
Mining Least Privilege Attribute Based Access Control Policies
Matthew W Sanders
Colorado School of Mines

Golden, Colorado
mwsanders@mines.edu

Chuan Yue
Colorado School of Mines

Golden, Colorado
chuanyue@mines.edu

ABSTRACT
Creating effective access control policies is a significant challenge
to many organizations. Over-privilege increases security risk from
compromised credentials, insider threats, and accidental misuse.
Under-privilege prevents users from performing their duties. Poli-
cies must balance between these competing goals of minimizing
under-privilege vs. over-privilege. The Attribute Based Access Con-
trol (ABAC) model has been gaining popularity in recent years
because of its advantages in granularity, flexibility, and usability.
ABAC allows administrators to create policies based on attributes
of users, operations, resources, and the environment. However, in
practice, it is often very difficult to create effective ABAC policies in
terms of minimizing under-privilege and over-privilege especially
for large and complex systems because their ABAC privilege spaces
are typically gigantic. In this paper, we take a rule mining approach
to mine systems’ audit logs for automatically generating ABAC
policies which minimize both under-privilege and over-privilege.
We propose a rule mining algorithm for creating ABAC policies
with rules, a policy scoring algorithm for evaluating ABAC policies
from the least privilege perspective, and performance optimization
methods for dealing with the challenges of large ABAC privilege
spaces. Using a large dataset of 4.7 million Amazon Web Service
(AWS) audit log events, we demonstrate that our automated ap-
proach can effectively generate least privilege ABAC policies, and
can generate policies with less over-privilege and under-privilege
than a Role Based Access Control (RBAC) approach. Overall, we
hope our work can help promote a wider and faster deployment of
the ABAC model, and can help unleash the advantages of ABAC to
better protect large and complex computing systems.
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1 INTRODUCTION
Access control is a key component of all secure computing systems
but creating effective policies is a significant challenge tomany orga-
nizations. Access control policies specify which privileged entities
can exercise certain operations upon certain objects under various
conditions. Too much over-privilege increases the risk of damage
to a system via compromised credentials, insider threats, and ac-
cidental misuse. Policies that are under-privileged prevent users
from performing their duties. Both of these conflicting goals are
expressed by the Principle of Least Privilege (PoLP) which requires
every privileged entity of a system to operate using the minimal
set of privileges necessary to complete its job [15]. The PoLP is a
fundamental access control principle in information security [19],
and is a requirement in security compliance standards such as the
Payment Card Industry Data Security Standard (PCI-DSS), Health
Insurance Portability and Accountability Act (HIPAA), and ISO
17799 Code of Practice for Information Security Management [18].

Many access control models have been introduced to address
the challenges of administrating policies, with different approaches
to balance between the goals of ease of use, granularity, flexibil-
ity, and scalability. Access control models are constantly evolving,
but Attribute Based Access Control (ABAC) continues to gain in
popularity as a solution to many use cases because of its flexibility,
usability, and ability to support information sharing. ABAC allows
security policies to be created based on the attributes of the user,
operation, and the environment at the time of an access request.

The flexibility of ABAC policies is both a strength and a hin-
drance. With the ability to create policies based on many attributes,
administrators face difficult questions such as what constitutes
“good” ABAC policies, how to create them, and how to validate
them? Additionally, the ABAC privilege space of a system can
be extremely large, so how can administrators determine which
attributes are most relevant in their systems?

We address these issues by taking a rule mining approach to
automatically create ABAC policies from systems’ audit logs. Rule
mining methods are a natural fit for creating ABAC policies which
contain rules regarding the actions that users can perform upon
resources under certain conditions. By identifying usage patterns
from audit logs to automatically generate and evaluate ABAC rules,
our approach will help an organization continuously improve its
deployed policy under the guidance of PoLP. Using out-of-sample
validation to evaluate the generated policies on a dataset of 4.7M
Amazon Web Service (AWS) audit log events [2], we show that our
rule mining algorithm is effective at generating policies which min-
imize both under-privilege and over-privilege assignment errors.

Wemake the following contributions in this paper: 1) a definition
of the ABAC Privilege Error Minimization Problem (PEMPABAC )
for balancing between under- and over-privilege errors in secu-
rity policies, 2) an algorithm for automatically generating least
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privilege ABAC policies by mining audit logs, 3) an algorithm for
scoring ABAC policies using out-of-sample validation, 4) feature
selection, scalability, and performance optimization methods for
processing large ABAC privilege spaces, 5) a quantitative analysis of
the performance of our mining algorithm using a real-world dataset
consisting of over 4.7M audit log entries, and 6) a performance com-
parison of our method of generating ABAC policies with another
algorithm for generating RBAC policies. This work demonstrates
the effectiveness of our methodology for implementing least privi-
lege and generating ABAC policies from complex environments. It
also demonstrates that with proper design, an ABAC approach is
able to produce policies with less over-privilege and under-privilege
even based on less data than an RBAC approach.

The rest of this paper is organized as follows. Section 2 provides
background information on ABAC and rule mining methods, and
reviews related work. Section 3 formally defines the PEMPABAC
problem and metrics for evaluating policies. Section 4 describes
our algorithms for addressing the PEMPABAC problem. Section 5
analyzes the results of applying our algorithms to a real-world
dataset. Section 6 concludes our work.

2 BACKGROUND AND RELATEDWORK
2.1 Background
2.1.1 Attribute Based Access Control (ABAC). ABAC is an access
control model where a subject’s requests to perform operations
on objects are granted or denied based on “the assigned attributes
of the subject, the assigned attributes of the object, environment
conditions, and a set of policies that are specified in terms of those
attributes and conditions” [8]. Attributes are any properties of the
subjects, objects, and environment encoded as name:value pairs.
Subjects may be persons or non-person entities, objects are system
resources, operations are functions executed upon objects at the re-
quest of subjects, while environment conditions are characteristics
of the context in which access requests occur and are independent
of subjects and objects [8]. ABAC’s flexibility allows it to imple-
ment traditional access control models such as Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and Role Based
Access Control (RBAC).

RBAC [17] is flexible. It has been widely deployed and used for
more than two decades. However, as access control needs have be-
come more complex and applied to more diverse domains, organiza-
tions have found that RBAC does not provide sufficient granularity,
becomes difficult to manage, or does not support their information
sharing needs. Organizations facing these challenges may address
them using an ABAC based system. Consider the case of restricting
access for performing a database backup to a specific timeframe
and IP address range. Such constraints can be easily expressed us-
ing ABAC attributes, but cannot be expressed using only the user,
operation, and object semantics of the RBAC model.

2.1.2 Rule Mining Methods. Frequent itemset mining is a popular
method for identifying patterns with applications in many diverse
fields [7]. The frequent itemset problem is defined as follows: given
a transaction database DB and a minimum support threshold ϵ ,
find the complete set of frequent patterns. The set of items is I =
{a1, ...,an } and a transaction database is DB = ⟨T1, ...,Tm⟩, where

Ti (i ∈ [1...m]) is a transaction which contains a set of items in I .
The support of a pattern A (where A is a set of items) is the fraction
of transactions containingA in theDB: support(A) = |Ti ∈DB |A⊆Ti |

|DB | .
A pattern is frequent if A’s support is >= ϵ (which is the minimum
support threshold) [6]. The output of frequent itemset mining is
many subsets of items that occurred within the transaction database
DB. In the context of creating access control policies, there is a clear
translation of frequent itemsets into ABAC rules, and generating
candidate rules from these frequent itemsets is a key component of
our rule mining algorithm (Section 4.1).

