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ABSTRACT

The number of smart home IoT (Internet of Things) devices has
been growing fast in recent years. Along with the great benefits
brought by smart home devices, new threats have appeared. One
major threat to smart home users is the compromise of their privacy
by traffic analysis (TA) attacks. Researchers have shown that TA
attacks can be performed successfully on either plain or encrypted
traffic to identify smart home devices and infer user activities. Tun-
neling traffic is a very strong countermeasure to existing TA attacks.
However, in this work, we design a Signature based Tunneled Traf-
fic Analysis (STTA) attack that can be effective even on tunneled
traffic. Using a popular smart home traffic dataset, we demonstrate
that our attack can achieve an 83% accuracy on identifying 14 smart
home devices. We further design a simple defense mechanism based
on adding uniform random noise to effectively protect against our
TA attack without introducing too much overhead. We prove that
our defense mechanism achieves approximate differential privacy.
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1 INTRODUCTION

The adoption of IoT (Internet of Things) devices for personal use
has been growing dramatically. According to a McKinsey report on
smart homes, there were 29 million smart homes in the U.S. in 2017,
31% more than the previous year [36]. This growth is continuing
as many companies, such as Amazon, have recently launched a
multitude of new smart home devices and appliances [38]. However,
owners of smart homes are still not fully aware of what is at stake
when it comes to personal privacy.
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Many users might not know how their personal data is collected
and shared, as this is often done behind the scene. New regulations,
such as the European General Data Protection Regulation (GDPR),
could help users understand how their data is dealt with and give
some options to opt out of data collection or modify incorrect
information [40]. These regulations help defend against attacks or
misuses of data that are detectable, but may not be effective against
traffic analysis (TA) attacks, which do not alter any data. However,
TA attacks have been shown to be very effective in compromising
user privacy in both Web and IoT environments (Section 2).

In the IoT environments, one key objective of TA attacks is to
identify smart devices. This is because successful device identifica-
tion is the first and the foremost step in both the inference of user
activities for compromising privacy, and the intrusion of devices
for compromising security.

Existing TA attacks in the IoT environments are largely flow-
based as they build network traffic flows by exploiting metadata
such as the source and destination addresses of packets, time in-
tervals of packets, and network protocols to further identify the
devices [1, 3, 28]. A common defense approach against flow-based
TA attacks is traffic tunneling, which hides the metadata and masks
the flow information. Over the tunneled traffic, only three fea-
tures, i.e. packet size, direction, and time, are accessible to attackers.
While this makes TA attacks much harder to be successful, tunnel-
ing alone is not enough for protecting user privacy. Apthorpe et al.
suggested that TA attacks may still be effective against tunneled
traffic in certain situations, but did not present any concrete attack
techniques [3].

In this paper, we propose a concrete TA attack on tunneled smart
home traffic: Signature-based Tunneled Traffic Analysis (STTA),
which aims to identify smart home devices in real-time simply
based on a few network packets that are accessible in a small time
window. For attackers, this real-time device identification capability
is very beneficial from at least two perspectives. One is that some
attackers may not be able to continuously eavesdrop network traffic
in real environments, and thus compromising user privacy based on
a limited number of packets has a practical value. The other is that
attackers may immediately perform certain malicious activities such
as dropping network packets for the correspondingly identified
devices.

STTA targets tunneled traffic in a smart home environment
that has mixed network packets from different devices. It takes a
machine learning approach, and only utilizes the packet size and
order information accessible to attackers over the tunneled traffic
to identify smart home devices in real-time. In the training phase,
STTA constructs n-gram signatures for each device individually
based on its common network traffic, and uses those signatures as
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the features to train a machine learning model. In the testing or
attacking phase, given any network packet from the mixed traffic of
different devices, STTA attempts to classify different combinations
of network packet sequences (i.e., candidate n-gram signatures) as
belonging to certain devices, and chooses the classification with
the highest confidence score as the final device identification result.
We evaluate the effectiveness of STTA using a dataset of tunneled
traffic of 14 smart home devices, showing that STTA can achieve
an 83% real-time device identification accuracy.

Existing defense mechanisms against TA attacks in smart home
environments either do not work on tunneled traffic or incur too
much bandwidth overhead (Section 2). Therefore, we further pro-
pose a simple packet-size obfuscation mechanism that aims to de-
fend against our STTA attack. This defense mechanism is based on
adding uniform random noise. It achieves approximate differential
privacy, meaning that it provides a formal guarantee of preserving
an individual device’s privacy and gives a quantitative measure
of privacy loss. Meanwhile, it incurs a much smaller bandwidth
overhead in comparison with other mechanisms such as traffic
shaping. Our evaluation results show that this defense mechanism
can decrease the accuracy of our STTA attack to around 25% and
10% (i.e., near random guessing) if an average amount of 15-byte
and 40-byte per packet overhead is allowed, respectively.

We summarize the key contributions of this paper as follows: (1)
we analyze existing smart home traffic analysis attacks and defenses
for their strengths and limitations; (2) we propose a signature-
based tunneled traffic analysis (STTA) attack to identify smart
home devices in real-time, and demonstrate its effectiveness; (3) we
propose a simple yet effective packet-size obfuscation mechanism
to defend against our STTA attack.

In the rest of this paper, Section 2 reviews some background
information and the related work; Section 3 defines the threat
model; Section 4 describes and evaluates our STTA attack; Sec-
tion 5 presents our defense mechanism and the defense evaluation;
Section 6 discusses limitations and recommendations for our attack
and defense; Sections 7 makes a conclusion.

2 BACKGROUND AND RELATED WORK

In this section, we review the background on traffic analysis and
tunneling as well as related work.

2.1 Background

Traffic Analysis (TA) is a procedure that examines network traffic
to understand the purpose of communication. TA is not necessarily
harmful, and is indeed used in many legitimate systems such as
in intrusion detection, intrusion prevention, and service quality
monitoring systems [17, 31]. For attackers, TA can be used to com-
promise user privacy. Internet Service Providers (ISPs) may also
use TA to differentiate network traffic [16], especially considering
that the net neutrality regulations have been recently stopped in
the U.S. [37].

Much of the existing work on traffic analysis is in the context of
website fingerprinting (WF), where an attacker attempts to identify
which website is being visited by a user based on the observed
network traffic. There exist multiple website fingerprinting tech-
niques such as deep packet inspection (DPI) and flow or packet

based analysis. While the same or similar techniques can be used
by attackers to analyze the IoT traffic, their effectiveness might
be severely limited. For example, DPI is often computationally de-
manding, and may even not work at all on the contemporary IoT
traffic which is largely encrypted [28].

