Definition 3.1. Let P be the following notion of forcing.

(1) A condition is a tuple p = (09, ...,0k_1, f), where:
® 0g,...,0k_1 are binary strings;
e fis a function from {0,...,k — 1} to {0,1,u}.

(2) A condition ¢ = (79,...,7e—1,9) extends p, written ¢ < p, if:
o I >k
e [y
e 0; = 1; for all i < k;
e for all i < k such that f(i) € {0,1} and every = with |o;| < z < |74,

we have ;(z) = f(4).

From any generic filter G on P we can define sets RY = |J{0; : (00,...,05-1, f) €
G} for each ¢ € w, where we identify binary strings with the finite sets they define,
as well as B9 = <Rg , Rf, ...), which is naturally an instance of COH. Similarly,
we can define f9 = J{f : (00,...,06_1, f) € F}, which is a total function w —
{0,1,u}. Notice that for any i such that f9(i) = b € {0,1}, we necessarily have
that RY (x) = b for cofinitely many z, so we think of RY as being “locked” to the
value b from some point on. For any 4 such that f9(i) = u, there will be infinitely
many = such that RY (x) = 0, and infinitely many = such that RY (z) = 1, so we
think of RY as being “unlocked”.

We will exploit an atypical feature of Eg, namely that merely knowing which
columns are unlocked allows us to compute a cohesive set for the instance.

Proposition 3.2. Let G be a sufficiently generic filter on P. Let U = {i € w :
f9(i) =u}. Then RS @ U computes an infinite cohesive set for RY.

Proof. Clearly, each ng for i € U is Cohen generic, and so is the join of any finite
number of such Rig. By genericity, U is infinite, so we can list out its elements as
19 < i1 < ---. We now define a set C = {xg < 1 < ---} computably from RaU,
as follows. Fix k € w, and suppose we have defined x; for all j < k. Let xj, be the
least = such that x > x; for all j < k, and Rigj () =1 for all j < k. This z exists

because P i<k Rigj is generic. Thus, for each ¢ € U we have that almost all the x;
belong to RY, hence C' C* Rig. On the other hand, for any ¢ ¢ U, we have that

g —_—
RY =* wor RY =* {), so trivially also C C* RY or C' C* RY. Hence, C is cohesive
for RY, as desired. O

Of course, the set U in the above proposition is computable from f9, so in partic-
ular, RY @ f9 always computes an infinite cohesive set for RY.
Our main goal in this section is to prove the following result.

Theorem 3.3. Let G be a sufficiently generic filter on P. Then (ﬁg ® f9) is not
of PA degree relative to 0.

Combining this theorem with the preceding proposition, we immediately get the
following.

Corollary 3.4. Let G be a sufficiently generic filter on P. Then there is an RY-
cohesive set C such that (RS @ C)' is not of PA degree relative to 0'. In particular,
(RY@C) is not of PA degree relative to deg(RY)’, so RY is not a universal instance.
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We turn to proving the theorem. In what follows, let R and £ be names in
the P forcing language for the generic objects RY and f9, respectively. Let IF
denote the forcing relation, as usual. We refer the reader to Shore [37, Chapter
3] for further background on forcing in arithmetic. The following is the main
combinatorial ingredient of our proof.

Lemma 3.5. Let ® be a {0,1}-valued Turing functional. The set of conditions p
such that

plF (3z) @@ (2)1 v (3r) @ (1)) = 07 ()]

is dense in P.

Proof. Fix a condition p, and suppose there is no p’ < p forcing (3z) ®ED’ (2)1.
Then for each z, the set of conditions p’ forcing that é(ﬁ@f)/( )J is dense below
p. Now, for each = and b € {0,1}, the sentence ®E®9)'(z)| = b is ¥ in the
forcing language. As PP is a computable notion of forcing, forcing XY sentences is
¥9-definable (see, e.g., [37, Theorem 3.2.5]). Thus, given z, we can find a p’ < p

and a b € {0,1} such that p/ IF ®®D’(3)| = b uniformly (’-computably. That
means that computably in (', we can define an infinite sequence of conditions

P=Dpo2D1 =
and an infinite sequence of bits
bo, b1,... € {0, 1}

such that p, IF @(ﬁéBf)/(x)i = b, for each z. But then there must be an x such that
@2/ (z)| = by, as otherwise (' could compute a diagonally non-computable function
relative to itself. Thus, p, is the desired extension of p forcing ®E&)’ (z )L =

oY (2)4.
We can now prove our theorem.

Proof of Theorem 3.5. Let G be a sufficiently generic filter on P. Fix any {0,1}-
valued Turing functional, and suppose TS i5 total. By genericity, Lemma 3.5
implies there is some p € G forcing (3z) ®®’(3)| = &% (x)]. Then by genericity
again, we must have that é(ég@fg)/$ = @2/(@ for some x. In particular, pHEIBf)
is not diagonally non-computable relative to (', hence not of PA degree relative to
0’. Since ® was arbitrary, this completes the proof. (I

4. SYMMETRIC AND ASYMMETRIC CONSTRUCTIONS

There exist two main techniques for constructing computability-theoretically
weak solutions to SRTS. The first comes from the original proof by Seetapun that
RT3 does not imply ACAg over RCAq (see Seetapun and Slaman [36, Theorem 2.1]).
The second is due to Cholak, Jockusch, and Slaman [4, Section 4]. Both have found
wide application in the literature (e.g., [6, 10, 11, 12, 13, 27, 32, 34]). And while
both methods use Mathias forcing with similar conditions, the combinatorial cores
of the two approaches are somewhat different, and this fact is reflected in their
effectivity. For computable instances, Seetapun’s proof requires a @) oracle, while
Cholak, Jockusch, and Slaman get away with an oracle of PA degree over 0’. The
latter thus has a number of advantages. For example, it can be used to show that
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every computable instance of SRT3 has a lowy solution ([4, Theorem 3.7]). There
is no known proof of this fact using Seetapun’s combinatorics.

But Seetapun’s method seems to have some advantages of its own. Hirschfeldt,
Jockusch, Kjos-Hanssen, Lempp, and Slaman [18, Theorem 4.5] introduced a ver-
sion of Seetapun’s argument that works below @’. They used this to prove the
following result, which answered a question of Mileti [25, Question 5.3.8].

Theorem 4.1 ([18, Theorem 4.5]). Let A and C be AY sets such that C %t 0.
Then O/ computes an infinite subset H of A or A such that C &1 H.

In particular, every computable instance of D3 (and hence of SRT3) has an incom-
plete AY solution. This is the first example of an upper bound on the strength of
SRT% that is not known to be provable with the Cholak, Jockusch, and Slaman
technology. An essential key here is to use an asymmetric proof: one construction
that fully builds a homogeneous set of color 0, and a separate backup construction
that builds a homogeneous set of color 1. The original construction of Seetapun,
as well as the construction of Cholak, Jockusch, and Slaman, are both symmetric:
they build the two homogeneous sets together, playing one off against the other.
In this section, we present one symmetric and one asymmetric construction of a
homogeneous set, somewhat more directly comparing the strengths of the two. We
begin with a symmetric argument in the style of Cholak, Jockusch, and Slaman.

