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Abstract—Automated vehicles have immense potentials for
improving the safety, efficiency and environmental problems in
our existing transportation systems. Despite the tremendous
ongoing efforts from both industry and academia, fully
autonomous vehicles have not yet been widely deployed in public
traffic. In the foreseeable future, automated vehicles will very
likely be expected to operate in traffic that involve heterogeneous
agents including automated vehicles, human-driven vehicles and
pedestrians. Such heterogeneity will bring new challenges to the
safety of the traffic system. This paper reviews some existing
works related to heterogeneous traffic systems and presents a
vision of cyber-human-physical heterogeneous traffic systems that
can substantially enhance overall safety.

Keywords—  heterogeneous traffic systems,
Physical systems, enhanced safety

cyber-human-

[. INTRODUCTION

Automated vehicles have immense potentials for improving
the safety, efficiency and environmental problems associated
with road transport and for offering unhindered mobility for
non-drivers, the disabled and the elderly[1]. However, fully
autonomous vehicles have not yet been widely deployed in
public traffic despite the tremendous efforts from both industry
and academia. In the foreseeable future, road vehicles at all
levels of automation and connectivity will very likely be
expected to operate in environments involving automated
vehicles, human-driven vehicles and pedestrians[2][3].
Guaranteeing safety in such a complex traffic system with
heterogeneous agents is a daunting but important task.

According to a recent crash causation survey by NHTSA[4],
in current traffic, human driver-attributed crashes contribute to
over 90% of all crashes. In addition, the number of pedestrian
fatalities in these crashes remains high, accounting for about
15% of all traffic fatalities in the U.S.[5]. The emergence of
automated vehicles (all levels of automation including
advanced driver-assistance systems (ADAS)) are expected to
address this issue. Unfortunately, accidents including fatal ones
have still been occurring with the state-of-the-art automated
vehicles (e.g. Waymo, Tesla, Uber)[6]-[9]. The safety issues in
such cases go beyond developing a perfect automated vehicle.
First, not all agents in the traffic will have advanced sensors like
automated vehicles to comprehensively perceive their
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surroundings. Second, even for automated vehicles, their
sensors may fail for various reasons such as occlusions and poor
lighting and weather conditions. For instance, a recent study by
AAA found that pedestrian fatalities are becoming a crisis with
new cars using automation functions because the pedestrian
detection is often ineffective especially at night[10].
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Fig. 1: A traffic context featuring cyber-human-physical interaction
enabled by connectivity

= unconnected pedestrian

= connected pedestrian

Along with vehicle automation, vehicle connectivity,
whether it is vehicle to vehicle (V2V), vehicle to infrastructure
(V2I), and/or vehicle to pedestrian (V2P), has also been
proposed to enhance the safety[11]. As shown in Fig. 1, with
connectivity, there is a huge opportunity to leverage the vast
computational capabilities available in the cloud as well as the
prevalence of hand-held computing and communication
devices to create a highly integrated safety paradigm for cyber-
human traffic participants. Indeed, there are many efforts so far
on evaluating ad-hoc communication and collaborative
perception schemes between vehicles and other agents or
roadside infrastructure with the safety goal in mind[12]-[15].
However, despite the importance of inherent personalized
behavioral interactions among pedestrians and human-driven
and/or automated vehicles for traffic safety, there is a lack of an
integrated approach to exploit the full potential of connectivity
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and computation to model and anticipate these behavioral
interactions to improve traffic safety.

Therefore, this paper aims to look into this issue by studying
existing work related to heterogeneous traffic systems and
investigating a new paradigm of an integrated cyber-human-
physical traffic system that derives and incorporates data-driven
knowledge on the traffic agents so as to coordinate the behaviors
of these agents and thereby enhance the safety of public traffic.
This paradigm is expected to leverage ubiquitous connectivity
to improve safety even when ‘important’ sensors fail or are
absent in some traffic participants.

II. MODELING AND PREDICTION FOR TRAFFIC AGENTS IN
HETEROGENEOUS TRAFFIC

In heterogeneous traffic, it is essentially important to
understand the individualized behaviors of agents and more
importantly predict their behaviors for safety-related planning
and control. In this section, we review existing approaches for
modeling and predicting the behaviors of traffic agents.