By a tunneled environment, we mean that some traffic tunneling
technique is in use to create a private network communication
channel between two endpoints. This provides strong protection
to the exchanged data even over a public network. There are many
ways to tunnel traffic such as using a Virtual Private Network
(VPN) or creating a Secure Shell (SSH) channel. In this paper, we
consider that the IoT traffic is tunneled using a VPN; therefore, the
packet size, direction, and time are the only metadata accessible to
attackers.

2.2 Related Work

The main website fingerprinting technique applicable to our work
is packet-based traffic analysis, which can still be successful in a
tunneled IoT environment if properly designed. We review related
website fingerprinting attacks and defenses, and then review related
smart home TA attacks and defenses.

2.2.1  Website Fingerprinting. In [9, 19, 30], researchers show that
WEF can be done even in the presence of advanced privacy enhanc-
ing technologies such as VPN or The Onion Router (TOR) browser.
These attacks are similar to our attack from the perspective of hav-
ing to analyze the tunneled traffic. However, they rely on some
key features that are not easily extractable in a smart home envi-
ronment with the mixed traffic of different devices. For example,
Hermann et al. [9] used the packet size frequency distribution as a
key feature while Draper-Gil et al. [19] and Wang et al. [30] used
packet intervals as some of their key features to identify the web-
sites. In a smart home environment with mixed traffic, obtaining
packet size frequency distributions and packet intervals per device
is challenging. Wang et al. proposed a WF technique with consider-
ation to the multi-tab condition [29]. A multi-tab condition means
that multiple websites are exchanging packets with a browser at
the same time, which makes conventional WF methods that rely
on traffic flows unable to accurately split the flows. The solution
proposed in [29] was to develop algorithms to split the tabs into
different flows so that existing WF techniques can be used. Their
split algorithms are based on either a time gap between two web-
sites or a machine learning algorithm that is trained to find the
optimal split point between two websites. However, these splitting
algorithms are not suitable for a mixed smart home environment
because we cannot rely on a time gap between different IoT devices’
traffic flows, and information such as session establishment cannot
be used for training a machine learning classifier to differentiate
the flows.

WF countermeasures have also been studied intensively in the
last decade. For one example, Dyer et al. analyzed nine TA defense
mechanisms and concluded that none of them were effective in
preserving privacy without incurring large overhead [14]. For an-
other example, Cherubin et al. observed that the most important
component of a TA attack is the feature set, not the strength of
the attacking classifiers [6]; therefore, correctly identifying and ob-
fuscating the exploitable features could be the best defense. These



Table 1: TA attack classifiers in smart home environments
and the relevant features used by them.

TA classifiers Relevant features

Acar et al. [1]

Mean packet length, mean inter-
arrival time, standard deviation
in packet lengths, etc.

Active volume, DNS interval,
average packet size, mean rate,
sleep time, number of servers,
number of protocols, etc.

Mean traffic volumes, number
of packets for each flow, inter-
packet intervals, etc.

TCP sessions, number of ses-
sions, sequence sizes of ses-
sions, etc.

Sivanathan et al. [28]

Apthorpe et al. [3]

Meidan et al. [26]

Our STTA Packet size, packet order

observations in the WF defense research are helpful to us in design-
ing our defense against TA in IoT environments.

2.2.2  Traffic Analysis in Smart Homes. There have been noticeable
efforts in the arena of traffic analysis in smart homes. [1-3, 26, 28]
provided some examples of successful TA attacks. In more details,
attacks in [1] were able to not only identify devices of a smart home
but also infer user activities; attacks in [28] exploited local traffic
data as well as flow-based features such as active volume, DNS
(Domain Name System) interval, sleep time and other features to
classify IoT devices; attacks in [3] also used the DNS calls to help
classify IoT devices. For example, if a Samsung server is contacted,
it is very likely that the device is made by Samsung. Copos et al.
analyzed network traffic to infer whether the house is occupied
or not [7]. The authors studied Nest Thermostat and Nest Protect
device traffic and could identify the transitions between home and
auto away mode and vice versa with 88% and 67% accuracy, respec-
tively, allowing attackers to identify when the home is occupied.
Meidan et al. used TCP sessions to perform TA classifications [26].
All of these research projects focus on network traffic that is not
tunneled, and use features that would not be available in a mixed
and tunneled environment.

Kawali et al. [20] only used packet size and packet inter-arrival
time (IAT) to identify devices. This method is scalable as it does not
need protocol specification. However, their evaluation considered
only a few devices; more experiments with a diverse set of smart
home devices are needed for a realistic evaluation. Besides [20],
all mentioned attacks were able to be very accurate due to the
availability of highly relevant flow-based features, as summarized
in Table 1. However, those features are not easily extracted from
the tunneled and mixed traffic of different devices. Our STTA attack
only uses the available packet size and packet order information.

From the smart home TA defense perspective, Apthorpe et al.
proposed a solution that implemented a tunnel at the router level
to shape the traffic of a smart home, making devices indistinguish-
able [3]. This solution is powerful because it hides the metadata
and traffic rates. However, it is an expensive solution because a

large amount of cover data is needed to shape the traffic properly.
The authors showed that in their environment this solution needs
around 104 GB extra data per month for high traffic devices. Some
other issues with this solution include the possible delay to some
packets for the purpose of traffic rate balancing and the possible
fragmentation of some packets. These reasons make a naive traffic
shaping solution undesirable.

Datta et al. did a follow-up work in which traffic shaping is
applied at the device level as opposed to the router level, and the
traffic shaper enforces a random instead of a constant traffic rate [8].
These improvements can help reduce the overall traffic bandwidth
overhead, but they transfer the burden of the proper implemen-
tation of the solution to IoT device developers, raising many new
questions such as “Do developers care enough about user privacy?”
and “Are different device vendors willing to adopt this solution?”.

Apthorpe et al. proposed stochastic traffic padding (STP) as a
lightweight mitigation to their flow-based inference attacks [2].
It is worth noting that their mitigation method considered only
masking activity events that are triggered by users, not the periodic
events. Our packet-based STTA attack would still work even if STP
is implemented as STP would not change packet sizes for periodic
events. Additionally, our defense masks both trigger and periodic
events.

