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Abstract—Automated vehicles have immense potentials for 

improving the safety, efficiency and environmental problems in 
our existing transportation systems. Despite the tremendous 
ongoing efforts from both industry and academia, fully 
autonomous vehicles have not yet been widely deployed in public 
traffic. In the foreseeable future, automated vehicles will very 
likely be expected to operate in traffic that involve heterogeneous 
agents including automated vehicles, human-driven vehicles and 
pedestrians. Such heterogeneity will bring new challenges to the 
safety of the traffic system. This paper reviews some existing 
works related to heterogeneous traffic systems and presents a 
vision of cyber-human-physical heterogeneous traffic systems that 
can substantially enhance overall safety.  

Keywords— heterogeneous traffic systems, cyber-human-
physical systems, enhanced safety 

I. INTRODUCTION 

Automated vehicles have immense potentials for improving 
the safety, efficiency and environmental problems associated 
with road transport and for offering unhindered mobility for 
non-drivers, the disabled and the elderly[1]. However, fully 
autonomous vehicles have not yet been widely deployed in 
public traffic despite the tremendous efforts from both industry 
and academia. In the foreseeable future, road vehicles at all 
levels of automation and connectivity will very likely be 
expected to operate in environments involving automated 
vehicles, human-driven vehicles and pedestrians[2][3]. 
Guaranteeing safety in such a complex traffic system with 
heterogeneous agents is a daunting but important task.  

According to a recent crash causation survey by NHTSA[4], 
in current traffic, human driver-attributed crashes contribute to 
over 90% of all crashes. In addition, the number of pedestrian 
fatalities in these crashes remains high, accounting for about 
15% of all traffic fatalities in the U.S.[5]. The emergence of 
automated vehicles (all levels of automation including 
advanced driver-assistance systems (ADAS)) are expected to 
address this issue. Unfortunately, accidents including fatal ones 
have still been occurring with the state-of-the-art automated 
vehicles (e.g. Waymo, Tesla, Uber)[6]–[9]. The safety issues in 
such cases go beyond developing a perfect automated vehicle. 
First, not all agents in the traffic will have advanced sensors like 
automated vehicles to comprehensively perceive their 

surroundings. Second, even for automated vehicles, their 
sensors may fail for various reasons such as occlusions and poor 
lighting and weather conditions. For instance, a recent study by 
AAA found that pedestrian fatalities are becoming a crisis with 
new cars using automation functions because the pedestrian 
detection is often ineffective especially at night[10].  

 
Fig. 1: A traffic context featuring cyber-human-physical interaction 

enabled by connectivity 

Along with vehicle automation, vehicle connectivity, 
whether it is vehicle to vehicle (V2V), vehicle to infrastructure 
(V2I), and/or vehicle to pedestrian (V2P), has also been 
proposed to enhance the safety[11]. As shown in Fig. 1, with 
connectivity, there is a huge opportunity to leverage the vast 
computational capabilities available in the cloud as well as the 
prevalence of hand-held computing and communication 
devices to create a highly integrated safety paradigm for cyber-
human traffic participants.  Indeed, there are many efforts so far 
on evaluating ad-hoc communication and collaborative 
perception schemes between vehicles and other agents or 
roadside infrastructure with the safety goal in mind[12]–[15]. 
However, despite the importance of inherent personalized 
behavioral interactions among pedestrians and human-driven 
and/or automated vehicles for traffic safety, there is a lack of an 
integrated approach to exploit the full potential of connectivity 
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and computation to model and anticipate these behavioral 
interactions to improve traffic safety.   

Therefore, this paper aims to look into this issue by studying 
existing work related to heterogeneous traffic systems and 
investigating a new paradigm of an integrated cyber-human-
physical traffic system that derives and incorporates data-driven 
knowledge on the traffic agents so as to coordinate the behaviors 
of these agents and thereby enhance the safety of public traffic. 
This paradigm is expected to leverage ubiquitous connectivity 
to improve safety even when ‘important’ sensors fail or are 
absent in some traffic participants. 

II. MODELING AND PREDICTION FOR TRAFFIC AGENTS IN 

HETEROGENEOUS TRAFFIC  

In heterogeneous traffic, it is essentially important to 
understand the individualized behaviors of agents and more 
importantly predict their behaviors for safety-related planning 
and control. In this section, we review existing approaches for 
modeling and predicting the behaviors of traffic agents.  

Most existing approaches are based on pure motion models 
which assume that the target agent maintains a single moving 
pattern all the time, at least for the time horizon of interest. The 
predictors then utilize physics-based motion models to describe 
the possible movements of the agent. For vehicles, the motion 
model can be dynamic models that take the forces applied to 
them into account. Such models are normally based on a bicycle 
representation [16][17]. During prediction, the input to the 
vehicle, namely the steering wheel angle and drive force, are 
assumed to be constant. For pedestrians, a simple point mass 
model is used [18]. For simplification purposes, kinematic 
models such as Constant Velocity (CV) and Constant 
Acceleration (CA)[19], [20], and Constant Turn Rate Velocity 
(CTRV) and Constant Turn Rate and Acceleration 
(CTRA)[21][22] models can be used. A straightforward 
method to predict the trajectory is to apply the motion models 
to the current state of the agent and loop the prediction step[23], 
[24]. In order to improve the performance of long-term 
prediction, the uncertainties in the vehicle states and motion 
process can be modeled by Gaussian distributions and handled 
by Kalman Filters (KF)[19], [20], [25] and its extensions such 
as Extended Kalman Filters (EKF)[26]  and Unscented Kalman 
Filters (UKF)[27].  Another way of using the motion model is 
Monte Carlo simulation[28], [29]. By sampling the inputs of the 
model instead of assuming them to be constant, a bank of 
predicted trajectories can be obtained. Then, the possible ones 
will be selected based on the physical limitation, road condition 
and safety constraints. In general, the pure motion predictors 
have problems in making reliable long-term predictions. 

