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ABSTRACT
The time-delay between the arrival of photons of multiple images of time-variable sources can
be used to constrain absolute distances in the Universe, and in turn obtain a direct estimate of the
Hubble constant and other cosmological parameters. To convert the time-delay into distances,
it is well known that the gravitational potential of the main deflector and the contribution of
the matter along the line of sight need to be known to a sufficient level of precision. In this
paper, we discuss a new astrometric requirement that is becoming important, as time-delay
cosmography improves in precision and accuracy with larger samples, and better data and
modelling techniques. We derive an analytic expression for the propagation of astrometric
uncertainties on the multiple image positions into the inference of the Hubble constant and
derive requirements depending on image separation and relative time-delay. We note that
this requirement applies equally to the image position measurements and to the accuracy
of the model in reproducing them. To illustrate the requirement, we discuss some example
lensing configurations and highlight that, especially for time-delays of order 10 d or shorter, the
relative astrometric requirement is of order milliarcseconds, setting a tight requirement on both
measurements and models. With current optical infrared technology, astrometric uncertainties
may be the dominant limitation for strong lensing cosmography in the small image-separation
regime when high-precision time-delays become accessible.
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1 IN T RO D U C T I O N

The time-delay between the arrival of photons of multiple images
of gravitationally lensed sources provides a physical anchor of
the scales in the universe. This method, known as time-delay
cosmography or time-delay strong lensing (Refsdal 1964), pro-
vides a one-step measurement of the Hubble constant and other
cosmological parameters. Time-delay cosmography is independent
of other cosmological probes (Treu & Marshall 2016), such as
the cosmic microwave background (Planck Collaboration VI 2018)
or the local distance ladder (Freedman et al. 2019; Riess et al.
2019).

In the past decades, measurements of relative time-delays have
been achieved with lensed variable active galactic nuclei (AGNs),
requiring multiyear monitoring campaigns with per cent–level
photometry (Fassnacht et al. 2002; Eigenbrod et al. 2005; Kochanek
et al. 2006; Tewes, Courbin & Meylan 2013; Liao et al. 2015;
Bonvin et al. 2016; Tak et al. 2017) or high-cadence monitoring
with millimag photometry (Bonvin et al. 2018; Courbin et al. 2018)
with uncertainties of ∼1 d. These galaxy-scale AGN lenses have
image separations of 1–3 arcsec with relative delays of about 10–
100 d from the first and last image appearing, lensed by a massive
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early-type galaxy. More recently, lensed supernovae, as originally
suggested by Refsdal (1964), have been discovered (Kelly et al.
2015; Treu et al. 2016; Goobar et al. 2017) and may become an
important source of time-delay cosmography in their own right
(Goldstein & Nugent 2017; Grillo et al. 2018). Other classes
of multiply imaged time-variable sources may be observed and
analysed to perform cosmographic measurements, such as repeating
Fast Radio Bursts (Li et al. 2018) or gravitational waves (Sereno
et al. 2011). In this paper, we choose lensed AGNs as an illustration,
but we note that the astrometric requirement equally applies to
transient sources, with the caveat that opportunities to gather high-
precision astrometric measurements will be limited to the visibility
window.

In addition to a measurement of the difference in arrival time,
the other ingredients for time-delay cosmography are (1) a precise
model of the gravitational potential across the images to estimate the
relative Fermat potential; (2) the line-of-sight weak-lensing effect
that can alter the cosmographic distances. Fermat potential and
line-of-sight effect need to be inferred with independent data, such
as high-resolution Hubble Space Telescope (HST) imaging of the
lensing arc, imaging and spectroscopy of the environment of the lens
and kinematics of the lensing galaxy (see e.g. Suyu et al. 2017).