Theorem 4.2. Let A and C be AY sets such that C £t 0. If G is any 2-generic
set, then G &0 computes an infinite subset H of A or A such that C &1 H.

While this is only a slightly weaker version of Theorem 4.1, the underlying combi-
natorics of the proof are new. The main takeaway is that there are still unexplored
aspects of this technique that can be exploited to (at least partially) reprove results
that could previously only be obtained by more ad-hoc methods.

First, we recall the following results, which we will make use of.

Lemma 4.3 (Lawton, see [18, Theorem 4.1]). Let C C 2% be a non-empty 119 class,
and let Cy,Cy,--+ >71 0 be uniformly AY. Then C has a low member P such that
Vi(Ci &1 P).

Lemma 4.4 (Simpson [38, Lemma VII1.2.9]). Every set X of PA degree com-
putes a countably coded Scott set, i.e., a countable sequence (Zy,Z1,...) such that
{Zy, Z1,...} is an w-model of WKL.

We will also need the following simple but useful fact about genericity. For
completeness, we recall that a function g : w — w is hyperimmune relative to a set
Z, or Z-hyperimmune, if for every Z-computable function f there is an n such that

f(n) < g(n).

Lemma 4.5. Suppose that G is 2-generic. Then G @ (' uniformly computes a
countable sequence of functions fo, f1,... such that for every i € w, the function f;
is hyperimmune relative to O/ & @, f;-

Proof. Write G as @),,,, Gi, and for each i, let f; = pg,, the principal function of
Gi. By 2-genericity, each f; = pg, is hyperimmune relative to 0" © €D, pe;, =
0" @@, fj, as desired.

We now come to the proof of the theorem, which is a priority construction. For
partial functions f and g, we shall write f(x) ~ g(z) to mean that f(z) = g(z) if
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both f(z) and g(z) are defined. We shall also follow the convention that if a Turing
functional converges on some input using a finite oracle F', then its use is bounded
by max F.

Proof of Theorem /.2. Fix A, C, and G, and let Ay = A and A; = A. By Lem-
mas 4.3 and 4.4, there is a countable Turing ideal M = {Z,, Z1,...} as follows:

o M = WKLy;

o P, Z; is low;

[ ] C %T ®i Z1
We may assume neither Ag nor A; has any infinite subset in M, since otherwise
we can take this subset and be done.

Recall that a lowness index for a low set X is a natural number e such that
@2/ = X’. In what follows, we write “X is (a lowness index for) a set”, etc., to
mean that X is a low set specified by a lowness index. In this way, we identify a
given lowness index for X with X itself.

Conditions. A condition is a tuple (Fy, F}, X), where Fy C A and F; C A are
finite sets, X is (a lowness index for) an element of M, and max Fy, F; < min X.
A condition (Ey, E©,Y) extends (Fy, F1,X), written (Eo, E1,Y) < (Fo, F1,X), if
F; C E; and min(F; \ F;) > max F;, for each i < 2.

Note that unlike Mathias conditions, we do not demand the reservoir X to be
infinite, or that an extension only add new elements to the finite initial segments
from the reservoir, or that Y C X in the definition of extension. It may seem from
this definition that we do not need the reservoirs, but their role will become apparent
in the construction. We use the terms “reservoir” and “condition” here by analogy
with Mathias forcing, even though our argument is not a forcing construction.

We will build an infinite G @ (’-computable sequence of conditions

(Fo,0, F1,0,X0) 2 (Fop, Fi1,X1) =2 - 2 (Fos, Fr6, Xs) = -+ .

We then let Hy = |J, Fo,s and Hy = |J, F1,,. We aim to satisfy the following
requirements: for all eg, e, € w,

Regier 1 @0 £ C v @I £ C;
and for all n € w,
Sy |Hol > n A |Hy| > n.
Thus, Hy and H; will be infinite subsets of Ag and A;, respectively, and at least
one H; will not compute C. The requirements will be satisfied by a finite injury

priority argument, with a moveable marker procedure. The requirements are given
the usual order.

Hyperimmune functions. Let fy, f1,... be the G @ ('-computable functions
given by Lemma 4.5. Thus, each f; is hyperimmune relative to ’ @ EDJ- i fj. To
each requirement R, .,, we associate f(, ). Each function will be called finitely
often in the construction of the sequence of conditions, and therefore the sequence
will be ' ® @j#%’em [j-computable. In particular, fi., .,y will be hyperimmune
relative to this sequence.

Reverting the reservoir. At a stage s, we may need to revert the reservoir.
This means that we look for the largest ¢ < s such that X; N (s,00) # 0. Such a
t must exist because we will have Xo = w. We then set (Fo o11, Fi s41, Xsp1) =
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(Fo,s, F1,5, X N (max Fy s U Fy 5,00)). In this case, we also say that the reservoir
was reverted to stage t at stage s. Note that the finite initial segments Fy s and Fy
are unchanged.

Movable marker procedure. To each requirement R, .,, we shall associate
a marker me, ., € w, which represents a stage at which the reservoir X, . 1is
infinite, and after which no requirement of higher priority requires attention (to
be defined below). Initially, m.,., = 0. At the end of each stage s at which a
requirement R, ¢, requires attention, we set me, ., = s+1 and also me; o = s+1
for every requirement R.; ., of lower priority. Moreover, if the reservoir is reverted
to some stage ¢, then we set me,,., = s+ 1 for every requirement R, ., with
Megy,e; = t. The construction will ensure that each marker eventually stabilizes to
a value, and that at any stage s, if m., ., < s, then Xmey.o, 2 Xs. Indeed, the

only time Xy 2 X 11 is when a reservoir is reverted or when a strategy acts.

Requiring attention. At a stage s, having (Fy s, F1,s, Xs) already defined, a
requirement S,, requires attention if either |Fy ;| < n or |Fy 4| < n. A requirement
Reo,e, Tequires attention if the following two properties hold:

(1) for each i < 2 and < min X, . , we have L (2) ~ C(a);
(2) foreachi < 2andz < min Xy, . ,thereexists B C X, . N(maxFj,00)
such that ®1*"(2)| = C(x).

A requirement that does not require attention is called satisfied. In other words,
Reo,e, Tequires attention if it is not already satisfied by either ensuring disagreement
with C' (negation of property 1) or ensuring non-agreement with C (negation of
property 2). Note also that if we ever ensure the negation of property 1 then this
will continue to hold whether the reservoir is later reverted or not. If we ever ensure
the negation of property 2, then this will continue to hold if we never revert the
reservoir again.