Most existing approaches are based on pure motion models
which assume that the target agent maintains a single moving
pattern all the time, at least for the time horizon of interest. The
predictors then utilize physics-based motion models to describe
the possible movements of the agent. For vehicles, the motion
model can be dynamic models that take the forces applied to
them into account. Such models are normally based on a bicycle
representation [16][17]. During prediction, the input to the
vehicle, namely the steering wheel angle and drive force, are
assumed to be constant. For pedestrians, a simple point mass
model is used [18]. For simplification purposes, kinematic
models such as Constant Velocity (CV) and Constant
Acceleration (CA)[19], [20], and Constant Turn Rate Velocity
(CTRV) and Constant Turn Rate and Acceleration
(CTRA)[21][22] models can be used. A straightforward
method to predict the trajectory is to apply the motion models
to the current state of the agent and loop the prediction step[23],
[24]. In order to improve the performance of long-term
prediction, the uncertainties in the vehicle states and motion
process can be modeled by Gaussian distributions and handled
by Kalman Filters (KF)[19], [20], [25] and its extensions such
as Extended Kalman Filters (EKF)[26] and Unscented Kalman
Filters (UKF)[27]. Another way of using the motion model is
Monte Carlo simulation[28], [29]. By sampling the inputs of the
model instead of assuming them to be constant, a bank of
predicted trajectories can be obtained. Then, the possible ones
will be selected based on the physical limitation, road condition
and safety constraints. In general, the pure motion predictors
have problems in making reliable long-term predictions.

Some approaches also consider the behaviors of an agent to
enhance the long-term prediction accuracy. A traffic agent is
assumed to execute one of possible behaviors independently
from other agents. The first type of predictors in this level is
based on trajectory prototypes. The idea of these predictors is
that the trajectories of the agents, especially vehicles, can be
grouped into a finite set of categories, each of which represents
a unique motion pattern. Every motion pattern can be
represented by a prototype trajectory learned using statistical
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techniques[30], Topology Learning Network[31], or most
commonly, Gaussian Process (GP)[32]-[34]. The current
partial trajectory is compared with the motion patterns and the
most likely motion pattern can be used as a unique model[35],
or can be weighted into such a model with other possible
patterns[34] to generate prediction trajectories.

Some other approaches share a hierarchy structure that
consists of behavior/intention identification and motion
prediction. For human-driven vehicles, the identification can be
done using deterministic decision models of the driver. For
example, [36][37] use gap acceptance to predict possible lane
changes. Such decision models are suitable for simple driving
environments only. Machine learning based classifiers are more
popular techniques in this field. Multi-Layer Perceptron
(MLP)[38] is used to predict braking behavior of a driver in city
environment, logistic regression[39] is used to anticipate the
behaviors at a signaled intersection, Bayes classifier [40] and
Support Vector Machines (SVM)[41][42] are used to predict
lane change behavior on highways. Another popular alternative
is Markov Chain based models. The state transition in such
models is ideal for representing the intentions of a human driver
at different time steps. The update of the distribution is paused
when the vehicle is conducting a maneuver. After the maneuver
is completed, the probabilities will be initialized. Hidden
Markov Model (HMM) is used for making predictions during
highway driving[43], intersection navigating[44][45] and
making turns[46]. Markov Decision Process (MDP) is another
variant of Markov Chain model. By adding actions and
rewards, it can better resemble the internal states of a human
mind. [47] uses a manually defined MDP to predict vehicle
longitudinal behaviors. [48] uses Inverse Reinforcement
Learning (IRL) to train an MDP for a similar purpose. The
identifiers mentioned above all needs to be learned from
recorded actual driving data. The behavior prediction for
pedestrians share many similarities with that of human-driven
vehicles. However, since pedestrians are having more freedom
in moving directions and moving patterns, only machine
learning-based classifiers are popularly used. [48], [49] uses
SVM to predict a pedestrian’s road-crossing behavior. [50]
achieves the same purpose using a single layer perceptron. [51]
utilizes a Markov Chain model to predict the behavior among
stopping, walking, running and jogging. [52] proposes a
Behavior Convolutional Neural Network (Behavior-CNN) to
predict pedestrian behavior in crowded scenes.