Modern state-of-the-art cosmographic analysis has been per-
formed to date on six galaxy-scale AGN lenses (Suyu et al. 2010,
2013, 2014; Birrer, Amara & Refregier 2016; Bonvin et al. 2017;
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Wong et al. 2017; Birrer et al. 2019; Chen et al. 2019; Rusu et al.
2019), yielding uncertainties of order 5–8 per cent per system,
resulting in a joint measurement of the Hubble constant with
2.4 per cent precision (Wong et al. 2019).

Time-delay cosmography has the potential to measure the Hubble
constant to one per cent precision in the near future with a sample
of about 40 lenses (Jee et al. 2016; Treu & Marshall 2016; Shajib,
Treu & Agnello 2018), a forecast based on the demonstrated
precision in current analyses of lensed AGNs.

In this paper, we discuss an additional requirement on the
astrometric precision of the relative positions of the images of the
time-variable source. The relative astrometric uncertainties may
lead to substantial cosmological uncertainties and possibly biases if
neglected, and has not been sufficiently discussed in the literature.

We derive an analytic expression for the propagation of astromet-
ric uncertainties into the inference of the Hubble constant and derive
requirements depending on image separation and relative time-
delay. We test this expression with numerical examples where we
displace the image positions. We derive requirements for different
types of lenses and sources such that the astrometric uncertainty
is subdominant with respect to other uncertainties inherent in the
cosmographic analysis.

We discuss the different regimes in which time-delay cosmog-
raphy is applied and elaborate on the expected impact on current
and future analyses. Typically, not to dominate the cosmological
error budget, the relative astrometry of the variable multiple images
needs to be known with �10 mas uncertainty. For short time-delays
(�10 d), the astrometric precision needs to be �1 mas. We note
that the astrometric requirements discussed in this work go beyond
statements about the data itself and are equally required by the
modelling aspects, e.g. in the crowded regime when multiple light
components are superimposed, and to the accuracy of the model in
reproducing the observed image positions.

The paper is structured as follow. In Section 2, we review the
theory of gravitational lensing and its application to cosmography
with time-variable sources. In Section 3, we propagate the astro-
metric error into the cosmographic analysis and derive an analytic
expression applicable terms of relative time-delays and image
separations. In Section 4, we provide examples for different and
illustrative lensing systems and derive the astrometric requirements
for these cases. In Section 5, we elaborate on the implications for
current and future studies of time-variable lensing systems.

All numerical computations are performed with LENSTRONOMY1

(Birrer, Amara & Refregier 2015; Birrer & Amara 2018) version
0.7.0.

2 TIM E-DELAY C OSMOGRAPHY

In this section, we provide a basic review of the lensing theory with
a focus on time-delay cosmography. For conciseness, we do not
discuss lensing degeneracies or the effect of multiple lens-planes in
this paper and refer the reader to the current literature in this regard
(e.g. Schneider 2019).

2.1 Lensing formalism and time-delays

The lens equation, which describes the mapping from the source
plane β to the image plane θ is given by

β = θ − α(θ ), (1)

1https://github.com/sibirrer/lenstronomy

where α is the angular shift on the sky between the image position
it had in absence of the deflector and the actual observed position.
The vector field α can be derived from a scalar potential ψ , known
as the lensing potential, such that

α(θ ) = ∇ψ(θ ). (2)

The lensing potential is related to the surface mass density by the
two-dimensional Poisson equation.

The excess time-delay of an image at position θ relative to the
unperturbed path is

t(θ , β) = (1 + zd)

c

DdDs

Dds

[
(θ − β)2

2
− ψ(θ )

]
, (3)

where zd is the redshift of the deflector, c the speed of light, ψ

the lensing potential, and Dd, Ds and Dds the angular diameter
distances from the observer to the deflector, from the observer to
the source and from the deflector to the source, respectively. The
angular term in brackets in the equation above, a combination of
the geometrical and the gravitational delays, is called the Fermat
potential φ:

φ(θ , β) ≡
[

(θ − β)2

2
− ψ(θ )

]
. (4)

The relative time-delay between two images A and B, �tAB, is

�tAB = D�t

c
�φAB, (5)

where

D�t ≡ (1 + zd)
DdDs

Dds
(6)

is the so-called time-delay distance and

�φAB ≡ φ(θA, β) − φ(θB, β). (7)

is the relative Fermat potential between two images.

