Understanding and Improving
Regression Test Selection in Continuous Integration

August Shi, Peiyuan Zhao, Darko Marinov
Department of Computer Science
University of Illinois at Urbana-Champaign, USA
{awshi2,pzhao12,marinov} @illinois.edu

Abstract—Developers rely on regression testing in their contin-
uous integration (CI) environment to find changes that introduce
regression faults. While regression testing is widely practiced, it
can be costly. Regression test selection (RTS) reduces the cost of
regression testing by not running the tests that are unaffected by
the changes. Industry has adopted module-level RTS for their CI
environment, while researchers have proposed class-level RTS.

In this paper, we compare module- and class-level RTS tech-
niques in a cloud-based CI environment, Travis. We also develop
and evaluate a hybrid RTS technique that combines aspects of
the module- and class-level RTS techniques. We evaluate all
the techniques on real Travis builds. We find that the RTS
techniques do save testing time compared to running all tests
(RetestAll), but the percentage of time for a full build using
RTS (76.0%) is not as low as found in previous work, due to
the extra overhead in a cloud-based CI environment. Moreover,
we inspect test failures from RetestAll builds, and although we
find that RTS techniques can miss to select failed tests, these test
failures are almost all flaky test failures. As such, RTS techniques
provide additional value in helping developers avoid wasting time
debugging failures not related to the recent code changes. Overall,
our results show that RTS can be beneficial for the developers
in the CI environment, and RTS not only saves time but also
avoids misleading developers by flaky test failures.

Index Terms—regression test selection, continuous integration,
flaky tests

I. INTRODUCTION

Developers rely on regression testing to quickly detect
regression faults introduced by their code changes. Nowadays,
regression testing is commonly performed in continuous inte-
gration (CI): after every push to the repository, a CI server,
typically in the cloud, builds and tests the code [20]. While
regression testing is important and widely-practiced, it has two
major problems. First, it can be time-consuming due to running
many tests after every change and having frequent changes,
e.g., as reported by Google [25]. Also, running regression
testing on CI servers in the cloud incurs a monetary cost
for the cloud resources, e.g., as reported by Microsoft [19].
Second, regression testing suffers from flaky tests [7], [24],
[36], which can pass or fail non-deterministically regardless
of the code changes, e.g., as reported by Facebook [17]. With
flaky tests, a developer cannot trust a new test failure to
indicate a regression fault in the recent code changes that the
developer should debug.

Regression test selection (RTS) can reduce the costs of
regression testing. RTS runs only a subset of the regression test
suite—the tests that are affected by the changes [34]. An RTS

technique tracks the dependencies among the tests and code
entities (e.g., modules, classes, or methods) and selects to run
only the tests whose (direct or indirect) dependencies changed.
RTS aims to run fewer tests, speeding up regression testing.
Researchers have proposed many RTS techniques that perform
selection at different granularity levels of dependencies [14],
[15], [18], [23], [26], [27], [28], [32], [34], [38]. Researchers
have also reported RTS to be effective in experiments, mea-
sured by the percentage of tests selected and testing time
saved. Large companies have adopted RTS to speed up their
regression testing [12], [13], [17], [19], [25]. For industry,
important metrics are the overall build time and the quality
of the test outcomes (i.e., if test failures reveal real faults).

While both industry and research use and study RTS tech-
niques, there is a gap in the granularity level of RTS they
use. A typical (object-oriented) software project is organized
hierarchically into modules that contain classes that contain
methods that contain statements; there can be also dependen-
cies among projects. In industry, RTS has progressed from
coarser- to finer-grain dependencies, from running all tests
(RetestAll) to tracking dependencies among project modules’.
Modern systems in industry [12], [13], [17], [19] commonly
use module-level dependencies, track changes made to project
modules, select a subset of modules that are affected by
the changes, and then run all tests within the selected mod-
ules [13], [25]. In research, the progress has been from finer-
to coarser-grain dependencies, from traditional work using
statements [34] to using methods [38] to the most recent work
reporting class-level dependencies to be more effective than
finer-grain dependencies [15], [23], [37].

We aim to understand how module- and class-level RTS
techniques compare in a real CI environment: should everyone
adopt module-level RTS used by large companies, should
they adopt class-level RTS proposed by researchers, or is the
ideal trade-off in the middle? While module-level RTS has a
very small overhead to analyze what modules are affected by
the changes, the coarse-grained dependency tracking and test
selection (all tests within affected modules) can select more
tests than class-level RTS selects (only the affected test classes,
not all tests, within affected modules). While class-level RTS
can select fewer tests, it has two issues stemming from tracking
dependencies (only) on classes: (1) it can potentially miss to

'We use the term “module” following the Maven build system for Java, but
other regression testing, CI, or build systems use other terms, e.g., “target”.

work in other works.

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

select affected tests, e.g., due to changes to non-source code
files like configuration files, whereas module-level RTS finds
such changes to affect entire modules and then selects all tests
within such modules; (2) it requires extra analysis time to
determine the affected test classes, compared to the time to
determine only the affected modules, so the overall time for
class-level RTS can be higher despite selecting fewer tests.

To evaluate module- and class-level RTS techniques in a CI
environment, we would ideally compare techniques in general
and not specific tools. Some metrics, such as the number of
selected tests, are mostly determined by the technique, but a
key metric that developers care about—the total build time—
is determined by the tool. We thus compare specific tools and
carefully analyze results to draw general conclusions about
techniques. We start with GIB [2], a module-level RTS tool,
and Ekstazi [15], a class-level RTS tool.

We also implement a new RTS tool, GIBstazi, that simply
combines both module- and class-level RTS. GIBstazi first
uses GIB to quickly select what modules are affected by the
changes, and then only on those modules applies Ekstazi to
select affected tests. If a change is in a non-source-code file
that is not tracked by class-level RTS, GIBstazi defaults to GIB
behavior and selects all the tests within the affected modules.
Moreover, after our preliminary experiments show that GIB
out-of-the-box would almost always selects all modules based
on the changes, we make enhancements to better filter changes
that tests should not be affected by. Our subsequent evaluation
of GIB uses these enhancements as the default configuration.
By combining GIB and Ekstazi, GIBstazi aims to select and
run fewer tests than GIB, leading to faster testing, but not
necessarily faster than Ekstazi. However, because GIBstazi
defaults to GIB behavior due to non-source-code changes,
GIBstazi can be safer (i.e., not miss to select some affected
tests) than Ekstazi.

To evaluate real build times that developers would see
in practice for the three RTS techniques, we utilize Travis
CI [5], the most popular cloud-based CI service for open-
source projects [20]. We evaluate the techniques on a diverse
set of open-source Java projects already configured to use
Travis; whenever the developer pushes some change, Travis
triggers one (or more) build job(s). We replay the build jobs
of each project by running all the tests (RetestAll) and using
each of the three RTS techniques. For each technique run on
each job, we collect three metrics relative to RetestAll: the
percentage of tests selected, the percentage of time to run the
selected tests, and the percentage of time overall to build the
job. On the 22 projects and the 935 build jobs we replayed,
we find that all three RTS techniques on average save time
over RetestAll on Travis: GIB, Ekstazi, and GIBstazi take
79.7% 76.0%, and 77.4%, respectively, of the total RetestAll
build time. These percentages for total build time in CI are
higher than previously reported (60%—-70%) for local, non-
CI environments [15], [23], [37]. Moreover, these percentages
are much higher than suggested by just the percentage of tests
selected, e.g., 30.6% for Ekstazi.

