
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

1

Understanding and Improving

Regression Test Selection in Continuous Integration
August Shi, Peiyuan Zhao, Darko Marinov

Department of Computer Science

University of Illinois at Urbana-Champaign, USA

{awshi2,pzhao12,marinov}@illinois.edu

Abstract—Developers rely on regression testing in their contin-
uous integration (CI) environment to find changes that introduce
regression faults. While regression testing is widely practiced, it
can be costly. Regression test selection (RTS) reduces the cost of
regression testing by not running the tests that are unaffected by
the changes. Industry has adopted module-level RTS for their CI
environment, while researchers have proposed class-level RTS.

In this paper, we compare module- and class-level RTS tech-
niques in a cloud-based CI environment, Travis. We also develop
and evaluate a hybrid RTS technique that combines aspects of
the module- and class-level RTS techniques. We evaluate all
the techniques on real Travis builds. We find that the RTS
techniques do save testing time compared to running all tests
(RetestAll), but the percentage of time for a full build using
RTS (76.0%) is not as low as found in previous work, due to
the extra overhead in a cloud-based CI environment. Moreover,
we inspect test failures from RetestAll builds, and although we
find that RTS techniques can miss to select failed tests, these test
failures are almost all flaky test failures. As such, RTS techniques
provide additional value in helping developers avoid wasting time
debugging failures not related to the recent code changes. Overall,
our results show that RTS can be beneficial for the developers
in the CI environment, and RTS not only saves time but also
avoids misleading developers by flaky test failures.

Index Terms—regression test selection, continuous integration,
flaky tests

I. INTRODUCTION

Developers rely on regression testing to quickly detect

regression faults introduced by their code changes. Nowadays,

regression testing is commonly performed in continuous inte-

gration (CI): after every push to the repository, a CI server,

typically in the cloud, builds and tests the code [20]. While

regression testing is important and widely-practiced, it has two

major problems. First, it can be time-consuming due to running

many tests after every change and having frequent changes,

e.g., as reported by Google [25]. Also, running regression

testing on CI servers in the cloud incurs a monetary cost

for the cloud resources, e.g., as reported by Microsoft [19].

Second, regression testing suffers from flaky tests [7], [24],

[36], which can pass or fail non-deterministically regardless

of the code changes, e.g., as reported by Facebook [17]. With

flaky tests, a developer cannot trust a new test failure to

indicate a regression fault in the recent code changes that the

developer should debug.

Regression test selection (RTS) can reduce the costs of

regression testing. RTS runs only a subset of the regression test

suite—the tests that are affected by the changes [34]. An RTS

technique tracks the dependencies among the tests and code

entities (e.g., modules, classes, or methods) and selects to run

only the tests whose (direct or indirect) dependencies changed.

RTS aims to run fewer tests, speeding up regression testing.

Researchers have proposed many RTS techniques that perform

selection at different granularity levels of dependencies [14],

[15], [18], [23], [26], [27], [28], [32], [34], [38]. Researchers

have also reported RTS to be effective in experiments, mea-

sured by the percentage of tests selected and testing time

saved. Large companies have adopted RTS to speed up their

regression testing [12], [13], [17], [19], [25]. For industry,

important metrics are the overall build time and the quality

of the test outcomes (i.e., if test failures reveal real faults).

While both industry and research use and study RTS tech-

niques, there is a gap in the granularity level of RTS they

use. A typical (object-oriented) software project is organized

hierarchically into modules that contain classes that contain

methods that contain statements; there can be also dependen-

cies among projects. In industry, RTS has progressed from

coarser- to finer-grain dependencies, from running all tests

(RetestAll) to tracking dependencies among project modules1.

Modern systems in industry [12], [13], [17], [19] commonly

use module-level dependencies, track changes made to project

modules, select a subset of modules that are affected by

the changes, and then run all tests within the selected mod-

ules [13], [25]. In research, the progress has been from finer-

to coarser-grain dependencies, from traditional work using

statements [34] to using methods [38] to the most recent work

reporting class-level dependencies to be more effective than

finer-grain dependencies [15], [23], [37].

We aim to understand how module- and class-level RTS

techniques compare in a real CI environment: should everyone

adopt module-level RTS used by large companies, should

they adopt class-level RTS proposed by researchers, or is the

ideal trade-off in the middle? While module-level RTS has a

very small overhead to analyze what modules are affected by

the changes, the coarse-grained dependency tracking and test

selection (all tests within affected modules) can select more

tests than class-level RTS selects (only the affected test classes,

not all tests, within affected modules). While class-level RTS

can select fewer tests, it has two issues stemming from tracking

dependencies (only) on classes: (1) it can potentially miss to

1We use the term “module” following the Maven build system for Java, but
other regression testing, CI, or build systems use other terms, e.g., “target”.

2

select affected tests, e.g., due to changes to non-source code

files like configuration files, whereas module-level RTS finds

such changes to affect entire modules and then selects all tests

within such modules; (2) it requires extra analysis time to

determine the affected test classes, compared to the time to

determine only the affected modules, so the overall time for

class-level RTS can be higher despite selecting fewer tests.

To evaluate module- and class-level RTS techniques in a CI

environment, we would ideally compare techniques in general

and not specific tools. Some metrics, such as the number of

selected tests, are mostly determined by the technique, but a

key metric that developers care about—the total build time—

is determined by the tool. We thus compare specific tools and

carefully analyze results to draw general conclusions about

techniques. We start with GIB [2], a module-level RTS tool,

and Ekstazi [15], a class-level RTS tool.

We also implement a new RTS tool, GIBstazi, that simply

combines both module- and class-level RTS. GIBstazi first

uses GIB to quickly select what modules are affected by the

changes, and then only on those modules applies Ekstazi to

select affected tests. If a change is in a non-source-code file

that is not tracked by class-level RTS, GIBstazi defaults to GIB

behavior and selects all the tests within the affected modules.

Moreover, after our preliminary experiments show that GIB

out-of-the-box would almost always selects all modules based

on the changes, we make enhancements to better filter changes

that tests should not be affected by. Our subsequent evaluation

of GIB uses these enhancements as the default configuration.

By combining GIB and Ekstazi, GIBstazi aims to select and

run fewer tests than GIB, leading to faster testing, but not

necessarily faster than Ekstazi. However, because GIBstazi

defaults to GIB behavior due to non-source-code changes,

GIBstazi can be safer (i.e., not miss to select some affected

tests) than Ekstazi.

To evaluate real build times that developers would see

in practice for the three RTS techniques, we utilize Travis

CI [5], the most popular cloud-based CI service for open-

source projects [20]. We evaluate the techniques on a diverse

set of open-source Java projects already configured to use

Travis; whenever the developer pushes some change, Travis

triggers one (or more) build job(s). We replay the build jobs

of each project by running all the tests (RetestAll) and using

each of the three RTS techniques. For each technique run on

each job, we collect three metrics relative to RetestAll: the

percentage of tests selected, the percentage of time to run the

selected tests, and the percentage of time overall to build the

job. On the 22 projects and the 935 build jobs we replayed,

we find that all three RTS techniques on average save time

over RetestAll on Travis: GIB, Ekstazi, and GIBstazi take

79.7% 76.0%, and 77.4%, respectively, of the total RetestAll

build time. These percentages for total build time in CI are

higher than previously reported (60%–70%) for local, non-

CI environments [15], [23], [37]. Moreover, these percentages

are much higher than suggested by just the percentage of tests

selected, e.g., 30.6% for Ekstazi.