Construction. We let (F o, F1 0, Xo) = (0,0, w). At the beginning of a stage s, we
assume we have already defined (Fp s, Fi s, X). Initially, we ('-computably check
whether X, N (s,00) # 0. If this is not the case, then we revert the reservoir, and
do nothing else at this stage. If XN (s,00) # ), then we pick the highest-priority
requirement R, ¢, With me, o, < sor S, with n < s that requires attention at stage
s. If there is no such requirement, we set (Fp s+1,F1,s+1, Xs+1) = (Fo,s, F1,5, Xs),
and go to the next stage. If this requirement is S,,, then we search computably in
(" for numbers xg,x; such that z; € X, N A; for each i < 2, or for a number u
such that X, N (u,00) = . The search must succeed, because if X is infinite then
its intersection with both Ag and A; must be non-empty (and in fact, infinite).
Otherwise, one of the A; would have X as a subset, contrary to our assumption
that A; has no infinite subset in M. If zy and z; are found we let F; ;11 = F; sU{z;}
for each i < 2, and let Xsy; = X, N (max{xp,z1},00). If u is found instead, we
revert the reservoir.

Now suppose the highest priority requirement that requires attention is Reg e, -
Let us write m = m,, ., for the sake of notation. Note that since m < s, we have
already defined X, in the construction. Let D be the H?’X’" class of all By ® B,
such that BoN By =0, BoU By = X,,,, and

(Vi < 2)(Vz)(VEo, E1 C B;) ®F+9F0 (z) ~ @F1-DF1(2).
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We consider two cases. Note that we can (/'-computably determine which case we
are in.

Case 1: D = (). Computably in (', we search for a side i < 2, an x, and a finite
set £ C A; N X,, such that @ii’SUE(xM =1—-C(z), and set F; 441 = F; s UE, set
Fi_isy1=Fi_is, and set Xg411 = X, N (max E, 00). Such a set E must be found
since in particular, (Ao N Xn) ® (A1 N Xy,) € D. Now R, e, will be permanently

satisfied. Indeed, we have ensured that the property (1) above can never hold again.

Case 2: D # (). Since M = WKLy and X, is low, we can ('-computably choose
some By @ B € M ND. In particular, By ® B; is low, and () knows a lowness
index for this set. There are two subcases.

Case 2a: BN (fieg,e,)(k),00) = 0 for some i < 2, where k is the number of times
Req,er has required attention prior to stage s. Computably in (), we search for an

a such that <I>£UE(95) ~1—C(z) for all E C B;_;. If B;_; is finite, the search
will trivially succeed by our use conventions. On the other hand, if By_; is infinite
but no such z exists, then because By @ By € D, it follows that By_; computes C,
contradicting that B;_; € M. So we may assume x has been found. We then set
Fo.s+1 = Fo s, set Fy 541 = F15, and set X1 = B1_; N (z,00). In this case, if X,
is infinite, so is By_; and hence also X 1. So R, Will be permanently satisfied
because property (2) will never hold again. (Of course, it may still be that X,,,

hence X1, is actually finite, in which case the latter will later be reverted.)

Case 2b: otherwise. In this case, we assume (possibly wrongly) that both By
and Bj are infinite. Computably in (', we search for an x such that @QUE(:L‘)
1—C(x) for all E C By. Again, the search must succeed. Once x is found, we set
Fys+1 = Fos, set F1 541 = F1 5, and set Xs11 = By N (z,00). And again, if we
were right that By is infinite, R, ., will be permanently satisfied as above.

~

Each stage is concluded by updating the markers and going to the next stage.
This completes the construction.

Verification. We claim that every requirement is satisfied from some stage on-
wards. Seeking a contradiction, fix the highest priority requirement that requires
attention infinitely often. Clearly, this is some requirement R, ,. Let s be a stage
after which no requirement of higher priority requires attention.

First, note that if R, is satisfied by Case 1 at some stage, then it never later
requires attention again. This is because here we force disagreement, as witnessed
by the finite initial segments of our conditions, and these grow monotonically even
when the reservoirs are reverted. Thus, by our assumption, we must conclude that
Case 1 never occurs.

In other words, each time R, ., requires attention, we end up satisfying it by
Case 2. By construction, whenever we do this at some stage s’ > s, it is by refining
the reservoir to a final segment of some set By or By with BoU B; = X,,,, where m
is the value of m,, ., at stage s’. Our choice of s implies that so long as we believe
this refined reservoir to be infinite, the rest of the construction draws all further
reservoirs from within it, and R, continues to be satisfied. Thus, at the first
stage s” > s’ at which R, ., requires attention again, we will have just reverted
the reservoir to some stage ts» < m.
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Let so < s1 < --- be all the stages s’ > s at which Re, ., requires attention.
As noted above, this means that t;, > t;, > ---. Fix s, such that ¢t;, = ¢,
for all I > n. We show that after stage s,, Case 2a never applies again in the
construction, so that R, ¢, is ever after only satisfied by Case 2b. Indeed, suppose
Reg,e; Tequires attention at some stage s; > s, and suppose we satisfy it by Case
2a. Then at this stage, we choose By and B as above, and refine the reservoir to
a final segment of some B;_; because we already know that B; is finite. When we
revert the reservoir right before stage s;y1, it is because we discover that By_; is
also finite, meaning that in fact By U By is finite. But By U By is the entire reservoir
at the start of stage s;, so when we revert right before the start of stage s;41 it
must be to a stage strictly before s;. That is, ¢ < ts,, which is a contradiction
since tg,

Hence, after stage s, the case analysis between Cases 2a and 2b is no longer
necessary for R, ¢,. Since this is the only point in the construction where we use the
function fie, ¢, it follows that the construction is computable in (' ® @j#eo,eﬁ fi-
Now define a partial function h : w — w, as follows. Let kg be the number of times
Rey,e; Tequires attention prior to stage s,, and let h(k) = 0 for all k£ < ky. Now for
k > ko, let By and B; be the sets we consider refining the reservoir to under Case
2 at stage Sn4k—k,y, and define

h(k) = (up € w)(Fi < 2) B; N (p,00) = 0.
Note that this definition only requires knowing the construction, so h is partial
0o @j#eo,@) [j-computable.

Now if h(k)t for some k > ko then both the sets By and B; considered at
stage Sptk—k, are infinite, so By, which is (up to finite difference) the reservoir we
refine to under Case 2b at that stage, will never be reverted. Hence, R, ., will
remain satisfied, which is a contradiction. It follows that h is total. Since fe, e,) is
hyperimmune relative to (' ® @j#emeﬂ fj, there must be some k > ko such that
feo.es (k) = h(E). But then at stage s,4+k—k,, Case 2a will correctly identify an i < 2
such that B; is finite, and we will satisfy R.,,. This contradicts our assumption
that Case 2a never applies again after stage s,,.

This contradiction completes the proof of our claim, and we conclude that all
requirements are eventually permanently satisfied. This completes the verification
and the proof of Theorem 4.2. O

Si+1
=ty =L,

Patey [35, Theorem 28] proved that for every set A and every hyperimmune
function g, there is an infinite subset H of A or A such that g is H-hyperimmune.
A natural question is whether this result can be effectivized in the case of A and f
being AJ. We adapt the asymmetric construction from [18] to give an affirmative
answer.