2.2 Related Work
We group related work into two categories: those that deal with
generating least privilege RBAC policies, and those that address the
problems of modifying or creating ABAC policies of minimal size.
To the best of our knowledge, our work is the first to address the
problem of automatically creating least privilege ABAC policies.

2.2.1 Least Privilege Policy Generation. In [16], the authors defined
the Privilege Error Minimization Problem (PEMP) for RBAC, and
designed naive, unsupervised, and supervised learning algorithms
to minimize privilege assignment errors in RBAC policies. Another
important work in generating least privilege policies is [12], which
used Latent Dirichlet Allocation (LDA) to create least privilege
RBAC policies from logs of version control software. This work
used user attribute information in the mining process although the
resulting policies were RBAC policies. The authors introduced the
λ−Distance metric for evaluating candidate rules [12]. This metric
adds the total number of under-assignments to the total number
of over-assignments with λ acting as a weighting factor on the
over-assignments to specify how much it values over-privilege vs.
under-privilege for a particular application.

In comparison with these two works, we formally define PEMP
for ABAC in this paper. Moreover, we present new algorithms, new
metrics, and new optimization methods that are all necessary in
dealing with the much larger ABAC privilege space to properly
implement least privilege in ABAC policies.

2.2.2 ABAC Policy Mining. One early work on applying associa-
tion rule mining to ABAC policies was [5], which used the Apriori
algorithm [1] to detect statistical patterns from access logs of lab
doors in a research lab. The dataset consisted of 25 physical doors
and 29 users who used a smart-phone application and Bluetooth
to open the doors. The authors used the output of the mining al-
gorithm to identify policy misconfigurations by comparing mined
rules with existing rules.

In [9], the authors presented a tool named Rhapsody which also
uses the Apriori algorithm. Rhapsody seeks to create ABAC poli-
cies of minimal over-privilege by mining logs. However, it does not
provide a weighting method for balancing between under-privilege
and over-privilege, nor does it consider large and complex privilege
spaces. Rhapsody uses a simplified model of attributes with Users
and Permissions only. While Rhapsody is designed to operate on
“sparse” audit logs where only a small amount (≤ 10%) of all possible
log entries are likely to occur in the mined logs, our work is de-
signed to operate on logs several orders of magnitude more sparse
than those of Rhapsody by using optimization techniques described



in Section 4.3. In addition, the run time of Rhapsody grows expo-
nentially with the maximum number of rules a request may satisfy,
limiting the number of attributes that can be considered to “less
than 20” [9], which would prevent a direct comparison between
their approach and ours using our dataset of over 1,700 attributes.

Xu and Stoller [21] presented an algorithm to create ABAC poli-
cies that cover all the entries found in an audit log while also
minimizing the size of the overall policy through a process of merg-
ing and simplifying candidate rules until all the given privilege
tuples are covered. Their evaluation metric is an ABAC version
of Weighted Structural Complexity (WSC), which was originally
presented in [11] as a measure for the size of RBAC policies. Their
algorithm uses a simplified ABAC model, and calculates coverage
based on user-permission tuples, where a tuple ⟨u,o, r ⟩ contains a
user, operation, and resource only, instead of considering all the
valid attribute combinations in the privilege space. This reduces
the computational complexity of mining and evaluating rules, but
presents a problem for accurately evaluating ABAC policies because
such a tuple may be either allowed or denied unless considering
the attributes of user, operation, and resource at the request time.

In comparison with these works, we use a model including Users,
Operations, Resources, and Environment attributes; we address the
challenges in systems with large and complex privilege spaces; we
measure under- and over-privilege of policies in our evaluation
instead of other metrics such as policy size and complexity; we
use out-of-sample validation to capture the performance of mined
policies over time given they were put into operation. While mini-
mizing complexity (evaluated by WSC) is desirable in that it makes
policies easier to maintain by administrators, we see it as less impor-
tant than least privilege performance over time. This is especially
true when using automated methods to build policies where less
administrator involvement is necessary. Methods for minimizing
ABAC policy complexity are complementary to our work as once
least privilege policies are identified, then methods for minimizing
policy complexity can be applied.

3 PROBLEM DEFINITION AND METRICS
This paper addresses the problem of minimizing privilege assign-
ment errors in ABAC policies. Access control can be viewed as
a prediction problem. The statements of a policy are predictions
about which entities should be granted privileges to perform spe-
cific operations upon the specific resources necessary to perform
their jobs. The goal of this work is to automatically generate poli-
cies that are accurate access control predictions. To help clarify
the specific problem this paper addresses, we formally define it as
the ABAC Privilege Error Minimization Problem (PEMPABAC ) in
this section. We also define metrics to be used in evaluating the
performance of proposed solutions.

3.1 Problem Definition
Our problem definition is based on the Privilege Error Minimiza-
tion Problem (PEMP) originally defined in [16] for creating least
privilege RBAC policies which consisted of users, operations, and
objects. Like the original PEMP, our problem seeks to minimize the
under- and over-privilege assignment errors in policies and uses
the notions of observation and operation periods for evaluation.

However, users, operations, and resources are only some of the at-
tributes available when creating ABAC policies; therefore, a unique
problem definition in the ABAC privilege space is needed.

The size of an ABAC privilege space is determined by the at-
tributes and values of valid ABAC policies. A is the set of valid at-
tributes which can be used in policies. As in related works [5, 14, 21],
we assume all attributes and values existing in the logs can also
be used in policies. Each individual attribute ai ∈ A has a set
of atomic values Vi which are valid for that attribute. All val-
ues for an attribute are the attribute’s range Ranдe(ai ) = Vi . The
Cartesian product of all possible attribute:value combinations is
ξ = V1 × ... × Vn = {(v1, ...,vn )|vi ∈ Vi for every i ∈ {1, ...,n}}.
However, some attribute:value pairs are not valid when present in
combination with other attribute:value pairs because of dependen-
cies between them. For example, some operations are only valid on
certain resource types so combinations such as operation:DeleteUser
and resourceType:File are not valid. The valid privilege universe ξ ‘
is the set of all possible attribute:value combinations when con-
sidering the dependency relationships between all attributes and
values.

Any measure of security policy accuracy must also take time into
account because the amount of risk from over-privilege accumu-
lates over time. Over-privilege carries the risk that an unnecessary
privilege will be misused, and this risk increases the longer the over-
privilege exists. To capture risk across a specified time period, we
define the Operation Period (OPP ) as the time period during which
security policies are evaluated against user operations. With the
valid privilege universe ξ ‘ and the operation periodOPP defined, we
now define the ABAC version of the Privilege Error Minimization
Problem PEMPABAC (Definition 1).

Definition 1. PEMPABAC : ABAC Privilege Error Minimization
Problem. Given the universe of all valid attribute:value combinations
ξ ′, find the set of attribute:value constraints that minimizes the over-
privilege and under-privilege errors for a given operation periodOPP .

3.2 Evaluation Metrics
We use terminology from statistical hypothesis testing for evaluat-
ing the effectiveness in addressing the PEMPABAC . We first present
our method for scoring individual predictions, and then our method
for splitting up the dataset and evaluating the performance over
multiple time periods.