To understand the effectiveness of RTS techniques with

respect to test failures that happen during RetestAll, we collect

the test outcomes (passes and failures) for each technique

and systematically inspect failures. Some test failures during

regression testing, namely those from flaky tests, are undesir-

able [7], [17], [24], [36]. Because RTS may miss test failures

from RetestAll (in our experiments, it missed 39 failures), we

analyzed whether RTS missed desirable or undesirable test

failures. We find that almost all the test failures (38 out of 39)

from RetestAll that any RTS technique missed are undesirable,

flaky test failures.

While RTS techniques are not explicitly designed to avoid

flaky test failures, we empirically find that RTS is highly

beneficial for avoiding flaky test failures, a benefit of RTS

not previously reported [14], [15], [18], [23], [26], [27], [28],

[32], [34], [38]. We also apply the RTS techniques on 19 failed

pull request jobs that are not flaky (confirmed through reruns)

from five of our projects. We find that the RTS techniques do

not miss any failed test in these 19 jobs, even though class-

level RTS could miss to select affected tests due to non-source

code changes.

In summary, the contributions of this paper are:

• Hybrid RTS Technique: We develop a simple, hybrid

module- and class-level RTS technique.

• Empirical Evaluation: We empirically evaluate the

module-level, class-level, and hybrid RTS techniques in

CI; no prior work compared such RTS techniques in CI.

• Failure Analysis: We are the first to analyze test failures

from RetestAll runs in the context of RTS. We find almost

all failures are due to flaky tests, showing how RTS

techniques by chance mitigate the flaky test problem.

From our results, we recommend developers to use the

hybrid GIBstazi RTS technique, because it provides the best

trade-off: it works faster than GIB and only somewhat slower

than Ekstazi, but it is safer than Ekstazi. Moreover, our

analysis of failed tests reveals that RTS techniques provide

additional, although not directly targeted, benefits in helping

developers avoid flaky test failures.

II. CONTINUOUS INTEGRATION (CI) BACKGROUND

We describe how developers use CI systems to build and test

their code, with an emphasis on CI systems in the cloud. We

use Travis [5] as an example to help illustrate the concepts.

Travis is widely used [21] and integrates well with projects

hosted on GitHub, the most popular platform for open-source

projects [6], [9], [10], [11]. We use Travis in our evaluation

and introduce some Travis terminology here.

When a developer pushes a commit to a repository, the push

triggers a build on the CI servers to compile and test the code

for that commit. Developers can specify the exact commands

to be run on the CI server; for Travis, these commands are

in the .travis.yml file. Travis also allows developers to

configure the build to run multiple jobs. Each job is configured

with different environment variables or even different build

commands; all jobs from one build run for the same commit.

Each job is scheduled on its own clean virtual machine in the

cloud. Hence, we focus our evaluation per job.

When a job starts on a remote CI server in the cloud,

artifacts from prior jobs will not be on the machine. As such,

CI needs to either recompile the project from scratch before

3

running any tests or rely on some way of saving compiled

artifacts from prior jobs in a persistent datastore and copying

them over for the new job. Most Travis setups recompile the

code from scratch. A Travis job is divided into multiple phases

that are executed sequentially. If a phase fails, the job fails

early, and the later phases are not run. The install phase

typically compiles the project code but does not run the tests.

For example, the default command in the install phase for

building a Maven project is mvn install -DskipTests=true

-Dmaven.javadoc.skip=true -B -V, which purposely skips

tests, but installs all the compiled artifacts. On Travis, it

is possible to save certain artifacts across jobs, specified in

the cache section of the .travis.yml. Such artifacts are

copied onto the virtual machine before the job starts, and

they are uploaded onto a separate, persistent server after the

before_cache phase, which occurs near the end of the job.

After code has been properly compiled, CI can start running

tests. In Travis, tests usually run in the script phase, which

is executed after (but not immediately after) the install

phase. The default command in the script phase for Maven

projects is mvn test -B. Since the script phase occurs after

the install phase that should compile all necessary artifacts,

the script phase commands need not recompile code.

Finally, CI gives feedback to the developer about the status

of each job after it completes. Travis assigns a status to each

completed job: pass means all phases ran successfully, fail

means the script phase ran unsuccessfully, and error means

some other phase ran unsuccessfully (usually the install

phase, suggesting compilation failed).

III. REGRESSION TEST SELECTION (RTS) TECHNIQUES

We describe the three RTS techniques that we evaluate.

They track dependencies and perform selection at different

granularity levels: module-level, class-level, and a hybrid

module- and class-level. Prior work found RTS at the class-

level to outperform finer granularity such as method-level [15],

[23], [37], so we do not evaluate finer-grained RTS techniques.

A. Module-level RTS

Developers use modules to group related project parts, and

module-level RTS detects changes at the level of modules.

When module-level RTS detects some changed module(s), it

finds all the affected modules by computing the transitive

closure of the changed modules in the module dependency

graph specified by the developers. Module-level RTS then runs

all the tests within all affected modules.

We use Gitflow Incremental Builder (GIB) as a module-

level RTS tool [2]. GIB is a Maven extension that can

perform module-level RTS. GIB relies on Git to determine

the code changes. Given two Git commits, GIB diffs the two

commits to determine what files changed. GIB then maps the

changed files back to the Maven modules to determine changed

modules. GIB finds the affected modules through the module

dependency graph obtained from parsing the pom.xml Maven

build files provided by the developers. GIB then runs the

provided Maven command (e.g., mvn install or mvn test)

only on the affected modules. GIB was originally intended

for incremental building, but as long as the Maven command

includes some testing, GIB effectively performs module-level

RTS by running all the tests within only affected modules. As

module-level RTS is conceptually rather simple, we believe

GIB is a representative tool.

Enhancing GIB In our preliminary experiments, we use GIB

out-of-the-box on 423 commits from open-source projects

from our later evaluation. We run GIB using the command mvn

validate, which just checks the structure of the modules in

the Maven project without compiling or running tests, to check

how many modules GIB selects based on the changes. We find

that in 65% of these commits GIB selects all the modules in

the project. Overall, GIB selects over 70% of all modules in

all the commits. As such, we add two key enhancements to

default GIB to improve it for RTS. Our subsequent evaluation

uses GIB with these enhancements as the default.