2.2 Cosmography and the Hubble constant

A measurement of the relative time-delay, �tAB, and the relative
Fermat potential, �φAB allows one to infer the time-delay distance,
D�t (equations 5 and 6). Conceptually, whereas all the other lensing
observables are angles, and thus do not contain distance information,
the time-delay multiplied by the speed of light is an absolute
measurement of length and can thus measure distances.

In practice, the time-delay is currently measured with ground-
based monitoring campaigns and the relative Fermat potential is
estimated from the distortion observed in high-resolution images
and the velocity dispersion measurements of the lensing galaxy
[see e.g. Suyu et al. (2017) and references therein].

The time-delay distance is the primary cosmographic measure-
ment and anchors the absolute scale of the universe for the specific
redshift configuration of the lensing system. Like for any absolute
distance measurement in the Hubble flow, the Hubble Constant
(H0) is inversely proportional to the distance (D�t in the case of
lensing).

Thus, the relative error contribution in D�t, and thus H0, from a
time-delay measurement �t ± δ�t is directly linked to the relative
error in the time-delay as

δH0

H0
= δ�t

�t
(8)

MNRAS 489, 2097–2103 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/2/2097/5549847 by U
C

LA Biom
edical Library Serials user on 26 July 2020

https://github.com/sibirrer/lenstronomy


strong lensing astrometric requirements 2099

and the error on the inference of the relative Fermat potential �φAB

± δ�φAB

δH0

H0
= δ�φAB

�φAB
. (9)

3 A S T RO M E R I C ER RO R P RO PAG AT I O N

Astrometric errors in the determination of an image position θA

affect the estimate of the relative Fermat potential, �φAB (equation
3), regardless of the precision of the lensing potential, ψ . There-
fore, astrometric errors can be a limiting factor to the achieved
cosmographic precision.

In this section, we perform the first-order error propagation
(Section 3.1) and then a full non-linear propagation (Section 3.2),
showing that the first-order term is the dominant one. We then derive
a simplified form of the error propagation in terms of an observed
time-delay and image separation that can be used to derive the
specific requirements on the relative astrometry for any given time-
delay lensing system (Section 3.3).

3.1 Linear error propagation

The first-order correction to the relative Fermat potential difference,
�φAB, by a displacement δθA is given by

δ�φAB(δθA) ≈ d�φAB

dθA
· δθA =

[
∂

∂θA
+ ∂β

∂θA

∂

∂β

]
�φAB · δθA

=
[
θA − β − α(θA) + ∂β

∂θA
(θB − θA)

]
· δθA

= (θB − θA)
∂β

∂θA
δθA, (10)

where we have applied the lens equation (equation 1) in the last
line of the equation above. We recover the fact that lensed images
appear at extrema of the arrival time surface (Fermat potential) and
thus the partial differentials of the Fermat potential at the image
positions vanish to first order. The remaining first-order term is the
partial derivative of the source position with respect to a shift in
the image position. This calculation effectively updates the source
position based on the displacement of the position of image A only.
In reality, each individual image provides constraints on the source
positions.

In a more general way, we can express equation (10) as

δ�φAB(δθ ) ≈ (θB − θA) · δβ, (11)

where we introduced the notation δβ for the propagated astro-
metrical error on the source plane from the combined infor-
mation available for each individual image. We note that this
expression is a scalar product and has a directional dependence.
Displacements of the source along the direction between the two
images have the most significant impact on the relative Fermat
potential.2

The variance in the relative Fermat potential, σ 2
�φAB

, can be
expressed in terms of an error covariance matrix in the source plane
position, �β ≡ σ (βi, βj ), as

σ 2
�φAB

≈ (θB − θA)T �β (θB − θA) . (12)

2Wagner (2018) derived equation (11) as the general condition to connect the
transformation of the deflection potential with a shift of the source position
for given image positions.