3.2.1 Scoring Individual Predictions. Policy evaluation for a given
operation period is a two-class classification problem where every
possible event in the ABAC privilege space falls into one of two
possible classes: grant or deny. By applying the policies generated
from the observation period data to the privileges exercised in the
operation period, we can categorize each prediction into one of
four outcomes:

• True Positive (TP): a privilege that was granted in the predicted
policy and exercised during the OPP.
• True Negative (TN): a privilege that was denied in the predicted
policy and not exercised during the OPP.
• False Positive (FP): a privilege that was granted in the predicted
policy but not exercised during the OPP.



• False Negative (FN): a privilege that was denied in the predicted
policy but attempted to be exercised during the OPP.
Using the above outcomes we then calculate True Positive Rate

(TPR) also known asRecall and False Positive Rate (FPR) as shown
in Formulas 1 and 2, respectively:

TPR =
TP

(TP + FN )
(1)

FPR =
FP

(FP +TN )
(2)

RBAC mining in [16] used metrics based on TPR and Precision,
while our ABAC mining has to use TPR and FPR instead. Precision
( T P
T P+F P ) is suitable when considering the users and operations be-
cause the universe of possible grants is roughly on the same order of
magnitude as the number of unique log events. When dealing with
the ABAC universe, the number of possible unique attribute:value
combinations is likely to be many orders of magnitude greater than
the number of events in the operational logs. Precision is not a
suitable metric for use in mining ABAC policies from logs because
it uses one term (TP) which is driven primarily by the number of
entries in the log, and another term (FP) which is driven by the size
of the privilege universe. On the other hand, both terms in the TPR
(TP and FN) are log derived, and both terms in FPR (FP and TN) are
policy derived metrics.

TPR and FPR are the metrics used to evaluate a policy in terms
of under-privilege and over-privilege, respectively. If all privileges
exercised in the OPP were granted, there was no under-privilege
for the policy being evaluated so FN = 0, and TPR = 1. As the
number of erroneously denied privileges (FNs) grows, TPR → 0,
thus TPR represents under-privilege. If all privileges granted by the
policy were exercised during the OPP , there was no over-privilege
for the policy being evaluated so FP = 0 and FPR = 0. As the
number of erroneously granted privileges (FPs) grows, FPR → 1,
thus FPR represents over-privilege.

3.2.2 Scoring Policies Across Multiple Time Periods. To score poli-
cies across multiple time periods, we use out-of-time validation [10],
a temporal form out-of-sample validation. In out-of-sample valida-
tion, a set of data is used to train an algorithm (training set) and a
separate set of non-overlapping data is used to test the performance
of the trained algorithm (test set). In our evaluation, the training
and test sets are contiguous, and the test time period immediately
follows the training time period. The training set is referred to as
the Observation Period (OBP ), while the test set is the Operation
Period (OPP ) defined previously in Section 3.1. It is important to
note that this method preserves the temporal interdependencies be-
tween actions. For example, if an employee moves to a new position
within the organization, one would expect the privileges mined for
that employee in the future time periods would be very different
from those mined in the past time periods. Methods such as k-fold
cross validation which randomly partition a dataset (as used in [12]
for evaluating policies) do not account for these temporal interde-
pendencies. When charting metrics for multiple time periods, we
use the average of all individual scores. This gives equal weight to
each operation period score.

3.2.3 Scoring Infinite Possible Resource Identifiers. Quantifying the
number of resources allowed or denied by a policy implies that there

is a known value for the number of possible resources in the system.
This presents a challenge to any least-privilege scoring approach,
and not just to the ABAC model or our methodology. While every
system has finite limits on the resource identifier length and number
of resources, these can be so numerous that we consider them as
too large to quantify and treat them as being infinite. For example,
consider the number of possible file names in an ext4 file system
with up to 255 bytes for a file name, 28255 possible distinct file
names exist excluding the path [13].

Instead of counting all possible resource identifiers, we use the
resource identifiers existing in the OBP and OPP for our policy
scoring calculations. This approach presents several advantages
over other possible approaches such as using all values in a dataset,
or introspecting an environment for the resource identifiers (which
would be prohibitively time consuming for our work). Only the
recently used resources are counted, giving them greater impor-
tance, and all necessary data is available in the audit logs. This also
implies that the valid privilege space ξ ‘ may vary in size between
scoring periods depending on the resource identifiers present.

4 METHODOLOGY
This section presents our rule mining algorithm for addressing the
PEMPABAC problem, policy scoring algorithm for evaluating the
policies across multiple operation periods, and optimization meth-
ods for processing large ABAC privilege spaces. Before going into
the details, we first describe the overall workflow of our approach
for mining least privilege ABAC policies as shown in Figure 1.

Audit
Log

ABAC Rule Mining 
Algorithm

deploy, 
update

ABAC Policy 
with Rules

System of an Organization (e.g., services deployed in the cloud)

Original Access Control 
Policy to be Replaced

(could be from any model with any 
default policy such as “allow all”)

ABAC Policy 
Scoring Algorithm

ABAC Policy 
Deployment and 

Enforcement

OBP OPP

Figure 1: Overall Workflow of our Approach

A system under operation or in testing will continuously gener-
ate audit log events for access requests (either allowed or denied).
The events of any chosen Observation Period (OBP) will be the in-
put to the ABAC Rule Mining Algorithm, which generates an ABAC
policy with a set of rules as the output. This policy is then scored
against a subsequent Operation Period (OPP) of audit log events
to evaluate its performance as if it were put into operation. If this
policy can better balance or minimize under- and over-privilege, it
would be deployed to the system. This is an iterative and continu-
ous process, so that a newly deployed policy can also be adaptive
to user behavior and situation changes over time.

This workflow can be easily bootstrapped as long as the system
generates audit log events. It does not depend on the model (e.g.,



RBAC or ABAC), content, and even the existence of an original
access control policy. For example, an administrator may choose to
begin with a simple “allow all” style of policy based on whatever
model. Our approach will then periodically mine a new ABAC
policy, evaluate its performance (quantitatively regarding the level
of under- and over-privilege if the policywere deployed), and deploy
or update an improved policy to the system either automatically or
with the confirmation from the administrator.

4.1 Rule Mining
Our rule mining algorithm operates similarly to the mining algo-
rithms presented in [12, 21] in that it considers the set of uncovered
log entries and iteratively generates many candidate rules, scores
them, and selects the best scoring rule for the next iteration until
all of the given log events are covered by the set of generated rules.
A critical component of this approach is the metric used to evaluate
candidate rules. Before describing the algorithm design, we will
first detail the metric used for evaluating candidate rules generated
during the mining process. We propose a candidate scoring metric
termed Cscore using the following definitions.

• c is an ABAC constraint specified as a attribute:value pair, or a
key with a set of values key:{values}. Values must be discrete,
so continuous ones should be binned to be used by the mining
algorithm. r is a rule consisting of one or more constraints. p is a
policy consisting of one or more rules.
• L is the complete set of log entries for the dataset, LOBP is the
set of logs in the observation period OBP ; LOBP ⊆ L.
• LOBP (C) is the set of log entries which meet (i.e., are “covered
by”) the constraints in a set C that can be specified by the use of
a rule r or policy p; LOBP (C) ⊆ LOBP .
• ξ ′ is the privilege universe of valid log events as defined previ-
ously in Section 3.1.