Our enhancements (1) configure GIB in a reasonable way

for RTS and (2) extend GIB with a new feature. GIB uses

Git to determine what files changed, but not all changed files

affect Java test outcomes. For example, if the only change is

to the top-level README file, GIB computes that a change

to a file in the root of the project affects all modules, thereby

running all tests, even though changing a README file is

unlikely to actually affect a test outcome. To avoid such over-

selection of tests, we configure GIB to exclude certain files,

using the following regex based on file names we have seen

commonly changing but are unlikely to affect test outcomes:

\.apt$|\.txt$|\.md$|\.html$|\.rst$|\.scss$|\.css$

|\.png$|\.py$|\.jpg$|\.jpeg$|\.git.*|NOTICE$

|README$|README\.|site.xml|index.xml|checkstyle.xml

Our regex works well generally, but developers using GIB

should tailor the regex further for their projects.

While our regex filters out many cases where file changes

would lead to unnecessary test runs, our initial experiments

found many other cases where changes to the Maven pom.xml

files lead to a large number of test runs. In general, changes to

pom.xml can affect tests, e.g., by changing a project’s library

dependencies [16]. However, we observed many changes to

pom.xml files that did not change the dependencies, e.g., some

changes simply update the project’s own version number,

which should not affect test outcome. We extended GIB to

check if any dependency of a module within the project

changed between runs. Our enhancement stores in a separate

file, classpathfile, the names of all the dependencies for

each module (but no version number if a dependency is a mod-

ule in the current project). Before each run, if classpathfile

exists, GIB compares the contents of the file with the depen-

dencies of each module to see if any dependencies changed.

If not, GIB ignores changes to pom.xml.

B. Class-level RTS

Class-level RTS tracks dependencies at the class level. First,

it maps each test class to the classes that the test depends on.

Then, if a class changes, class-level RTS selects all test classes

that depend on the changed class. The dependencies of each

test class can be computed dynamically [15] or statically [23].

4

We use Ekstazi [14], [15] as a class-level RTS tool. Ekstazi

is a Maven plugin that performs dynamic class-level RTS.

Ekstazi instruments the code under test to obtain which classes

each test2 depends on. Ekstazi also tracks checksum values

for each .class file (compiled from a source Java file). After

a project change, Ekstazi first waits for Maven to compile

source files to .class files, then uses the stored checksums to

determine which classes actually changed, and finally selects

the tests that depend on the changed classes as per the

stored dependency mapping. Both the mapping from tests

to dependencies and the class checksums are stored within

.ekstazi directories, one for each module.

C. Hybrid Module- and Class-level RTS

Module-level RTS can select many more tests than class-

level RTS, because module-level RTS selects all tests within

all affected modules, even if many such tests may not be

affected by the changes. We propose a hybrid module- and

class-level RTS that simply combines elements of both. It first

uses module-level analysis to determine the affected modules,

and then uses class-level analysis on the affected modules to

select individual tests. However, if a change is to a non-source-

code file (not specified in the exclude regex), e.g., a .json file

that may be a test input, the hybrid technique defaults back to

module-level RTS and selects all tests in the affected modules,

being safer than class-level RTS (which does not track changes

to non-source-code files).

We implement our hybrid technique in a tool called GIB-

stazi. GIBstazi builds upon GIB to determine affected mod-

ules, and for each such module, GIBstazi applies Ekstazi to

select tests within the module. If any change is to non-source-

code files, GIBstazi defaults back to GIB and selects all the

tests within the affected modules. For each module, GIBstazi

selects either (1) no tests (if the module is not affected), (2) all

tests (if some non-source-code file changed), or (3) the same

tests as Ekstazi. We expect GIBstazi to select fewer tests than

GIB but more than Ekstazi; the time savings from GIBstazi

should also be between GIB and Ekstazi. GIBstazi is a fork

of GIB, publicly available on GitHub [3].

IV. EXPERIMENTAL SETUP

We describe how we select the projects for our experiments

and the commits for each project. We then describe how we

configure to run the different RTS techniques for each project’s

commits on Travis. Finally, we describe how we collect the

job results for our evaluation. The collected job logs and our

results are publicly available [30].

A. Projects

Since the RTS tools we use are for the Maven build sys-

tem [4], our evaluation requires Maven projects. In addition,

given that GIB and GIBstazi operate at the module level, we

need Maven projects that are multi-module. Moreover, we

need these projects to build on Travis. We query GitHub to get

2By “test” we mean “test class”. Ekstazi selects test classes that each can
have several test methods. We count tests at the level of test classes as well.

TABLE I: Filtering of projects for our evaluation

Total starting Maven projects from GitHub 1000
Multi-module Maven projects on Travis 105
Projects whose build takes longer than 10 minutes 46
Projects with tests and replayable with RTS tools 22

the top 1000 popular Java projects ranked by stars, and then

we filter to obtain only multi-module Maven projects. Finally,

we filter for projects that use Travis, resulting in 105 projects.

Further, we want to evaluate on projects whose builds are

sufficiently long-running such that a developer may want to

use RTS in the first place. For each of the 105 projects, we

query Travis for the latest 20 builds, average the build times,

and select projects that took on average longer than 10 minutes

to build, resulting in 46 projects. The build times reported by

Travis represent the overall time the project takes to build

and not just the times for testing. In particular, some of these

projects only compile code on Travis and intentionally skip

tests. Since we are evaluating RTS techniques, we want the

projects that run at least some tests during the script phase on

Travis. From the 46 projects, we keep the projects that run tests

on Travis, and we further keep only the projects that can run

with all three RTS tools (e.g., GIB requires Java 8), resulting

finally in 22 projects. Some of the projects have testing time

shorter than 10 minutes, and the average testing time per job

is 9.9 minutes (Section V-A). Table I summarizes the filtering.

We collect revisions for each of the 22 projects for rerunning

on Travis. We collect these revisions from actual prior Travis

builds. In contrast, recent work on RTS [15], [23] selected

the revisions as sequential commits from the master branch

in the GitHub repository of each project. However a single

Travis build corresponds to a push from the developer, and the

code changes between two pushes can correspond to several

commits in the repository.

For each project, we collect from Travis the commit SHAs

associated with the latest 20 push builds on the master branch.

We collect these SHAs in the order in which they actually hap-

pened on Travis such that replaying these historical commits

later on gives the same code changes between each build as

observed by the developers when using Travis for these builds.

B. Replaying with RTS

We replay the commits collected for each project on Travis

for all RTS techniques, including RetestAll. For each tech-

nique, we create a new GitHub account and fork the projects

into the account, and then for each commit of a project, do

the following four steps: (1) checkout the commit (specifi-

cally with “git checkout $sha .” using ‘.’ to not create a

detached branch); (2) modify the pom.xml and .travis.yml

files to use a specific RTS technique on the project when run on

Travis; (3) modify the pom.xml and .travis.yml files further

for our experimental purposes, to count tests run and measure

time for running, with these modifications being the same for

all techniques, including RetestAll; and (4) recommit the files

after the modifications as a new, fresh commit and push it to

our forked repository on GitHub, triggering the build, and thus

5

one or more jobs, on Travis. (The very first commit that we

recommit for each of the three RTS techniques selects all tests

as in RetestAll, but the later commits use RTS.) We describe

next the specific modifications for each RTS technique for

step (2) and the general modifications for evaluation purposes

for step (3). We aim for smallest necessary modifications to

minimize risk of affecting the build process in each project.