Theorem 4.6. Let A be a AY set and g be a AY hyperimmune function. Then (
computes an infinite subset H of A or A such that g is H-hyperimmune.

Note that the set H above is necessarily incomplete as a A9 set, since obviously no
AY function can be hyperimmune relative to ('. Thus, our theorem also properly
strengthens the result of [18, Theorem 4.5].

Before proceeding to the proof, we need the following basis theorem.

Lemma 4.7. Let D C 2% be a non-empty 1 class, and let g be a AS hyperimmune
function. Then D has a low member P such that g is P-hyperimmune.
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Proof. We build computably in (' an infinite decreasing sequence of non-empty I19
classes
D=Dy2D12---

such that for every s € w,

(i) cither (YP € Dysy) ®F ()} or (VP € Dyyr) OF (s)1

(ii) for some = € w, either (VP € Dyy1) ®F ()] < g(z) or (VP € Dyyy) L (2)1.
Suppose such a sequence exists. Since (i) forces the jump, it follows that (), D, =
{P} for some P. Since the sequence is AY, it also follows that this P is low. Finally,
by (ii), g will be P-hyperimmune, as desired.

We now explain how to construct this sequence. At stage s, suppose we have
defined Ds;. We define Dy1q. Let T C 2<% be an infinite computable binary tree
such that [T] = Ds. Let Ty C T be the outcome of forcing the jump on s, in the
standard way. Thus, any II{ subclass of [T}] satisfies (i). To satisfy (ii), we search
computably in @)’ for some x such that Ty = {7 € T : ®7(x)1} is infinite, or such
that (3¢)(Vr € 29[t € T — ®7(x)] < g(z)]. Such an x must be found, since if
the former case does not hold, the function h : w — w that on input x searches
for the least ¢ such that (V7 € 2¢) [r € T — ®7(x)|] and outputs a bound on all
these computations is total computable, and by hyperimmunity of g, we must have
h(z) < g(x) for some x. In the former case, let Dsy1 = [T3], and in the latter case,
let Dsyq = [T1]. The class Dy therefore satisfies (i) and (ii). This completes the
construction and the proof. O

Let p(n, E,v) be a £ formula of second-order arithmetic, where n, v are number
variables and E' is a number variable coding a finite set. For an infinite set X, we
say @ is essential in X if for every n there is a sequence Eg, ET,... C X such that
for all k we have max £} < min £}, | and (3v) o(n, £}, v).

Proof of Theorem 4.0. Fix A and g. By Lemmas 4.4 and 4.7, there exists M =
{Zy,Zy,...} as follows:

o M = WKLg;

o P, Z; is low;

e g is @, Z; hyperimmune.
As usual, we may assume neither A nor A has any infinite subset in M. We consider
two cases.

Case 1: there is an infinite set X € M such that for every %Y formula ¢(n, F,v)
that is essential in X, there is somen € w and some finite set £ C X NA such that
(v < g(n)) ¢(n, E,v). We build an infinite (~computable subset H of A such that
g is H-hyperimmune. More precisely, we build an infinite (’-computable sequence
of finite sets Fy, F1, ... such that |F.| < |F.41] and F. C X N A for all e, and such
that g is |, Fe-hyperimmune. We set H = |J, F..

Let Fy = (), and suppose by induction that we have defined F, C X N A for some
e. Let p(n, E,v) be the formula

max F, <min E A ®f<YE(p)| = v,

which is obviously £¢. Now, either ¢ is essential in X or it is not. If it is not, then
there must be an n and an x > max F, such that for all E C X N (z,00) we have
—(3v) ¢(n, E,v). If p is essential, then by assumption there is some n and some
E C X N A such that max F, < min E and ®<“F(n)| < g(n). We can search for
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this data computably in (/. We consider two subcases, according to which we find
first.

Case la: there is an n and an x > max F, such that for oll E C X N (x,00) we
have —(3v) ¢(n, E,v). Since A has no infinite subset in M, we can find a y > =
in XNA. Let F..; = F.U{y}. By construction and the definition of ¢, we have
ensured that ® (n)1.

Case 1b: there is some n and some E C X N A such that max F. < min F and
®FYE(n)| < g(n) We then let F,,; = F, U E. Thus, we have ensured that ®X
will not dominate g.

This finishes the construction. Clearly, the resulting set H is infinite and com-
putable in (', and g is H-hyperimmune, as desired.

Case 2: otherwise. In this case, we build an infinite (/'-computable subset H of A
such that g is H-hyperimmune. We construct H by stages, as we now describe. In
some ways, this construction is similar to (but simpler than) that of Theorem 4.2.
Thus, we omit some of the details below.

Conditions. A condition is a pair (F,X), where F' C A is a finite set, X is (a
lowness index for) an element of M, and max F' < min X. A condition (F,Y)
extends (F, X), written (E,Y) < (F, X), if F C F and min(E \ F') > max F'.

We build a ()’-computable sequence of conditions

(Fo, Xo) = (F1,X1) = -+
and let H = |J, F.. Our goal is to satisfy the following requirements: for all e € w,
Re: (3n) @ (n)t v (3n) @7 (n)) < g(n);
and for all n € w,
Sp i |H| > n.
Clearly, these requirements suffice for our needs. We assign the requirements pri-
orities as usual.

AY approximation. Since we are in Case 2, for every infinite X € M there exists
a X} formula ¢ essential in X such that for every n and every finite set £ C X,
if (Jv < g(n)) ¢(n,E,v) then EN A # . Now, ()" can find such a ¢ uniformly
from a lowness index for X. So if we fix a computable indexing g, ¢1,... of all
%9 formulas, then there is a (/"’-computable function f : w — w such that for every
(lowness index for a) low set X, if X is infinite then ¢y (x) is the ¢ formula we

want, and if X is finite then f(X) is some arbitrary value. Let fbe a (f'-computable

o~

approximation to f, so that for every X we have f(X) = lim, f(X, s).

Movable marker procedure. To each requirement R., we associate a marker
me € w. This marker represents a stage such that X,,, is infinite, and after
which no requirement of higher priority requires attention (as defined below). We
approximate f(X,,, ) in order to satisfy R., as detailed in the construction. At the
end of each stage s at which R. is the highest-priority requirement that requires
attention, we set me = s+ 1 for every requirement R, of strictly lower priority.
Also, whenever the reservoir is reverted to some stage m. (defined below), we set
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me = s for every requirement R/ of strictly lower priority than the requirement
that has caused the reservoir to be reverted. Initially, we set m, = 0 for all e. Thus,
at the start of a stage s, we will have m. < s for all e.

Reverting the reservoir. At a stage s > 0, we will sometimes need to revert the
reservoir. This means that we look for the least e < s such that our approximation
to f(Xm,.) changes at stage s, i.e., f(Xme,s) #+ ]?(Xme,s — 1). We then say the
reservoir has been reverted to stage m., and redefine X = X,,,, N (max Fy, 00). We
do this, rather than defining X, to be X,,,, N (max Fy, c0), because unlike in the
construction of Theorem 4.2, we do not want resetting the reservoir to cause us to
go to the next stage. This definition will allow us to reset the reservoir and then

continue with other actions at stage s.