The CoverageRate (Formula 3) is the ratio of all logs in the ob-
servation period covered by a candidate rule r but not already
covered by other rules in the policy p (|LOBP (r ) \ LOBP (p)|) to the
remaining number of log entries not covered by any rules in the
policy (|LOBP \ LOBP (p)|). A candidate rule that covers more log
entries is considered higher quality than a rule that covers fewer log
entries. The numerator of the OverPrivilegeRate (Formula 4) finds
the number of valid attribute:value combinations in the privilege
universe covered by a rule (ξ ‘(r )) minus the set LOBP (r ) \LOBP (p),
resulting the total number of over-assignments for rule r . The total
over-assignments are then normalized upon the total number of
combinations in the valid privilege universe |ξ ′ |. A candidate rule
which has fewer over-assignments is considered higher quality
than a rule that has more over-assignments.

CoveraдeRate(r ,p,LOBP ) =
|LOBP (r ) \ LOBP (p)|

|LOBP \ LOBP (p)|
(3)

OverPrivileдeRate(r ,p,LOBP , ξ
′) =

|ξ ′(r ) \ (LOBP (r ) \ LOBP (p))|

|ξ ′ |
(4)

The candidate score Cscore (Formula 5) is then the ω weighted
addition of the CoverageRate and the complement of the OverPrivi-
legeRate. By normalizing the under-assignments using the number
of log entries and the over-assignments using the size of the valid
privilege universe, the effect of varying the weight ω in Cscore is
more predictable and better performance can be achieved when
compared to the λ−Distance metric which also uses a variable
weighting between over-assignments and under-assignments but
does not normalize these values (see Section 5.2 for the Cscore vs.
λ−Distance comparison details).

Cscore (r ,p,LOBP , ξ
′,ω) = CoveraдeRate(r ,p,LOBP )+

ω × (1 −OverPrivileдeRate(r ,p,LOBP , ξ
′))

(5)

Our algorithm for mining an ABAC policy from the logs of a
given observation period is presented in Algorithm 1. Note that we
use arithmetic operators=,+,−when describing integer operations,
and set operators←,∪, \, ∈, |...| when describing set operations. As
mentioned previously, the algorithm iteratively generates candidate
rules from the set of uncovered logs. To avoid confusion between
the original set of log entries for the observation period LOBP and
the current set of uncovered log entries which is updated for each
iteration of the algorithm, we copy LOBP to Luncov at line 2. The
FP-growth algorithm [6] is used to mine frequent itemsets from the
set of uncovered observation period log entries (line 4). The itemsets
returned by the FP-growth algorithm are sets of attribute:value
statements, and each of these itemsets is used to create a candidate
rule which is then scored using theCscore metric (lines 6-12). After
all candidates are scored, the highest scoring rule is selected and
added to the policy, then all log entries covered by that rule are
removed from the set of uncovered log entries (lines 13-15). This
process continues until all log entries are covered (lines 3-16).

4.2 Policy Scoring
Once the observation period logs have been mined to create a
policy, that policy is scored using the events that took place during
the operation period immediately following the mined observation
period as described in Algorithm 2. Each event during the operation
period is evaluated against the mined policy (lines 3-10). Events
allowed by the policy are TPs, while events denied by the policy
are FNs. A unique combination of attribute:value pair may occur
multiple times within the same time period. The TPs and FNs are
both values based on the number of times an event occurs in the log.
The set of unique events that were exercised in the operation period
and granted by the policy is also maintained (line 6) in order to
calculate the FPs later (line 15). By counting each TP and FN instead
of unique occurrences, the resulting TPR is frequency weighted.
Events that occur more frequently in the operation period have a
greater impact on TPR than those events that occur less frequently.

While the TPs, FNs, and resulting TPR are based on the frequency
weighted count of events present in the log, the FPs, TNs and
resulting FPR cannot be frequency weighted because each unique
valid event of the privilege universe is either granted or denied
only once by the policy. To obtain these values (FP, TN, FPR), we
first determine how many unique events out of the valid privilege
space are granted by the policy (lines 11-14). It is important to
note that enumerating the entire privilege space and testing every



Algorithm 1: Rule Mining Algorithm
Input: LOBP The set of log entries representing user actions

during the observation period OBP .
Input: ω under- vs. over-privilege weighting variable.
Input: ϵ Threshold value of minimum itemset frequency.
Input: ξ ‘ The set of all attribute:value combinations in the valid

privilege universe.
Output: policy The policy with a set of ABAC rules to be applied

during the operation period OPP .
1 policy ← ∅;
2 Luncov ← LOBP ;
3 while |Luncov | > 0 do
4 itemsets ←

F P−дrowth .f r equent I temsets(Luncov , ϵ );
5 candidateRules ← ∅;
6 for itemset ∈ itemsets do
7 rule = createRule(itemset );
8 coveraдeRate = |Luncov (rule )|

|Luncov |
;

9 overAssiдnmentRate = |ξ ‘(rule )|−|Luncov (rule )|
|ξ ‘| ;

10 rule .Cscore =
coveraдeRate + ω × (1 − overAssiдnmentRate);

11 candidateRules ← candidateRules ∪ rule ;
12 end
13 bestRule =

sor tDescendinд(candidateRules ,Cscore )[0];
14 policy ← policy ∪ bestRule ;
15 Luncov ← Luncov \ Luncov (bestRule);
16 end
17 return policy

valid event against the policy would be much more computationally
intensive than our approach, which is to use information about the
valid privilege space to enumerate only the valid events allowed by
each rule. Most mined rules only allow a small percentage of the
privilege space except in cases of extreme ω values.

Once the set of all the unique events allowed by a policy has been
enumerated, we remove the set of unique events which occurred
and were granted during the operation period to obtain the number
of total FP events for the policy (line 15). At this point we have
obtained the unique sets of TPs, FNs, and FPs, so any remaining
privilege in the valid privilege universe not in these sets must be a
TN (line 16). TPR and FPR are then calculated with the caveat that
in the case where no privileges were exercised during the operation
period, we setTPR = 1 because there could not be any instances of
under-privilege (lines 18-22). The policyAllowsEvent() function is
self-explanatory and its trivial implementation is omitted.

4.3 Optimizations for Large Privilege Spaces
Dealing with the large number of possible attributes:value combi-
nations that may comprise an ABAC privilege space is a significant
challenge compared to the simpler RBAC privilege space. Using
all attributes and values present in logs may make the privilege
universe computationally impractical to process, but discarding
too many or important attributes may result in less secure policies.
We address these issues and make large ABAC privilege spaces
manageable by using feature selection and partitioning methods.