Another TA defense was recently proposed in [22]. It utilizes
the notion of a smart community which geographically connects
many smart homes to each other as a base to protect user privacy.
The smart community hides the source of the smart home traffic by
rerouting packets through different homes, obscuring the potential
linkability of data that a traffic observer may derive. A clear limita-
tion of this solution is that no protection will be provided if a smart
home does not have some neighboring smart homes. In addition,
some smart homes may fail to reroute the traffic, thus reducing the
reliability of this community-based solution.

3 THREAT MODEL

Figure 1 illustrates the basic threat model that we consider in this
paper. The owner of a smart home sets up a secure tunnel with a
remote VPN server to protect the network traffic of IoT devices.
The VPN server relays the traffic to and from the IoT services that
are deployed by the device vendors for providing functions and
capabilities such as cloud-based storage.

Internet Traffic

/ﬁ\-< e (YA

VPN Server

Smart Home Attackers

Figure 1: Illustration of the basic threat model.
Attackers that we consider are network traffic observers who can

only observe the tunneled traffic. The attacker’s goal is to identify
packets belonging to specific smart home devices in real-time. The



attackers focus on identifying smart home devices because it is the
first step in both the inference of user activities for compromising
privacy, and the intrusion of devices for compromising security.
Meanwhile, they aim to identify the devices in real-time because
they may not be able to continuously eavesdrop network traffic in
real environments, or may want to immediately perform certain
malicious activities such as dropping or delaying network packets
for the correspondingly identified devices. Even ISPs may identify
devices for traffic differentiation and prioritization purposes [16]
especially considering that the net neutrality regulations have been
recently stopped in the U.S. [37].

We assume that attackers have knowledge about the set of the
devices that are deployed in a smart home. This assumption is
reasonable in many situations. For example, the smart devices pur-
chased for homes in a managed community could be the same and
the related information is publicly available. Attackers can build a
labeled database of smart home device traffic, and train their clas-
sifier on the data produced by individual smart devices, as will be
further explained in Section 4.

We assume that the network traffic for the smart home is tun-
neled. Over the tunnel, attackers can only obtain the packet size,
time, and direction features. We do not assume that attackers can
access the IoT devices or their local communication with each other.
We do not assume that attackers can access IoT services of the
device vendors or their communication with the VPN server. In
other words, our focus is how the attackers may perform real-time
device identification for each packet on the VPN tunnel, which is
presumed to be sufficiently secure.

4 ATTACK

In our attack, we focus on IoT devices’ traffic behaviors. Therefore,
we designed a new attack to show the possibilities of TA attacks
on tunneled traffic. We chose to use packet-based TA, as it is more
applicable to a tunneled smart home environment. Flow-based TA
would only work if the smart home has only one device. If the smart
home has more than one device, flow-based and timing-based TA
attacks cannot aggregate a traffic flow, which will inhibit their
abilities to identify smart home devices properly. According to
McKinsey’s 2018 report on smart homes, 44% of smart homes have
more than two devices [39], so flow based TA is unlikely to be
effective. Packet-based TA is a good choice to perform attacks, as
tunneling cannot hide the size of single packets. Even though these
features are attainable for packet-based TA, mixed traffic makes it
hard. For example, the work in [19] uses packet size distribution
as a feature. The mixed and tunneled traffic makes attaining the
distribution for each device challenging. Thus, there is a need to
derive new features for a TA attack on mixed and tunneled smart
home traffic. Figure 2 shows how extracting sequences of packets
for individual devices is hard using current TA techniques as they
traditionally rely on IP addresses to split the traffic into flows. VPN
tunneling hides the IP addresses and other metadata, which makes
tunneled packets indistinguishable in all features except size, time,
and direction.

We want to build features that effectively capture a device’s
signatures. By signature, we mean a pattern of one or more consec-
utive packets that are frequently sent by a specific device. A device

[200 100 [ 250 [ 120 [ 85 [130 [..[ 130 |  Sequence of mixed traffic packets

Tunneled traffic hides IP addresses i Extracting traffic flows based on IP addresses
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Figure 2: Sequence of packets in a smart home with multi-
ple devices. Different colors represent different IP addresses.
Our STTA attack can perform TA on the tunneled traffic.

may have more than one signature. If a signature is encountered
in real traffic, it is likely that the packets in the signature belong
to the corresponding device. The usefulness of a specific signature
for identification depends both on how frequently it is sent by the
device, and how unique it is. If many other devices send the same
signature packet sequence, then that signature is ambiguous, and
will likely be less useful for identification. Since signatures are se-
quential packets, we chose to use the sizes of n sequential packets
as our features.

We also need to be able to recognize these signatures in real
traffic. In a smart home there could be many devices, so traffic is
often mixed. This means that a signature for one device may be
interrupted by packets from a different device. In order to recognize
a signature in a mixed traffic environment, we need to aggregate
groups of packets, and construct potential signatures. Then, we can
use these signatures to do real time classification of which device a
packet belongs to.

4.1 Design of Signature-based Tunneled Traffic
Analysis (STTA) Attack

Our attack consists of two general phases: training and packet
identification (Figure 3). During training, we attempt to determine
the signatures made by devices. Traffic for each device is isolated,
and organized into groups of n sequential packets, or n-grams. A
classifier is then trained to associate n-grams with a particular
device. Testing is somewhat less straightforward, as traffic may be
mixed. This means that the packets in each device’s signatures may
no longer be sequential. In order to overcome this problem, we look
at many packets surrounding the current packet, and construct
many candidate n-grams. Each one of these n-grams is given to
our classifier, and the candidate n-gram for which the classifier has
the highest confidence in its prediction is chosen, and the device is
identified.

We assume that tunneled traffic was implemented as a defense
tool, so our attack only uses packet size and order. We show that
even with these limited features, we can successfully identify pack-
ets in real time with STTA.

4.1.1 Training. We need to build a classifier that is able to learn
device signatures from a traffic trace. In order to do this, we need
to train it on features that are capable of representing a signature.
Working from the insight that IoT devices tend to have periodic
events where they send a number of packets in a short time interval
to keep their servers continuously updated, we chose to examine
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Figure 3: Attack design of STTA.

the group of n packets surrounding every packet in a device’s traffic
trace (n-gram). This n-gram is a potential signature for a device.