Some approaches also consider the behaviors of an agent to 
enhance the long-term prediction accuracy. A traffic agent is 
assumed to execute one of possible behaviors independently 
from other agents. The first type of predictors in this level is 
based on trajectory prototypes. The idea of these predictors is 
that the trajectories of the agents, especially vehicles, can be 
grouped into a finite set of categories, each of which represents 
a unique motion pattern. Every motion pattern can be 
represented by a prototype trajectory learned using statistical 

techniques[30], Topology Learning Network[31], or most 
commonly, Gaussian Process (GP)[32]–[34]. The current 
partial trajectory is compared with the motion patterns and the 
most likely motion pattern can be used as a unique model[35], 
or can be weighted into such a model with other possible 
patterns[34] to generate prediction trajectories.  

Some other approaches share a hierarchy structure that 
consists of behavior/intention identification and motion 
prediction. For human-driven vehicles, the identification can be 
done using deterministic decision models of the driver.  For 
example, [36][37] use gap acceptance to predict possible lane 
changes. Such decision models are suitable for simple driving 
environments only. Machine learning based classifiers are more 
popular techniques in this field. Multi-Layer Perceptron 
(MLP)[38] is used to predict braking behavior of a driver in city 
environment, logistic regression[39] is used to anticipate the 
behaviors at a signaled intersection, Bayes classifier [40] and 
Support Vector Machines (SVM)[41][42] are used to predict 
lane change behavior on highways. Another popular alternative 
is Markov Chain based models. The state transition in such 
models is ideal for representing the intentions of a human driver 
at different time steps. The update of the distribution is paused 
when the vehicle is conducting a maneuver. After the maneuver 
is completed, the probabilities will be initialized. Hidden 
Markov Model (HMM) is used for making predictions during 
highway driving[43], intersection navigating[44][45] and 
making turns[46]. Markov Decision Process (MDP) is another 
variant of Markov Chain model. By adding actions and 
rewards, it can better resemble the internal states of a human 
mind. [47] uses a manually defined MDP to predict vehicle 
longitudinal behaviors. [48] uses Inverse Reinforcement 
Learning (IRL) to train an MDP for a similar purpose. The 
identifiers mentioned above all needs to be learned from 
recorded actual driving data. The behavior prediction for 
pedestrians share many similarities with that of human-driven 
vehicles. However, since pedestrians are having more freedom 
in moving directions and moving patterns, only machine 
learning-based classifiers are popularly used. [48], [49] uses 
SVM to predict a pedestrian’s road-crossing behavior. [50] 
achieves the same purpose using a single layer perceptron. [51] 
utilizes a Markov Chain model to predict the behavior among 
stopping, walking, running and jogging. [52] proposes a 
Behavior Convolutional Neural Network (Behavior-CNN) to 
predict pedestrian behavior in crowded scenes. 

With the identified behavior intention, the trajectory can be 
obtained by adopting motion models corresponding to the 
maneuver. The motion models can be deterministic, such as the 
Tampère (TMP) model[53], Optimal Velocity Model 
(OVM)[54], Intelligent Driver Model (IDM)[55] for car 
following, and the Sinusoidal model[56], MOBIL model[57], 
LMRS model[58] for lane switching. The motion model can 
also be implemented in a probabilistic manner such as Random-
exploring Random Trees (RRT)[59], GP[60], and stochastic 
reachable sets[61]. Artificial Neural Network (ANN) is another 
popular alternative. Back Propagation (BP) network[62], Long 
Short-Term Memory (LSTM) network[63], and Recurrent 
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Neural Network (RNN)[64] have been used to generate 
trajectories for different agents.  

Most of these modeling and prediction approaches usually 
assume that the agents behave independently. In realistic 
heterogeneous traffic, agents interact with each other and so we 
need to treat the agents as entities that interact with each other. 
Such interactions will be central to understand the behaviors of 
traffic agents in heterogeneous traffic. In the following, we 
briefly review some works that address interactions of traffic 
agents.  

III. INTERACTIONS OF TRAFFIC AGENTS IN HETEROGENEOUS 

TRAFFIC  

In this paper, interaction refers to how the motion of an agent 
influences and is influenced by the other (neighboring) agent’s 
motion. We focus on such behavioral motion interactions with 
less emphasis on the visual and other cues of communication 
that facilitate/influence the interactions. In the context of 
human-driven vehicles and pedestrians, these interactions arise 
naturally from the psychological motivations of humans. An 
intuitive way to capture these inter-agent interactions is with 
some form of “social potential”, where each agent experiences 
a force due to its neighbor that pushes or steers the agent 
towards a lower energy configuration[65][66]. This 
configuration can be modeled as resulting from the 
superposition of attractive potentials (steering to a goal state) 
and repulsive potentials (obstacle avoidance) that dictate the 
microscopic (local) navigation behavior of an agent. In their 
simplest form, these interaction potentials are modeled as if 
they depend only on the relative displacement between two 
agents giving rise to distance-dependent (social) forces. Such 
potentials are commonly used to explain formations in certain 
animals[67]. However, interactions between intelligent agents 
such as humans are anticipatory by nature, depending not only 
on the current position state but also on the expected future state. 
To address this issue, some approaches exploit space-time 
planning to generate trajectories that react to the likely future 
trajectories defining the agent’s neighbors. To this end, so-called 
anticipatory potentials are often crafted that also depend on the 
relative velocity between the agents and are often expressed in 
terms of mutual time to collision or minimum predicted 
distance[68][69]. 