Requiring attention. At stage s, a requirement S,, requires attention if |Fg| < n.
A requirement R, requires attention if the following properties hold:

(1) for each z < min X,,,, if ®%(z){ then ®L:(z) > g(z);
(2) for each z < min X,, there exists £ C X, N (maxF,, 00) such that
OLVE (1)) > g(2).

A requirement that does not require attention is called satisfied.

Construction. Initially, let (Fp, Xo) = (0, w). At stage s, assume we have defined

~

(Fo, Xo0),...,(Fs,Xs). If s > 0 and there is an e < s such that f(X,,,,s) #
f(XmC, s — 1), then we revert the reservoir. However, unlike in the construction
in Theorem 4.2, we do not end the stage if this happens. Instead, whether this
happens or not, we now consider the highest-priority requirement S,, or R. for
n,e < s that requires attention at stage s. If there is no such requirement, let
(Fsq1,Xs+1) = (Fs, Xs). If such a requirement exists, and it is S,,, then we search

-~ ~

for the least € X; N A, or for a number u such that f(X,,, ,u) # f(Xm.,s) for
some e < s. The search must succeed, because as we will see, if f(XmE, s) = f(Xm.)
for all ¢ < s then X, must be infinite, and if X, is infinite then it must intersect
A by our assumption that A has no infinite subset in M. Now if « is found, we
let Fsy1 = FsU{z} and X541 = X5 N (x,00). If w is found instead, we revert
the reservoir, and we start our search for the highest-priority requirement requiring
attention again.

Now suppose the highest-priority requirement requiring attention is R.. Write
P = PR X ss) for ease of notation. Computably in X,, , we build for each n a

sequence Ef, ET, ... C X, such that max F; < min E}! and max £} < min E}! |,

-~

and (Fv) ¢(n, E},v) for all k. Note that if X, is infinite and f(Xp,,,s) = f(Xm,)
then each of these sequences is actually infinite. Otherwise, we may not be able to
find E} for some n and k, so some of the sequences may be finite (partial). For
each n, let T}, be the set of all & € w<* such that a(k) € E} for all k < |a|. Thus,
it B¢, ET,... is infinite, then T,, is an infinite X,,_-computable, X,,,_-computably
bounded tree. Otherwise, T;, may be only partially defined. But either way, we can
uniformly find a A?’X’"Q index for T;, as a (possibly partial) tree. Using this index
and the lowness index of X, , we can ask () whether

U,={aeT,: (VE Cran(a)) @fﬂUE(n)T}
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is finite, by which we mean that there is a level k£ at which 7,, is defined, but such
that U,, has no elements of length k. If the answer is yes, then U, is actually a
finite tree, regardless of whether the sequence Ef, ET,... is infinite or not. If the
answer is no, then U, is a bona fide infinite tree, provided Ef, ET,... is infinite
as well. Of course, if the answer is no but EJ, ET,... is finite, so that T, is only
partially defined, then we will be incorrectly assuming that U, is infinite. But if
this is so, we will eventually revert the reservoir.

Define a partial X, -computable function h : w — w as follows. On input n, the
function h first searches for the least ¢ such that E}} is defined for all k < ¢ and

(Ya € Ty) [la] = ¢ = (3F Cran(a)) ®L<VF(n){],

and then outputs the least w bounding the values of all the relevant computations
®F:YUE (n) as well as all the witnesses v such that ¢(n, EfY,v) for k < .

We now ('-computably search for the least n such that either h(n)] < g(n) or
such that U, is not finite in the sense described above. As mentioned above, if ('
thinks that U, is finite then it is actually so, so h(n) will be defined. Hence, if we
never find an n such that U, is not finite then h will be a total X,,_-computable
function, and there will have to be an n such that h(n) < g(n) since g is X, -
hyperimmune. It follows that our search must succeed. So fix n; we have two
subcases.

Case 2a: U, is not finite. Then () can produce (a lowness index for) a low path
X € [U,]N M. Note that if T;, is really infinite (i.e., not partially defined) then the
range of every path of U, is infinite. So it makes sense to identify X with its range.
Also, since each E}} was a subset of X,,,,, sois X. We let (Foy1, Xs41) = (Fs, X).
Now if the reservoir is never again reverted, we will have satisfied R, by ensuring
that property (2) in the definition of requiring attention never holds again.

Case 2b: h(n)l < g(n). Let £ be the level of T, witnessing that h(n)J. Then for all
k < £ we have that (Jv < h(n)) ¢(n, EJ,v), and hence that (v < g(n)) ¢(n, E},v).
Since we are in Case 2, this means that for every k < £ there is some z;, € E}' N A.
Then o = xg---xy_1 is an element of T, of length ¢, hence there exists some
E C ran(a) C A such that ®£:YF(n)], and by definition, we have ®Z-VF(n) <
h(n) < g(n). In this case, we set Fy11 = F; UE and X541 = X, N (max E, 00).
We have now permanently satisfied R, because property (1) in the definition of
requiring attention will never hold again.

Each stage is concluded by going to the next stage. This completes the construc-
tion.

Verification. This verification is similar to (but simpler than) that of Theorem 4.2.
Seeking a contradiction, fix the highest-priority requirement that requires attention
infinitely often. Let s be a stage after which no requirement of higher priority
requires attention again. First, note that this requirement cannot be S,,. Otherwise,
at the first stage s’ > s at which S,, requires attention, we would by construction
have to end up resetting the reservoir infinitely many times. But that is impossible,
because eventually our approximations to f(X,,, ) for all e < s’ are correct, and

e

S, is then (permanently) satisfied. So, the requirement in question must be some

~

Re. Without loss of generality, assume f(X,, ,,s') = f(Xp_) for all s > s and
all ¢’ such that R. has higher priority than R. or is equal to R.. By induction
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on all such €', it follows that m., never changes again after stage s and that X, ,
is infinite. Now consider any stage s’ > s at which R, requires attention (after
any resets of the reservoir). Since X, is infinite, all the sequences Ef, ET,...
that we define at this stage will be infinite, and all the trees U,, will thus either
be actually finite or actually infinite. This means that whether Case 2a applies or
Case 2b applies, we will end up permanently satisfying R. at this stage, which is a
contradiction.

Thus, all requirements are eventually permanently satisfied, so H = [J, F} is an
infinite (’-computable subset of A and g is H-hyperimmune. O

The original asymmetric proof of Theorem 4.1 in [18] breaks into two cases,
depending on whether the set A is or is not hyperimmune. In the former case, the
construction actually produces an infinite subset of A that is low (see [18, Corollary
4.9]), while in the latter, it produces an infinite subset of A that is merely incomplete
AY. By Downey, Hirschfeldt, Lempp, and Solomon [9], we cannot improve this proof
to obtain a low set in either case. In particular, there is no hope of proving that
every non-hyperimmune A9 set A has an infinite low subset. However, as we show
next, we can obtain this conclusion if we work with a variation on the notion of
hyperimmunity.