The propagation of a positional error covariance matrix in the
image plane of image k, �θ,k ≡ σ (θk,i , θk,j ), to the source plane
covariance, �β,k , is given by (see e.g. Oguri 2010 for the use of this
relation for lens modelling)

�β,k = AT
k �θ,k Ak, (13)

where

Ak ≡ ∂β

∂θ k

(14)

is the lensing Jacobian at the image position k. In the strong
gravitational lensing regime, the source plane is magnified and thus
det

(
�β,k

) ≤ det
(
�θ,k

)
.

In case of uncorrelated astrometric errors of multiple images of
a source, the Gaussian error propagation on the source uncertainty
is given by

�β =
(∑

k

�−1
β,k

)−1

, (15)

where �−1
β,k are the inverse covariance matrices based on the

individual images (equation 13) summed over the multiple images
(indexed by k).

Fig. 1 illustrates the astrometric error propagation from the image
to the source plane for three common quadruply imaged lensing
configurations (cusp, cross, and fold configuration) and a doubly
imaged lensing configuration (the upper panel of Fig. 1) for a
singular isothermal ellipsoid with external shear lens model. The
lower panel corresponds to the error ellipses in the source plane
from the individual images (equation 13) and combined (equation
15). Quadrulpy imaged lensing configuration naturally provide
more information about the source position than doubly imaged
ones.

In Table 1, we present numerical values of the error propagation
of astrometric errors on the relative Fermat potential under fixed
lensing potential (equation 12) of the four lensing configurations
presented in Fig. 1, assuming an Einstein radius θE = 1 arcsec
and a fiducial astrometric uncertainty of σ θ = 10 mas. The errors
are given relative to the true relative Fermat potential. The last
column presents the relative error propagation from the image to
the source plane. The uncertainty in the source position is about
one order of magnitude smaller than the astrometric uncertainty
on individual image positions. We note that some relative Fermat
potentials are affected at the ∼10 per cent level, even in the case of
perfect knowledge of the lensing model.

3.2 Non-linear error propagation

The calculation in Section 3.1 assumes that the astrometric uncer-
tainty does not affect the precision of the inference of the lensing
potential ψ . This is true in the regime where extended arc and
ring features dominate the information used to constrain the lens
model. In this section, we perform an error propagation in the case
where the image positions are the dominant source of information
of the lens model itself. As an illustration, we choose the same three
lensing configurations presented in Fig. 1 and Section 3.1.

We perform the following Monte Carlo error propagation for all
four cases:

(i) We draw a displacement from a Gaussian error distribution
with σ θ for each of the 4 (2) images.

(ii) We re-adjust the lens model parameters to satisfy the con-
straints on the image positions of our imperfect measurement. To
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Figure 1. Illustration of the astrometric error propagation from the image to the source plane for three common quadruply imaged lensing configurations
(cusp, cross, and fold configuration) and a doubly imaged lensing configuration. Top panel: Image positions and arrival time surfaces for the four source
configurations. Lower panel: Error ellipses in the source plane from the individual images (equation 13) in different line styles as indicated by the caption and
combined (equation 15) as solid blue contour with red edge. The shaded region corresponds to the astrometric precision in the image plane for an individual
image. Different line styles correspond to the different individual images.

Table 1. Error propagation of astrometric errors on the relative Fermat potential under fixed lensing potential (equation 12) of the four lensing systems
presented in Fig. 1 with an astrometric error of 1 per cent relative to the Einstein radius θE (e.g. 10 mas for θE = 1 arcsec). The errors are given relative to the
true relative Fermat potential. The last column presents the relative error propagation from the image to the source plane.