Even though variants of this social potential approaches have 
been widely proposed in the literature[70][71], such approaches 
focus mostly on pedestrian traffic. For human-driven vehicles, 
some interaction-aware motion prediction methods have been 
based on Dynamic Bayesian Networks (DBN). Pairwise 
dependencies between multiple moving entities can be 
modelled with Coupled Hidden Markov Chains (CHMM)[72] 
which can be combined with Bayesian classifiers to identify 
maneuver intentions[73]. To reduce computational complexity, 
[74] models the dependencies between vehicles using a factored 
state space instead of pairwise dependencies in the distribution. 
Many pedestrian-vehicle interaction models that have been 
proposed mainly extend the ideas of conservative social 
potentials to shared spaces and mixed traffic[75]–[77]. Recently, 
in part due to strong advances in machine learning techniques and 

readily available observation data[78][79] (such as traffic 
surveillance video data that can be collected relatively easily), 
there are several data-driven approaches that aim at capturing the 
nature of interaction between heterogeneous agents (autonomous 
or human-driven vehicles, and pedestrians)[80][81]. In 
particular, some interaction potentials are cast in terms of reward 
functions (features) which are then learned through (deep) 
inverse reinforcement learning(IRL) [82]. It has also been 
observed that disregarding these interactions in motion 
planning of automated agents operating among human involved 
traffic may lead to overly conservative motion plans[83]. 

Despite these encouraging progresses, more efforts are still 
needed to develop comprehensive models that resolve the 
motion behaviors of heterogeneous traffic agents and that could 
capture the inherent (e.g. psycho-social) decision-making 
processes of the agents with mutual interactions involving 
humans such as pedestrians or human drivers.   

IV. COORDINATION OF TRAFFIC AGENTS IN HETEROGENEOUS 

TRAFFIC  

The topic of coordination of agents has been extensively 
studied in the past few decades. The social potential approach 
to modeling social navigation of humans has found successful 
applications and theoretical support in robotics[84]. In fact, a 
plethora of work has resulted in the so-called social robotics 
discipline where some mimicry of human behavior is central to 
having robots interact naturally with humans[85]. In legacy 
traffic, where such pedestrian and (human-driven and emerging 
autonomous) vehicle agents interact, coordination is achieved 
by using priority assignment protocols that every agent is 
expected to follow in shared interaction zones. The priority 
assignments can be derived from social norms and traffic right- 
of-way rules (e.g. vehicles must yield to protect pedestrians in 
cross walks). Given an interaction region covering a set of 
agents, one can define a weighted directed graph to represent 
these assigned priorities[86] (This, for example, would 
weigh/prioritize pedestrians and cyclists over human-driven 
vehicles, and them in turn over fully automated vehicles). The 
coordination task is then to compute the control laws or actions 
that preserve this priority in the face of heterogeneity of agents 
and uncertainty in their behavior. While a centralized 
coordinator may accomplish this and guarantee collision free 
performance under some practical conditions (e.g. [87] for 
autonomous intersection management), it is more challenging 
to achieve in a distributed fashion where agents are expected to 
make decisions independently based only on information local 
to them (pedestrian or vehicle). Most decentralized 
coordination approaches that use social potentials or navigation 
functions to model goal-directed and obstacle avoidance 
behavior of agents rely on the gradient-based actions by each 
agent. For specific cost formulations, it can be shown that such 
actions define Nash equilibria of (non-cooperative) games[88]. 
However, the formulations are generally non-convex and only 
locally optimal results are possible for each agent. This means, 
for example, some agents may wait more than others, or some 
may not meet their desired goals, and on-line computations of 
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the optimal solutions are generally possible only for the 
simplest configurations. 

In recent times, the receding/rolling horizon control (RHC) 
(a.k.a. model predictive control (MPC)) scheme has emerged as 
powerful framework to generate a (sub) optimal sequence of 
actions for controlling a system by solving a finite-horizon 
constrained optimization problem online using a model of the 
system[45][46]. A chief attraction of MPC in context of 
coordination of traffic agents is the possibility to include 
predictive information (historical or modeled) and to do this in 
rolling horizons. For coordination of traffic agents, to achieve a 
scalable and robust solution, it is desirable to seek a distributed 
MPC implementation that can be executed in real-time on 
computing devices carried by each agent. However, this 
distributed MPC approach must retain key traffic coordination 
requirements when computing control actions for each agent: 
namely, it must enforce collision avoidance constraints 
between individual agents, and optimize, directly or indirectly, 
a collective/coupled coordination objective for the traffic in the 
interaction zone. This implies certain decoupling strategies are 
required at the level of solving the optimization problems at the 
agents. We mention two main categories of strategies that have 
been proposed in theoretical settings: 1) Assume that the 
distributed agents coordinate their optimization iterations 
within the solution of the optimization problem to achieve some 
consensus on their shared variables before proceeding to the 
next MPC step. This version, which draws on techniques from 
parallelized distributed optimization such as augmented 
Lagrangian methods[91], has a large communication overhead, 
but the solution could theoretically approach that of a 
centralized MPC solving for all agents, provided the 
communication graph coincides with the interaction/coupling 
graph; 2)Assume that the computing agents communicate only 

after each agent completes the optimization for the MPC step 
on its own while the current local control actions are being 
applied; consequently, while the overhead is reduced, the 
available communicated information will have a one-step 
delay. There are encouraging works which applied these 
approaches to multi-vehicle formation control [92][93]. 
Additional theoretical properties of distributed MPC have been 
derived in [94], [95], where sufficient conditions were derived 
for closed-loop system stability using distributed MPC with 
contractive stability constraints. In [96], where agents are 
assumed to update plans sequentially at each MPC step, it was 
shown that robust stability conditions can be guaranteed given 
initial feasibility. 