Definition 4.8. Let M be a Turing ideal.

(1) Let ¢(D) be a formula of second-order arithmetic, where D is a number
variable coding a finite set. For an infinite set X € M, we say ¢ is M-
densely essential within X if for every infinite Y C X in M there is a
non-empty finite set D C Y such that ¢(D) holds.

(2) A set A is densely M-hyperimmaune if for every infinite set X € M and
every ¥9(X) formula ¢ that is M-densely essential within X, there is a
finite set D C X N A such that ¢(D) holds.

Theorem 4.9. Fiz a Scott ideal M coded by a low set and a AY set A that is not
densely M-hyperimmune. Then there is a low infinite set G C A.

Proof. Let X € M be an infinite set and ¢(D) be a £¢(X) formula witnessing that
A is not densely M-hyperimmune. Thus ¢ is M-densely essential within X, and
for every set D C X such that (D) holds, we have D N A # (. We build a A
decreasing sequence of Mathias conditions

0, X) = (Fo, Xo) > (F1,X1) > -+

such that F, C A and X, € M for all e. We then take G = J, Fe.

The sequence is defined inductively. Suppose we have already defined (Fe, X.).
Let Dg,D1,... € X. be an infinite X & X.-computable sequence of non-empty
finite sets such that max D,, < min D, 1+ and ¢(D,) holds for each n € w. Such
a sequence exists since ¢ is M-densely essential within X. Let T" be the X & X,-
computable tree of all strings « € w<* such that a(n) € D, for each n < |o|. Thus,
T is an infinite, X @ X.-computable, X @& X.-computably bounded tree, and (the
range of) every path through T is an infinite set. Moreover, our assumption on ¢
implies that there is such a path that is a subset of A. Now, define

U={aecT: (VE Cran(a)) ®X“F(e)1}.

We have two cases:
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Case 1: U is finite. Since T has a path that is an infinite subset of A while U has
no paths, we can fix & € T\ U such that ran(a) C A. Then we can choose a finite
set E C ran(a) such that ®£<YF(e)]. Since A is not densely M-hyperimmune and
X. C X, we can find £ > maxFE in AN X,. Define F.y; = F. UFE U {z} and
Xet1 = Xe N (2,00). The condition (Feq1, Xe41) now forces e € G'.

Case 2: U is infinite. Since U € M, we can uniformly ()'-computably find (a low-
ness index for) a path Y through U in M. Since A is not densely M-hyperimmune
and Y C X, we can find z € ANY. Define F.11 = F.U{z} and X.41 = Y N(z, 00).
Then the condition (Feq1, Xeq1) forces e ¢ G'.

This completes the construction of our sequence of conditions, which is clearly a
AY sequence. As the case distinction above is uniform in @, it follows that G is
low. And since we add at least one new element to G at each stage, G is infinite.
This completes the proof. O

The following immediate corollary points, in some sense, to the narrowness of
the class of examples of A sets having no low infinite subsets in them or their
complements.

Corollary 4.10. Let A be a AY set with no low infinite subset in it or its comple-
ment. Then neither A nor A is hyperimmune, but each is M-densely hyperimmune,
for every Scott ideal M coded by a low set.

In conclusion, we note that we do not know if Theorem 4.9 could be used as
part of a new proof of Theorem 4.1, i.e., if there is such a proof where the case
distinction could be based on whether or not A is densely M-hyperimmune, rather
than just plain hyperimmune, as in the original proof. More specifically, we do not
know the answer to the following question:

Question 4.11. Fix a Scott ideal M coded by a low set and a AY set A that is
densely M-hyperimmune. Must A have an incomplete AJ infinite subset?

5. COHESIVENESS AND VARIANTS OF HYPERIMMUNITY

In this section, we study variations of hyperimmunity notions to broaden the
class of computable instances of SRT2 that are known to have solutions that do not
compute a solution to every computable instance of COH. As mentioned above, by
Jockusch and Stephan’s result [22, Theorem 2.1], these are precisely the computable
instances of SRT3 having solutions H satisfying deg(H)' 3% 0'.

For the purposes of the definition below, we say a collection C of sets is downward
closed if it is downward closed under inclusion. Also, we use array to mean a
sequence of canonical indices of finite sets Dy, D1, ... such that lim, min D,, = cc.

Definition 5.1. Fix X,Z C w. A downward closed collection C of finite sets is
Z-hyperimmune within X if for every Z-computable array Dy, D1,... C X, there
is some n € w such that D,, € C.

Whenever X = w, we simply say that C is Z-hyperimmune. This general notion
can be used to define many notions of hyperimmunity. For example, we can say that
a set A is Z-hyperimmune within X C w if {F : F C A} is Z-hyperimmune within
X. When X = w, this agrees with the usual definition of A being Z-hyperimmune
(see [39, Definition 5.3.1 (iii)]).
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Our starting point is the following theorem, which is a variation on the afore-
mentioned result of Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [18,
Corollary 4.9] that the complement of any A9 hyperimmune set A has an infinite
subset of low degree.

Theorem 5.2. Fix X C w. Let Cy and C1 be Ag’X downward closed collections of
finite sets such that Co UCy is hyperimmune within X, and let f be a Ag’X function
from the set of (canonical indices of ) all finite sets to w. There is an i < 2 and a
sequence of non-empty finite sets Fy, F1,... € C; as follows:

F, C X forall s;

max Fy < min Fsy1 for all s;

f(Fs) < min Fs4q for all s;

there is an infinite set G C US Fy that is low over X.

Proof. We prove the result for X = w. The general case follows by a straightforward
relativization of our proof. Uniformly in (', we build a sequence of pairs of binary
strings

(00,0,01,0), (00,1, 01,1)5 - - - -

For each i, let E; o = (), and for each s let
Ei i1 ={lois] <o <|ojsq1|: 04 541(x) =1}

Also, let G; =, Ei s-
We will ensure that for each ¢ and s the following hold:
® 0js = 0js+1;
o I, cCy
o f(E;s) <minkE;, for all ¢ > s for which E;; is non-empty.
We let (09,0,01,0) = (0,0), and then proceed by stages. We define o; 11 at stage
s, and ensure that at stage s = (e, e1) there is an ¢ < 2 such that

BT ()L V (Vp € 29) BT+ (e, )1
It follows that there is an ¢ < 2 such that for each e there is an s so that
D7 (e)d V (Vp € 2¢) 70 (e)1.

Hence, G; is low. Moreover, G; must be infinite. To see this, suppose not, and let
k = max G;. Consider an e € w such that for all oracles X and inputs = we have
that ®X (z){ if and only if X N (k,o0) # 0. Then for all s we have that ®¢"°(e)1,
yet there is always a p € 2<% such that ®¢"*”(e)}. This is a contradiction. Now
since G C |J, Ei s, it follows that we can computably pick out those E; , that are
non-empty, renaming the new sequence Fy, Fy,.... Taking this sequence together
with G = G; yields the theorem.