Configuration σ�φAB /�φAB σ�φAC /�φAC σ�φAD /�φAD σ�φBC /�φBC σ�φBD /�φBD σ�φCD /�φCD σβ /σ θ

Cusp 0.01 0.01 0.01 0.06 0.05 0.68 0.06
Cross 0.11 0.02 0.02 0.02 0.02 0.1 0.11
Fold 0.02 0.02 0.01 0.06 0.02 0.02 0.08
Double 0.03 – – – – – 0.22

find an unique solution for positions, we fix the shear strength
for the quads to the true value and for the double, providing far
fewer constraints on the lens model, we fix the lensing centre and
orientation of the deflector ellipticity as well (possibly informed by
a luminous deflector component).

(iii) We compute the relative Fermat potential at the observed
image positions with the re-adjusted lens model.

(iv) We repeat these steps to produce a posterior distribution of
the relative Fermat potential.

As a result, we have a posterior distribution of relative Fermat
potentials representing the uncertainty of the astrometry. Table 2
presents the errors on the relative Fermat potential for the four cases.
The source position uncertainty is comparable to the image plane
astrometric uncertainty of the individual images, significantly larger
relative to the linear error propagation when assuming the correct
lens model (Table 1). The relative Fermat potential uncertainties
are inflated by the same order as the source position uncertainties.
The specific error on the relative Fermat potential depends on
the image configuration and possibly also on the lens model
assumptions. Even though the details may vary for each system,
the scaling of the uncertainties with source position uncertainty

and image separation according to equation (12) should be robust
in most practical cases. We do not observe a bias in the relative
Fermat potentials when incorporating random Gaussian errors in the
astrometry.

3.3 Astrometric requirements for cosmography

In Section 3.1, we derived a first-order error propagation of astro-
metric uncertainties on the image positions of variable sources and
concluded that the source position uncertainty is the dominant first-
order term when the lens model is perfectly known (or known from
other constraints like extended images). In contrast, when using the
image positions as constraints on the lens model itself (Section 3.2),
we concluded that the uncertainty in the source position is of order
the image position uncertainties. This statement applies to all three
configurations (cusp, cross, and fold) with the same linear scaling
of the astrometric precision applicable as derived from the linear
error correction terms.

In this section, we use the astrometric error formula (equations 11
and 12) to derive astrometric requirements based on the observed
image separations and relative time-delays for current and future
lens systems.
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Table 2. Error propagation of astrometric errors on the relative Fermat potential of the three lensing systems presented in Fig. 1, while simultaneously inferring
the lensing potential from the image positions with an astrometric error of 1 per cent relative to the Einstein radius θE (e.g. 10 mas for θE = 1 arcsec). The
errors are presented relative to the true relative Fermat potential. The last column presents the relative error propagation from the image to the source plane.

Configuration σ�φAB /�φAB σ�φAC /�φAC σ�φAD /�φAD σ�φBC /�φBC σ�φBD /�φBD σ�φCD /�φCD σβ /σ θ

Cusp 0.26 0.27 0.27 0.32 0.32 0.96 0.63
Cross 0.18 0.13 0.13 0.13 0.14 0.23 0.72
Fold 0.18 0.18 0.2 0.21 0.23 0.23 0.71
Double 0.18 – – – – – 0.74

We can express the error propagation of equation (11) in terms
of measured time-delays, �tAB, on the Hubble constant (equation
9) as

δH0(δθ )

H0
≈ D�t

c�tAB
(θB − θA) · δβ. (16)

For deriving astrometric requirements, we further simplify the
equation above by removing the vector equation resulting in the
expression

σH0

H0
≈ D�t

c

θAB

�tAB
σβ. (17)

In order for the astrometric uncertainty to be subdominant with
respect to the uncertainty in the time-delay measurement, σ�tAB , the
following requirement applies (from equation 8)

θABσβ � σ�tAB

c

D�t

. (18)

For a fixed time-delay precision, the requirements are more stringent
for larger separation lenses. However, the time-delays scale with
lens size as �tAB ∝ θ2

AB and the error on the Hubble constant thus
scales as

σH0 ∝ σβ

θAB
. (19)