To enhance the safety of heterogeneous traffic, we would 
need to examine how the existing coordination approaches can 
be effectively applied for safe coordination of navigation 
interactions between human agents (e.g., pedestrians and 
human-driven vehicles) and autonomous agents (e.g., 
automated vehicles) on roads. The coordination is expected to 
be distributed and should also address the prevailing gap in 
other priority-based or social-gradient based approaches 
reviewed above, which are either reactive solutions (acting on 
current agent states) or make myopic predictions without taking 
inter-agent interactions into account. 

V. A PARADIGM FOR CYBER-HUMAN-PHYSICAL 

HETEROGENEOUS TRAFFIC SYSTEMS  

In this section, we introduce a new paradigm of an integrated 
cyber-human-physical traffic system that derives and 
incorporates data-driven knowledge on the personalized 
behaviors of traffic agents and leverages ubiquitous connectivity 
to coordinate the behaviors of these agents with the goal of 
enhancing the safety of public traffic.  

 
Fig. 2: Architecture of cyber-human-physical heterogeneous traffic systems 
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The architecture of the proposed cyber-human-physical 
heterogeneous traffic system is shown in Fig. 2. It consists of a 
cyber cloud system and a human-physical traffic system, which 
communicate with each other through communication 
networks such as cellular networks (e.g., 5G) or Wi-Fi. The 
physical traffic system including the heterogeneous traffic 
agents (pedestrians, automated or human-driven vehicles) and 
sensor-equipped infrastructures send sensory information to the 
cloud. Algorithms residing in the cloud learn the behavior 
models (e.g., action behavior models and motion behavior 
models) of these individual agents in an offline manner. Each 
agent can communicate with the cloud to acquire its own 
behavior models as a service request from the cloud. In 
addition, each agent can also share its sensory information with 
neighboring agents through local communication networks 
such as dedicated short-range communications (DSRC) and 
short message service-cell broadcast (SMS-CB). With the 
available sensory information from neighbor agents and 
behavior models retrieved from the cloud, each agent can then 
independently predict their actual behaviors (e.g., actions and 
motion trajectories) in the near future locally and in real time. 
The predicted actual behaviors will be shared with other 
neighboring agents through local communication networks, 
which will then be used to guide each agent’s suggested 
behaviors through the proposed distributed real-time 
coordination efforts to ensure traffic safety. The generated 
behaviors can be directly executed by automated agents such as 
automated vehicles and delivered to humans in non-automated 
vehicles such as human-driven vehicles and pedestrians as 
guidelines/reminders via user interfaces such as visual displays, 
voice commands, and vibration reminders. This framework 
enables a closed-loop cyber-human-physical system to leverage 
both the extended computing capability in cyber cloud and 
physical sensing and executing capabilities on physical agents 
to enhance the safety of all heterogeneous traffic agents. This 
approach is especially beneficial under the possible lack of or 
with the failure of onboard perception capabilities of some 
agents.   

To realize the above proposed cyber-human-physical 
paradigm, there are both technology and research barriers to 
overcome. The technology barriers include but are not limited 
to the development and deployment of high-speed and high-
bandwidth communications (e.g. 5G), intelligent 
infrastructures, accurate micro-positioning systems, and high-
performance computing devices. Regarding research, first, 
investigations are needed on a comprehensive modeling 
approach for the action behaviors of heterogeneous traffic 
agents, accompanied by efficient learning approaches to learn 
the action behavior models for each agent from their daily 
action behavior data, and real-time prediction approaches to 
predict the action behaviors of each agent online. Second, 
investigations are needed on a comprehensive modeling 
approach to model the motion behaviors of heterogeneous 
traffic agents, accompanied by efficient learning approaches to 
learn the motion behavior models for each agent from their 
daily motion behavior data, and  real-time prediction approach 
to predict the motion behaviors of each agent online. Third, 

investigations are needed on a distributed behavior 
coordination scheme that computes behavior action plans by 
each traffic agent in real time with an explicit consideration of 
the behavior information shared by the neighboring interacting 
agents. 

The above proposed paradigm for cyber-human-physical 
heterogeneous traffic systems is a timely topic to protect human 
life (pedestrians and legacy drivers) amidst developments in 
driverless/automated vehicle technology. The proposed 
approach, which relies mainly on already ubiquitous 
connectivity, will facilitate the safe deployment of automated 
vehicles in the real world, where automated vehicles need to 
operate in legacy traffic, at least in the foreseeable future. This 
paradigm will also need to create a dataset of the behaviors of 
heterogeneous agents in realistic traffic to benefit the research 
community to continue to create a better understanding of the 
best approaches for the modeling of interactions of automated 
vehicles, human-driven vehicles and pedestrians on public 
roads. 