Algorithm 2: Policy Scoring Algorithm
Input: LOPP The set of log entries representing user actions

during the operation period OPP .
Input: ξ ‘ The set of all attribute:value combinations in the valid

privilege universe.
Input: policy The policy with a set of ABAC rules to be applied

during the operation period OPP .
Output: T PR, F PR True and false positive rates of the policy

evaluated on the operation period OPP .
1 T P = FN = 0;
2 exercisedGrantedEvents ← ∅ ;
3 for event ∈ LOPP do
4 if policyAllowsEvent (policy, event ) then
5 T P = T P + 1;
6 exercisedGrantedEvents ←

exercisedGrantedEvents ∪ event ;
7 else
8 FN = FN + 1;
9 end

10 end
11 eventsAllowedByPolicy ← ∅;
12 for r ∈ policy do
13 eventsAllowedByPolicy ←

eventsAllowedByPolicy ∪ ξ ‘(rule);
14 end
15 F P =
|eventsAllowedByPolicy \ exercisedGrantedEvents |;

16 T N = |pr ivUniverse | − (T P + FN + F P );
17 if T P + FN == 0 then
18 T PR = 1;
19 else
20 T PR = T P/(T P + FN );
21 end
22 F PR = F P/(F P +T N );
23 return T PR, F PR

4.3.1 Preprocessing and Feature Selection. Intuitively, attributes
which occur infrequently in the logs or have highly unique values
are poor candidates for use in creating ABAC policies. There is
less data available to mine meaningful patterns from uncommon
attributes. Also, rules created with uncommon attributes are less
useful in access control decisions because future access requests are
unlikely to use these attributes as well. Using attributes with highly
unique values (an attribute value is never or rarely duplicated across
log entries) is likely to result in over-fitting for the correspondingly
created rules. We therefore preprocess our dataset to select and bin
the most useful attributes as follows:

(1) Remove unique and redundant attributes usingUniqueness

whereUniqueness =
|UniqueV alues |

Attr ibuteOccurrences .
(2) Remove redundant correlated attributes.
(3) Sort attributes by Frequency = Attr ibuteOccurrences

TotalLoдEntr ies . Se-
lect attributes above a frequency threshold, θ .

(4) Sort remaining values byUniqueness . HighUniqueness val-
ues are candidates for binning or removal.

Our full AWS dataset contained 1,748 distinct attributes (see
Section 5.1 for dataset description). In step (1), |UniqueValues | is
obtained by calculating the size of the set of all unique values for



every attribute. Set attributes withUniqueness ≈ 1.0 nearly always
have unique values, and Uniqueness ≈ 0.0 implies the attribute
values are nearly always the same. Resource identifiers are given an
exception to the uniqueness test in this step as they are expected to
have high uniqueness. For our dataset, we identified and removed
two always unique attributes, eventID and requestID, and one
attribute that always had the same value accountId . We confirmed
that these attributes would always meet the uniqueness criteria
with the AWS documentation.

Applying step (2), we identified three distinct attributes for the
user name with a 1:1 correlation and removed two of them. The
reason for this is if three given values are always 1:1 correlated,
the data mining algorithm gains nothing by having all of them -
two of them are redundant and can be removed without loss of
discriminating power.

For step (3), we selected two thresholds, θ = 0.1 and θ = 0.005,
to build two datasets for experiments, and we term the privilege
universes built using these thresholds ξ ‘0.1 and ξ ‘0.005, respectively.
Figure 2 charts the rank of the top 50 most common attributes after
our feature selection process was complete. The attribute frequency
follows the common power law distribution with a “long tail”; the
remaining attributes not charted here occurred in less than 0.2%
of the log entries. ξ ‘0.1 and ξ ‘0.005 correspond to top 15 and 40
attributes ranked by frequency, respectively. Based on the chart,
these two frequency values were chosen as cut off points after
which the amount of information gained becomes more negligible.
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Figure 2: Top 50 Attributes Ranked by Frequency

In step (4), some of the remaining attributes still have fairly high
Uniqueness values which are difficult to mine meaningful rules
from. In our dataset, some of these attributes such as checksum
values are not relevant to creating security policies and can be
discarded. Three attributes, sourceIPAddress, userAgent, and event-
Name, can benefit from binning into a smaller subset of values. The
sourceIPAddress is an IPv4 address with over 4 billion possible val-
ues. After consulting with the system administrators of the dataset
provider, we found that it was unlikely they would use rules based
on the raw IP addresses since users will change IPs frequently. In-
stead, they preferred to derive the geographical location from the
IP addresses, so IPs were binned by U.S. states and each country
the organization’s users may log in from. The userAgent attribute is

the AWS Command Line Interface (CLI), Software Development Kit
(SDK), or web browser version used when making a request. This
field benefits from binning as users are likely to perform similar
requests from a web browser, but they may upgrade their browser
version regularly. Without binning the many different browser ver-
sions into a single group, a mining algorithm would not effectively
learn user patterns. Again, the dataset provider agreed that the
raw value was too granular to use, so the userAgent attribute was
binned into 10 buckets. The eventName attribute is the name of the
operation. This attribute can be effectively binned because each
eventName is associated with one eventSource, which is the AWS
service name associated with the operation.

4.3.2 Mining Algorithm Optimizations. The resulting ABAC privi-
lege space may still be quite large even for a modest dataset after ap-
plying the feature selection and binning methods as just described.
We further apply partitioning techniques to split up the privilege
space in the policy mining process. Partitioning techniques (as used
in databases to split large tables into smaller ones) will help reduce
the memory footprint of our algorithms and improve efficiency by
performing operations in parallel across multiple processors.

The rule mining algorithm (Algorithm 1) uses partitioning to
improve the run time and space efficiency for storing and searching
the privilege universe ξ ‘. The total number of valid combinations in
ξ ‘ was on the order of billions for some of our experiments, but Al-
gorithm 1 only needs to determine the number of privileges covered
by a rule and needs not to enumerate or store all possible privilege
combinations in memory. This is a subtle but important difference
because it means we can calculate the number of valid privilege
combinations by splitting ξ ‘ into smaller sets of independent parti-
tions. The total number of valid privilege combinations covered by
a rule is the product of the number of valid privilege combinations
covered by each partition, i.e., |ξ ‘(r )| = |P1(r )| × ...× |Pn (r )|, where
the attributes of each partition Pi are independent of the attributes
in all other partitions.

To create these partitions, the AWS documentation was used to
identify dependencies between attributes in our dataset. Next, a sim-
ple depth first search was used to identify connected components
of interdependent attributes. The valid attribute:value combinations
for all attributes in each connected component were then enumer-
ated and stored into one inverted index for each partition. Finding
the number of valid privilege combinations covered by a rule in a
partition (|Pn (r )|) is accomplished by searching the inverted index
using the rule’s attribute:value constraints as search terms. As a
result of this partitioning, our queries were performed against three
indexes on the order of thousands to hundreds of thousands of doc-
uments vs. a single index that would have been on the order of
hundreds of millions to billions of documents if such a partitioning
scheme were not in use.

For our dataset, a depth first search identified one connected
component of all user attributes, and another connected compo-
nent of operations and resources. Operations and resources were
connected because most operations are specific to a single or set of
resource types. We grouped all other attributes that were indepen-
dent of users and operations into a third component which included
environment attributes such as the sourceIPAddress and userAgent.
Although this grouping of attributes by components was obtained



from processing our specific dataset, it is reasonable to assume
that user attributes are independent of the valid operation and re-
source attribute combinations in other datasets as well. This is also
consistent with the NIST ABAC guide which defines environment
conditions as being independent of subjects and objects [8].

Due to the large number of candidate rules generated by the
FP−дrowth algorithm, scoring candidate rules is the most compu-
tationally intensive part of Algorithm 1 in our experiments (except
for those with fairly large ϵ values which generate few candidates).
The search against the inverted index is also parallelized to improve
performance.