Obviously, choosing the value of n correctly is crucial to the
accuracy of the classifier. We want n to be the optimal signature
size, such that the signatures of size n are as useful as possible.
The usefulness of a signature depends both on how frequently it
is sent by this device, and on how unique it is among devices. For
this reason, term-frequency inverse-document-frequency (tf-idf)
is a good measure of the usefulness of a specific signature. This
represents the ratio of the number of times a signature appears in
the traffic trace from a particular device to the total number of times
the signature appears from any device. During experimentation,
we found that scoring with normal tf-idf gives disproportionately
large scores for large values of n. This is because a large n tends
to have thousands of unique packet combinations, the majority of
which are not useful and will not appear in practice due to mixed
traffic. Although the tf-idf scores for these signatures are very low,
the massive number of signatures present still impact the sum.
Sublinear tf-idf solves this problem by replacing term frequency
with log(term frequency) + 1. Changing to sublinear tf-idf ensures
that the very large amount of relatively useless signatures for large
n do not disproportionately affect the score.

In order to choose n, we run sublinear tf-idf to score all of the
potential signatures for a certain signature size. The sum of the
tf-idf scores for all of these signatures gives a measure of how useful
the signatures of this size are for identifying devices. To choose
n, we simply pick the signature size that yields the largest sum of
sublinear tf-idf scores. This is shown in Algorithm 1.

Algorithm 1 Determine the value of n

Input traffic traces (T) for all devices in a smart home
Output n

1: T; = Traffic trace for i th device

2: for n=1to MAX_N do

3 score, =0

4 fori=1to||T| do

5: signatures; » = set of all sequential n-grams in T;
6 scores = TF-IDF(signatures; n, T)

7 scorepn += Sum(scores)

8: end for

9: end for

0: return n with largest score

=

After n has been chosen, n-gram features can be constructed for
each device by collecting all sequences of n sequential packets in
each device’s traffic trace. The features used by the classifier will
be the sizes of the n sequential packets. Then, a machine learning
classifier can be trained on these features. Thus, this classifier will
be able to predict which device a certain n-gram belongs to.

4.1.2  Identifying Smart Home Devices in Real Time. Using the clas-
sifier to predict the current device is not straightforward, however,
because of the mixed traffic often present in smart homes. Our
model needs to account for the fact that there may be packets from
other devices in between the signature packets from one device.
To overcome this challenge, we need to consider different arrange-
ments of packets, in the hope of one arrangement being of the
signature for a specific device.

To do this, we construct a window for each packet which consists
of the group of m surrounding packets. Then we form all possible
combinations of n-grams from the window that include the current
packet. The value of m should be chosen based on the analysis of
smart home devices’ traffic behaviors, or based on experimentation.
We found that larger values of m tend to have better results, but
take longer to classify. Further, there is a diminishing return on
accuracy as m gets larger. This makes sense, as most smart home
devices tend to have small periodic packet sequences sent in a short
period of time [16]. Thus, the best m will likely not be significantly
larger than n.

Each of these candidate n-grams is then given to the previously
trained classifier, which outputs the predicted device and a confi-
dence in that prediction. The label of the n-gram with the highest
confidence score is chosen to be the identified device for this packet.
Algorithm 2 describes this identification process for n = 2, which is
the best value of n for our dataset, as detailed in Section 4.3. The ‘X’
symbol represents the Cartesian Product operation. The ‘(J’ symbol
represents the set union operation.

Figure 4 illustrates this algorithm if n is 2 and m is 7. For each
of these 2-grams, we use the classifier to calculate the probability
of it belonging to any individual device. The number of 2-grams
generated depends on the size of window m. For example, using a
window of size 7 will result in 6 different combinations of 2-grams.
The classifier’s prediction with the highest confidence score will be
used to identify the device.

Algorithm 2 Classify a Single Packet Based on 2-Gram

Input current packet p;
Output device class of p;

W =Apimyap> - Pi-1} X {pi}

: W=W U {pi} X {pi+ts -~ Pit|my2) }

: for every 2-gram w; in W do

(label;, confidence_scorej) = classify(w;)

: end for

NS I N

: return label; with the highest confidence score

4.2 Dataset

We used a publicly available dataset of common IoT devices to train
and test our algorithm. The dataset has 20 different IoT devices



and it was collected over 23 days [28]. The authors set up a smart
environment and captured all the traffic generated from the IoT
devices using tcpdump [33]. The advantage of this dataset is that it
has a very diverse set of IoT devices. The list of IoT devices with
more details can be found in [28]. We trained on traffic from October
2nd—5th, and tested on traffic from October 6t1-10th,

Out of the 20 IoT devices in the dataset, four devices were only
active for a few days. Another two devices were only active when
they were triggered. Both of these situations were not helpful in
training as they did not generate periodic events, so they were
removed. One major challenge in IoT device identification is that IoT
devices manufactured by the same vendor tend to have similar, if not
identical, network packet sizes because they share similar hardware
or software. Authors in [16, 27] demonstrated the similarities among
devices from the same vendors and the difficulty in identifying
those devices. One solution to this problem is to group these similar
devices to fall into the same classification category, as done in [24].
We take this approach in our attack, and form 3 groups of devices
with the same vendor. In total, we have 11 IoT device classes, 8 of
which are distinct devices, and 3 of which are vendor classes, each
with 2 distinct devices, for a total of 14 devices. Table 2 shows the
devices and target classifications used in our experiment.

In order to simulate a tunneled traffic environment, we removed
all local traffic and other metadata such as IP addresses and proto-
cols. Next, we needed to isolate individual device traffic in order
to train our classifier. In a real world situation, an attacker would
likely not have access to actual labeled data of the victim smart
home. Instead, they would have to train on their own devices or
obtain a publicly available dataset. However, in our experiment, we
only had one dataset to work with. Therefore, we needed to extract
the data that the attacker would be able to obtain from their own
devices or dataset.

Table 2: Devices used in our experiments. Devices from the
same vendor were grouped into the same class.

Classes Devices

Class 1 Amazon Echo

Class 2 Drop Camera

Class 3 Light Bulb

Class 4 Samsung Camera

Class 5 Inteson Camera

Class 6 HP Printer

Class 7 SmartThings

Class 8 Triby Speaker

Class 9 Netmato vendor: Netmato
Camera, Netmato Weather
Station

Class 10 Withings vendor: Withings
Smart Scale, Withings Sleep
Track

Class 11 Belkin vendor: Belkin Motion
Sensor, Belkin Switch

Find Find

Current packet

| 10070 200 | | 700 | 330 | 156 |

Previous packets Next packets

-
e
156 20%
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All possible 2-grams ~ Confidence Device Class
Scores
Figure 4: n-gram construction and identification when n =2
and m = 7. The numbers in the rectangles are packet sizes.