VI. CONCLUSIONS  

This paper first reviewed existing works in heterogeneous 
traffic systems including the modeling of the action and motion 
behaviors, including the interactions and coordination of the 
motion of the constituent agents. Then, an integrated cyber-
human-physical traffic system paradigm is introduced that takes 
into account these full range of issues with the goal of enhancing 
safety. The proposed paradigm will derive and incorporate data-
driven knowledge on the personalized behaviors of traffic agents 
and also leverage ubiquitous connectivity to improve the traffic 
safety. A vision of the the paradigm is briefly described and the 
challenges and opportunities the system are discussed. The 
proposed system is expected to enhance safety of the 
heterogeneous traffic systems involving both human and 
autonomous agents.  

ACKNOWLEDGMENT 

This work was partially supported by the National Science 
Foundation under Grants CNS-1755771 and IIS-1845779. 

REFERENCES 

[1] A. Hars, “Autonomous cars: The next revolution looms,” Inven. Innov. 

Briefs, 2010. 

[2] Mi. Bertoncello and D. Wee, “Ten ways autonomous driving could 

redefine the automotive world,” McKinsey Co., 2015. 

[3] P. Gao, H.-W. Kaas, D. Mohr, and D. Wee, “Automotive revolution: 

perspective towards 2030: how the convergence of disruptive technology-

driven trends could transform the auto industry,” McKinsey Co., 2016. 

[4] NHTSA, “Critical reasons for crashes investigated in the national motor 

vehicle crash causation survey,” 2015. 

[5] NHTSA, “2015 Motor Vehicle Crashes: Overview,” U.S. Department of 

Transportation, 2016. 

[6] “Report of Traffic Collision Involving an Autonomous Vehicle (OL 316),” 

https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousve

h_ol316, 2014-2019. 

[7] “List of self-driving car fatalities,” https://en.wikipedia.org/wiki/ 

102

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 24,2020 at 21:19:26 UTC from IEEE Xplore.  Restrictions apply. 



List_of_self-driving_car_fatalities, 2016-2019. 

[8] Waymo, “Waymo Safety Report On the Road to Fully Self-Driving,” 

https://storage.googleapis.com/sdc-prod/v1/safety-

report/Safety%20Report%202018.pdf, 2018. 

[9] Tesla, “Tesla Vehicle Safety Report,” https//www.tesla.com/VehicleSafety 

Report, 2018, 2019. 

[10] “New Cars’ Pedestrian-Safety Features Fail in Deadliest Situations, Study 

Finds,” https://www.wsj.com/articles/new-cars-pedestrian-safety-features 

-fail-in-deadliest-situations-study-finds-11570075260, 2019. 

[11] I. Khan, G. M. Hoang, and J. Harri, “Rethinking Cooperative Awareness 

for Future V2X Safety-critical Applications,” 2017 Ieee Veh. Netw. Conf., 

pp. 73–76, 2017. 

[12] A. Rauch, F. Klanner, and K. Dietmayer, “Analysis of V2X 

Communication Parameters for the Development of a Fusion Architecture 

for Cooperative Perception Systems,” 2011 Ieee Intell. Veh. Symp., pp. 

685–690, 2011. 

[13] A. Hussein, F. Garcia, J. M. Armingol, and C. Olaverri-Monreal, “P2V and 

V2P Communication for Pedestrian Warning on the basis of Autonomous 

Vehicles,” 2016 Ieee 19th Int. Conf. Intell. Transp. Syst., pp. 2034–2039, 

2016. 

[14] P. Merdrignac, O. Shagdar, and F. Nashashibi, “Fusion of Perception and 

V2P Communication Systems for the Safety of Vulnerable Road Users,” 

IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1740–1751, 2017. 

[15] A. Rauch, F. Klanner, R. Rasshofer, and K. Dietmayer, “Car2X-Based 

Perception in a High-Level Fusion Architecture for Cooperative 

Perception Systems,” 2012 Ieee Intell. Veh. Symp., pp. 270–275, 2012. 

[16] C. F. Lin, A. G. Ulsoy, and D. J. LeBlanc, “Vehicle dynamics and external 

disturbance estimation for vehicle path prediction,” IEEE Trans. Control 

Syst. Technol., vol. 8, no. 3, pp. 508–518, 2000. 

[17] A. Eidehall and L. Petersson, “Threat assessment for general road scenes 

using Monte Carlo sampling,” in IEEE Conference on Intelligent 

Transportation Systems, Proceedings, ITSC, 2006, pp. 1173–1178. 

[18] R. Löhner, “On the modeling of pedestrian motion,” Appl. Math. Model., 

vol. 34, no. 2, pp. 366–382, 2010. 

[19] S. Ammoun and F. Nashashibi, “Real time trajectory prediction for 

collision risk estimation between vehicles,” in Proceedings - 2009 IEEE 

5th International Conference on Intelligent Computer Communication and 

Processing, ICCP 2009, 2009, pp. 417–422. 

[20] J. Hillenbrand, A. M. Spieker, and K. Kroschel, “A multilevel collision 

mitigation approach - Its situation assessment, decision making, and 

performance tradeoffs,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 4, pp. 

528–540, Dec. 2006. 

[21] N. Kaempchen, K. Weiss, M. Schaefer, and K. C. J. Dietmayer, “IMM 

object tracking for high dynamic driving maneuvers,” in IEEE Intelligent 

Vehicles Symposium, Proceedings, 2004, pp. 825–830. 