1) GIB: We modify the project’s top-level pom.xml file to

include the GIB Maven extension. We configure the extension

to compare the differences between two Git commit SHAs,

where the first is the commit SHA of the previous build and the

second is the current SHA. The Travis environment variable

TRAVIS_COMMIT_RANGE provides these two commit SHAs.

We modify the .travis.yml file’s cache section to save the

classpathfile generated (Section III-A). The cache is needed

to share data between jobs because Travis runs each job on a

fresh virtual machine. We also configure .travis.yml to not

use GIB during the install phase, as the entire project must

build from scratch, and using GIB in this phase could prevent

certain modules from being compiled. We disable GIB in the

before_install phase (which occurs right before the install

phase) and then enable it in the before_script phase (which

occurs right before the script phase).

2) Ekstazi: We modify the project’s top-level pom.xml

file to include the Ekstazi Maven plugin; we use version

4.6.3 in our evaluation. We modify the .travis.yml’s cache

section to save in between jobs one combined .ekstazi

directory with metadata for all modules. We further add

in the before_script phase the commands to copy the

cached .ekstazi directories to each module in the project

for the script phase to use for testing, and we add in the

before_cache phase the commands to combine the updated

.ekstazi directories after the tests finish. These .ekstazi

directories can be much bigger than the classpathfile cached

by GIB, and caching these directories is a necessary extra

overhead to use Ekstazi in a cloud-based CI environment.

3) GIBstazi: We modify the pom.xml and .travis.yml

files the same way as necessary for both GIB and Ekstazi

individually, i.e., configuring to add the GIBstazi extension,

and configuring .travis.yml to cache between jobs both the

classpathfile and .ekstazi directories while also copying

them appropriately.

4) Modifications for all techniques for experiments: For our

evaluation, we need extra modifications to report tests selected

and time taken. At the end of the script phase, we add

commands to report how many tests are run by counting the

number of Surefire report files generated that each represent

a test run. We also add commands in the script phase to

report how much time the script phase takes to run. Timing

the script phase, where testing is meant to be performed,

we can simulate running RTS “locally”, without including

the times for compiling code from scratch or downloading

dependencies; we refer to the time measured in this phase

as test time. We next remove from .travis.yml the entire

notifications phase, which is used to notify developers of

the job status; we do not want to spuriously notify developers

concerning our replaying of their jobs. Removing this phase

does not disrupt the compile and testing process in the previous

TABLE II: Basic statistics about projects used in evaluation,

including distribution of pass/fail/error statuses for RetestAll

ID Project # Jobs Pass Fail Error

P1 SonarSource/sonarqube 38 19 19 0

P2 elasticjob/elastic-job-lite 19 19 0 0

P3 apache/rocketmq 19 0 19 0

P4 alibaba/dubbo 18 18 0 0

P5 aws/aws-sdk-java 19 18 1 0

P6 brianfrankcooper/YCSB 19 18 1 0

P7 apache/incubator-skywalking 19 19 0 0

P8 antlr/antlr4 170 169 1 0

P9 vavr-io/vavr 5 5 0 0

P10 Graylog2/graylog2-server 1 1 0 0

P11 javaparser/javaparser 19 19 0 0

P12 languagetool-org/languagetool 18 17 1 0

P13 druid-io/druid 83 69 14 0

P14 killbill/killbill 47 0 47 0

P15 apache/storm 84 76 8 0

P16 iluwatar/java-design-patterns 19 14 5 0

P18 google/guava 35 35 0 0

P17 javaee-samples/javaee7-samples 335 334 1 0

P19 prestodb/presto 172 171 1 0

P20 apache/incubator-pulsar 13 7 4 2

P21 apache/flink 211 209 2 0

P22 Tencent/angel 14 7 7 0

SUM 1377 1244 131 2

install and script phases, and because we remove this phase

for all techniques, including RetestAll, our timing comparison

is consistent as well. Finally, we modify .travis.yml to not

run any jobs with Java versions below Java 8, because GIB

requires Java 8.

C. Collecting Job Logs

Replaying each commit starts jobs on Travis. After each

job finishes, we download its log from Travis for analysis.

We further consider only the jobs where we can successfully

parse from the logs the number of tests run and the test time

in the script phase. Jobs may not finish properly for several

reasons, such as compilation errors (so tests are not even run)

or strict timeouts maintained by Travis. Moreover, we consider

only the jobs after the first commit for each project, because

for the first commit all RTS techniques select all tests (there is

no change yet), and we want to measure the effectiveness of

RTS in the steady state, after changes have happened. Finally,

we do not analyze any project where any of the RTS tools we

use consistently crashes for all the jobs due to internal tool

errors. In total we collect 1377 jobs across 22 projects.

D. Statistics of Jobs

Table II shows the distribution of the jobs that we collected

across the 22 projects from our evaluation. We label each

project with an ID that we use later and show the project’s slug

from GitHub. We also show the number of jobs we analyze for

each project, classified as pass, fail, or error based on the job

status reported by Travis for RetestAll. The overall number

of jobs with status pass, fail, and error are 1244 (90.3%),

131 (9.5%), and 2 (0.2%), respectively. For the two jobs with

the error status, we find it due to an unsuccessful phase that

occurs after the script phase, i.e., after tests have run, so

even in such cases, we can still collect information about the

tests selected to run and the time for testing.

6

Recall that jobs having status fail in Travis does not neces-

sarily mean that tests failed but that the script phase failed,

which may not be due to test failures. For example, project P3

has all of its jobs with status fail, but we find that the reason

is due to the script phase including a step that tries to deploy

artifacts to another server, which we cannot access. Tests pass

before this step, but because the deploy step is in the script

phase, Travis marks the entire job as fail.

V. RESULTS

We aim to answer the following two research questions:

RQ1: How do different RTS techniques compare in terms of

tests selected, test time, and total build time in CI?

RQ2: How well does RTS select failing tests in CI?

A. RQ1: Tests Selected, Test Time, and Total Time

We first evaluate RTS techniques for all Travis jobs in our

experiments, regardless of the job status. For each job, we

compute the percentage of tests selected, test time, and total

time of each RTS technique relative to RetestAll. We also

compute the arithmetic mean of these percentages for all jobs

in each project, and finally we compute the overall arithmetic

mean of these averages per project. Overall, GIB, Ekstazi, and

GIBstazi, respectively, select 59.1%, 35.2%, and 42.8% of the

tests, take 86.6%, 65.5%, and 59.4% of the test time, and take

77.3%, 77.9%, and 72.2% of the total time.

Surprisingly, GIBstazi appears to be the fastest technique,

unlike our initial expectations. However, we find many jobs

passing for some technique with the corresponding jobs failing

for RetestAll. As a result, some jobs even exceed 100% as

the percentage of tests run by the RTS techniques relative to

RetestAll, appearing as if RTS runs more tests than available!

The reason for this anomaly is that test failures occur in the

middle of job execution. (Many of these failures are flaky tests,

as we discuss in Section V-B.) By default, when a test fails

in a multi-module Maven project, Maven stops early, skipping

all modules that come after the module with the failed test(s).