4.3.3 Scoring Algorithm Optimizations. To improve the run time
performance of the policy scoring algorithm (Algorithm 2) and
enable it to deal with a privilege space larger than the available
memory, we again employ partitioning and parallelization methods.
As mentioned in 4.2, Algorithm 2 must enumerate the set of all
privilege combinations covered by a rule in order to identify the
total unique number of privilege combinations covered by a policy.
If extreme values for ω are chosen, it is possible for Algorithm 1
to generate rules with a large number of over-privileges, possibly
the entire privilege space. Therefore, Algorithm 2 must be able to
deal with the possibility that it will have to enumerate all privilege
combinations of ξ ‘, although again, this only happens for extreme
values of ω and is only for the out-of-sample validation in policy
scoring rather than in rule mining.

To deal with the possible need to enumerate a large portion
or even all of the privilege space, we partitioned ξ ‘ along two
attributes so that the values of those attributes are placed into
separate partitions. As with any partitioning, choosing a key that
nearly equally splits the universe of possible values is important.
In our experiments, we chose to partition the ξ ‘ space along the
attributes associated with the operation name and user name. The
overall correctness of the algorithm is independent of the partition
keys used, and 1 to n partitions may be used for each attribute
depending on the size of the privilege space and available memory.

Each of these partitions is operated on in parallel when evaluat-
ing each rule of the policy. Unique hashes of the enumerated events
are used in order to deduplicate events which may be generated
by more than one rule. This partitioning and parallelization takes
place within lines 11-14 of Algorithm 2. We describe these opti-
mizations here because they are useful in speeding up and scaling
the algorithm when dealing with a large number of attribute:value
pairs, but we omit them from the pseudo-code of Algorithm 2 to
simplify its presentation.

5 RESULTS
We use the Receiver Operating Characteristic (ROC) curve to com-
pare the performance of various algorithms and parameters. The
ROC curve charts the trade-off between the TPR and FPR of a binary
classifier, with the ideal performance having a TPR value of one
and a FPR value of zero. Our charts also include the Area Under the
Curve (AUC), which measures the area underneath the ROC curve
and provides a single quantitative score that incorporates both FPR
and TPR as the weighting metrics being varied. The higher the
AUC score the better the classification performance.

First, we describe our dataset used for the experiments. Next we
present experimental results and analysis to justify our candidate
evaluation metric Cscore , including a comparison of several meth-
ods for normalizing the CoveraдeRate variable. Then we examine
the effect of varying two adjustable input variables to the mining
algorithm: the length of the observation period (|LOBP |) and the
minimum support threshold (ϵ). Finally, we compare the perfor-
mance of our ABAC algorithm with that of an RBAC algorithm.

All charts presented in this section are based off of mining and
scoring the entire dataset |L| using the Algorithms 1 and 2. The
exact number of runs varies based on the observation period size
|LOBP | used and equals to |L| − |LOBP | + 1.

5.1 Dataset Description
We examine the performance of our ABAC policy generation al-
gorithm on a real-world dataset. Our dataset was provided by a
Software As A Service (SaaS) company that uses 77 different AWS
services [4] with an “allow all” style of RBAC policy. It consists of
4.7M user-generated AWS CloudTrail audit events [2] represent-
ing 16 months of audit data starting from March 2017 for 38 users.
CloudTrail logs the events of all AWS account activities, includ-
ing actions taken through the AWS Management Console, AWS
SDKs, command line tools, and other AWS services; it performs
the audit logging for all services at the platform and infrastructure
layers which are also the layers that AWS IAM (Identity and Access
Management) enforces access controls for [2]. Audit events are
logged by CloudTrail in JSON format, and can be easily parsed by
using any JSON library. Two audit event examples from the AWS
website [3] are provided in Appendix A. Note that we used user-
generated audit events only, filtering out those events generated
by non-person entities. Events generated by non-person entities
were very consistent, and it is easy to derive very low under- and
over-privilege security policies for them directly from audit logs
without using advanced methods. Minimizing the privilege assign-
ment errors for human users is much more challenging so we chose
to focus on human generated log events only.

The high degree of variability in user behavior is shown by the
statistics in Table 1 based on the first month, last month, and total
16 months of data. Users is the number of active users during that
time period. Unique Services Avg. is the average number of unique
services used by active users. Unique Actions Avg. is the average
number of unique actions exercised by active users, and

∑
Action

Avg. is the average of the total actions exercised by active users.
The standard deviation is provided for Unique Services, Unique
Actions, and

∑
Actions metrics to understand the variation between

individual users. For example, looking at both the Unique and
∑

Actions, we observe that their standard deviation is higher than the
average for all time periods, indicating a high degree of variation
between the number of actions that users exercise.

From our initial dataset, we derive two privilege universes us-
ing our feature selection methodology (Section 4.3.1). ξ ‘0.1 used
15 attributes and consisted of 510M unique attribute:value com-
binations. ξ ‘0.005 used 40 attributes, 25 of which were resource
identifiers so the universe size varied between 1.5B and 8.6B unique
attribute:value combinations depending on the number of resources
used during the OBP and OPP periods. All the experiments in this



Table 1: 16-Month Total Usage of our Dataset

Metric First Month Last Month 16 Months
Users 17 26 38
Unique Services Avg. 12.94 12.11 22.66
Unique Services StdDev. 10.16 9.98 16.70
Unique Actions Avg. 65.76 62.92 168.34
Unique Actions StdDev. 76.11 73.30 178.52∑

Actions Avg. 9138.35 9664.19 123659.82∑
Actions StdDev. 20279.87 14124.15 235915.45

section use ξ ‘0.1 except for Section 5.4 which uses ξ ‘0.005. Our rule
mining algorithm (Algorithm 1) currently saves a generated policy
in JSON format. Appendix B provides an example rule of a policy.

5.2 Cscore Analysis
We consider three criteria in the design and evaluation of the
Cscore metric for selecting a single rule from many candidate
rules generated by the FP−дrowth algorithm during each itera-
tion of our rule mining algorithm. Criterion C1:AUC is the Area
Under the ROC Curve. Criterion C2:Smoothness means that TPR
values should increase monotonically as the FPR increases. Cri-
terion C3:Interpretability means that the effect of changing the
weighting variable should be predictable and easy to understand by
an administrator who uses the metric in a policy mining algorithm.

5.2.1 Evaluating Candidate Scoring Metrics. Our candidate scoring
metric Cscore is presented in Section 4.1, λ−Distance is presented
in [12], and Qrul is presented in [21]. All these metrics use the
number of over-assignments and number of log entries coveredwith
a weighting variable for adjusting the importance between over-
assignments and coverage in their scoring of candidates. However,
these metrics differ in how they normalize these numbers (if at
all) and how they implement the weighting. The results of varying
the over-assignment weightings for these candidate evaluation
methods are shown in Figure 3.

Four distinct versions of the Qrul metric are included in Fig-
ure 3. In [21], the authors also described QrulFreq, a frequency
weighted variant ofQrul which should be a fairer comparison with
our frequency weighted policy scoring algorithm (Algorithm 2).
The authors of [20] provided their source code on their website, and
the scoring algorithms implemented in the source code for Qrul
and QrulFreq are slightly different from those presented in the
paper. Instead of using the number of privileges covered by a rule
out of the entire privilege universe ([[p]]) as the denominator for
the over-assignments side of the metric, the implemented metrics
instead use the number of privileges covered by a rule out of the log
entries not covered by other rules already in the policy (|[[p]]∩UP |).
These “as-implemented” metrics,QrulImpl andQrulFreqImpl , per-
form more favorably than their counterparts so we include them in
our comparison along with the versions documented in [21].