With the identified behavior intention, the trajectory can be
obtained by adopting motion models corresponding to the
maneuver. The motion models can be deterministic, such as the
Tampére (TMP) model[53], Optimal Velocity Model
(OVM)[54], Intelligent Driver Model (IDM)[55] for car
following, and the Sinusoidal model[56], MOBIL model[57],
LMRS model[58] for lane switching. The motion model can
also be implemented in a probabilistic manner such as Random-
exploring Random Trees (RRT)[59], GP[60], and stochastic
reachable sets[61]. Artificial Neural Network (ANN) is another
popular alternative. Back Propagation (BP) network[62], Long
Short-Term Memory (LSTM) network[63], and Recurrent
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Neural Network (RNN)[64] have been used to generate
trajectories for different agents.

Most of these modeling and prediction approaches usually
assume that the agents behave independently. In realistic
heterogeneous traffic, agents interact with each other and so we
need to treat the agents as entities that interact with each other.
Such interactions will be central to understand the behaviors of
traffic agents in heterogeneous traffic. In the following, we
briefly review some works that address interactions of traffic
agents.

III. INTERACTIONS OF TRAFFIC AGENTS IN HETEROGENEOUS
TRAFFIC

In this paper, interaction refers to how the motion of an agent
influences and is influenced by the other (neighboring) agent’s
motion. We focus on such behavioral motion interactions with
less emphasis on the visual and other cues of communication
that facilitate/influence the interactions. In the context of
human-driven vehicles and pedestrians, these interactions arise
naturally from the psychological motivations of humans. An
intuitive way to capture these inter-agent interactions is with
some form of “social potential”, where each agent experiences
a force due to its neighbor that pushes or steers the agent
towards a lower energy configuration[65][66]. This
configuration can be modeled as resulting from the
superposition of attractive potentials (steering to a goal state)
and repulsive potentials (obstacle avoidance) that dictate the
microscopic (local) navigation behavior of an agent. In their
simplest form, these interaction potentials are modeled as if
they depend only on the relative displacement between two
agents giving rise to distance-dependent (social) forces. Such
potentials are commonly used to explain formations in certain
animals[67]. However, interactions between intelligent agents
such as humans are anticipatory by nature, depending not only
on the current position state but also on the expected future state.
To address this issue, some approaches exploit space-time
planning to generate trajectories that react to the likely future
trajectories defining the agent’s neighbors. To this end, so-called
anticipatory potentials are often crafted that also depend on the
relative velocity between the agents and are often expressed in
terms of mutual time to collision or minimum predicted
distance[68][69].

Even though variants of this social potential approaches have
been widely proposed in the literature[70][71], such approaches
focus mostly on pedestrian traffic. For human-driven vehicles,
some interaction-aware motion prediction methods have been
based on Dynamic Bayesian Networks (DBN). Pairwise
dependencies between multiple moving entities can be
modelled with Coupled Hidden Markov Chains (CHMM)[72]
which can be combined with Bayesian classifiers to identify
maneuver intentions[73]. To reduce computational complexity,
[74] models the dependencies between vehicles using a factored
state space instead of pairwise dependencies in the distribution.
Many pedestrian-vehicle interaction models that have been
proposed mainly extend the ideas of conservative social
potentials to shared spaces and mixed traffic[75]-[77]. Recently,
in part due to strong advances in machine learning techniques and
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readily available observation data[78][79] (such as traffic
surveillance video data that can be collected relatively easily),
there are several data-driven approaches that aim at capturing the
nature of interaction between heterogeneous agents (autonomous
or human-driven vehicles, and pedestrians)[80][81]. In
particular, some interaction potentials are cast in terms of reward
functions (features) which are then learned through (deep)
inverse reinforcement learning(IRL) [82]. It has also been
observed that disregarding these interactions in motion
planning of automated agents operating among human involved
traffic may lead to overly conservative motion plans[83].

Despite these encouraging progresses, more efforts are still
needed to develop comprehensive models that resolve the
motion behaviors of heterogeneous traffic agents and that could
capture the inherent (e.g. psycho-social) decision-making
processes of the agents with mutual interactions involving
humans such as pedestrians or human drivers.