As such, the remaining tests that should have been run are

not actually run. Our tooling counts the number of tests that

are actually run, so it ends up not counting all the tests the

technique would have run had there been no test failure. While

these numbers reflect what a developer would actually observe

on Travis, they do not allow us to properly answer RQ1.

To provide a fairer comparison of the RTS techniques and

RetestAll, we focus on only the jobs where RetestAll and all

three RTS techniques have status pass, i.e., jobs where all tests

that should be run are actually run. Table III shows the results

for these 935 passing jobs, with an average of 51.9 jobs per

project for 18 projects. We do not show the four projects that

have no jobs where RetestAll and all three RTS techniques

pass. The columns under “RetestAll” show the number of tests,

the test time, and the total job time, all averaged across all jobs

for each project, and then across the projects in the final row.

The columns under “GIB”, “Ekstazi”, and “GIBstazi” show

the average percentage of each metric relative to RetestAll

for each respective RTS technique. The “AVG” row is the

arithmetic mean of the values in each column.

We see from the final row that Ekstazi now outperforms

both GIB and GIBstazi in terms of selecting the fewest tests

and having the shortest test time and total time. GIBstazi,

on the other hand, outperforms GIB in terms of all three

metrics. Performing a series of Wilcoxon paired signed-rank

tests for the tests selected, test time, and total time among all

pairs of the three techniques, we find statistically significant

differences (p < 0.01) for the percentage of tests selected and

test time, but no such differences for the total time.

Overall, the trend between GIB, Ekstazi, and GIBstazi in

terms of tests selected, test time, and total time now matches

our initial expectations. However, there are jobs where the

trend does not hold, so we inspect them in more detail.

1) Ekstazi Selects More Tests: We find 64 jobs distributed

across eight projects where Ekstazi runs more tests than GIB

or GIBstazi. We sample a job from each of these projects, as

it is likely a characteristic of the project that leads to Ekstazi

running more tests. We examine the job logs, the diffs between

the job’s commits, and the job configurations. Overall, we find

four different causes.

Non-Default Runners. In P6, P15, and P16, we find jobs

where GIB skips modules where Ekstazi runs tests. These

projects have tests that do not use the default JUnit4 runner:

TestNG, JUnit Enclosed runner, or JUnit Jupiter (new in

JUnit5). Ekstazi incorrectly runs all tests using these runners,

regardless of changes3. GIB and GIBstazi (correctly) find that

a module is unaffected and do not run any test.

Non-Deterministic Compilation. In P4 and P17, we find that

compiling even the same commit twice in a row results in

different compiled .class files. P4 uses cobertura, which

creates instrumented classes on which Ekstazi finds test de-

pendencies; cobertura’s instrumentation is non-deterministic

and does not always create the same final .class file for the

same source file. P17 automatically generates some source

files as part of the build process, but the generation is non-

deterministic. Specifically, the order of the methods in the

generated source files can differ between runs, which in turn

results in different compiled .class files; Ekstazi relies on

the .class files to not change if the developer makes no

changes to source code, arguing that comparing .class files is

more robust than comparing source files [14]. In this scenario,

Ekstazi finds spurious changes and runs too many tests.

Incompatible with GIB. In P8 and P13, we notice that the

job configuration for the jobs where Ekstazi runs more tests

is set to navigate into a specific module to run only its tests

(effectively cd module; mvn test). GIB assumes the root of

the project starts from the current module and is unaware that

the current module is part of a larger Maven project. Thus,

GIB does not determine that the current module is affected

by changes from the other modules, and it skips the current

module altogether. Therefore, GIB is running too few tests in

these cases. Developers using GIB (and GIBstazi) need more

in-depth changes to their specific job configurations for GIB

to work correctly in these cases; specifically, they should not

navigate into a module and instead run from the root using

the Maven’s -pl option to specify the module.

3We confirmed via private communication with the developers of Ekstazi.

7

TABLE III: Tests selected and time savings from using RTS across only passed jobs

ID # Jobs RetestAll GIB Ekstazi GIBstazi

Tests Test Total Tests Test Total Tests Test Total Tests Test Total

(#) Time (m) Time (m) (%) Time (%) Time (%) (%) Time (%) Time (%) (%) Time (%) Time (%)

P1 19 2.0 3.9 5.1 100.0 102.8 100.9 100.0 101.1 97.0 100.0 99.2 97.2

P2 19 158.4 1.4 6.5 24.4 39.1 78.3 7.1 58.9 97.8 24.4 40.4 70.3

P4 18 161.9 5.6 8.7 57.3 61.4 74.4 11.6 94.6 121.7 29.1 55.7 80.9

P5 15 179.0 7.4 9.3 100.0 103.6 103.4 16.6 49.8 60.6 100.0 109.7 109.7

P6 18 31.1 7.0 10.7 61.5 61.5 69.7 44.6 25.8 62.0 43.6 56.1 74.4

P7 19 98.7 4.1 10.8 17.5 29.8 80.4 2.5 37.5 56.7 13.7 31.5 79.1

P8 169 12.9 10.0 11.8 10.5 16.0 33.7 21.7 35.1 50.1 10.4 16.9 35.5

P9 5 140.0 10.9 11.8 100.0 86.9 101.4 38.7 71.0 75.7 59.0 75.6 97.2

P10 1 177.0 7.3 12.9 100.0 109.9 115.3 0.0 36.9 70.0 100.0 154.4 131.7

P11 19 177.0 7.0 14.9 91.1 94.1 83.1 24.1 59.2 50.9 26.5 58.9 46.0

P12 11 400.1 12.7 16.2 7.7 8.7 22.5 0.8 4.6 21.6 7.7 13.0 29.6

P13 38 198.3 12.8 20.8 33.5 48.4 72.1 25.1 49.8 73.0 7.5 29.5 67.6

P15 47 53.2 5.1 14.9 47.4 61.8 91.6 5.8 69.4 93.9 26.0 63.7 91.0

P16 12 319.2 6.7 22.1 25.9 31.9 40.9 55.8 87.6 94.0 17.5 28.5 41.5

P17 330 8.9 3.7 22.2 32.1 45.7 102.4 20.8 41.7 93.4 31.8 53.7 102.7

P18 35 494.1 16.8 20.2 100.0 97.5 98.1 55.8 62.5 83.3 56.1 61.6 69.2

P19 24 12.4 25.1 29.5 100.0 98.6 99.3 100.0 100.9 101.4 100.0 99.3 99.9

P21 136 366.5 30.7 32.1 49.1 64.9 66.9 19.5 62.7 65.2 40.0 68.1 70.2

AVG 51.9 166.1 9.9 15.6 58.8 64.6 79.7 30.6 58.3 76.0 44.1 62.0 77.4

Job Timeout. In P21, for a job where Ekstazi runs more

tests, we find that the changes should not actually affect the

module where Ekstazi runs tests, so Ekstazi runs too many

tests. We find that the immediately prior job for Ekstazi times

out, so the cache for Ekstazi dependencies is not updated for

the subsequent job. Thus, Ekstazi compares the next commit

with the commit two (rather than one) before it, finding more

changes than GIB and GIBstazi find by comparing the next

commit with the one before it. Essentially Ekstazi finishes

running the tests from the prior job in the subsequent job

(which does not time out). This example demonstrates how

much Ekstazi depends on completing prior runs. Timeouts can

occur more often on CI machines in the cloud, out of the

developers’ control, so this example also demonstrates issues

with using Ekstazi in such a CI environment.