It is clear by now that IoT devices of smart homes have some
distinct traffic behaviors when traffic is not tunneled as reviewed in
Section 2.2. To estimate the possibility of finding signatures among
packet sizes in the dataset, we analyzed the uniqueness of single
packets and pairs of packets. For single packets among all devices,
the uniqueness of the single packets ranged from 10% to 20% per
device. For the pairs of packets, the uniqueness rate rose to be
between 60% and 80% per device.

The traffic in the dataset was mainly one of two types, either
periodic or trigger-based. Trigger-based traffic is traffic generated
by events where a user interacts with the devices. For example, a
user could send a request to a smart camera to stream live videos
of their house. In contrast, periodic traffic is when devices send
packets throughout the day to update some information or simply
“check in” with the manufacturer’s server. Many IoT devices send
a small amount of data at constant time intervals, as explained
in [16, 28]. These events generate the majority of the traffic. This
periodic data is independent of interactions between the device
and the user, and thus should be the same regardless of where the
device is deployed.

In order to make our attack focus only on periodic events, we con-
tacted the dataset authors and asked a few questions regarding how
the dataset was generated. We asked if devices were intentionally
triggered and if there were times where users tended to be around
the devices more than others. The authors responded that inten-
tional interactions with devices were minimal and mostly towards
the beginning of the data collection, and that times spent around de-
vices varied. This tells us that the dataset has some user interactions
but mainly in the beginning of the collection. To avoid triggered
activity, we only used the traffic traces towards the end of their
collection. Additionally, we removed the non-periodic trigger-based
traffic using Fast Fourier Transform (FFT) [23]. FFT is a well-known
algorithm used in signal processing to de-noise signals. FFT is an
efficient algorithm that uses the Discrete Fourier Transform (DFT)
to transform the signals from the time domain to the frequency
domain. We used this to keep only events with high frequency rates.
Low frequency rates are most likely to refer to specific trigger based
behavior, so they were removed.
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After removing the user-triggered traffic, we noticed that some
devices sent significantly more periodic packets than others, Drop
Camera for example. In order to solve this class-imbalance issue, we
used the Synthetic Minority Over-sampling Technique (SMOTE) [5].
SMOTE works by generating extra, representative synthetic train-
ing samples for under-represented classes. This helps to remove ma-
chine learning classifiers’ bias towards predicting over-represented
classes.

4.3 Experimental Setup

We used a variety of available tools to implement STTA. All scripts
were written in Python 3. Feature extraction was performed using
TShark, which is the Wireshark Network Analyzer [34]. To imple-
ment machine learning classifiers, we used the Scikit-learn library,
which is a poplar library for machine learning projects. We also
used Pandas library for data analysis and data preparation [25].

We experimented with a variety of classifiers, such as K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), and RandomFor-
est [4], and eventually chose RandomForest as we found that it
performed the best. This classifier is suitable for a couple of reasons.
First, it performs well for multiclass classification, which is desirable
since we have 11 different device classes. Second, RandomForest is
very good at avoiding overfitting, since it averages the outputs of
many different decision trees.

Throughout the experiment, our goal was to have a realistic test
environment. We treated data as it could be seen by an ISP or a
network observer, and only used the features of packet size and
order on outgoing traffic. IoT devices often generate traffic more
than receiving due to their nature of sensing from the physical
world and transforming to a digital format; thus outgoing traffic is
more likely to be useful for identification.

Choice of n and m. In order to determine n for our set of
devices, we implemented Algorithm 1. The signature size with
the largest sum of tf-idf scores was n = 2. Thus, we trained our
classifier to associate all of the 2-grams in the traffic trace with
their corresponding devices. We did this for every 2-gram in all
devices’ periodic traffic. The classifier is then able to try and identify
which device any 2-gram of packet sizes belongs to.

To find the best window size to use, we wrote a script to test
our classifier on various values of m. Figure 5 illustrates the effects

of choosing different values of m. We found that as m increased,
testing accuracy increased, until it peaked around 7. Values of m
larger than 7 led to slightly lower accuracy scores. Therefore, we
chose 7 as the best option for m as it gives the best results.
Choosing 7 for m means that we will build 2-grams using the
three previous packets and three subsequent packets with the cur-
rent packet, resulting in 6 possible combinations. Then, every com-
bination will receive a confidence score and the highest score will
identify the device that sent the packet, as shown in Figure 4.

4.4 Results

In our experiments, we trained a classifier using all 2-gram’s from
the traffic traces of the dataset on October 274-5™ of the dataset.
We then tested its ability to identify the sending device of a packet
on October 611-10™, For testing, we still simulated tunneled traffic
by removing all features except for packet size. We did not remove
the triggered traffic for testing in order to make the attack more
realistic.

To analyze the results of our classifier we used accuracy, pre-
cision, recall, and F1 score. Accuracy is a very widely used per-
formance measure that represents the ratio of correctly predicted
observations to the total observations. For each device, precision
measures the proportion of times packets were correctly identified
over the total number of all predictions to that device. For each
device, recall measures the proportion of times the device was iden-
tified correctly to the total number of times this device sent packets.
Finally, the F1 score for each device represents a balance between
precision and recall. For multiclass classification, the reported value
for each of these metrics is averaged across all devices. The formu-
las for each of these metrics is presented below, with TP meaning
true positive, FP being false positive, TN being true negative, and
FN being false negative.

— TP+ TN
Accuracy = TpTN 7 FPFFN

P _ TP
Precision = TP+ FP

— TP
Recall = 15y

_ PrecisionxRecall
F1 Score = 2 % Precision + Recall

The results of our experiments are shown in Table 3. The classi-
fier was able to consistently identify the correct device 83% of the
time. This accuracy is fairly consistent regardless of the day it was

Table 3: Evaluation results of identifying devices by STTA.

Tested on Accuracy | Precision| Recall | F1

Score

October 6th | 82% 83% 82% 82%

October 7th 82% 82% 81% 81%

October 8th | 83.4% 85% 83% 83%

October 9th | 83.9% 85% 84% 83%

October 10th | 84.3% 85% 84% 84%
Average 83.1% 84% 82.8% 82.6%




Normalized Confusion Matrix

AmazonEcho

BelkinVendor -

DropCam {04

HP-Printer 1 0.

InsteonCam

LightBulb -

True Device Class

NetmatoVendor 4 0.