We have thus only to construct the o, 5. At stage s = (e, e1), assume inductively
that we have already defined (0,01 5). For each 4, let 7; = o; 0f(Fi:s)T1 50 that
0i,s < 7;. Now, computably in (), we search for an i < 2 such that one of the
following holds:

(1) there is some finite string p € 2<% such that {|=;| + = : p(z) = 1} € C; and
77 (i)l
(2) there is some n € w such that ®7:"7(e;)1 for all p € 2<%.
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In the first case, we let 0; 441 = T;p, and in the second case, we let 0; 411 = 7;0".
We let 01_; 541 = 01-4,50. Clearly, these extensions are of the desired sort. Thus,
the only thing left is to show that the search above must succeed. Indeed, if (2)
fails for each ¢ < 2, then for each n we can computably find strings po, p1 such that
®7:0"Pi(e;)] for each i < 2. Let
Dip=Alnl+n<x<|n|+n+|pl:pi(x—|m| —n)=1},

and let D, = Dy, U D;,. This defines a computable array Dy, D1, ..., so by
hyperimmunity of C, we must have D,, € C for some n. Fix ¢ < 2 so that D,, €
C;. By downward closure, we also have D;, € C;. But then p = 0"p; witnesses

that (1) above holds for ¢, which proves the claim. This completes the proof of
Theorem 5.2. (]

The following special case of the theorem is perhaps the more noteworthy re-
sult here, though we shall make use of the full technical version in our proof of
Proposition 5.8 below.

Corollary 5.3. Let Cy and C; be AY downward closed collections of finite sets such
that Co U Cy is hyperimmune. Then there is a low infinite set H and an i < 2 such
that H = J, Dy for some Dy, Dy, ... €C;.

Of particular interest is the case when Cp = {F C w : F is finite A F C A} and
Ci={F Cw:Fisfinite \F C A}.

Corollary 5.4. For every AY set A such that the collection of finite subsets of A
and A is hyperimmune, there is a low infinite subset H of A or A.

In the context of the SRT% vs. COH problem, the fact that the complement of a
hyperimmune AY set always has an infinite low subset stands out next to the fact
that no low set can compute a solution to every computable instance of COH. This
motivates the following definition, and makes the subsequent result surprising.

AY hyperimmunity (DHYP}). For every set Z and every Ag’z k-partition Ay U
< UAp_1 = w, there is some i < k and an infinite set X such that A; is Z ® X -
hyperimmune within X .

Proposition 5.5. COH <, SRT% if and only if COH <. DHYPs.

Proof. First, note that DHYP, <, SRT%, since every solution to any instance of
SRT% is also a solution to it viewed as an instance of DHYP,. Thus, if COH <.
DHYP,, then COH <, SRTS. For the other direction, suppose that COH €. DHYP,,
and fix an instance B = Ry, Ry, ... of COH witnessing the fact. By adding all the
primitive R-recursive sets to R if necessary, we can assume that every infinite R-
cohesive set C' satisfies deg(R & C)' > deg(R). We claim that R also witnesses
that COH Z. SRT2. Indeed, consider any R-computable instance ¢ : [w]? — 2 of
SRT3, and let A; = {z € w : lim, c(z,y) = i} for each i < 2. By choice of R, there
is an infinite set X and an i < 2 such that A; is ReX -hyperimmune within X, but
R® X does not compute any infinite R-cohesive set. Thus, deg(R® X ) 3% deg(R)'.

Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [18, Corollary 4.8]
showed that for sets U and V', if U C V and U is V-hyperimmune, then there is a
set W with the following properties:

e UCWCV;



SOME RESULTS CONCERNING THE SRTg VS. COH PROBLEM 25

o W is low over V;

o VV ~ W is infinite.
Now, the fact that A; is RaX -hyperimmune within X implies that 4;NX is RaX-
hyperimmune. (Indeed, given any Ro X -computable array each of whose terms
intersects A; we could form a new R®X -computable array by intersecting each term
of the original with X. Since A; C X, this new array would then witness that A; is
not ReX -hyperimmune within X, a contradiction.) TakingU = A;,NX and V = X
we can relativize the above result to R to find a set W such that ANXCWCX
and such that W is low over B X and X ~ W is infinite. Let Y = X ~W. Then Y
is still low over E@X, and sinceY = XNW C A; N X = A;_,UX, it follows that ¥’
is an infinite subset of A;_;. To conclude, we can c-computably thin out Y to obtain
an infinite homogeneous set H C Y for ¢. Then H <t R @ X PY, and as such, is
low over R & X. In particular, (R ® H) <t (BR® X)', so deg(R & H)' 3% deg(R)’.
Thus, R® H does not compute an infinite R-cohesive set. ([l

Since DHYP, <. SRT%7 one might expect the question of whether COH <.
DHYP; to be more combinatorially accessible than that of whether COH <, SRT%.
We can extend this situation a bit further. The following definition is essentially
due to Wang [40, Section 3.4].

Definition 5.6. Let ¢ : [w]> — 2 be a stable coloring. Say a set F' C w is c-
compatible if for all x < y in F,

e if ¢(x,y) = 0 then lim, ¢(x, 2) < lim, ¢(y, 2),

e if ¢(x,y) =1 then lim, c(x, 2) > lim, c(y, 2).

Definition 5.7. Fix Z C w. A stable coloring ¢ : [w]?> — 2 is Z-hypertransitive
within X Cw if {F C w: F finite and c-compatible} is Z-hyperimmune within X.

AY hypertransitivity (DHYT). For every set Z and every Ag’z stable coloring
c: [w]? — 2, there is an infinite set X such that c is Z® X -hypertransitive within X .

Notice that if lim, ¢(x,y) is the same for all = in some F', then F is compatible
for c¢. From this fact, it follows at once that DHYT <. DHYP5. Furthermore, if Fj
and F; are non-empty, c-compatible, finite sets with max Fy < min Fy, and if for
each x € Fy the color c¢(x,y) has stabilized by min Fy, then Fy U Fy is compatible
for ¢ as well. We shall make use of this observation in the proof below.

We will need one additional fact. Recall that a set T is transitive for a coloring
cif for all z < y < z in T we have that c¢(z,y) = ¢(y,z2) = c(z,y) = c¢(z,2). In
computability, this notion was first studied by Hirschfeldt and Shore [19, Section 5].
For us, an important fact is that if ¢ is stable and S is an infinite c-compatible set
then there exists an infinite ¢ @ S-computable transitive set T for ¢ contained in S.
To show this, we build T inductively. Let xy be the least element of S, and assume
that for some n € w we have already chosen g < - -- < x,, in S, and that these form
a transitive set. Let x,4+1 be the least x > x, in S such that zg < --- <z, <z
forms a transitive set. Such an x must exist. Indeed, fix s so that for each j < n
the color of ¢(x;,y) stabilizes by s. Now for any j < k < n, any ¢ < 2, and any
x > s, if ¢(xj, ) = c(x,x) = i then limy c(xk,y) = ¢ by choice of x and s, so
lim, ¢(z;,y) = i by c-compatibility, so ¢(x;,x) = i.