Trying to better understand differences between the tech-

niques rather than differences due to tool engineering, we

further filter out jobs where Ekstazi runs more tests than the

other techniques. We obtain the same trends between the three

techniques, with Ekstazi seeming even better. Overall, for GIB,

Ekstazi, and GIBstazi, respectively, the average percentages

of tests selected are 62.6%, 25.9%, and 47.4%; test times are

68.1%, 55.2%, and 66.7%; and total times are 82.1%, 74.8%,

and 80.2% (not shown in tables due to space limits).

2) Ekstazi Runs Slower: Even when we consider only

the jobs where Ekstazi runs no more tests than the other

techniques, we still find jobs where Ekstazi test time is

longer. Overall, for GIB and Ekstazi, respectively, the average

percentages of tests selected are 62.6% and 25.9%, and test

times are 68.1% and 55.2%; the difference is much higher in

tests selected than in test time. We examine several of these

jobs and find two reasons why Ekstazi runs slower.

Overhead of Ekstazi Instrumentation. Especially noticeable

in jobs where Ekstazi runs no more tests than GIB, Ekstazi

test time is longer primarily due to the runtime overhead of

extra instrumentation Ekstazi needs to track dependencies;

GIB requires no dynamic analysis. Note that in such cases

GIBstazi also runs roughly the same as Ekstazi, as GIBstazi

also relies on the same instrumentation.

Overhead of Ekstazi Requiring Compilation. We find jobs

where Ekstazi spends a lot of time to determine that it need

not run tests in some modules, while GIB and GIBstazi quickly

determine to run very few modules. For example, in P4, we

find a job where Ekstazi and GIBstazi run no tests. GIBstazi

determines this rather fast, as it first selects very few modules,

and those modules have no tests to run. However, Ekstazi

has to analyze each and every module to determine that no

tests should be run in it. While this analysis is generally

rather fast, e.g., 2–4 seconds per module, P4 is a project

with over 60 modules, so the time adds up. Furthermore,

P4 is configured to run other plugins in each module, such

as cobertura instrumentation, adding even more time per

module. GIBstazi’s skipping of all the unaffected modules

leads to substantial speedup against Ekstazi.

3) Non-Source-Code Changes: In most cases, GIBstazi

runs at least as many tests as Ekstazi because GIBstazi defaults

to GIB behavior when there are non-source-code changes. To

estimate the potential impact of such changes on RTS, we

measure how much tests depend on non-source-code files.

For each project, we first use fabricate [1], a tool that

traces what files are accessed when executing a command

(in our case, running mvn test), on the latest commit of

the project. We record the non-source-code files used by

the tests. We find many file names with extensions such as

.json or .properties, and many files under test/resources,

suggesting these files are used as inputs or configuration for

tests. We then measure how many commits in the project made

changes to any of these files. While one project had no commit

that changed any of the dependencies found using fabricate,

the other projects had on average 7.5% commits with such

a change. Thus, Ekstazi has a relatively high risk to miss

selecting a test affected by non-source-code changes.

B. RQ2: Test Failure Analysis

RTS aims to select only tests affected by changes. A key

question is whether RTS misses to select some tests that fail

due to the changes. If RTS misses such a real test failure, the

8

TABLE IV: Percentage of test failures selected or not selected by RTS

Project # Failed GIB % Ekstazi % GIBstazi %

Tests Selected Not Selected Unknown Selected Not Selected Unknown Selected Not Selected Unknown

apache/flink 2 100.0 0.0 0.0 50.0 50.0 0.0 50.0 50.0 0.0

apache/incubator-pulsar 13 53.9 46.2 0.0 84.6 0.0 15.4 38.5 46.2 15.4

apache/storm 7 71.4 28.6 0.0 57.1 42.9 0.0 71.4 28.6 0.0

aws/aws-sdk-java 1 100.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0

brianfrankcooper/YCSB 2 50.0 50.0 0.0 50.0 50.0 0.0 50.0 50.0 0.0

druid-io/druid 10 70.0 30.0 0.0 20.0 70.0 10.0 20.0 70.0 10.0

iluwatar/java-design-patterns 5 0.0 100.0 0.0 20.0 60.0 20.0 0.0 100.0 0.0

javaee-samples/javaee7-samples 7 0.0 100.0 0.0 0.0 14.3 85.7 0.0 100.0 0.0

killbill/killbill 47 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

languagetool-org/languagetool 1 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0

prestodb/presto 1 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0

SUM/AVG 96 72.9 27.1 0.0 69.8 19.8 10.4 64.6 32.3 3.1

developer could miss a regression fault, defeating the purpose

of regression testing. However, some failures are due to flaky

tests and undesirable, so it would be beneficial to miss such

failures. RTS is not explicitly designed to avoid flaky tests, but

it can miss them by chance. In our study, we find several test

failures in RetestAll, so we check whether the RTS techniques

select those tests, and whether those failures are desirable.

Table IV shows the number of test failures from RetestAll

and the breakdown of percentage of those tests selected by

the RTS techniques. We obtain the test failures by parsing the

Travis logs using tools from TravisTorrent [8]. Unfortunately,

the parsing cannot successfully identify test failures for all

failed jobs due to project-specific “noise” in the logs (e.g.,

not printing test progress in the default format). Also, just the

Travis status of the job itself does not necessarily indicate

there are test failures, as other Travis phases could mark the

job as fail for other issues, so such jobs have no failed tests in

the logs. In total, we find 11 projects with test failures we can

parse out, leading to a total of 96 test failures. We categorize

those test failures for each RTS technique into three categories:

selected, not selected, or unknown. We use unknown if we

cannot tell from the logs whether the test would have been

selected, which happens if another test in a module before the

relevant test fails in the RTS run, leading to an early failure

that skips running the tests in later modules.

We inspect all the test failures from RetestAll. For 29 test

failures, we find that the job with the test failure was imme-

diately preceded by a job that had the same test failure [22].

When RTS does not select a test, the outcome of that not

selected test is not necessarily pass but the same outcome from

the prior run (may be fail), i.e., the failed outcome of the test

is known from before. For example, if the developer makes

no change related to fixing a test failure, there is no need to

run the unaffected test again for the same known failure. An

RTS tool can simply copy the prior outcome of the tests from

the prior job if the tests are not run, allowing the developer to

consistently see the test failures that have not yet been fixed.

We examine in detail the remaining 67 test failures where

the test passed in the prior job. We find only one real failure

and all others due to flaky tests that can pass or fail non-

deterministically even on the same code [17], [24], [36]. Most

flaky test failures are not related to code changes and are

undesirable as they do not reveal real faults due to code

changes [7]. We confirm that these tests are flaky in two ways.