All the examined metrics performed relatively well with high
AUC values, but our Cscore metric has the highest AUC value
thus being the most favorable metric per the criterion C1:AUC .
While we do not have a quantitative score for C2:Smoothness , it is
evident from Figure 3 that ourCscore is much closer to a monotonic
function than the other metrics whose TPR values increase and
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Figure 3: Comparison of Candidate Evaluation Metrics

decrease several times as FPR increases. The Qrul and QrulFreq
metrics are particularly poor in terms of smoothness as they both
have an inflection point near their weighting variable ω‘o = 1,
where increasing the weighting slightly after that point produces
instability in the resulting ROC curve. Furthermore, increasing the
weighting beyond a certain point causes the metric to only select
those candidate rules which have zero over-assignments, resulting
in the unterminated portion of the ROC curve for Qrul (QrulFreq
has a similar inflection point that is difficult to discern in Figure 3
at FPR = 0.0013).

Unlike theQrul and λ−Distance metrics,Cscore normalizes both
the number of logs covered and over-assignments into a ratio be-
tween [0, 1] before applying the weighting. This makes the weight-
ing variable independent of the size of the privilege universe and
number of log entries and thus easier to understand and apply.
In Figure 3, varying the ω weighting of Cscore between ω = 1

10
and ω = 10 varies the charted FPR between FPR = 0.05 and
FPR = 0.998 at relatively even intervals. To achieve a similar
spread across the FPR scores with QrulFreqImpl and λ−Distance ,
the weighting variable for those metrics must be varied between
1
100 and 1

2000 . QrulImpl achieved the second highest AUC score
due to an unusually good score near FPR = 0.34, but assigning a
weighting to it with predictable results is difficult. For example, the
QrulImpl score at FPR = 0.34,TPR = 0.9998 was achieved with
ω‘0 = 1

100000 , but the next score at FPR = 0.49,TPR = 0.9988 was
achieved with ω‘0 = 1

500000 ; this significant difference is difficult
to determine without the experimentation and consideration of
the privilege space and log sizes. Because of its predictability and
even distribution of results, Cscore also best meets our evaluation
criterion C3:Interpretability.

5.2.2 Methods of Calculating CoverageRate. The CoveraдeRate
(Formula 3) of the Cscore (Formula 5) is the number of log entries
covered by rule r normalized to the range [0, 1], so that it can be
compared with the weighted value of the OverPrivileдeRate (For-
mula 4) normalized to the same range. There are several possible



ways to compute such a coverage rate; however, it is not immedi-
ately clear which would perform the best without experimentation.
We consider four possible methods for computing CoveraдeRate
and analyze their performance here:

•
|Luncov (r ) |
|Luncov |

: The frequency weighted number of logs covered out
of the total number of uncovered logs.
•
| {Luncov (r )} |
| {Luncov } |

: The unique number of logs covered out of the set
of unique uncovered logs.
•
|Luncov (r ) |
|LOBP |

: The frequency weighted number of logs covered out
of the total number of logs in the observation period.
•
| {Luncov (r )} |
| {LOBP } |

: The unique number of logs covered out of the set
of unique log entries during the observation period.
The results of applying these four methods are presented in

Figure 4 with each method identified by its denominator. As ev-
ident in Figure 4, the |Luncov (r ) |

|Luncov |
method performed the best for

two of our criteria for selecting a candidate metric: C1:AUC and
C2:Smoothness . The frequency weighted methods |Luncov (r ) |

|Luncov |
and

|Luncov (r ) |
|LOBP |

performed about the same in terms ofC3:Interpretability
withω = 1

10 resulting in scores in the upper-left most part of the fig-
ure. The methods using the number of unique log entries performed
less favorably in terms of C3:Interpretability with their upper-left
most points being reached near ω = 1

256 , a value farther away from
1 and more difficult to find without experimentation. Fluctuations
in the trends of |{Luncov }|, |LOBP |, |{LOBP }| in Figure 4 demon-
strate why these methods are poor choices to use for calculating
CoverageRate, and are not due to differences in sampling methods
or frequency.
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5.3 Effect of Varying Algorithm Parameters
Besides the ω variable which is varied to generate the points along
all the ROC curves (except for the RBAC algorithm curve in Figure

7), two other parameters can be varied as inputs to Algorithm 1:
the threshold ϵ used by the FP−дrowth algorithm, and the length
of the observation period |LOBP |.
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Figure 5: Performance as Itemset Frequency Varies

5.3.1 Effect of Varying Itemset Frequency Threshold. The minimum
support threshold (ϵ) is used to specify that a pattern is consid-
ered a “frequent” pattern if it occurs in >= ϵ of the examined
entries. Increasing ϵ causes fewer candidate patterns to be identi-
fied by the FP−дrowth algorithm. The results of varying ϵ between
[0.05, 0.1, 0.2, 0.3] are shown in Figure 5. For both ϵ = 0.2 and
ϵ = 0.3, we observe inflection points as ω decreases because a
lower ω value favors more granular rules in order to lower the
over-privilege rate; however, higher ϵ values result in fewer and
less granular patterns being identified by the FP−дrowth algorithm.
Stated another way, low ω values generally result in lower FPR
values, while high ϵ values generally result in higher FPR values.
The inflection points occur as a result of conflicting instructions
between low ω and high ϵ values.

Lower ϵ values generate more possible candidates to evaluate
and generally result in higher AUC scores as well. The trade-off
for more candidates however is an increase in run time. At ω = 1

10 ,
the average mining times for ϵ = 0.05, 0.1, 0.2, 0.3 were 29.8, 15.3,
2.8, and 1.2 minutes, respectively. Other charts in this section were
generated using ϵ = 0.1 as it offered a good trade-off between
performance, stability, and run time.

5.3.2 Effect of Varying Observation Period Length. When mining
policies with a variable observation period length, a larger observa-
tion window generally results in higher TPR but also higher FPR
because intuitively mining algorithms are given more privileges
in larger observation periods. This trend is also present with our
mining algorithm, albeit not very noticeable. The results of varying
the observation period length between |LOBP | = [7, 15, 30, 45, 60]
days are shown in Figure 6. As |LOBP | increases, TPR generally
increases compared to lower |LOBP | periods of similar FPR values,



and the resulting ROC curve becomes smoother. As with ϵ , we
observe a trade-off between |LOBP | and run time. At ω = 1

16 , the
average mining times for |LOBP | = [7, 15, 30, 45, 60] were 5.7, 6.5,
7.2, 10.5 and 12.8 minutes, respectively. Shorter observation peri-
ods such as |LOBP | = [7, 15] generally produced more fluctuations
in the resulting trend lines, which is a common and expected oc-
currence when using machine learning or data mining techniques
with insufficient data. Other charts in this section were generated
using |LOBP | = 30 days for a good trade-off between performance,
stability, and run time.
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5.4 ABAC vs. RBAC Performance
We now compare the performance of our ABAC algorithm against
an RBAC approach. For this comparison, we use the naive algo-
rithm presented in [16], which builds an RBAC policy based on
the permissions exercised during an observation period. Although
this RBAC algorithm is fairly simple, it performed quite well in the
scenario that sought an equal balance between minimizing under-
and over-privilege compared to more sophisticated algorithms [16].