SamsungCam -

SmarThings -

TribySpeaker { 0.

WithingsVendor

Predicted Device Class

Figure 6: Confusion matrix of October 10th using STTA.

tested on. The number of packets identified varied on different days,
with the average being 200 thousand packets per day. In our ex-
periments, some classes were more recognized than others, which
can be shown by a confusion matrix. Figure 6 shows the confusion
matrix of STTA results when performed on October 10th of the
dataset. Each row in the confusion matrix represents the ground
truth of device classes and each column shows the predicted classes
using STTA. Each cell in the matrix represents the percentage of
classification of each class. STTA predicted some classes more ac-
curately than others. One reason for this is that devices with more
packets tend to be correctly classified by STTA more than devices
with fewer packets. This occurred despite using SMOTE oversam-
pling in training. For example, Drop Camera, which generated the
most packets, was recognized almost all of the time, while packets
from LIFX Light bulb device, which occurred infrequently, were
the least recognizable with an average accuracy of 36%. Another
interesting finding was the high rate of Triby Speaker packets being
misclassified as Drop Camera packets. We do not know the reason
behind the similarities in packet sizes between these two devices, as
they were manufactured by different vendors. One potential reason
is the use of similar libraries.

To measure the completeness and quantity of our STTA, we look
at the recall results. High recall means that our STTA returned most
of the relevant results. Another interesting finding was that the
STTA classification accuracy is lower for more complicated devices.
For example, Amazon Echo has the most diverse functionality out
of the tested devices. Users of Amazon Echo can ask questions,
play music, or set reminders, while other devices tend to have
limited functionalities like Drop Camera, which is either recording
or streaming. Due to its large set of functionalities, Amazon Echo
has a very diverse set of packet sizes which makes it relatively
harder for STTA to correctly classify.

We looked into the potential reasons for misclassification. The
reasons were likely due to the situations that packet sizes were not
unique, the value of m was not large enough to catch the pair of
packets from the same device, or packets were generated from user
activities. The dataset we used did not have labels for user activities

and recall that we removed the non-periodic trigger-based traffic
in the training data using FFT. We manually analyzed a set of 500
misclassified packets chosen randomly. User activities called for
nearly half of the misclassification as we could not identify the
signatures in the training data. The uniqueness of the packet size
and the value of m called for nearly a third of the misclassification.
We could not identify the reasons for the rest misclassifications.

It is worth mentioning that the random guess for device class
identification is below 10%. In our experiments, the lowest percent-
age for a class was 36%. The results show that device signatures can
be used to identify packets even if traffic is tunneled and mixed.

4.5 Experiments in a Noisy Environment

We also want to evaluate our STTA if non-IoT devices and IoT de-
vices coexist in the same network. Non-IoT devices can be personal
computers, smart phones or tablets. Non-IoT devices are often eas-
ily identifiable because users may only use their personal devices
in a small portion of the day, whereas IoT devices keep communi-
cating all the time with periodic traffic, as explained in Section 4.1.
Also, non-IoT devices tend to receive more packets than they send.
Garrett explained key differences between IoT and non-IoT devices
in terms of network behaviors [16].

We performed the experiments again, but this time left in traffic
the packets from non-IoT devices. There were several non-IoT de-
vices in the testbed, such as laptops, mobile phones and an Android
tablet. Our STTA attack still performed well in this new experi-
ment, achieving on average 78% accuracy. This is likely because the
average size of packets from non-IoT is dramatically bigger than
that of IoT devices and our classifier was able to recognize this. In
the dataset, the average packet size of IoT devices was less than 160
bytes while non-IoT devices had an average packet size of 699 bytes.
Another potential reason why the STTA accuracy did not decrease
notably is because the proportion of non-IoT traffic is not very high;
the smart home devices sent much more traffic than the non-IoT
devices, likely due to their constant periodic communication.

5 DEFENSE

In this section, we present a packet-size obfuscation mechanism
that uses random noise addition to protect against device identi-
fication attacks such as STTA over tunneled network traffic. The
goal of random noise addition is to obscure the key feature, packet
size, that still remains visible in tunneled traffic. We first present a
background on differential privacy. We then analyze a commonly
used differentially private defense mechanism that is not suitable
for our goal, and present our defense mechanism with proof and
experiments to show that it achieves approximate differential pri-
vacy.

5.1 Defense Design

Adding noise occurs at the smart home endpoint of the tunnel.
Figure 7 illustrates where the noise is added and removed. The
smart home end of the tunnel will indicate the amount of padding
and encrypt the packet. The VPN end can then decrypt the padded
packet and remove the padded bytes.
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5.2 Differential Privacy

Differential privacy (DP) was first proposed to quantify individuals’
privacy loss in statistical queries on traditional databases, and it is
the state of the art metric on measuring the privacy guarantees of
randomization algorithms [12]. DP algorithms have become a trend
in the privacy research community, and have also been adopted by
companies such as Apple [32] and Google [15].

Formally, an algorithm A is € differentially private if for any
two databases D and D’ differing at most in one row and for any
subset S of elements from Range(A), Inequality (1) is satisfied [10].

Pr[A(D) € 8] < e“Pr[A(D’) € S] (1)

If this inequality is satisfied, then the algorithm’s output is said
to be e indistinguishable, and it is hard for an attacker to tell if
any individual is present or not based on the algorithm’s output.
Here € is the privacy deficit, and gives a quantitative measure of an
individual’s privacy loss. Lower values of € correspond to stronger
individual privacy. DP is desirable for our defense because it means
that attackers will not be able to accurately associate a packet with
any individual device.

Approximate Differential Privacy: In[11], Dwork et al. present
an approximate version of differential privacy. An algorithm A is
said to be (e, §) approximately differentially private if Inequality (2)
is satisfied.

Pr[A(D) € S] < e“Pr[AD') € 8]+ 6 2

Approximate differential privacy is a relaxed version of normal
differential privacy. The addition of the § term allows an algorithm
A to not be € differentially private for some proportion of inputs.
Therefore, § can be interpreted as the proportion of the probability
distribution that does not fall into the range allowed under e differ-
ential privacy. Smaller values of § correspond to an increased level
of individual privacy.

Our mechanism achieves approximate differentially privacy,
meaning that, within parameters (e, 8), it is hard for an attacker to
distinguish one device’s packets from those of another device based
on the packet size. While differential privacy is stronger and more
desirable than approximate differential privacy, achieving the latter
is more practical and can still be effective for preserving privacy.