To understand the effectiveness of RTS techniques with
respect to test failures that happen during RetestAll, we collect
the test outcomes (passes and failures) for each technique

and systematically inspect failures. Some test failures during
regression testing, namely those from flaky tests, are undesir-
able [7], [17], [24], [36]. Because RTS may miss test failures
from RetestAll (in our experiments, it missed 39 failures), we
analyzed whether RTS missed desirable or undesirable test
failures. We find that almost all the test failures (38 out of 39)
from RetestAll that any RTS technique missed are undesirable,
flaky test failures.

While RTS techniques are not explicitly designed to avoid
flaky test failures, we empirically find that RTS is highly
beneficial for avoiding flaky test failures, a benefit of RTS
not previously reported [14], [15], [18], [23], [26], [27], [28],
[32], [34], [38]. We also apply the RTS techniques on 19 failed
pull request jobs that are not flaky (confirmed through reruns)
from five of our projects. We find that the RTS techniques do
not miss any failed test in these 19 jobs, even though class-
level RTS could miss to select affected tests due to non-source
code changes.

In summary, the contributions of this paper are:

o Hybrid RTS Technique: We develop a simple, hybrid
module- and class-level RTS technique.

o Empirical Evaluation: We empirically evaluate the
module-level, class-level, and hybrid RTS techniques in
CI; no prior work compared such RTS techniques in CIL.

o Failure Analysis: We are the first to analyze test failures
from RetestAll runs in the context of RTS. We find almost
all failures are due to flaky tests, showing how RTS
techniques by chance mitigate the flaky test problem.

From our results, we recommend developers to use the
hybrid GIBstazi RTS technique, because it provides the best
trade-off: it works faster than GIB and only somewhat slower
than Ekstazi, but it is safer than Ekstazi. Moreover, our
analysis of failed tests reveals that RTS techniques provide
additional, although not directly targeted, benefits in helping
developers avoid flaky test failures.

II. CONTINUOUS INTEGRATION (CI) BACKGROUND

We describe how developers use CI systems to build and test
their code, with an emphasis on CI systems in the cloud. We
use Travis [5] as an example to help illustrate the concepts.
Travis is widely used [21] and integrates well with projects
hosted on GitHub, the most popular platform for open-source
projects [6], [9], [10], [11]. We use Travis in our evaluation
and introduce some Travis terminology here.

When a developer pushes a commit to a repository, the push
triggers a build on the CI servers to compile and test the code
for that commit. Developers can specify the exact commands
to be run on the CI server; for Travis, these commands are
in the .travis.yml file. Travis also allows developers to
configure the build to run multiple jobs. Each job is configured
with different environment variables or even different build
commands; all jobs from one build run for the same commit.
Each job is scheduled on its own clean virtual machine in the
cloud. Hence, we focus our evaluation per job.

When a job starts on a remote CI server in the cloud,
artifacts from prior jobs will not be on the machine. As such,
CI needs to either recompile the project from scratch before

running any tests or rely on some way of saving compiled
artifacts from prior jobs in a persistent datastore and copying
them over for the new job. Most Travis setups recompile the
code from scratch. A Travis job is divided into multiple phases
that are executed sequentially. If a phase fails, the job fails
early, and the later phases are not run. The install phase
typically compiles the project code but does not run the tests.
For example, the default command in the install phase for
building a Maven project is mvn install -DskipTests=true
-Dmaven.javadoc.skip=true -B -V, which purposely skips
tests, but installs all the compiled artifacts. On Travis, it
is possible to save certain artifacts across jobs, specified in
the cache section of the .travis.yml. Such artifacts are
copied onto the virtual machine before the job starts, and
they are uploaded onto a separate, persistent server after the
before_cache phase, which occurs near the end of the job.

After code has been properly compiled, CI can start running
tests. In Travis, tests usually run in the script phase, which
is executed after (but not immediately after) the install
phase. The default command in the script phase for Maven
projects is mvn test -B. Since the script phase occurs after
the install phase that should compile all necessary artifacts,
the script phase commands need not recompile code.

Finally, CI gives feedback to the developer about the status
of each job after it completes. Travis assigns a status to each
completed job: pass means all phases ran successfully, fail
means the script phase ran unsuccessfully, and error means
some other phase ran unsuccessfully (usually the install
phase, suggesting compilation failed).

III. REGRESSION TEST SELECTION (RTS) TECHNIQUES

We describe the three RTS techniques that we evaluate.
They track dependencies and perform selection at different
granularity levels: module-level, class-level, and a hybrid
module- and class-level. Prior work found RTS at the class-
level to outperform finer granularity such as method-level [15],
[23], [37], so we do not evaluate finer-grained RTS techniques.

A. Module-level RTS

Developers use modules to group related project parts, and
module-level RTS detects changes at the level of modules.
When module-level RTS detects some changed module(s), it
finds all the affected modules by computing the transitive
closure of the changed modules in the module dependency
graph specified by the developers. Module-level RTS then runs
all the tests within all affected modules.

We use Gitflow Incremental Builder (GIB) as a module-
level RTS tool [2]. GIB is a Maven extension that can
perform module-level RTS. GIB relies on Git to determine
the code changes. Given two Git commits, GIB diffs the two
commits to determine what files changed. GIB then maps the
changed files back to the Maven modules to determine changed
modules. GIB finds the affected modules through the module
dependency graph obtained from parsing the pom.xml Maven
build files provided by the developers. GIB then runs the
provided Maven command (e.g., mvn install or mvn test)
only on the affected modules. GIB was originally intended

for incremental building, but as long as the Maven command
includes some testing, GIB effectively performs module-level
RTS by running all the tests within only affected modules. As
module-level RTS is conceptually rather simple, we believe
GIB is a representative tool.

Enhancing GIB In our preliminary experiments, we use GIB
out-of-the-box on 423 commits from open-source projects
from our later evaluation. We run GIB using the command mvn
validate, which just checks the structure of the modules in
the Maven project without compiling or running tests, to check
how many modules GIB selects based on the changes. We find
that in 65% of these commits GIB selects al/l the modules in
the project. Overall, GIB selects over 70% of all modules in
all the commits. As such, we add two key enhancements to
default GIB to improve it for RTS. Our subsequent evaluation
uses GIB with these enhancements as the default.

Our enhancements (1) configure GIB in a reasonable way
for RTS and (2) extend GIB with a new feature. GIB uses
Git to determine what files changed, but not all changed files
affect Java test outcomes. For example, if the only change is
to the top-level README file, GIB computes that a change
to a file in the root of the project affects all modules, thereby
running all tests, even though changing a README file is
unlikely to actually affect a test outcome. To avoid such over-
selection of tests, we configure GIB to exclude certain files,
using the following regex based on file names we have seen
commonly changing but are unlikely to affect test outcomes:

\.apt$|\.txt$|\.md$|\.html$|\.rst$|\.scss$|\.css$
[\.png$|\.py$|\.ipg$|\.jpeg$|\.git.*|NOTICES
|README$ | README\ . | site.xml|index.xml|checkstyle.xml

Our regex works well generally, but developers using GIB
should tailor the regex further for their projects.