[22] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone, “Sensor 

fusion for predicting vehicles’ path for collision avoidance systems,” IEEE 

Trans. Intell. Transp. Syst., vol. 8, no. 3, pp. 549–562, Sep. 2007. 

[23] R. Miller and Q. Huang, “An adaptive peer-to-peer collision warning 

system,” IEEE Veh. Technol. Conf., vol. 1, pp. 317–321, 2002. 

[24] P. Lytrivis, G. Thomaidis, and A. Amditis, “Cooperative path prediction in 

vehicular environments,” in IEEE Conference on Intelligent 

Transportation Systems, Proceedings, ITSC, 2008, pp. 803–808. 

[25] Y. Abramson and B. Steux, “Hardware-friendly pedestrian detection and 

impact prediction,” in IEEE Intelligent Vehicles Symposium, Proceedings, 

2004, pp. 590–595. 

[26] B. Kim and K. Yi, “Probabilistic and holistic prediction of vehicle states 

using sensor fusion for application to integrated vehicle safety systems,” 

IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2178–2190, Oct. 2014. 

[27] M. Meuter, U. Iurgel, S. B. Park, and A. Kummert, “The Unscented 

Kalman filter for pedestrian tracking from a moving host,” in IEEE 

Intelligent Vehicles Symposium, Proceedings, 2008, pp. 37–42. 

[28] A. Broadhurst, S. Baker, and T. Kanade, “Monte Carlo road safety 

reasoning,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2005, 

vol. 2005, pp. 319–324. 

[29] M. Althoff and A. Mergel, “Comparison of Markov chain abstraction and 

Monte Carlo simulation for the safety assessment of autonomous cars,” 

IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1237–1247, Dec. 2011. 

[30] D. Vasquez and T. Fraichard, “Motion prediction for moving objects: A 

statistical approach,” in Proceedings - IEEE International Conference on 

Robotics and Automation, 2004, vol. 2004, no. 4, pp. 3931–3936. 

[31] D. Vasquez, T. Fraichard, and C. Laugier, “Growing Hidden Markov 

Models: An Incremental Tool for Learning and Predicting Human and 

Vehicle Motion,” Int. J. Rob. Res., vol. 28, no. 11–12, pp. 1486–1506, Nov. 

2009. 

[32] Q. Tran and J. Firl, “Online maneuver recognition and multimodal 

trajectory prediction for intersection assistance using non-parametric 

regression,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2014, 

pp. 918–923. 

[33] G. S. Aoude, J. Joseph, N. Roy, and J. P. How, “Mobile agent trajectory 

prediction using Bayesian nonparametric reachability trees,” in AIAA 

Infotech at Aerospace Conference and Exhibit 2011, 2011. 

[34] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A Bayesian 

nonparametric approach to modeling motion patterns,” Auton. Robots, vol. 

31, no. 4, pp. 383–400, Nov. 2011. 

[35] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for 

learning statistical motion patterns,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 28, no. 9, pp. 1450–1464, Sep. 2006. 

[36] K. I. Ahmed, “Modeling drivers’ acceleration and lane changing 

behavior,” Massachusetts Institute of Technology, 1999. 

[37] P. G. Gipps, “A model for the structure of lane-changing decisions,” 

Transp. Res. Part B Methodol., vol. 20, no. 5, pp. 403–414, 1986. 

[38] M. Garcia Ortiz, J. Fritsch, F. Kummert, and A. Gepperth, “Behavior 

prediction at multiple time-scales in inner-city scenarios,” in IEEE 

Intelligent Vehicles Symposium, Proceedings, 2011, pp. 1068–1073. 

[39] S. Klingelschmitt, M. Platho, H. M. Groß, V. Willert, and J. Eggert, 

“Combining behavior and situation information for reliably estimating 

multiple intentions,” in IEEE Intelligent Vehicles Symposium, 

Proceedings, 2014, pp. 388–393. 

[40] M. Bahram, A. Wolf, M. Aeberhard, and D. Wollherr, “A prediction-based 

reactive driving strategy for highly automated driving function on 

freeways,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2014, 

pp. 400–406. 

103

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 24,2020 at 21:19:26 UTC from IEEE Xplore.  Restrictions apply. 



[41] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based 

approach for online lane change intention prediction,” in IEEE Intelligent 

Vehicles Symposium, Proceedings, 2013, pp. 797–802. 

[42] H. M. Mandalia and M. D. D. Salvucci, “Using Support Vector Machines 

for Lane-Change Detection,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., 

vol. 49, no. 22, pp. 1965–1969, Sep. 2005. 

[43] C. Liu and M. Tomizuka, “Enabling safe freeway driving for automated 

vehicles,” in Proceedings of the American Control Conference, 2016, vol. 

2016–July, pp. 3461–3467. 

[44] W. Song, G. Xiong, and H. Chen, “Intention-Aware Autonomous Driving 

Decision-Making in an Uncontrolled Intersection,” Math. Probl. Eng., vol. 

2016, 2016. 

[45] T. Streubel and K. H. Hoffmann, “Prediction of driver intended path at 

intersections,” in IEEE Intelligent Vehicles Symposium, Proceedings, 

2014, pp. 134–139. 

[46] H. Berndt, J. Emmert, and K. Dietmayer, “Continuous driver intention 

recognition with Hidden Markov Models,” in IEEE Conference on 

Intelligent Transportation Systems, Proceedings, ITSC, 2008, pp. 1189–

1194. 

[47] J. Wei, J. M. Dolan, J. M. Snider, and B. Litkouhi, “A point-based MDP 

for robust single-lane autonomous driving behavior under uncertainties,” 

in Proceedings - IEEE International Conference on Robotics and 

Automation, 2011, pp. 2586–2592. 