5.3 Obfuscation Algorithms

Consider an obfuscation algorithm A which pads network packets
with bytes of random noise:

Als)=s+0 3)

where s is the original packet size and 6 is a random amount of
noise sampled from the probability distribution function fg(x). For
any input x, fy(x) represents the probability that an amount of
noise equal to x (6 = x) will be chosen. If a packet will be larger
than MTU after adding noise, it will be padded to the MTU size
instead. This is very unlikely to happen for periodic traffic, because
the packet sizes are small. Triggered events with size of MTU are
not unique, so capping the size at the MTU should not decrease the
defense’s effectiveness.

The privacy protection of the system depends on the ability of A
to make packets originating from different devices indistinguishable
from each other. First, we describe a more traditional approach
using Laplacian noise, and discuss its limitations. Next, we describe
a better defense mechanism based on uniform random noise, and
show it satisfies (e=0, 5:%) approximate differential privacy.

5.3.1 Laplacian Noise. A traditional method for achieving differen-
tial privacy is by adding noise according to the Laplace distribution:
fo(x) = Lap(%), where As is the sensitivity, i.e., the maximum
difference between neighboring databases. This method is well
studied, and achieves e differential privacy [13]:

fo) = Lap( ") = 5 exp(-2211) @

In the context of traffic analysis, As is the maximum possible
difference in packet size in a network. While this method does
achieve e differential privacy, it has the major disadvantage of
allowing negative values for 6. On average 50% of packets will need
to be reduced in size. In order to achieve this size reduction without
the loss of information, network packets will have to be fragmented.
However, fragmentation is undesirable for two reasons. First, it
means that noise addition must be implemented at the device level
because IPv6 does not support packet fragmentation at the router
level [35]. Second, it would increase the number of packets sent, and
possibly cause delays. This makes a Laplacian noise implementation
less practical, and not suitable for many applications.

5.3.2  Uniform Random Noise. To solve the implementation prob-
lems associated with Laplacian noise, we propose to use uniform
random noise. While this method only achieves approximate dif-
ferential privacy, it is much more practical. Furthermore, in our
experiments shown below, uniform noise actually outperformed
Laplacian noise, resulting in a slightly better protection against
device identification.

For uniform noise, a random number of bytes between 0 and w
will be added. The probability distribution function is given by:

L po<x<w

©)

w
0  otherwise

fo(x) = {

On average, this will result in % bytes being added to each packet.
This method has the benefit that the packet size will never have to
decrease, eliminating the need for fragmentation. It achieves (e, §)
approximate differential privacy with e = 0 and § = %

Proor. From [18], an algorithm A achieves approximate dif-
ferential privacy if there exists a positive constant ¢}, to satisfy
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Figure 8: Effectiveness of using uniform noise as the defense
mechanism.

Inequality (6):
fors®) _ e ©)
sel-o,0), fox)z0 fo(x)
Further, € and § are given by Formulas (7) and (8) [18]:
€ < Ingy 7)

é < jé;o fo(x +o0)dx 8)

Here, o is the distance between adjacent input vectors. In our
case, this is bound by the maximum difference in packet size in
the network and ¢ = As, while @ is the zero point set of fp: ®° =
{x| fg(x) = 0}. It is easy to see that the condition in Inequality (6)
is satisfied for uniform noise:

sup Jors(x) _

=l=c ©)
&€[-0,0], fo(x)£0 fo(x)

2=z~

To find the strongest level of approximate differential privacy
guaranteed by our algorithm, we derive the values of € and § using
the lower bound of equation (9), ¢;, = 1. Therefore, from Formu-
las (7) and (8),

e=In1=0 (10)
0 As
é= fo(x+0)dx = fo(x + As)dx = — (11)
@0 -0 w
and A satisfies (0, %) approximate differential privacy. O

5.3.3  Evaluation of the Defense. We evaluated our defense on the
same dataset used in Section 4. We added a uniformly random
amount of bytes between 0 and w to each packet, and measured
the decrease in accuracy of the STTA attack for various values of
w. This is shown in Figure 8. In our attack, STTA worked best with
a RandomForest classifier and we used the same for the defense
evaluation. It is worth noting that we also tested STTA with KNN
and SVM classifiers and they showed no robustness to our defense.

From our results, even a very small amount of noise was able
to obscure the packet size enough to result in a lower accuracy.
Choosing w = 30 already decreased the accuracy by nearly 60%,

—#— STTA Accuracy Average of 4 days with Uniform Noise
—@- STTA Accuracy Average of 4 days with Laplace Noise
\ Random Guess

STTA Accuracy (%)

0 20 40 6‘0 80
Percentage of Overhead (%)

Figure 9: Comparison between Laplace noise addition and
uniform noise addition.

which is only an average of 15 bytes added per packet. Increasing
w to 80 makes the accuracy drop to near random guess, with an
average of 40 bytes added per packet. Table 4 shows the amount of
overhead corresponding to different values of w for different days.

Obfuscation via uniform random noise was very effective in
reducing the accuracy of our STTA classifier. One reason that this
method is so effective is that smart home devices tend to send a lot
of packets with a small size. In the dataset we used, 97% of packets
are less than 160 bytes, excluding local communication packets.
Thus, adding only a little bit of noise already makes it much harder
to distinguish devices.

In our experiments, uniform random noise actually outperformed
Laplacian noise, resulting in a lower accuracy with less overhead.
Figure 9 shows a comparison between the Laplace adding noise
mechanism and the uniform adding noise mechanism. Uniform
noise addition reaches the random guess level which is good in
terms of protecting privacy with about 20% overhead. On the other
hand, Laplace method needs at least around 60% of overhead to
lower STTA accuracy to around 20%. The overhead percentage
represents the amount of padding bytes out of the total bytes sent.