While our regex filters out many cases where file changes
would lead to unnecessary test runs, our initial experiments
found many other cases where changes to the Maven pom. xml
files lead to a large number of test runs. In general, changes to
pom.xml can affect tests, e.g., by changing a project’s library
dependencies [16]. However, we observed many changes to
pom.xml files that did not change the dependencies, e.g., some
changes simply update the project’s own version number,
which should not affect test outcome. We extended GIB to
check if any dependency of a module within the project
changed between runs. Our enhancement stores in a separate
file, classpathfile, the names of all the dependencies for
each module (but no version number if a dependency is a mod-
ule in the current project). Before each run, if classpathfile
exists, GIB compares the contents of the file with the depen-
dencies of each module to see if any dependencies changed.
If not, GIB ignores changes to pom.xml.

B. Class-level RTS

Class-level RTS tracks dependencies at the class level. First,
it maps each test class to the classes that the test depends on.
Then, if a class changes, class-level RTS selects all test classes
that depend on the changed class. The dependencies of each
test class can be computed dynamically [15] or statically [23].

We use Ekstazi [14], [15] as a class-level RTS tool. Ekstazi
is a Maven plugin that performs dynamic class-level RTS.
Ekstazi instruments the code under test to obtain which classes
each test’ depends on. Ekstazi also tracks checksum values
for each .class file (compiled from a source Java file). After
a project change, Ekstazi first waits for Maven to compile
source files to .class files, then uses the stored checksums to
determine which classes actually changed, and finally selects
the tests that depend on the changed classes as per the
stored dependency mapping. Both the mapping from tests
to dependencies and the class checksums are stored within
.ekstazi directories, one for each module.

C. Hybrid Module- and Class-level RTS

Module-level RTS can select many more tests than class-
level RTS, because module-level RTS selects all tests within
all affected modules, even if many such tests may not be
affected by the changes. We propose a hybrid module- and
class-level RTS that simply combines elements of both. It first
uses module-level analysis to determine the affected modules,
and then uses class-level analysis on the affected modules to
select individual tests. However, if a change is to a non-source-
code file (not specified in the exclude regex), e.g., a . json file
that may be a test input, the hybrid technique defaults back to
module-level RTS and selects all tests in the affected modules,
being safer than class-level RTS (which does not track changes
to non-source-code files).

We implement our hybrid technique in a tool called GIB-
stazi. GIBstazi builds upon GIB to determine affected mod-
ules, and for each such module, GIBstazi applies Ekstazi to
select tests within the module. If any change is to non-source-
code files, GIBstazi defaults back to GIB and selects all the
tests within the affected modules. For each module, GIBstazi
selects either (1) no tests (if the module is not affected), (2) all
tests (if some non-source-code file changed), or (3) the same
tests as Ekstazi. We expect GIBstazi to select fewer tests than
GIB but more than Ekstazi; the time savings from GIBstazi
should also be between GIB and Ekstazi. GIBstazi is a fork
of GIB, publicly available on GitHub [3].

IV. EXPERIMENTAL SETUP

We describe how we select the projects for our experiments
and the commits for each project. We then describe how we
configure to run the different RTS techniques for each project’s
commits on Travis. Finally, we describe how we collect the
job results for our evaluation. The collected job logs and our
results are publicly available [30].

A. Projects

Since the RTS tools we use are for the Maven build sys-
tem [4], our evaluation requires Maven projects. In addition,
given that GIB and GIBstazi operate at the module level, we
need Maven projects that are multi-module. Moreover, we
need these projects to build on Travis. We query GitHub to get

2By “test” we mean “test class”. Ekstazi selects test classes that each can
have several test methods. We count tests at the level of test classes as well.

TABLE I: Filtering of projects for our evaluation

Total starting Maven projects from GitHub 1000
Multi-module Maven projects on Travis 105
Projects whose build takes longer than 10 minutes 46
Projects with tests and replayable with RTS tools 22

the top 1000 popular Java projects ranked by stars, and then
we filter to obtain only multi-module Maven projects. Finally,
we filter for projects that use Travis, resulting in 105 projects.

Further, we want to evaluate on projects whose builds are
sufficiently long-running such that a developer may want to
use RTS in the first place. For each of the 105 projects, we
query Travis for the latest 20 builds, average the build times,
and select projects that took on average longer than 10 minutes
to build, resulting in 46 projects. The build times reported by
Travis represent the overall time the project takes to build
and not just the times for testing. In particular, some of these
projects only compile code on Travis and intentionally skip
tests. Since we are evaluating RTS techniques, we want the
projects that run at least some tests during the script phase on
Travis. From the 46 projects, we keep the projects that run tests
on Travis, and we further keep only the projects that can run
with all three RTS tools (e.g., GIB requires Java 8), resulting
finally in 22 projects. Some of the projects have testing time
shorter than 10 minutes, and the average testing time per job
is 9.9 minutes (Section V-A). Table I summarizes the filtering.

We collect revisions for each of the 22 projects for rerunning
on Travis. We collect these revisions from actual prior Travis
builds. In contrast, recent work on RTS [15], [23] selected
the revisions as sequential commits from the master branch
in the GitHub repository of each project. However a single
Travis build corresponds to a push from the developer, and the
code changes between two pushes can correspond to several
commits in the repository.

For each project, we collect from Travis the commit SHAs
associated with the latest 20 push builds on the master branch.
We collect these SHAs in the order in which they actually hap-
pened on Travis such that replaying these historical commits
later on gives the same code changes between each build as
observed by the developers when using Travis for these builds.

B. Replaying with RTS

We replay the commits collected for each project on Travis
for all RTS techniques, including RetestAll. For each tech-
nique, we create a new GitHub account and fork the projects
into the account, and then for each commit of a project, do
the following four steps: (1) checkout the commit (specifi-
cally with “git checkout $sha .” using ‘.’ to not create a
detached branch); (2) modify the pom.xml and .travis.yml
files to use a specific RTS technique on the project when run on
Travis; (3) modify the pom.xml and .travis.yml files further
for our experimental purposes, to count tests run and measure
time for running, with these modifications being the same for
all techniques, including RetestAll; and (4) recommit the files
after the modifications as a new, fresh commit and push it to
our forked repository on GitHub, triggering the build, and thus

one or more jobs, on Travis. (The very first commit that we
recommit for each of the three RTS techniques selects all tests
as in RetestAll, but the later commits use RTS.) We describe
next the specific modifications for each RTS technique for
step (2) and the general modifications for evaluation purposes
for step (3). We aim for smallest necessary modifications to
minimize risk of affecting the build process in each project.

1) GIB: We modify the project’s top-level pom.xml file to
include the GIB Maven extension. We configure the extension
to compare the differences between two Git commit SHAs,
where the first is the commit SHA of the previous build and the
second is the current SHA. The Travis environment variable
TRAVIS_COMMIT_RANGE provides these two commit SHAs.

We modify the .travis.yml file’s cache section to save the
classpathfile generated (Section III-A). The cache is needed
to share data between jobs because Travis runs each job on a
fresh virtual machine. We also configure .travis.yml to not
use GIB during the install phase, as the entire project must
build from scratch, and using GIB in this phase could prevent
certain modules from being compiled. We disable GIB in the
before_install phase (which occurs right before the install
phase) and then enable it in the before_script phase (which
occurs right before the script phase).

2) FEkstazi: We modify the project’s top-level pom.xml
file to include the Ekstazi Maven plugin; we use version
4.6.3 in our evaluation. We modify the .travis.yml’s cache
section to save in between jobs one combined .ekstazi
directory with metadata for all modules. We further add
in the before_script phase the commands to copy the
cached .ekstazi directories to each module in the project
for the script phase to use for testing, and we add in the
before_cache phase the commands to combine the updated
.ekstazi directories after the tests finish. These .ekstazi
directories can be much bigger than the classpathfile cached
by GIB, and caching these directories is a necessary extra
overhead to use Ekstazi in a cloud-based CI environment.