In other words, the astrometric requirements for small separation
short time-delay lenses are more stringent than for the same sym-
metry with larger image separations to achieve the same precision
on the Hubble constant. This is on top of the fact that small
separation lenses already have shorter time-delays, and hence a
larger time-delay uncertainty propagated into the Hubble constant
(e.g. equation 8). The values for the relative Fermat potential
difference errors in Tables 1 and 2 can be re-scaled by the factor
σ θ /θE for the full dynamic range of gravitational lensing. To
relate the requirements from the source plane, σβ , to the image
plane astrometric uncertainty, σ θ , the number of images and their
individual magnifications have to be taken into account (equation
15). This leads to σ θ /σβ ∼ 10−1 (Table 1, last row). In case when the
positional information is used to determine the lens model itself,
the non-linear error propagation results in σ θ /σβ ∼ 1 (Table 2,
last row).

4 SPECIFIC A STRO METRIC REQU IREMENTS

In the following section, we illustrate the astrometric precision
requirements given by equations (17) and (18) with some specific
examples of image separations, measured time-delay and its pre-
cision, that are meant to describe typical conditions for present-
day and near-future campaigns. When needed, we assume a flat
�CDM cosmology with H0 = 70 km s−1 Mpc −1 and �m =
0.3. We set the deflector redshift zd = 0.5 and source redshift
zs = 2. We note that different and equally reasonable choices
of redshift configuration and background cosmology would only

marginally modify the requirements. We present specific examples
in Section 4.1 and discuss the major challenges identified by our
work in Section 4.2. These requirements have to be matched by the
precision a lens model predicts the observed image positions.

4.1 Examples

Table 3 gives five specific examples of image separation and
time-delays and their required astrometric precision to (a) match
the quoted time-delay precision (equation 18) and (b) to match
a 5 per cent uncertainty in H0 not to dominate the error budget
of the cosmographic analysis in respect to other errors (equation
17). The time-delay measurement precisions are chosen to match
current observational precision (Examples 1–3) or future ambitious
measurements (Examples 4 and 5). In the following, we discuss
those examples.

Example 1: For a typical cluster-scale lens with image separation
of 20 arcsec and a time-delay of 1000 d, the relative astrometric
requirement is 30 mas in the source plane to not exceed a 5 per cent
uncertainty in H0. This is routinely achieved with current HST
imaging. A distortion inaccuracy of 6 mas over the scale of the
cluster (Kozhurina-Platais, Grogin & Sabbi 2018) results in a
1 per cent effect on H0. Unaccounted distortions do have an impact
on the lens model and thus are non-linear effects (Section 3.2).
In the case of supernova ‘Refsdal’ in MACSJ1149+2223 (zd =
0.54 and zs = 1.49), the image separation of SX and S1-4 is about
8 arcsec and the time-delay is about 350 d (Kelly et al. 2016). Thus,
the astrometric requirement in the source plane is approximately 20
mas to match a 5 per cent precision on H0 from a time-delay of SX.
The magnification of SX is estimated to be about 5 (Grillo et al.
2016), leading to a required image plane precision of about 50 mas
(with directional dependence). The fully non-linear propagated un-
certainties of the Grillo et al. (2016) models achieving of order 100
mas rms precision in the position of SX and sub 10 per cent precision
(Grillo et al. 2018) in the relative time-delay confirm the validity of
the estimates provided by the framework presented in this work.

Example 2: A typical massive galaxy with image separations of
3 arcsec and a relative time-delay of 100 d requires a similar relative
astrometric precision of 20 mas in the source plane to match the
5 per cent uncertainty requirement on H0. This is similar to the
case of the longest time-delays in the quadruply lensed quasars
RXJ1131−1231 (Suyu et al. 2013, 2014; Birrer et al. 2016) and
B1608+656 (Suyu et al. 2010), or for the doubly lensed quasar
SDSSJ1206+4332 (Birrer et al. 2019).