For some tests, we find that one of the RTS techniques did

run the test and yet the test passed. For the remaining tests,

we rerun the same job for RetestAll up to six times and check

that the test passes in any rerun. In summary, all test failures

are flaky except for one, from brianfrankcooper/YCSB, which

consistently fails in those reruns. Examining the test logs and

code changes, we determine this one test failure to represent a

real fault, but we also find that all the RTS techniques selects

this test, so none of them misses this regression fault.

The failed jobs we have used in evaluation so far are from

pushes to the master branch, so their failures are expected to

be due to flaky tests if the developers follow good CI practices

and only merge in pull requests with passing jobs. However,

failures from pull request jobs may more likely be real failures

from attempting to merge. We apply RTS techniques on failed

pull requests to examine whether the techniques miss real test

failures. We first obtain recent (up to 10) failed pull requests

from our evaluation projects. We then rerun their jobs six

times in the RetestAll configuration to confirm that the failed

tests fail consistently, resulting in 37 failed jobs. We then

replay these failed jobs with Ekstazi, resulting in 19 successful

replays across five projects; Ekstazi fails to run in 18 jobs due

to the JVM setting. We find that Ekstazi does not miss any

real test failures in these 19 pull request jobs, and by extension

both GIB and GIBstazi also would not miss any test failures.

In sum, our inspection shows that all tests that failed in

RetestAll for pushes to the master branch but are not selected

by any RTS technique are either failing from before (so the

test outcome is already known) or due to flaky tests (so do not

reveal real regressions). As such, it is actually beneficial for

RTS to not select these failed tests from RetestAll: the higher

the percentage of failed tests not selected, the better. GIBstazi

does not select such tests at a higher percentage than the other

two techniques. Even if all the test failures categorized as

unknown for Ekstazi are actually not selected, its percentage

of not selected tests would be 30.2%, still lower than the not

selected percentage for GIBstazi, 32.3%. If we consider pull

request jobs where we confirm that test failures are not flaky,

the RTS techniques do not fail to select any failed test.

C. Shadowing Projects

In our experiments with replaying, we are unable to suc-

cessfully replay many commits due to significant differences

between the environment used for the jobs back when they

9

TABLE V: Time savings from RTS on shadowed jobs

Project # Jobs Original Shadowed
Time (m) Time (%)

aws/aws-sdk-java 8 8.9 114.0
apache/incubator-skywalking 15 11.8 72.4
google/error-prone 4 15.7 70.5
languagetool-org/languagetool 93 16.0 53.9
javaparser/javaparser 6 16.2 52.9
alibaba/dubbo 4 18.2 56.4
linkedin/pinot 36 18.3 42.1
google/guava 5 24.3 75.4
iluwatar/java-design-patterns 2 25.9 83.5

SUM/AVG 173 17.3 69.0

were originally triggered and the current environment, e.g., the

differences in external dependencies a project needs. For ex-

ample, one of the projects we failed to replay is google/error-

prone, which has a dependency on a SNAPSHOT version of

JUnit. The JUnit developers can overwrite this version with

new changes, so the dependency name does not uniquely

determine its content. One such change was to the API of

certain methods that google/error-prone in an earlier commit

relies on. Since the SNAPSHOT version in the central repository

was updated, our replay uses this latest version, leading to

compilation errors. As such, we do not use google/error-prone

in our evaluation on historical commits.

To gain better understanding of RTS for RQ1 and RQ2,

instead of replaying historical commits, we shadow the Travis

builds from 40 projects (including some whose RetestAll

jobs do not compile in our earlier experiments), similar to

Bell et al. [7]: we set up automatic tracking of projects

such that when their developers trigger Travis builds on the

master branch, our setup replays those builds close in time

to the triggered builds. One advantage of shadowing current

builds is evaluating in an environment similar to when the

builds are actually built (e.g., less likely to have out-of-date

dependencies). Another advantage is that we can observe how

well RTS helps the project for its current state, which may

have different characteristics from the project state in the jobs

we replayed before. Finally, shadowing allows us to better

evaluate the feasibility of utilizing RTS in a realistic cloud-

based CI environment as it stands currently.

To enable shadowing, we first fork each project into a new

account. We then set up a cron job to query Travis once an

hour for each project to check if some new builds occurred

since the last time the cron job was run. If there is a new

build, the cron job pulls the commits corresponding to the new

build(s) into our shadowing fork and replays them with RTS.

We perform these runs only for GIBstazi, because we find it to

strike a good balance among all three RTS techniques, saving

more time than GIB, being designed to be safer than Ekstazi,

and having avoided the most flaky test failures. To limit our

usage of Travis, we shadow for 20 days, obtaining results from

217 jobs of nine projects. We obtain shadowing results for two

projects (google/error-prone and linkedin/pinot) for which we

have no results from before due to the issues with replaying.

RQ1. Table V shows the total time for the original job and

the percentage of that time taken by the shadowed version

with GIBstazi. The table only shows these numbers for the

jobs where both the original job and our shadowed job pass.

GIBstazi runs 69.0% of the original time, similar to before.

RQ2. We inspect all cases where the original jobs fail and

TravisTorrent [8] could parse out test failures from the logs.

We obtain 24 test failures from three projects: languagetool-

org/languagetool, google/guava, and iluwatar/java-design-

patterns. GIBstazi selects to run 17 of the failed tests (70.8%)

and does not select to run six of the failed tests (25.0%). We

cannot tell for one test if GIBstazi selected it, due to a (flaky!)

test failure from an earlier module.

For 15 test failures, we find that GIBstazi runs the failed

test in the prior job, where it also failed, so the test failure

would have been known. Of the remaining nine test failures,

we confirm four to be flaky either from GIBstazi running

the test and passing, or from our repeating the original job

and observing the test passing. Excluding the one test failure

that is skipped, we believe the remaining four test failures

are all real test failures. GIBstazi selects to run three of

those failed tests, so the developers would have noticed the

failures. However, GIBstazi did not select to run one failed

test. This test failure is from languagetool-org/languagetool,

and further inspection shows that the change made was to a

.txt file. The regex we use for GIBstazi configuration ignores

changes to .txt files, but for a project like languagetool-

org/languagetool, the .txt files are an integral part of tests.

Thus, we made a configuration error [33] in GIBstazi, using

generic filtering that applies to most projects. The developers

of languagetool-org/languagetool should apply project-specific

filtering to ensure such test failures are not missed. Note that

Ekstazi would also have missed to select this failed test.

VI. THREATS TO VALIDITY

Our results may not generalize beyond projects used in

our study. We use a diverse set of projects from GitHub,

the most popular service for hosting open-source projects.

We choose as many projects that could satisfy our filtering

requirements, which includes choosing only Java and Maven

projects due to tool constraints. We focus on projects that take

a relatively long time to build and test, which are projects

where developers would want to use RTS to save regression

testing time. We believe that the 22 projects used in our study

are fairly representative of such projects.