3) GIBstazi: We modify the pom.xml and .travis.yml
files the same way as necessary for both GIB and Ekstazi
individually, i.e., configuring to add the GIBstazi extension,
and configuring .travis.yml to cache between jobs both the
classpathfile and .ekstazi directories while also copying
them appropriately.

4) Modifications for all techniques for experiments: For our
evaluation, we need extra modifications to report tests selected
and time taken. At the end of the script phase, we add
commands to report how many tests are run by counting the
number of Surefire report files generated that each represent
a test run. We also add commands in the script phase to
report how much time the script phase takes to run. Timing
the script phase, where testing is meant to be performed,
we can simulate running RTS “locally”, without including
the times for compiling code from scratch or downloading
dependencies; we refer to the time measured in this phase
as fest time. We next remove from .travis.yml the entire
notifications phase, which is used to notify developers of
the job status; we do not want to spuriously notify developers
concerning our replaying of their jobs. Removing this phase
does not disrupt the compile and testing process in the previous

TABLE II: Basic statistics about projects used in evaluation,
including distribution of pass/fail/error statuses for RetestAll

ID Project # Jobs Pass Fail | Error
P1 SonarSource/sonarqube 38 19 19 0
P2 elasticjob/elastic-job-lite 19 19 0 0
P3 apache/rocketmq 19 0 19 0
P4 alibaba/dubbo 18 18 0 0
P5 aws/aws-sdk-java 19 18 1 0
P6 brianfrankcooper/YCSB 19 18 1 0
P7 apache/incubator-skywalking 19 19 0 0
P8 antlr/antlr4 170 169 1 0
P9 vavr-io/vavr 5 5 0 0
P10 Graylog2/graylog2-server 1 1 0 0
P11 javaparser/javaparser 19 19 0 0
P12 languagetool-org/languagetool 18 17 1 0
P13 druid-io/druid 83 69 14 0
P14 killbill/killbill 47 0 47 0
P15 apache/storm 84 76 8 0
P16 iluwatar/java-design-patterns 19 14 5 0
P18 google/guava 35 35 0 0
P17 javaee-samples/javaee7-samples 335 334 1 0
P19 prestodb/presto 172 171 1 0
P20 apache/incubator-pulsar 13 7 4 2
P21 apache/flink 211 209 2 0
P22 Tencent/angel 14 7 7 0

SUM 1377 1244 131 2

install and script phases, and because we remove this phase
for all techniques, including RetestAll, our timing comparison
is consistent as well. Finally, we modify .travis.yml to not
run any jobs with Java versions below Java 8, because GIB
requires Java 8.

C. Collecting Job Logs

Replaying each commit starts jobs on Travis. After each
job finishes, we download its log from Travis for analysis.
We further consider only the jobs where we can successfully
parse from the logs the number of tests run and the test time
in the script phase. Jobs may not finish properly for several
reasons, such as compilation errors (so tests are not even run)
or strict timeouts maintained by Travis. Moreover, we consider
only the jobs after the first commit for each project, because
for the first commit all RTS techniques select all tests (there is
no change yet), and we want to measure the effectiveness of
RTS in the steady state, after changes have happened. Finally,
we do not analyze any project where any of the RTS tools we
use consistently crashes for all the jobs due to internal tool
errors. In total we collect 1377 jobs across 22 projects.

D. Statistics of Jobs

Table II shows the distribution of the jobs that we collected
across the 22 projects from our evaluation. We label each
project with an ID that we use later and show the project’s slug
from GitHub. We also show the number of jobs we analyze for
each project, classified as pass, fail, or error based on the job
status reported by Travis for RetestAll. The overall number
of jobs with status pass, fail, and error are 1244 (90.3%),
131 (9.5%), and 2 (0.2%), respectively. For the two jobs with
the error status, we find it due to an unsuccessful phase that
occurs after the script phase, i.e., after tests have run, so
even in such cases, we can still collect information about the
tests selected to run and the time for testing.

Recall that jobs having status fail in Travis does not neces-
sarily mean that tests failed but that the script phase failed,
which may not be due to test failures. For example, project P3
has all of its jobs with status fail, but we find that the reason
is due to the script phase including a step that tries to deploy
artifacts to another server, which we cannot access. Tests pass
before this step, but because the deploy step is in the script
phase, Travis marks the entire job as fail.

V. RESULTS
We aim to answer the following two research questions:

RQ1: How do different RTS techniques compare in terms of
tests selected, test time, and total build time in CI?
RQ2: How well does RTS select failing tests in CI?

A. RQI: Tests Selected, Test Time, and Total Time

We first evaluate RTS techniques for all Travis jobs in our
experiments, regardless of the job status. For each job, we
compute the percentage of tests selected, test time, and total
time of each RTS technique relative to RetestAll. We also
compute the arithmetic mean of these percentages for all jobs
in each project, and finally we compute the overall arithmetic
mean of these averages per project. Overall, GIB, Ekstazi, and
GIBstazi, respectively, select 59.1%, 35.2%, and 42.8% of the
tests, take 86.6%, 65.5%, and 59.4% of the test time, and take
77.3%, 77.9%, and 72.2% of the total time.

Surprisingly, GIBstazi appears to be the fastest technique,
unlike our initial expectations. However, we find many jobs
passing for some technique with the corresponding jobs failing
for RetestAll. As a result, some jobs even exceed 100% as
the percentage of tests run by the RTS techniques relative to
RetestAll, appearing as if RTS runs more tests than available!
The reason for this anomaly is that test failures occur in the
middle of job execution. (Many of these failures are flaky tests,
as we discuss in Section V-B.) By default, when a test fails
in a multi-module Maven project, Maven stops early, skipping
all modules that come after the module with the failed test(s).
As such, the remaining tests that should have been run are
not actually run. Our tooling counts the number of tests that
are actually run, so it ends up not counting all the tests the
technique would have run had there been no test failure. While
these numbers reflect what a developer would actually observe
on Travis, they do not allow us to properly answer RQI.

To provide a fairer comparison of the RTS techniques and
RetestAll, we focus on only the jobs where RetestAll and all
three RTS techniques have status pass, i.e., jobs where all tests
that should be run are actually run. Table III shows the results
for these 935 passing jobs, with an average of 51.9 jobs per
project for 18 projects. We do not show the four projects that
have no jobs where RetestAll and all three RTS techniques
pass. The columns under “RetestAll” show the number of tests,
the test time, and the total job time, all averaged across all jobs
for each project, and then across the projects in the final row.
The columns under “GIB”, “Ekstazi”, and “GIBstazi” show
the average percentage of each metric relative to RetestAll
for each respective RTS technique. The “AVG” row is the
arithmetic mean of the values in each column.

We see from the final row that Ekstazi now outperforms
both GIB and GIBstazi in terms of selecting the fewest tests
and having the shortest test time and total time. GIBstazi,
on the other hand, outperforms GIB in terms of all three
metrics. Performing a series of Wilcoxon paired signed-rank
tests for the tests selected, test time, and total time among all
pairs of the three techniques, we find statistically significant
differences (p < 0.01) for the percentage of tests selected and
test time, but no such differences for the total time.