Example 3: Smaller separation images of 2 arcsec with a relative
time-delay of 10 d lead to a 3 mas astrometric requirement,
significantly more demanding than Examples 1 and 2. This example
corresponds to either neighbouring images of a wide separation
quadruply lensed quasars or a smaller separation lens. This case is
similar to HE 0435-1223 (Wong et al. 2017) or the smaller time-
delay pairs in RXJ1131−1231 and B1608+656.
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Table 3. Astrometric requirements for five different examples of image separations, θAB, and time-delays, �tAB, at lens
redshift zd = 0.5 and source redshift zs = 2. The requirements are for uncertainty on H0 from astrometric uncertainty to
be less than the uncertainty on H0 from the time-delay uncertainty, σ�t, and to be below the 5 per cent level, which we
choose as representative of the total uncertainties including those arising from modelling the main deflector potential
and the contribution from the mass along the line of sight. The requirements are expressed as uncertainties in the source
position, σβ . To relate these requirements to the image plane astrometric uncertainty, σ θ , the number of images and
their individual magnifications have to be taken into account (equation 15). This leads to σ θ /σβ ∼ 10−1 (Table 1, last
row). In case when the positional information is used to determine the lens model itself, the non-linear error propagation
results in σ θ /σβ ∼ 1 (Table 2, last row).

Example θAB (arcsec) �tAB (d) σ�t (d) σH0 (σβ ) ≤ σH0 (σ�t ) (mas) σH0 (σβ ) ≤ 5 per cent (mas)

1 20 1000 30 18 30
2 3 100 3 12 20
3 2 10 1 6 3
4 1 4 0.25 3 2.4
5 1 1 0.025 0.3 0.6

Example 4: Short time-delays with image separation of 1 arcsec
and a relative delay of 4 d, as expected from small separation lenses
or neighbouring image pairs must meet an astrometric requirement
of 2.4 mas.

Example 5: Small and symmetric lenses with image separation of
1 arcsec and a relative delay of 1 d results in sub-mas requirements in
the relative astrometry to reach a 5 per cent precision measurement.
Realistic time-delay measurements will be less precise than quoted
in Table 3 unless other measurements (such as gravitational waves)
are available. This last example is motivated by the recent discovery
of the lensed supernova iPTF16geu (Goobar et al. 2017) and X-ray
measurements of the close pair in PG1115+080 (Chartas, Dai &
Garmire 2004). An astrometric uncertainty in the source plane of 12
mas would result in an uncertainty of the Hubble constant of unity.

4.2 Challenges

For galaxy clusters (e.g. Example 1 in Table 3), the astrometric
precision is not a limiting factor. However, the complexity in the
lens model and their uncertainties may limit the predictive power
of where the images appear and thus are limited in the ability to
infer the source position. The lens models are mostly informed by
conjugate points other than the actual variable source images and
thus the linear propagation of uncertainties from the image to the
source plane is applicable. A limiting factor in a cluster analysis is
the ability of the lens model to map the source to the correct image
positions. In this regard, a source position uncertainty of 30 mas is
required to measure H0 to the 5 per cent level. This translates to an
image position uncertainty of e.g. 60 mas by an image magnified by
a factor of 4. Achieving this precision is challenging in the cluster
lensing regime and requires a dedicated effort and exquisite data
(Grillo et al. 2018), beyond what is usually done in cluster models,
where root-mean-square (rms) scatter of positions in the image
plane are typically at the 0.1–1 arcsec level (Treu et al. 2016).