The ROC curve of our ABAC algorithm and the RBAC algorithm
from [16] are presented in Figure 7. Our ABAC algorithm used a
fixed observation period size of 30 days, an itemset frequency ϵ =
0.1, and the over-privilege weight varied betweenω = [ 1

8192 , ..., 16]
by powers of 2 to generate the data points. For the RBAC algorithm,
there is no variable similar to ω that can be used to instruct the
algorithm to directly vary the importance between under- and
over-privilege. However, varying the observation period length
effectively serves this purpose by causing more or fewer privileges
to be granted by the algorithm, so the observation period length was
varied between [3, 7, 15, 30, 45, 60, 75, 90, 105, 120] days to generate
the data points for the RBAC algorithm in Figure 7.

Our ABAC algorithm significantly outperformed the RBAC al-
gorithm across the ROC curves in Figure 7. With only 30 days
worth of data, the ABAC algorithm was able to correctly grant
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more privileges (higher TPR) than the RBAC algorithm with 120
days of data. The ABAC algorithm was also able to correctly restrict
more unnecessary privileges (lower FPR) than the RBAC algorithm
operating on only 3 days of data. This is due to the ability of the
ABAC algorithm to identify patterns and create policies based on
attributes vs. the RBAC algorithm which is restricted to using only
RBAC semantics.

6 CONCLUSION
This paper explored an approach for automatically generating least
privilege ABAC policies that balance between minimizing under-
and over-privilege assignment errors. We formally defined the
ABAC Privilege Error Minimization Problem (ABACPEMP ). We
took an unsupervised rule mining approach to design an algorithm
which automatically performs ABAC policy generation by mining
audit logs with a variable weighting between under- and over-
privilege. We designed a policy scoring algorithm for evaluating
ABAC policies from the least privilege perspective by using out-of-
sample validation. We designed performance optimization methods
including feature selection, partitioning, and parallelization to ad-
dress the challenges of large ABAC privilege spaces. Finally, we
presented the results of applying our approach on a real-world
dataset to demonstrate its effectiveness and its better performance
than an RBAC approach. The algorithms and methods that we
developed in this work do not depend on the system and the organi-
zation from which we obtained the valuable dataset. They could be
adopted by any organization to start their ABAC policy generation
and deployment as we highlighted at the beginning of Section 4.
Overall, we hope our work can help promote a wider and faster de-
ployment of the ABAC model, and can help unleash the advantages
of ABAC to better protect large and complex computing systems.
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A APPENDIX ON AUDIT LOG EXAMPLES
A.1 Amazon EC2 Log Entry Example
Figure 8 is an Amazon EC2 log example [3]. It shows user Alice
started an EC2 virtual machine instance (“eventName”: “StartIn-
stances”) with the instanceId “i-ebeaf9e2”. No “errorCode” field is
present in the log entry, so we can tell that the request succeeded.
From the response elements we can tell that the virtual machine
instance has been moved from the “stopped” state into the “pend-
ing” state which indicates it is starting up. The log provides several
other attributes such as eventTime, awsRegion, sourceIPAddress,
and userAgent that may be used by an ABAC algorithm. In this log
entry we see “awsRegion”:“us-east-2”. If, for example, Alice consis-
tently creates instances in “us-east-2” only, a mining algorithm can
use this information to create a policy which only allows Alice to
create instances in that region.

{"Records": [{
"eventVersion": "1.0",
"userIdentity": {

"type": "IAMUser",
"principalId": "EX_PRINCIPAL_ID",
"arn": "arn:aws:iam::123456789012:user/Alice",
"accessKeyId": "EXAMPLE_KEY_ID",
"accountId": "123456789012",
"userName": "Alice"

},
"eventTime": "2014-03-06T21:22:54Z",
"eventSource": "ec2.amazonaws.com",
"eventName": "StartInstances",
"awsRegion": "us-east-2",
"sourceIPAddress": "205.251.233.176",
"userAgent": "ec2-api-tools 1.6.12.2",
"requestParameters": {"instancesSet":

{"items": [{"instanceId": "i-ebeaf9e2"}]}},
"responseElements": {"instancesSet": {"items": [{

"instanceId": "i-ebeaf9e2",
"currentState": {

"code": 0,
"name": "pending"

},
"previousState": {

"code": 80,
"name": "stopped"

}
}]}}

}]}

Figure 8: AWS EC2 Log Entry Example

A.2 AWS IAM Log Entry Example
Figure 9 is an Amazon IAM log example [3]. It shows user Alice
created a user (“eventName”: “CreateUser”) with the username
“Bob”. Again, no “errorCode” field is present in the log entry, so we
can tell that the request succeeded. From the userAgent field in this
log entry we see that Alice is using the aws-cli (i.e., AWS Command
Line Interface) to perform this operation. Some operations are more
likely to be run from the CLI or in code from automated tools. Such
information can help an ABAC policy miner create policies which
grant requests based on the user agent being used.

{"Records": [{
"eventVersion": "1.0",
"userIdentity": {

"type": "IAMUser",
"principalId": "EX_PRINCIPAL_ID",
"arn": "arn:aws:iam::123456789012:user/Alice",
"accountId": "123456789012",
"accessKeyId": "EXAMPLE_KEY_ID",
"userName": "Alice"

},
"eventTime": "2014-03-24T21:11:59Z",
"eventSource": "iam.amazonaws.com",
"eventName": "CreateUser",
"awsRegion": "us-east-2",
"sourceIPAddress": "127.0.0.1",
"userAgent": "aws-cli/1.3.2 Python/2.7.5 Windows/7",
"requestParameters": {"userName": "Bob"},
"responseElements": {"user": {

"createDate": "Mar 24, 2014 9:11:59 PM",
"userName": "Bob",
"arn": "arn:aws:iam::123456789012:user/Bob",
"path": "/",
"userId": "EXAMPLEUSERID"

}}
}]}

Figure 9: AWS IAM Log Entry Example
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B APPENDIX ON ABAC POLICY EXAMPLE
Figure 10 is an example ABAC rule generated by our Algorithm 1
and written in JSON format. This rule allows three specific users
(actual user names redacted) to run any operation of the AWS
CloudFormation service when those users are MFA authenticated
(i.e., they passed multi-factor authentication). AWS CloudForma-
tion is typically used only by administrators for describing and
provisioning infrastructure resources in a cloud environment. The
facts that the access key is none, the userAgent is the service name,
and the eventType is “AwsApiCall” all restrict these operations to
be run from the AWS web console and not from any code or CLI
(Command Line Interface).

{
"sourceIPAddress": ["cloudformation.amazonaws.com"],
"userIdentity.sessionContext.attributes.mfaAuthenticated": ["true"],
"userIdentity.accessKeyId": ["NONE"],
"userIdentity.userName": ["USER1","USER2","USER3"],
"userAgent ": ["cloudformation.amazonaws.com"],
"eventType": ["AwsApiCall"]

}

Figure 10: Example ABAC Rule Generated by Algorithm 1

This generated ABAC rule can be deployed to systems that sup-
port ABAC policy deployment and enforcement. AWS has some
ABAC support by using “condition” elements. For example, this
ABAC rule can be deployed as an AWS IAM (Identity and Access
Management) policy as shown in Figure 11.

{
"Version": "2017-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"cloudformation:*",
],
"Resource": "*",
"Condition": {
"StringEquals": {"aws:username": ["USER1","USER2","USER3"]},
"BoolIfExists": {"aws:MultiFactorAuthPresent": true}

}
}

]
}

Figure 11: IAM Policy Deployment of the Rule in Figure 10
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