IV. COORDINATION OF TRAFFIC AGENTS IN HETEROGENEOUS
TRAFFIC

The topic of coordination of agents has been extensively
studied in the past few decades. The social potential approach
to modeling social navigation of humans has found successful
applications and theoretical support in robotics[84]. In fact, a
plethora of work has resulted in the so-called social robotics
discipline where some mimicry of human behavior is central to
having robots interact naturally with humans[85]. In legacy
traffic, where such pedestrian and (human-driven and emerging
autonomous) vehicle agents interact, coordination is achieved
by using priority assignment protocols that every agent is
expected to follow in shared interaction zones. The priority
assignments can be derived from social norms and traffic right-
of-way rules (e.g. vehicles must yield to protect pedestrians in
cross walks). Given an interaction region covering a set of
agents, one can define a weighted directed graph to represent
these assigned priorities[86] (This, for example, would
weigh/prioritize pedestrians and cyclists over human-driven
vehicles, and them in turn over fully automated vehicles). The
coordination task is then to compute the control laws or actions
that preserve this priority in the face of heterogeneity of agents
and uncertainty in their behavior. While a centralized
coordinator may accomplish this and guarantee collision free
performance under some practical conditions (e.g. [87] for
autonomous intersection management), it is more challenging
to achieve in a distributed fashion where agents are expected to
make decisions independently based only on information local
to them (pedestrian or vehicle). Most decentralized
coordination approaches that use social potentials or navigation
functions to model goal-directed and obstacle avoidance
behavior of agents rely on the gradient-based actions by each
agent. For specific cost formulations, it can be shown that such
actions define Nash equilibria of (non-cooperative) games[88].
However, the formulations are generally non-convex and only
locally optimal results are possible for each agent. This means,
for example, some agents may wait more than others, or some
may not meet their desired goals, and on-line computations of
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the optimal solutions are generally possible only for the
simplest configurations.

In recent times, the receding/rolling horizon control (RHC)
(a.k.a. model predictive control (MPC)) scheme has emerged as
powerful framework to generate a (sub) optimal sequence of
actions for controlling a system by solving a finite-horizon
constrained optimization problem online using a model of the
system[45][46]. A chief attraction of MPC in context of
coordination of traffic agents is the possibility to include
predictive information (historical or modeled) and to do this in
rolling horizons. For coordination of traffic agents, to achieve a
scalable and robust solution, it is desirable to seek a distributed
MPC implementation that can be executed in real-time on
computing devices carried by each agent. However, this
distributed MPC approach must retain key traffic coordination
requirements when computing control actions for each agent:
namely, it must enforce collision avoidance constraints
between individual agents, and optimize, directly or indirectly,
a collective/coupled coordination objective for the traffic in the
interaction zone. This implies certain decoupling strategies are
required at the level of solving the optimization problems at the
agents. We mention two main categories of strategies that have
been proposed in theoretical settings: 1) Assume that the
distributed agents coordinate their optimization iterations
within the solution of the optimization problem to achieve some
consensus on their shared variables before proceeding to the
next MPC step. This version, which draws on techniques from
parallelized distributed optimization such as augmented
Lagrangian methods[91], has a large communication overhead,
but the solution could theoretically approach that of a
centralized MPC solving for all agents, provided the
communication graph coincides with the interaction/coupling
graph; 2)Assume that the computing agents communicate only

Cyber Cloud
(Learning Personalized behaviors
models)

after each agent completes the optimization for the MPC step
on its own while the current local control actions are being
applied; consequently, while the overhead is reduced, the
available communicated information will have a one-step
delay. There are encouraging works which applied these
approaches to multi-vehicle formation control [92][93].
Additional theoretical properties of distributed MPC have been
derived in [94], [95], where sufficient conditions were derived
for closed-loop system stability using distributed MPC with
contractive stability constraints. In [96], where agents are
assumed to update plans sequentially at each MPC step, it was
shown that robust stability conditions can be guaranteed given
initial feasibility.

To enhance the safety of heterogeneous traffic, we would
need to examine how the existing coordination approaches can
be effectively applied for safe coordination of navigation
interactions between human agents (e.g., pedestrians and
human-driven vehicles) and autonomous agents (e.g.,
automated vehicles) on roads. The coordination is expected to
be distributed and should also address the prevailing gap in
other priority-based or social-gradient based approaches
reviewed above, which are either reactive solutions (acting on
current agent states) or make myopic predictions without taking
inter-agent interactions into account.