The astrometric requirements of few mas are at the limit of the
HST capabilities for isolated point sources. In the strong lensing
systems considered here, the variable images are in a crowded field,
superposed on a host galaxy and stellar light from the lensing galaxy.
This makes precise astrometry more challenging than for isolated
point sources. Achieving astrometric precision of 10 mas with HST
requires a considerable and deliberate effort in the reconstruction of
the point spread function, the design of the observations for optimal
sampling of the data and the accuracy in the modelling of different
blended light components. Centroiding and interpolating point
spread functions in the forward modelling of imaging data and we

advise that those limitations are quantified and formally propagated
through the lens modelling analysis in regimes where impacts on
the results are expected from the stated requirements. For radio
loud sources, radio interferometry may turn out to be very useful
in the most extreme cases. The main caveat is that combining radio
positions with time-delays from optical monitoring leads to biased
results if the radio and optical emission are not coincident (see e.g.
Barnacka 2018, for a recent review of the potential misalignment of
the nuclear emission at different wavelengths). GAIA astrometry has
also its limitation due to the blending of galaxy host and image com-
ponents (see e.g. Krone-Martins et al. 2018). Large ground-based
telescopes equipped with adaptive optics like Keck and the proposed
next generation of extremely large telescopes like the Thirty Meter
Telescope (Sanders 2013), Giant Magellan Telescope (Bernstein
et al. 2014), or the European Extremely Large Telescope will be
able to meet these requirements taking advantage of their resolution
and well-sampled PSFs, provided that the PSF and its variations
can be faithfully reconstructed over the field of view of the lens.

Additionally, dark matter substructure is known to perturb the
image positions by several mas (Chen et al. 2007). These lensing
perturbations result in a fundamental limit on how precisely a
specific lens model can predict the image positions and that
requirements of few mas or below may be unattainable given the
unresolved lensing perturbation at those scales.

Finally, we note that astrometric uncertainties introduce an
additional noise term in the measurement of time-delay anomalies
(Keeton & Moustakas 2009). Although investigating that effect is
beyond the scope of this work, the formulae given here can be used
for that purpose as well.

5 SU M M A RY

We investigated the effect on time-delay cosmography of astromet-
ric errors on the point-like images of time-variable sources such as
quasars or supernovae. We derived a convenient analytic expression
(equation 17) for the propagation of astrometric uncertainties on the
multiple image positions into the inference of the Hubble constant
depending on image separation and relative time-delay. We derived
requirements for different type of lenses so that the astrometric
uncertainty is subdominant with respect to other uncertainties in
the cosmographic analysis.

Meeting the derived astrometric requirements is essential when
performing a cosmographic analysis. For the current wide-
separation galaxy-scale quasar lenses with relative time-delays of
about 100 d, the requirements are met with HST imaging. For
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transients that are more challenging to localize (such as gravitational
waves), astrometric uncertainties can be a major limitation.

In the cluster regime, whereas the nominal astrometric precision
can easily be achieved by HST images, the requirement of the lens
model to match multiple images with mas precision translates into
a source position uncertainty that poses a strong limitation on the
cosmographic analysis. The same formulae derived in this paper
for astrometric uncertainties can be used to assess the uncertainty
in cosmography stemming from the rms residuals between the
observed and predicted image positions from a given lens model.

For small time-delay lenses with relative delays in the regime of
1–10 d, the astrometric requirements tighten to order mas. Meeting
these requirements is a major challenge due to crowding by the
host and lens galaxy with current imaging capacity and may require
radio interferometry or adaptive optics behind the next generation
of extremely large telescopes in the near-infrared.

Ultimately, dark matter substructure introduces astrometric
anomalies at the mas level (known as millilensing), that may set a
fundamental noise floor per system, particularly relevant for small-
separation short-delay lenses. It is beyond the scope of this paper to
investigate whether this noise term can be contained by averaging
over many systems.

Taking the broader view, we recommend that the efforts to in-
crease the precision of time-delay measurements and lens modelling
techniques must be matched with corresponding efforts to increase
astrometric precision and the modelling aspects of it. For example,
in the setting of the Time-Delay Lens Modelling Challenge (Ding
et al. 2018), an optimal measurement of the time-delays of 0.25 d
is adopted, corresponding to the ideal case of a high-cadence high-
precision monitoring campaign. In such a case, astrometry may
dominate the error budget and become a limitation, especially for
small-separation short time-delay lenses.
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