Overall, the trend between GIB, Ekstazi, and GIBstazi in
terms of tests selected, test time, and total time now matches
our initial expectations. However, there are jobs where the
trend does not hold, so we inspect them in more detail.

1) Ekstazi Selects More Tests: We find 64 jobs distributed
across eight projects where Ekstazi runs more tests than GIB
or GIBstazi. We sample a job from each of these projects, as
it is likely a characteristic of the project that leads to Ekstazi
running more tests. We examine the job logs, the diffs between
the job’s commits, and the job configurations. Overall, we find
four different causes.

Non-Default Runners. In P6, P15, and P16, we find jobs
where GIB skips modules where Ekstazi runs tests. These
projects have tests that do not use the default JUnit4 runner:
TestNG, JUnit Enclosed runner, or JUnit Jupiter (new in
JUnit5). Ekstazi incorrectly runs all tests using these runners,
regardless of changes®. GIB and GIBstazi (correctly) find that
a module is unaffected and do not run any test.
Non-Deterministic Compilation. In P4 and P17, we find that
compiling even the same commit twice in a row results in
different compiled .class files. P4 uses cobertura, which
creates instrumented classes on which Ekstazi finds test de-
pendencies; cobertura’s instrumentation is non-deterministic
and does not always create the same final .class file for the
same source file. P17 automatically generates some source
files as part of the build process, but the generation is non-
deterministic. Specifically, the order of the methods in the
generated source files can differ between runs, which in turn
results in different compiled .class files; Ekstazi relies on
the .class files to not change if the developer makes no
changes to source code, arguing that comparing . class files is
more robust than comparing source files [14]. In this scenario,
Ekstazi finds spurious changes and runs too many tests.
Incompatible with GIB. In P8 and P13, we notice that the
job configuration for the jobs where Ekstazi runs more tests
is set to navigate into a specific module to run only its tests
(effectively cd module; mvn test). GIB assumes the root of
the project starts from the current module and is unaware that
the current module is part of a larger Maven project. Thus,
GIB does not determine that the current module is affected
by changes from the other modules, and it skips the current
module altogether. Therefore, GIB is running too few tests in
these cases. Developers using GIB (and GIBstazi) need more
in-depth changes to their specific job configurations for GIB
to work correctly in these cases; specifically, they should not
navigate into a module and instead run from the root using
the Maven’s -pl option to specify the module.

3We confirmed via private communication with the developers of Ekstazi.

TABLE III: Tests selected and time savings from using RTS across only passed jobs

ID # Jobs RetestAll GIB Ekstazi GIBstazi
Tests Test Total Tests Test Total Tests Test Total Tests Test Total

#) Time (m) | Time (m) (%) Time (%) | Time (%) (%) Time (%) | Time (%) (%) Time (%) | Time (%)
P1 19 2.0 39 5.1 100.0 102.8 100.9 100.0 101.1 97.0 100.0 99.2 97.2
P2 19 158.4 1.4 6.5 244 39.1 78.3 7.1 58.9 97.8 24.4 404 70.3
P4 18 161.9 5.6 8.7 573 61.4 74.4 11.6 94.6 121.7 29.1 55.7 80.9
P5 15 179.0 7.4 9.3 100.0 103.6 103.4 16.6 49.8 60.6 100.0 109.7 109.7
P6 18 31.1 7.0 10.7 61.5 61.5 69.7 44.6 25.8 62.0 43.6 56.1 74.4
P7 19 98.7 4.1 10.8 17.5 29.8 80.4 2.5 37.5 56.7 13.7 31.5 79.1
P8 169 12.9 10.0 11.8 10.5 16.0 33.7 21.7 35.1 50.1 10.4 16.9 35.5
P9 5 140.0 10.9 11.8 100.0 86.9 101.4 38.7 71.0 75.7 59.0 75.6 97.2
P10 1 177.0 7.3 12.9 100.0 109.9 115.3 0.0 36.9 70.0 100.0 154.4 131.7
P11 19 177.0 7.0 14.9 91.1 94.1 83.1 24.1 59.2 50.9 26.5 58.9 46.0
P12 11 400.1 12.7 16.2 7.7 8.7 22.5 0.8 4.6 21.6 7.7 13.0 29.6
P13 38 198.3 12.8 20.8 335 48.4 72.1 25.1 49.8 73.0 75 29.5 67.6
P15 47 53.2 5.1 14.9 474 61.8 91.6 5.8 69.4 93.9 26.0 63.7 91.0
P16 12 319.2 6.7 22.1 259 31.9 40.9 55.8 87.6 94.0 17.5 28.5 415
P17 330 8.9 3.7 222 32.1 45.7 102.4 20.8 41.7 93.4 31.8 53.7 102.7
P18 35 494.1 16.8 20.2 100.0 97.5 98.1 55.8 62.5 83.3 56.1 61.6 69.2
P19 24 124 25.1 29.5 100.0 98.6 99.3 100.0 100.9 101.4 100.0 99.3 99.9
P21 136 366.5 30.7 32.1 49.1 64.9 66.9 19.5 62.7 65.2 40.0 68.1 70.2
AVG 51.9 166.1 9.9 15.6 58.8 64.6 79.7 30.6 58.3 76.0 44.1 62.0 774

Job Timeout. In P21, for a job where Ekstazi runs more
tests, we find that the changes should not actually affect the
module where Ekstazi runs tests, so Ekstazi runs too many
tests. We find that the immediately prior job for Ekstazi times
out, so the cache for Ekstazi dependencies is not updated for
the subsequent job. Thus, Ekstazi compares the next commit
with the commit two (rather than one) before it, finding more
changes than GIB and GIBstazi find by comparing the next
commit with the one before it. Essentially Ekstazi finishes
running the tests from the prior job in the subsequent job
(which does not time out). This example demonstrates how
much Ekstazi depends on completing prior runs. Timeouts can
occur more often on CI machines in the cloud, out of the
developers’ control, so this example also demonstrates issues
with using Ekstazi in such a CI environment.

Trying to better understand differences between the fech-
niques rather than differences due to tool engineering, we
further filter out jobs where Ekstazi runs more tests than the
other techniques. We obtain the same trends between the three
techniques, with Ekstazi seeming even better. Overall, for GIB,
Ekstazi, and GIBstazi, respectively, the average percentages
of tests selected are 62.6%, 25.9%, and 47.4%:; test times are
68.1%, 55.2%, and 66.7%:; and total times are 82.1%, 74.8%,
and 80.2% (not shown in tables due to space limits).

2) Ekstazi Runs Slower: Even when we consider only
the jobs where Ekstazi runs no more tests than the other
techniques, we still find jobs where Ekstazi test time is
longer. Overall, for GIB and Ekstazi, respectively, the average
percentages of tests selected are 62.6% and 25.9%, and test
times are 68.1% and 55.2%; the difference is much higher in
tests selected than in test time. We examine several of these
jobs and find two reasons why Ekstazi runs slower.
Overhead of Ekstazi Instrumentation. Especially noticeable
in jobs where Ekstazi runs no more tests than GIB, Ekstazi
test time is longer primarily due to the runtime overhead of
extra instrumentation Ekstazi needs to track dependencies;
GIB requires no dynamic analysis. Note that in such cases
GIBstazi also runs roughly the same as Ekstazi, as GIBstazi
also relies on the same instrumentation.