[48] M. Shimosaka, K. Nishi, J. Sato, and H. Kataoka, “Predicting driving 

behavior using inverse reinforcement learning with multiple reward 

functions towards environmental diversity,” in IEEE Intelligent Vehicles 

Symposium, Proceedings, 2015, vol. 2015–Augus, pp. 567–572. 

[49] S. Köhler, M. Goldhammer, S. Bauer, K. Doll, U. Brunsmann, and K. 

Dietmayer, “Early detection of the Pedestrian’s intention to cross the 

street,” in IEEE Conference on Intelligent Transportation Systems, 

Proceedings, ITSC, 2012, pp. 1759–1764. 

[50] S. Bonnin, T. H. Weisswange, F. Kummert, and J. Schmuedderich, 

“Pedestrian crossing prediction using multiple context-based models,” in 

2014 17th IEEE International Conference on Intelligent Transportation 

Systems, ITSC 2014, 2014, pp. 378–385. 

[51] C. F. Wakim, S. Capperon, and J. Oksman, “A markovian model of 

pedestrian behavior,” in Conference Proceedings - IEEE International 

Conference on Systems, Man and Cybernetics, 2004, vol. 4, pp. 4028–

4033. 

[52] S. Yi, H. Li, and X. Wang, “Pedestrian behavior understanding and 

prediction with deep neural networks,” in Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 2016, vol. 9905 LNCS, pp. 263–279. 

[53] C. M. J. Tampère, “Human-kinetic multiclass traffic flow theory and 

modelling. With application to Advanced Driver Assistance Systems in 

congestion,” 2004. 

[54] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, 

“Dynamical model of traffic congestion and numerical simulation,” Phys. 

Rev. E, vol. 51, no. 2, pp. 1035–1042, 1995. 

[55] A. Kesting and M. Treiber, “Calibrating Car-Following Models by Using 

Trajectory Data,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2088, no. 

1, pp. 148–156, Jan. 2008. 

[56] V. A. Butakov and P. Ioannou, “Personalized driver/vehicle lane change 

models for ADAS,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4422–

4431, 2015. 

[57] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model 

MOBIL for car-following models,” Transp. Res. Rec. J. Transp. Res. 

Board, no. 1999, pp. 86–94, 2007. 

[58] W. J. Schakel, V. L. Knoop, and B. van Arem, “Integrated Lane Change 

Model with Relaxation and Synchronization,” Transp. Res. Rec. J. Transp. 

Res. Board, vol. 2316, no. 1, pp. 47–57, Jan. 2012. 

[59] G. S. Aoude, B. D. Luders, K. K. H. Lee, D. S. Levine, and J. P. How, 

“Threat assessment design for driver assistance system at intersections,” in 

IEEE Conference on Intelligent Transportation Systems, Proceedings, 

ITSC, 2010, pp. 1855–1862. 

[60] C. Laugier et al., “Probabilistic analysis of dynamic scenes and collision 

risks assessment to improve driving safety,” IEEE Intell. Transp. Syst. 

Mag., vol. 3, no. 4, pp. 4–19, Dec. 2011. 

[61] M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic 

collision detection in autonomous driving,” IEEE Trans. Intell. Transp. 

Syst., vol. 10, no. 2, pp. 299–310, Jun. 2009. 

[62] C. Ding, W. Wang, X. Wang, and M. Baumann, “A neural network model 

for driver’s lane-changing trajectory prediction in urban traffic flow,” 

Math. Probl. Eng., vol. 2013, 2013. 

[63] H. Woo, M. Sugimoto, J. Wu, Y. Tamura, A. Yamashita, and H. Asama, 

“Trajectory Prediction of Surrounding Vehicles Using LSTM Network,” 

in 2013 IEEE Intelligent Vehicles Symposium (IV), 2018. 

[64] M. Zhou, X. Qu, and X. Li, “A recurrent neural network based microscopic 

car following model to predict traffic oscillation,” Transp. Res. part C 

Emerg. Technol., vol. 84, pp. 245–264, 2017. 

[65] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” 

Phys. Rev. E, vol. 51, no. 5, pp. 4282–4286, 1995. 

[66] M. Matthews, G. Chowdhary, and E. Kieson, “Intent Communication 

between Autonomous Vehicles and Pedestrians,” Aug. 2017. 

[67] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, 

“Collective memory and spatial sorting in animal groups,” J. Theor. Biol., 

vol. 218, no. 1, pp. 1–11, 2002. 

[68] I. Karamouzas, B. Skinner, and S. J. Guy, “Universal Power Law 

Governing Pedestrian Interactions,” Phys. Rev. Lett., vol. 113, no. 23, p. 

238701, 2014. 

[69] J. Patel, I. Karamouzas, and B. Ayalew, “A Model for Vehicular 

Interactions Extracted From Real-World Traffic Data,” in ASME 2019 

International Design Engineering Technical Conferences and Computers 

and Information in Engineering Conference. 

[70] F. Zanlungo, T. Ikeda, and T. Kanda, “Potential for the dynamics of 

pedestrians in a socially interacting group,” Phys. Rev. E, vol. 89, no. 1, p. 

12811, 2014. 

[71] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” 

Phys. Rev. E, vol. 51, no. 5, pp. 4282–4286, 1995. 

[72] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden Markov models 

for complex action recognition,” in cvpr, 1997, vol. 97, p. 994. 