In the proof below, we invoke the principle SEM, first introduced by Lerman,
Solomon, and Towsner [23, Section 1], which states that every stable coloring c :
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[w]? — 2 has an infinite transitive set. Patey [29, Corollary 3.7] showed that
COH <. SRT3 if and only if COH <. SEM.

Proposition 5.8. COH <. SRT3 if and only if COH <. DHYT.

Proof. Since DHYT <. DHYPy, if COH <. DHYT then by Proposition 5.5, COH <.
SRT%. In the other direction, suppose that COH €. DHYT, as witnessed by the
COH instance R = Ry, Ry, . ... Without loss of generality, we can assume that every
infinite R-cohesive set C satisfies deg(R @ C)’ > deg(R)'. We claim that R also
witnesses that COH €. SEM, and hence that COH £. SRT3. Let ¢ : [w]?> — 2 be
any ﬁ—computable instance of SEM; i.e., a stable coloring. By choice of ﬁ, there is
an infinite set X such that ¢ is R®X -hypertransitive within X, but R X does not
compute any infinite R-cohesive set. Let Co =0 and C; = {F : F is c-compatible}.
Thus Cy and C; are AY downward closed collections of finite sets whose union is
Ra X -hyperimmune within X. Let f be the AY function that, on input of a finite
set F', outputs the least s such that for each x € F the color of ¢(x,y) stabilizes
by s. We can then relativize Theorem 5.2 to R and apply it to Cy, C; and f to
obtain a sequence of sets Fy, Fi,... € X and an infinite set G C J, F; such that
all the Fy are c-compatible, f(Fs) < min Fs1; for all s, and G is low over RoX.
By the remark above, it follows that |, F; is c-compatible, hence G is as well. As
also noted above, this means G contains a ¢ ® G-computable infinite transitive set
T for c. So T is also low over R® X , and hence R®T cannot compute any infinite
R-cohesive set. ]

The previous techniques rely on the AY approximations of the instance of D3.
In the general setting, the following question remains open:

Question 5.9. Is there a hyperimmune set A such that every infinite subset H C A
satisfies deg(H)' > 0’7

For completeness, we mention also that it would be good to figure out the precise
relationships between the principles DHYT, DHYP;y, SEM, and SRT%. It is not
difficult to see that DHYT <. SEM. By results of Lerman, Solomon, and Towsner
23, Theorem 1.15] we know that SRT3 . SEM, and so SRT5 £. DHYT. However,

the other reductions remain open.

Question 5.10.

(1) Is it the case that SEM <. DHYT?
(2) Is it the case that DHYPy <. DHYT?
(3) Is it the case that SRT3 <. DHYP,?

6. QUESTIONS AND FURTHER DIRECTIONS

We conclude with a couple of questions not already mentioned above or elsewhere
in the literature. As with our results in the preceding sections, the significance of
these questions for the SRT% vs. COH problem is methodological. There is still much
about the interplay between combinatorics and computability in the construction
of infinite homogeneous sets that we do not understand, but will almost certainly
need to understand to find a solution to the problem. The questions and directions
for further research below are thus aimed at enhancing this understanding.

Our first question concerns the problem of solving two instances of the pigeon-
hole principle in parallel. We recall the following terminology from the study of
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Weihrauch degrees. Given two problems P and Q, the parallel product of P and Q
is the problem P x Q whose instances are pairs (I, J) with I a P-instance and J a
Q-instance, where a solution to such a pair (I, J) is a pair (X,Y") such that X is a
P-solution to I and Y a Q-solution to J.

Question 6.1. Is it the case that D3 <. D3 x D3?

Note that if x above is replaced by the compositional product (see [2, Section 5]),
then the answer above is yes (see, e.g., [17, Section 4]).

The closest result we know in the direction of resolving this question is that
D% «£. D3, which is due to Patey [34, Corollary 3.3]. The proof of this result
is by a cardinality argument. For j < k, say a problem P preserves j among
k hyperimmunities if for every collection of hyperimmune functions go,...,gr—1,
every instance X of P has a solution Y such that at least ;7 many of the g; are
Y-hyperimmune. It is easy to see that this property is closed downwards under <,
and the proof in [34] shows that while D3 can preserve 2 among 3 hyperimmunities,
D2 cannot. This argument will not work to settle the above question, because
D3 x D2 does not even preserve 2 among 4 hyperimmunities. To see this, consider
a 4-partition Ay U A; L Ay U A3 = w such that A; is hyperimmune for each i < 4.
Define the first D3-instance to be Ay U A, and the second to be Ag U Ay. Any
solution to this pair as a D% x D3 instance will necessarily compute a function
(namely, the principal function of either of its halves) that dominates at least three
of the g;. Note that the same argument can be made for D%, and indeed we have
D2 <. D3. A negative answer to our question would probably involve a variant
of Mathias forcing with multiple reservoirs, since sharing the same reservoir would
likely produce a solution to a given instance of D3 x D3 as an instance of D3.

On a different note, there is still much we do not know about building A9 so-
lutions to computable instances of SRT% /D3. For example, a longstanding open
question is whether every such instance has a lowy AY solution (see, e.g., [16, Ques-
tion 6.46]). We propose a new line of study. The following definitions appear in
several specific contexts in the literature. (See also [33, Chapter 12].) We state
them here in complete generality since they seem like useful concepts in their own
right. Given an instance X of a problem P, we write P(X) for the set of all its
solutions, and deg P(X) for the set of degrees of its solutions.

Definition 6.2. Let P be a problem, C a class of P-instances, and d a Turing
degree. We say:

(1) Cis d-bounding (for P) if for every P-instance X of degree at most d, there
is an X € C such that every element of P()? ) computes a P-solution to X.

(2) Cis a d-basis if it is d-bounding and (VX € C) deg(X) < d.

(3) C is a uniform d-basis if it is a d-basis and there is a sequence (Xo, X1, ...)
of degree at most d such that ¢ = {Xg, X1,...}.

Definition 6.3. Let P be a problem.

(1) P admits a universal instance if every degree d bounds the degree of a
singleton d-basis.

(2) P admits a uniform basis if every degree d bounds the degree of a uniform
d-basis.

Every problem trivially has a d-basis, namely, the collection of all instances of
the problem of degree at most d. So the interest here is really in smaller bases,
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and in particular, in uniform ones. In the case of D3, we know the following. By
relativizing and iterating the proof in Cholak, Jockusch, and Slaman [4, Theorem
3.7] that every computable D instance admits a lows solution, we can obtain, for
any finite collection C of computable D3 instances, a single lows degree bounding
a solution to each instance in C. However, Mileti [25, Corollary 5.4.6] has shown
that there is no lows degree bounding a solution to all computable D3 instances.
It follows that D2 has no finite 0-basis, or indeed, by relativizing this observation,
a finite d-basis, for any degree d. In particular, D3 does not admit a universal
instance. These facts motivate the following question:

Question 6.4. Does D3 admit a uniform basis?
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