Overhead of Ekstazi Requiring Compilation. We find jobs
where Ekstazi spends a lot of time to determine that it need
not run tests in some modules, while GIB and GIBstazi quickly
determine to run very few modules. For example, in P4, we
find a job where Ekstazi and GIBstazi run no tests. GIBstazi
determines this rather fast, as it first selects very few modules,
and those modules have no tests to run. However, Ekstazi
has to analyze each and every module to determine that no
tests should be run in it. While this analysis is generally
rather fast, e.g., 2—4 seconds per module, P4 is a project
with over 60 modules, so the time adds up. Furthermore,
P4 is configured to run other plugins in each module, such
as cobertura instrumentation, adding even more time per
module. GIBstazi’s skipping of all the unaffected modules
leads to substantial speedup against Ekstazi.

3) Non-Source-Code Changes: In most cases, GIBstazi
runs at least as many tests as Ekstazi because GIBstazi defaults
to GIB behavior when there are non-source-code changes. To
estimate the potential impact of such changes on RTS, we
measure how much tests depend on non-source-code files.
For each project, we first use fabricate [1], a tool that
traces what files are accessed when executing a command
(in our case, running mvn test), on the latest commit of
the project. We record the non-source-code files used by
the tests. We find many file names with extensions such as
.json or .properties, and many files under test/resources,
suggesting these files are used as inputs or configuration for
tests. We then measure how many commits in the project made
changes to any of these files. While one project had no commit
that changed any of the dependencies found using fabricate,
the other projects had on average 7.5% commits with such
a change. Thus, Ekstazi has a relatively high risk to miss
selecting a test affected by non-source-code changes.

B. RQ2: Test Failure Analysis

RTS aims to select only tests affected by changes. A key
question is whether RTS misses to select some tests that fail
due to the changes. If RTS misses such a real test failure, the

TABLE IV: Percentage of test failures selected or not selected by RTS

Project # Failed GIB % Ekstazi % GIBstazi %

Tests Selected | Not Selected | Unknown Selected | Not Selected | Unknown Selected | Not Selected | Unknown
apache/flink 2 100.0 0.0 0.0 50.0 50.0 0.0 50.0 50.0 0.0
apache/incubator-pulsar 13 539 46.2 0.0 84.6 0.0 15.4 38.5 46.2 154
apache/storm 7 71.4 28.6 0.0 57.1 429 0.0 71.4 28.6 0.0
aws/aws-sdk-java 1 100.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0
brianfrankcooper/YCSB 2 50.0 50.0 0.0 50.0 50.0 0.0 50.0 50.0 0.0
druid-io/druid 10 70.0 30.0 0.0 20.0 70.0 10.0 20.0 70.0 10.0
iluwatar/java-design-patterns 5 0.0 100.0 0.0 20.0 60.0 20.0 0.0 100.0 0.0
javaee-samples/javaee7-samples 7 0.0 100.0 0.0 0.0 143 85.7 0.0 100.0 0.0
killbill/killbill 47 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
languagetool-org/languagetool 1 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
prestodb/presto 1 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
SUM/AVG 96 72.9 27.1 0.0 69.8 19.8 10.4 64.6 323 3.1

developer could miss a regression fault, defeating the purpose
of regression testing. However, some failures are due to flaky
tests and undesirable, so it would be beneficial to miss such
failures. RTS is not explicitly designed to avoid flaky tests, but
it can miss them by chance. In our study, we find several test
failures in RetestAll, so we check whether the RTS techniques
select those tests, and whether those failures are desirable.

Table IV shows the number of test failures from RetestAll
and the breakdown of percentage of those tests selected by
the RTS techniques. We obtain the test failures by parsing the
Travis logs using tools from TravisTorrent [8]. Unfortunately,
the parsing cannot successfully identify test failures for all
failed jobs due to project-specific “noise” in the logs (e.g.,
not printing test progress in the default format). Also, just the
Travis status of the job itself does not necessarily indicate
there are test failures, as other Travis phases could mark the
job as fail for other issues, so such jobs have no failed tests in
the logs. In total, we find 11 projects with test failures we can
parse out, leading to a total of 96 test failures. We categorize
those test failures for each RTS technique into three categories:
selected, not selected, or unknown. We use unknown if we
cannot tell from the logs whether the test would have been
selected, which happens if another test in a module before the
relevant test fails in the RTS run, leading to an early failure
that skips running the tests in later modules.

We inspect all the test failures from RetestAll. For 29 test
failures, we find that the job with the test failure was imme-
diately preceded by a job that had the same test failure [22].
When RTS does not select a test, the outcome of that not
selected test is not necessarily pass but the same outcome from
the prior run (may be fail), i.e., the failed outcome of the test
is known from before. For example, if the developer makes
no change related to fixing a test failure, there is no need to
run the unaffected test again for the same known failure. An
RTS tool can simply copy the prior outcome of the tests from
the prior job if the tests are not run, allowing the developer to
consistently see the test failures that have not yet been fixed.

We examine in detail the remaining 67 test failures where
the test passed in the prior job. We find only one real failure
and all others due to flaky fests that can pass or fail non-
deterministically even on the same code [17], [24], [36]. Most
flaky test failures are not related to code changes and are
undesirable as they do not reveal real faults due to code
changes [7]. We confirm that these tests are flaky in two ways.

For some tests, we find that one of the RTS techniques did
run the test and yet the test passed. For the remaining tests,
we rerun the same job for RetestAll up to six times and check
that the test passes in any rerun. In summary, all test failures
are flaky except for one, from brianfrankcooper/YCSB, which
consistently fails in those reruns. Examining the test logs and
code changes, we determine this one test failure to represent a
real fault, but we also find that all the RTS techniques selects
this test, so none of them misses this regression fault.

The failed jobs we have used in evaluation so far are from
pushes to the master branch, so their failures are expected to
be due to flaky tests if the developers follow good CI practices
and only merge in pull requests with passing jobs. However,
failures from pull request jobs may more likely be real failures
from attempting to merge. We apply RTS techniques on failed
pull requests to examine whether the techniques miss real test
failures. We first obtain recent (up to 10) failed pull requests
from our evaluation projects. We then rerun their jobs six
times in the RetestAll configuration to confirm that the failed
tests fail consistently, resulting in 37 failed jobs. We then
replay these failed jobs with Ekstazi, resulting in 19 successful
replays across five projects; Ekstazi fails to run in 18 jobs due
to the JVM setting. We find that Ekstazi does not miss any
real test failures in these 19 pull request jobs, and by extension
both GIB and GIBstazi also would not miss any test failures.

In sum, our inspection shows that all tests that failed in
RetestAll for pushes to the master branch but are not selected
by any RTS technique are either failing from before (so the
test outcome is already known) or due to flaky tests (so do not
reveal real regressions). As such, it is actually beneficial for
RTS to not select these failed tests from RetestAll: the higher
the percentage of failed tests not selected, the better. GIBstazi
does not select such tests at a higher percentage than the other
two techniques. Even if all the test failures categorized as
unknown for Ekstazi are actually not selected, its percentage
of not selected tests would be 30.2%, still lower than the not
selected percentage for GIBstazi, 32.3%. If we consider pull
request jobs where we confirm that test failures are not flaky,
the RTS techniques do not fail to select any failed test.