[73] M. Liebner, M. Baumann, F. Klanner, and C. Stiller, “Driver intent 

inference at urban intersections using the intelligent driver model,” in IEEE 

104

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 24,2020 at 21:19:26 UTC from IEEE Xplore.  Restrictions apply. 



Intelligent Vehicles Symposium, Proceedings, 2012, pp. 1162–1167. 

[74] T. Gindele, S. Brechtel, and R. Dillmann, “A probabilistic model for 

estimating driver behaviors and vehicle trajectories in traffic 

environments,” in IEEE Conference on Intelligent Transportation Systems, 

Proceedings, ITSC, 2010, pp. 1625–1631. 

[75] B. Anvari, M. G. H. Bell, A. Sivakumar, and W. Y. Ochieng, “Modelling 

shared space users via rule-based social force model,” Transp. Res. Part C 

Emerg. Technol., vol. 51, pp. 83–103, 2015. 

[76] B. Anvari, M. G. H. Bell, P. Angeloudis, and W. Y. Ochieng, “Calibration 

and Validation of a Shared Space Model: Case Study,” Transp. Res. Rec. 

J. Transp. Res. Board, no. 2588, pp. 43–52, 2016. 

[77] R. Schönauer, M. Stubenschrott, W. Huang, C. Rudloff, and M. Fellendorf, 

“Modeling concepts for mixed traffic: Steps toward a microscopic 

simulation tool for shared space zones,” Transp. Res. Rec. J. Transp. Res. 

Board, no. 2316, pp. 114–121, 2012. 

[78] “Daimler Pedestrian Dataset,” 2018. [Online]. Available: 

http://http//www.gavrila.net/Datasets. 

[79] “Caltech Pedestrian Dataset,” 2018. [Online]. Available: 

http://https//www.vision.caltech.edu/Image_Datasets/. 

[80] D. A. Ridel, N. Deo, D. Wolf, and M. Trivedi, “Understanding Pedestrian-

Vehicle Interactions with Vehicle Mounted Vision: An LSTM Model and 

Empirical Analysis,” 2019, pp. 913–918. 

[81] L. Guo and Y. Jia, “Modeling, Learning and Prediction of Longitudinal 

Behaviors of Human-Driven Vehicles by Incorporating Internal Human 

Decision-Making Process using Inverse Model Predictive Control,” in 

IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), 2019. 

[82] M. Fahad, Z. Chen, and Y. Guo, “Learning How Pedestrians Navigate: A 

Deep Inverse Reinforcement Learning Approach,” in IEEE International 

Conference on Intelligent Robots and Systems, 2018, pp. 819–826. 

[83] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart, 

“Predicting actions to act predictably: Cooperative partial motion planning 

with maximum entropy models,” in IEEE International Conference on 

Intelligent Robots and Systems, 2016, vol. 2016–Novem, pp. 2096–2101. 

[84] D. A. Ridel, N. Deo, D. Wolf, and M. Trivedi, “Understanding Pedestrian-

Vehicle Interactions with Vehicle Mounted Vision: An LSTM Model and 

Empirical Analysis,” 2019, pp. 913–918. 

[85] C. Breazeal, K. Dautenhahn, and T. Kanda, “Social Robotics BT  - 

Springer Handbook of Robotics,” B. Siciliano and O. Khatib, Eds. Springer 

International Publishing, 2016, pp. 1935–1972. 

[86] L. Makarem and D. Gillet, “Decentralized Coordination of Autonomous 

Vehicles at intersections,” IFAC Proc. Vol., vol. 44, no. 1, pp. 13046–

13051, Jan. 2011. 

[87] X. Qian, J. Gregoire, F. Moutarde, A. De La Fortelle, A. De, and L. 

Fortelle, “Priority-based coordination of autonomous and legacy vehicles 

at intersection,” 2014. 

[88] H. Roozbehani, S. Rudaz, and D. Gillet, “A Hamilton-Jacobi formulation 

for cooperative control of multi-agent systems,” in Conference 

Proceedings - IEEE International Conference on Systems, Man and 

Cybernetics, 2009, pp. 4813–4818. 

[89] J. M. (Jan M. Maciejowski, Predictive control : with constraints. Prentice 

Hall, 2002. 

[90] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control : 

theory, computation, and design. . 

[91] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: 

numerical methods. Athena Scientific, 1997. 

[92] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. J. Balas, 

“Decentralized Receding Horizon Control and Coordination of 

Autonomous Vehicle Formations,” IEEE Trans. Control Syst. Technol., 

vol. 16, no. 1, pp. 19–33, 2008. 

[93] W. B. Dunbar and R. M. Murray, “Distributed Receding Horizon Control 

for Multi-vehicle Formation Stabilization,” Automatica, vol. 42, no. 4, pp. 

549–558, Apr. 2006. 

[94] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed model 

predictive control,” IEEE Control Syst., vol. 22, no. 1, pp. 44–52, 2002. 

[95] X. Cheng and B. H. Krogh, “Stability-constrained model predictive 

control,” IEEE Trans. Automat. Contr., vol. 46, no. 11, pp. 1816–1820, 

2001. 

[96] A. Richards and J. How, “A decentralized algorithm for robust constrained 

model predictive control,” in American Control Conference, 2004. 

Proceedings of the 2004, 2004, vol. 5, pp. 4261–4266. 

 

 
 
 
 
 
 
 
 

 

105

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 24,2020 at 21:19:26 UTC from IEEE Xplore.  Restrictions apply. 