Table 4: Overhead percentage corresponding to different val-
ues of w for different days.

w Oct7 | Oct8 | Oct9 | Oct10 Avg
(bytes)
10 1.4% 2.8% 3.3% 3% 2.6%
20 3% 6% 6.9% 6% 5.4%
30 4.6% 9% 10.6% 10% 8.6%
40 6.2% 12.3% 14% 13.8% 11.5%
50 7.9% 15.5% 18% 17.4% 14.7%
60 9.5% 18.7% 21.6% 20.9% 17.6%
70 11% 21.9% 25% 24.5% 20.6%
80 12.7% 25% 29% 28% 23.6%
90 14.3% 28.2% 32.6% 31.6% 26.6%




This may be surprising, as Laplacian noise is the standard noise
adding mechanism in many differentially private models. However,
this makes sense through analysis of the traditional goal of differ-
ential privacy. In traditional applications, differential privacy aims
to keep the utility of the released data while preserving privacy.
For our application, however, we have a different goal: to release as
little information as possible to attackers while preserving privacy.
From this perspective, it makes sense that uniform noise achieves
much better results. When an attacker sees a packet of a certain
size, the probability that any device generated a packet of that size
is identical, assuming the device is capable of producing packets of
that size. This is due to the uniform random distribution that has the
same probability at all points, and is further shown by the algorithm
being € = 0 approximately differentially private, meaning that there
is not any privacy loss for some proportion of outputs. Although it
does not achieve this € = 0 all of the time, when a packet is seen,
and has a size capable of being generated by multiple devices, the
probability of any one of those devices sending a packet of that size
is the same, meaning that it is very hard for the attacker to gain any
information regarding which device the packet came from. In the
IoT environment, where many packet sizes are small, uniform noise
addition is especially good at hiding packet size information even
when a relatively small number of bytes are added. This analysis
reveals that when it is possible that a packet came from different
devices, uniform random noise is a superior obfuscation method
to Laplacian noise, and releases very little information regarding
which device the packet came from.

6 DISCUSSION
6.1 LIMITATIONS AND FUTURE WORK

One assumption that our attack relies on is that an attacker will
know the devices in the target smart home, and has access to either a
copy of these devices, or a dataset of the same devices’ traffic to train
on. It is entirely possible that an attacker would be able to figure out
what devices were present in a smart home and then build or find
training data specific to only those devices. However, the attack
would be more versatile if instead, the classifier were trained on
data for a wide variety of devices, and would then be able to identify
the packets and devices within a certain smart home without prior
knowledge of what devices were present. This is another possible
direction of future work. If this were the case, STTA would easily
be extended to allow for high level device identification as opposed
to real-time per-packet device identification by aggregating the
results of individual packet identifications, and analyzing which
devices are most likely to be present in the smart home.

Uniform random noise is a defense mechanism which balances
the need for privacy protection with alow amount of noise addition.
In the current version of our defense mechanism, we considered all
the smart home devices as equally important. However, in certain
environments, some smart home devices are more important than
others. In this case, our defense mechanism could be refined to
weight smart home devices according to their importance. By doing
this, network overhead will be notably less than the overhead of
our current defense mechanism.

Our defense mechanism is deployed on two places: the router or
the IoT hub in the smart home and the VPN server. These two ends

are trusted. If an attacker gains access to either end, our defense
mechanism would not be effective. Other works have suggested
using one VPN server for multiple smart homes, making it difficult
to link certain devices to specific smart homes [3]. This is out of
the scope of this paper, and our solution instead allows the trust
to be shifted from network observers and ISPs to a single VPN
connection.

One important realization from our STTA attack is that even a
simple machine learning model using only packet size and order
was able to accurately identify smart home devices. In our experi-
ments, we assumed a closed world scenario in which an attacker
has knowledge of the devices existing in a smart home. Without
accurate knowledge of the set of devices, attackers will not be able
to create a training dataset. Even with a closed world situation,
the number of smart home devices is a factor affecting the accu-
racy of our STTA classifier. As the number of devices increases,
the accuracy will likely decrease. However, we tested our classifier
on 14 smart home devices, which is a relatively high number, as
current most smart homes most often do not have more than 10
devices [39].

A logical next step for attacks on tunneled smart home data
would be user activity inference. This would attempt to identify
the device and further attempt to identify what action triggered
the device, what mode the device is currently in (e.g., home, away,
locked, unlocked, etc), or even device information, such as the OS
version. There have been previous works in this area, but they
only consider untunneled traffic [1]. Thus, one promising area of
future work would be to investigate whether activities inference is
possible even with tunneled traffic. In this work, we did not try to
infer user activities in smart homes because the dataset we used
did not have labels for the users’ activities.

One ongoing challenge for all traffic analysis techniques, whether
in website fingerprinting or smart home device identification, is
maintaining an up-to-date dataset. Keeping a training set fresh is
important for many reasons. For example, a firmware update to
smart home devices might change packet sizes or other network
behaviors, which could result in device misidentifications. One way
to make an attack resilient against these updates in devices is to
use as simple a set of features as possible, so that the features are
less likely to change with new updates. In our work, we used only
packet size and ordering, which helps mitigate the effect of traffic
changes due to software updates. Future work could investigate
more directly the impact of device updates, and how to keep a
resilient training set that mitigates impacts of updates.

6.2 RECOMMENDATIONS

We recommend smart home users to use at least some sort of pro-
tection such as a VPN service because VPN alone can protect users
against many traditional TA intruders. We recommend that IoT
hubs or routers and VPN vendors implement our obfuscation mech-
anism to further help protect smart home users against our STTA or
similar TA attacks. In 2016, specific regulations were acted on in Cal-
ifornia to protect people who use smart meters in their houses [25].
We can see some similarities between smart meter and smart home
privacy risks. For example, the risk of smart metering profiling
includes what devices a user has, usage times, and user behaviors.



We recommend regulators to take actions similar to the smart me-
tering situations, so that smart home users will be at least asked
for consent before their data is analyzed and shared.

7 CONCLUSION

As the number of smart homes and devices continues to grow, so
does the potential for privacy violations. Traffic analysis attacks
are already capable of revealing private information of smart home
activities for untunneled traffic. Simply, tunneling smart home
traffic can be a very effective countermeasure to existing TA attacks.
In this work, we showed that even tunneling network traffic is not
enough to protect privacy.

Even with only packet size and order being visible, our STTA
attack was still able to correctly identify the device with an 83%
accuracy. This was possible because each device often has unique
signature packet sequences, and STTA was able to identify and
classify based on these signatures. This device identification is a
major privacy violation, and is the first step towards other TA
attacks such as activity inference.

We showed that adding even a small amount of uniform random
noise to tunneled smart home traffic is enough to mask packet
size and effectively protect against our STTA attack. Our defense
mechanism does not require fragmentation, meaning that it can be
implemented with IPv6. Overall, it is clear that privacy violations
continue to be a major threat in the smart home environment. We
hope this work encourages the smart home industry to be aware of
our STTA attack and potentially adopt our defense mechanism to
better protect user privacy.
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