C. Shadowing Projects

In our experiments with replaying, we are unable to suc-
cessfully replay many commits due to significant differences
between the environment used for the jobs back when they

TABLE V: Time savings from RTS on shadowed jobs

Project # Jobs Original Shadowed

Time (m) | Time (%)

aws/aws-sdk-java 8 8.9 114.0
apache/incubator-skywalking 15 11.8 72.4
google/error-prone 4 15.7 70.5
languagetool-org/languagetool 93 16.0 53.9
javaparser/javaparser 6 16.2 529
alibaba/dubbo 4 18.2 56.4
linkedin/pinot 36 18.3 42.1
google/guava 5 243 754
iluwatar/java-design-patterns 2 25.9 83.5
SUM/AVG 173 17.3 69.0

were originally triggered and the current environment, e.g., the
differences in external dependencies a project needs. For ex-
ample, one of the projects we failed to replay is google/error-
prone, which has a dependency on a SNAPSHOT version of
JUnit. The JUnit developers can overwrite this version with
new changes, so the dependency name does not uniquely
determine its content. One such change was to the API of
certain methods that google/error-prone in an earlier commit
relies on. Since the SNAPSHOT version in the central repository
was updated, our replay uses this latest version, leading to
compilation errors. As such, we do not use google/error-prone
in our evaluation on historical commits.

To gain better understanding of RTS for RQ1 and RQ2,
instead of replaying historical commits, we shadow the Travis
builds from 40 projects (including some whose RetestAll
jobs do not compile in our earlier experiments), similar to
Bell et al. [7]: we set up automatic tracking of projects
such that when their developers trigger Travis builds on the
master branch, our setup replays those builds close in time
to the triggered builds. One advantage of shadowing current
builds is evaluating in an environment similar to when the
builds are actually built (e.g., less likely to have out-of-date
dependencies). Another advantage is that we can observe how
well RTS helps the project for its current state, which may
have different characteristics from the project state in the jobs
we replayed before. Finally, shadowing allows us to better
evaluate the feasibility of utilizing RTS in a realistic cloud-
based CI environment as it stands currently.

To enable shadowing, we first fork each project into a new
account. We then set up a cron job to query Travis once an
hour for each project to check if some new builds occurred
since the last time the cron job was run. If there is a new
build, the cron job pulls the commits corresponding to the new
build(s) into our shadowing fork and replays them with RTS.
We perform these runs only for GIBstazi, because we find it to
strike a good balance among all three RTS techniques, saving
more time than GIB, being designed to be safer than Ekstazi,
and having avoided the most flaky test failures. To limit our
usage of Travis, we shadow for 20 days, obtaining results from
217 jobs of nine projects. We obtain shadowing results for two
projects (google/error-prone and linkedin/pinot) for which we
have no results from before due to the issues with replaying.
RQI. Table V shows the total time for the original job and
the percentage of that time taken by the shadowed version

with GIBstazi. The table only shows these numbers for the
jobs where both the original job and our shadowed job pass.
GIBstazi runs 69.0% of the original time, similar to before.
RQ2. We inspect all cases where the original jobs fail and
TravisTorrent [8] could parse out test failures from the logs.
We obtain 24 test failures from three projects: languagetool-
org/languagetool, google/guava, and iluwatar/java-design-
patterns. GIBstazi selects to run 17 of the failed tests (70.8%)
and does not select to run six of the failed tests (25.0%). We
cannot tell for one test if GIBstazi selected it, due to a (flaky!)
test failure from an earlier module.

For 15 test failures, we find that GIBstazi runs the failed
test in the prior job, where it also failed, so the test failure
would have been known. Of the remaining nine test failures,
we confirm four to be flaky either from GIBstazi running
the test and passing, or from our repeating the original job
and observing the test passing. Excluding the one test failure
that is skipped, we believe the remaining four test failures
are all real test failures. GIBstazi selects to run three of
those failed tests, so the developers would have noticed the
failures. However, GIBstazi did not select to run one failed
test. This test failure is from languagetool-org/languagetool,
and further inspection shows that the change made was to a
.txt file. The regex we use for GIBstazi configuration ignores
changes to .txt files, but for a project like languagetool-
org/languagetool, the .txt files are an integral part of tests.
Thus, we made a configuration error [33] in GIBstazi, using
generic filtering that applies to most projects. The developers
of languagetool-org/languagetool should apply project-specific
filtering to ensure such test failures are not missed. Note that
Ekstazi would also have missed to select this failed test.

VI1. THREATS TO VALIDITY

Our results may not generalize beyond projects used in
our study. We use a diverse set of projects from GitHub,
the most popular service for hosting open-source projects.
We choose as many projects that could satisfy our filtering
requirements, which includes choosing only Java and Maven
projects due to tool constraints. We focus on projects that take
a relatively long time to build and test, which are projects
where developers would want to use RTS to save regression
testing time. We believe that the 22 projects used in our study
are fairly representative of such projects.

The historical replays we perform are not exactly the same
as if they had been run when the developers triggered the
build. A particular problem are any external dependencies
the developers used at the time of the build but are now
no longer available or, even worse, changed the content
and behavior while they still having the same name (e.g.,
SNAPSHOT dependencies). Replayed jobs from such builds can
fail although they would have passed when the developers
built. To alleviate this issue, we replay using not just the RTS
techniques but also RetestAll, so we do not compare RTS
against the RetestAll job that happened potentially a while
ago with a drastically different setup. Moreover, we replay
on Travis, the same environment the developers use, to more
closely imitate how the developers build their code using CI.
Finally, we use live shadowing and not just historical replays.

VII. RELATED WORK

Regression Test Selection. RTS has been studied for several
decades [34]. Researchers have proposed various different RTS
techniques, selecting tests by tracking dependencies at differ-
ent levels of granularities, ranging from precise control-flow
edges [18], [28] to methods [38] to classes [15], [23], [37].
Recent work has emphasized the need for RTS to provide time
savings in end-to-end regression testing. For example, Gligoric
et al. proposed Ekstazi [15], which tracks dependencies at the
class level and selects test classes as opposed to test methods,
leading to a larger number of tests run compared to tracking
at a finer granularity. However, the analysis for RTS at the
class level is very quick, eventually leading to better time
savings. Zhang proposed HyRTS [37] that tracks dependencies
at both class and method levels. Zhang found that HyRTS
outperformed class-level RTS in terms of tests selected but
could not always outperform class-level RTS in time due to
the costs of method-level dependency collection. Companies
such as Google and Microsoft rely on even coarser-grained
dependency tracking, at the module level, due to the even
quicker analysis time [12], [13], [29]. This work compares
module- and class-level RTS in a cloud-based CI environment.

Our work is quite similar to work by Vasic et al. [31] that
created Ekstazi#, a tool that performs class-level RTS, like
Ekstazi, for the .NET framework. Vasic et al. also evaluated
running Ekstazi# on top of an incremental build system Con-
cord, which inherently performs module-level RTS. For one
project on which they evaluated, they found that adding class-
level RTS improves module-level RTS time by 65.26%. Our
hybrid RTS technique GIBstazi follows the ideas introduced
by Ekstazi# and Concord. However, GIBstazi differs from their
combination in that when changes are not source-code related,
GIBstazi defaults back to GIB behavior, running all tests
within affected modules, thereby being safer than just running
Ekstazi (or Ekstazi#), which does not track those changes and
runs no tests within affected modules. As such, we find that
GIBstazi improves over GIB much less, 62.0% versus 64.6%
of RetestAll time, respectively. Furthermore we compare both
module-level RTS and class-level RTS, as well as against
GIBstazi, in a cloud-based CI environment, where every build
starts fresh on a new machine; Vasic et al. evaluated Ekstazi#
on a dedicated machine.
Continuous Integration. Continuous integration is widely
used in industry. Recent work has studied why developers
use CI and the benefits they experience [20], [21], [39]. One
main reason for the rise in CI research is the increase in
developers using CI, particularly with services such as Travis,
which provides CI for free for open-source projects on GitHub.
Moreover, Travis exposes the logs from the builds that occur
on their servers, allowing ease of access to build results.
TravisTorrent [8] provides a dataset of logs from Travis and
also some tooling for parsing the logs. We utilize Travis for
our evaluation, and we also use the TravisTorrent tooling to
parse the logs for our analysis of failed tests.