V. A PARADIGM FOR CYBER-HUMAN-PHYSICAL
HETEROGENEOUS TRAFFIC SYSTEMS

In this section, we introduce a new paradigm of an integrated
cyber-human-physical traffic system that derives and
incorporates data-driven knowledge on the personalized
behaviors of traffic agents and leverages ubiquitous connectivity
to coordinate the behaviors of these agents with the goal of
enhancing the safety of public traffic.
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Fig. 2: Architecture of cyber-human-physical heterogeneous traffic systems
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The architecture of the proposed cyber-human-physical
heterogeneous traffic system is shown in Fig. 2. It consists of a
cyber cloud system and a human-physical traffic system, which
communicate with each other through communication
networks such as cellular networks (e.g., 5G) or Wi-Fi. The
physical traffic system including the heterogeneous traffic
agents (pedestrians, automated or human-driven vehicles) and
sensor-equipped infrastructures send sensory information to the
cloud. Algorithms residing in the cloud learn the behavior
models (e.g., action behavior models and motion behavior
models) of these individual agents in an offline manner. Each
agent can communicate with the cloud to acquire its own
behavior models as a service request from the cloud. In
addition, each agent can also share its sensory information with
neighboring agents through local communication networks
such as dedicated short-range communications (DSRC) and
short message service-cell broadcast (SMS-CB). With the
available sensory information from neighbor agents and
behavior models retrieved from the cloud, each agent can then
independently predict their actual behaviors (e.g., actions and
motion trajectories) in the near future locally and in real time.
The predicted actual behaviors will be shared with other
neighboring agents through local communication networks,
which will then be used to guide each agent’s suggested
behaviors through the proposed distributed real-time
coordination efforts to ensure traffic safety. The generated
behaviors can be directly executed by automated agents such as
automated vehicles and delivered to humans in non-automated
vehicles such as human-driven vehicles and pedestrians as
guidelines/reminders via user interfaces such as visual displays,
voice commands, and vibration reminders. This framework
enables a closed-loop cyber-human-physical system to leverage
both the extended computing capability in cyber cloud and
physical sensing and executing capabilities on physical agents
to enhance the safety of all heterogeneous traffic agents. This
approach is especially beneficial under the possible lack of or
with the failure of onboard perception capabilities of some
agents.

To realize the above proposed cyber-human-physical
paradigm, there are both technology and research barriers to
overcome. The technology barriers include but are not limited
to the development and deployment of high-speed and high-
bandwidth ~ communications  (e.g. 5G), intelligent
infrastructures, accurate micro-positioning systems, and high-
performance computing devices. Regarding research, first,
investigations are needed on a comprehensive modeling
approach for the action behaviors of heterogeneous traffic
agents, accompanied by efficient learning approaches to learn
the action behavior models for each agent from their daily
action behavior data, and real-time prediction approaches to
predict the action behaviors of each agent online. Second,
investigations are needed on a comprehensive modeling
approach to model the motion behaviors of heterogeneous
traffic agents, accompanied by efficient learning approaches to
learn the motion behavior models for each agent from their
daily motion behavior data, and real-time prediction approach
to predict the motion behaviors of each agent online. Third,

102

investigations are needed on a distributed behavior
coordination scheme that computes behavior action plans by
each traffic agent in real time with an explicit consideration of
the behavior information shared by the neighboring interacting
agents.

The above proposed paradigm for cyber-human-physical
heterogeneous traffic systems is a timely topic to protect human
life (pedestrians and legacy drivers) amidst developments in
driverless/automated vehicle technology. The proposed
approach, which relies mainly on already ubiquitous
connectivity, will facilitate the safe deployment of automated
vehicles in the real world, where automated vehicles need to
operate in legacy traffic, at least in the foreseeable future. This
paradigm will also need to create a dataset of the behaviors of
heterogeneous agents in realistic traffic to benefit the research
community to continue to create a better understanding of the
best approaches for the modeling of interactions of automated
vehicles, human-driven vehicles and pedestrians on public
roads.

VI. CONCLUSIONS

This paper first reviewed existing works in heterogeneous
traffic systems including the modeling of the action and motion
behaviors, including the interactions and coordination of the
motion of the constituent agents. Then, an integrated cyber-
human-physical traffic system paradigm is introduced that takes
into account these full range of issues with the goal of enhancing
safety. The proposed paradigm will derive and incorporate data-
driven knowledge on the personalized behaviors of traffic agents
and also leverage ubiquitous connectivity to improve the traffic
safety. A vision of the the paradigm is briefly described and the
challenges and opportunities the system are discussed. The
proposed system is expected to enhance safety of the
heterogeneous traffic systems involving both human and
autonomous agents.
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