Yu and Wang [35] recently studied the potential of RTS
in a CI environment. They analyzed factors such as the
commit frequency of projects and the size of the changes

between commits to gauge how effective RTS could be in
a CI environment. They also compared a class-level and a
method-level static RTS technique against RetestAll. Our work
differs from theirs in that we investigate a module-level, class-
level, and hybrid module/class-level dynamic RTS techniques
in a CI environment. We also evaluate in a cloud-based CI
environment, Travis, which differs from Yu and Wang’s choice
of Jenkins, a CI environment on a local server that is more
under the control of the developers. Finally, we further analyze
the test failures that occur during the runs and compare how
well the RTS techniques select the failing tests.

There has been more work studying test failures on Travis
(but not in combination with RTS as we do). Labuschagne
et al. [22] studied how often regression testing on Travis
reveals faults that developers fix. They queried Travis for the
results of builds and focused on patterns of builds that toggle
pass and fail outcomes, indicating where a change caused an
originally passing build to start to fail, followed by changes
that lead to the build passing again. They found 74% of the
non-flaky failed builds were caused by a fault in the code
under test, with the remaining due to incorrect/obsolete tests.
They reported flaky tests to affect 13% of the failed builds they
studied (although this percentage is an underestimate, as they
considered historically failed builds that consistently passed
during their reruns as non-flaky). We also find flaky tests in
our study, although we find that almost all the test failures
from RetestAll in our study are flaky test failures. One reason
for the different percentage of flaky tests is that they studied all
builds (from the master branch and other branches, as well
as pull-request builds) whereas we studied builds from the
master branch (because many other builds cannot be replayed
as they are not available).

VIII. CONCLUSIONS

Regression testing is widely practiced but costly, and RTS
reduces the cost. Industry has adopted module-level RTS,
while research has reported class-level RTS to be effective.
We compare module- and class-level RTS in a cloud-based
CI environment. We find that RTS techniques improve testing
time over RetestAll in this environment, and GIBstazi, our
new hybrid module- and class-level RTS technique, offers a
good trade-off. Our investigation of test failures from RetestAll
shows that the RTS techniques often miss to select some failed
tests, but this happens to be desirable because these tests are
flaky and not indicative of faults introduced by code changes.
In sum, the results show that RTS offers benefit to developers,
not only to reduce machine time but also to avoid false alarms
from flaky tests.

ACKNOWLEDGMENTS

We thank Tianyin Xu for his comments on an earlier draft
of this paper and Qianyang Peng for providing some data
on test failures for our evaluation. This work was partially
supported by NSF grants. CCF-1421503, CNS-1646305, CNS-
1740916, CCF-1763788, and OAC-1839010. We acknowledge
support for research on regression testing and flaky tests from
Facebook, Futurewei, Google, Microsoft, and Qualcomm.

[1]
[2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

REFERENCES

fabricate. https://github.com/SimonAlfie/fabricate.
gitflow-incremental-builder. https://github.com/vackosar/
gitflow-incremental-builder.
gitflow-incremental-builder with GIBstazi.
august782/gitflow-incremental-builder.
Maven. http://maven.apache.org/.

Travis-CI. https://travis-ci.org/.

A. Alali, H. Kagdi, and J. I. Maletic. What’s a typical commit? A
characterization of open source software repositories. In /ICPC, pages
182-191, 2008.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
DeFlaker: Automatically detecting flaky tests. In ICSE, pages 433444,
2018.

M. Beller, G. Gousios, and A. Zaidman. TravisTorrent: Synthesizing
Travis CI and GitHub for full-stack research on continuous integration.
In MSR, pages 447-450, 2017.

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining Git. In MSR, pages
1-10, 2009.

H. Borges, A. Hora, and M. T. Valente. Predicting the popularity of
GitHub repositories. In PROMISE, pages 9:1-9:10, 2016.

C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How do
centralized and distributed version control systems impact software
changes? In ICSE, pages 322-333, 2014.

S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In FSE, pages 235-245, 2014.

H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula. CloudBuild: Microsoft’s
distributed and caching build service. In ICSE, pages 11-20, 2016.

M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test
selection. In /ICSE DEMO, pages 713-716, 2015.

M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In ISSTA, pages 211-222,
2015.

A. Gyori, O. Legunsen, F. Hariri, and D. Marinov. Evaluating regression
test selection opportunities in a very large open-source ecosystem. In
ISSRE, pages 112-122, 2018.

M. Harman and P. O’Hearn. From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis. In SCAM,
pages 1-23, 2018.

M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for
Java software. In OOPSLA, pages 312-326, 2001.

K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing
less without sacrificing quality. In /CSE, pages 483-493, 2015.

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: Assurance, security, and flexibility. In
ESEC/FSE, pages 197-207, 2017.

https://github.com/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
(371

(38]

[39]

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs,
and benefits of continuous integration in open-source projects. In ASE,
pages 426437, 2016.

A. Labuschagne, L. Inozemtseva, and R. Holmes. Measuring the cost of
regression testing in practice: A study of Java projects using continuous
integration. In ESEC/FSE, pages 821-830, 2017.

O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In FSE, pages 583-594, 2016.

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of
flaky tests. In FSE, pages 643-653, 2014.

A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco. Taming Google-scale continuous testing. In /CSE-SEIP,
pages 233-242, 2017.

A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large
software systems. In FSE, pages 241-251, 2004.

G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia.
The impact of test suite granularity on the cost-effectiveness of regres-
sion testing. In ICSE, pages 130-140, 2002.

G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. TOSEM, 6(2):173-210, 1997.

A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka.
Optimizing test placement for module-level regression testing. In /CSE,
pages 689-699, 2017.

A. Shi, P. Zhao, and D. Marinov.
improving regression test selection in continuous integration.
https://zenodo.org/record/3268234#. XR2RRYhKg2w.

M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric. File-level vs.
module-level regression test selection for .NET. In ESEC/FSE, pages
848-853, 2017.

G. Xu and A. Rountev. Regression test selection for Aspect] software.
In ICSE, pages 65-74, 2007.

T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker. Hey,
you have given me too many knobs! Understanding and dealing with
over-designed configuration in system software. In ESEC/FSE, pages
307-319, 2015.

S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. STVR, 22(2):67-120, 2012.

T. Yu and T. Wang. A study of regression test selection in continuous
integration environments. In ISSRE, pages 135-143, 2018.

A. Zaidman and F. Palomba. Does refactoring of test smells induce
fixing flaky tests? In ICSME, pages 1-12, 2017.

L. Zhang. Hybrid regression test selection. In /CSE, pages 199-209,
2018.

L. Zhang, M. Kim, and S. Khurshid. FaultTracer: A change impact and
regression fault analysis tool for evolving Java programs. In FSE, pages
40:1-40:4, 2012.

Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact
of continuous integration on other software development practices: a
large-scale empirical study. In ASE, pages 60-71, 2017.

Dataset for understanding and
2019.