The historical replays we perform are not exactly the same

as if they had been run when the developers triggered the

build. A particular problem are any external dependencies

the developers used at the time of the build but are now

no longer available or, even worse, changed the content

and behavior while they still having the same name (e.g.,

SNAPSHOT dependencies). Replayed jobs from such builds can

fail although they would have passed when the developers

built. To alleviate this issue, we replay using not just the RTS

techniques but also RetestAll, so we do not compare RTS

against the RetestAll job that happened potentially a while

ago with a drastically different setup. Moreover, we replay

on Travis, the same environment the developers use, to more

closely imitate how the developers build their code using CI.

Finally, we use live shadowing and not just historical replays.

10

VII. RELATED WORK

Regression Test Selection. RTS has been studied for several

decades [34]. Researchers have proposed various different RTS

techniques, selecting tests by tracking dependencies at differ-

ent levels of granularities, ranging from precise control-flow

edges [18], [28] to methods [38] to classes [15], [23], [37].

Recent work has emphasized the need for RTS to provide time

savings in end-to-end regression testing. For example, Gligoric

et al. proposed Ekstazi [15], which tracks dependencies at the

class level and selects test classes as opposed to test methods,

leading to a larger number of tests run compared to tracking

at a finer granularity. However, the analysis for RTS at the

class level is very quick, eventually leading to better time

savings. Zhang proposed HyRTS [37] that tracks dependencies

at both class and method levels. Zhang found that HyRTS

outperformed class-level RTS in terms of tests selected but

could not always outperform class-level RTS in time due to

the costs of method-level dependency collection. Companies

such as Google and Microsoft rely on even coarser-grained

dependency tracking, at the module level, due to the even

quicker analysis time [12], [13], [29]. This work compares

module- and class-level RTS in a cloud-based CI environment.

Our work is quite similar to work by Vasic et al. [31] that

created Ekstazi#, a tool that performs class-level RTS, like

Ekstazi, for the .NET framework. Vasic et al. also evaluated

running Ekstazi# on top of an incremental build system Con-

cord, which inherently performs module-level RTS. For one

project on which they evaluated, they found that adding class-

level RTS improves module-level RTS time by 65.26%. Our

hybrid RTS technique GIBstazi follows the ideas introduced

by Ekstazi# and Concord. However, GIBstazi differs from their

combination in that when changes are not source-code related,

GIBstazi defaults back to GIB behavior, running all tests

within affected modules, thereby being safer than just running

Ekstazi (or Ekstazi#), which does not track those changes and

runs no tests within affected modules. As such, we find that

GIBstazi improves over GIB much less, 62.0% versus 64.6%

of RetestAll time, respectively. Furthermore we compare both

module-level RTS and class-level RTS, as well as against

GIBstazi, in a cloud-based CI environment, where every build

starts fresh on a new machine; Vasic et al. evaluated Ekstazi#

on a dedicated machine.

Continuous Integration. Continuous integration is widely

used in industry. Recent work has studied why developers

use CI and the benefits they experience [20], [21], [39]. One

main reason for the rise in CI research is the increase in

developers using CI, particularly with services such as Travis,

which provides CI for free for open-source projects on GitHub.

Moreover, Travis exposes the logs from the builds that occur

on their servers, allowing ease of access to build results.

TravisTorrent [8] provides a dataset of logs from Travis and

also some tooling for parsing the logs. We utilize Travis for

our evaluation, and we also use the TravisTorrent tooling to

parse the logs for our analysis of failed tests.

Yu and Wang [35] recently studied the potential of RTS

in a CI environment. They analyzed factors such as the

commit frequency of projects and the size of the changes

between commits to gauge how effective RTS could be in

a CI environment. They also compared a class-level and a

method-level static RTS technique against RetestAll. Our work

differs from theirs in that we investigate a module-level, class-

level, and hybrid module/class-level dynamic RTS techniques

in a CI environment. We also evaluate in a cloud-based CI

environment, Travis, which differs from Yu and Wang’s choice

of Jenkins, a CI environment on a local server that is more

under the control of the developers. Finally, we further analyze

the test failures that occur during the runs and compare how

well the RTS techniques select the failing tests.

There has been more work studying test failures on Travis

(but not in combination with RTS as we do). Labuschagne

et al. [22] studied how often regression testing on Travis

reveals faults that developers fix. They queried Travis for the

results of builds and focused on patterns of builds that toggle

pass and fail outcomes, indicating where a change caused an

originally passing build to start to fail, followed by changes

that lead to the build passing again. They found 74% of the

non-flaky failed builds were caused by a fault in the code

under test, with the remaining due to incorrect/obsolete tests.

They reported flaky tests to affect 13% of the failed builds they

studied (although this percentage is an underestimate, as they

considered historically failed builds that consistently passed

during their reruns as non-flaky). We also find flaky tests in

our study, although we find that almost all the test failures

from RetestAll in our study are flaky test failures. One reason

for the different percentage of flaky tests is that they studied all

builds (from the master branch and other branches, as well

as pull-request builds) whereas we studied builds from the

master branch (because many other builds cannot be replayed

as they are not available).

VIII. CONCLUSIONS

Regression testing is widely practiced but costly, and RTS

reduces the cost. Industry has adopted module-level RTS,

while research has reported class-level RTS to be effective.

We compare module- and class-level RTS in a cloud-based

CI environment. We find that RTS techniques improve testing

time over RetestAll in this environment, and GIBstazi, our

new hybrid module- and class-level RTS technique, offers a

good trade-off. Our investigation of test failures from RetestAll

shows that the RTS techniques often miss to select some failed

tests, but this happens to be desirable because these tests are

flaky and not indicative of faults introduced by code changes.

In sum, the results show that RTS offers benefit to developers,

not only to reduce machine time but also to avoid false alarms

from flaky tests.

ACKNOWLEDGMENTS

We thank Tianyin Xu for his comments on an earlier draft

of this paper and Qianyang Peng for providing some data

on test failures for our evaluation. This work was partially

supported by NSF grants. CCF-1421503, CNS-1646305, CNS-

1740916, CCF-1763788, and OAC-1839010. We acknowledge

support for research on regression testing and flaky tests from

Facebook, Futurewei, Google, Microsoft, and Qualcomm.

11

REFERENCES

[1] fabricate. https://github.com/SimonAlfie/fabricate.
[2] gitflow-incremental-builder. https://github.com/vackosar/

gitflow-incremental-builder.
[3] gitflow-incremental-builder with GIBstazi. https://github.com/

august782/gitflow-incremental-builder.
[4] Maven. http://maven.apache.org/.
[5] Travis-CI. https://travis-ci.org/.
[6] A. Alali, H. Kagdi, and J. I. Maletic. What’s a typical commit? A

characterization of open source software repositories. In ICPC, pages
182–191, 2008.

[7] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
DeFlaker: Automatically detecting flaky tests. In ICSE, pages 433–444,
2018.

[8] M. Beller, G. Gousios, and A. Zaidman. TravisTorrent: Synthesizing
Travis CI and GitHub for full-stack research on continuous integration.
In MSR, pages 447–450, 2017.

[9] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining Git. In MSR, pages
1–10, 2009.

[10] H. Borges, A. Hora, and M. T. Valente. Predicting the popularity of
GitHub repositories. In PROMISE, pages 9:1–9:10, 2016.

[11] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How do
centralized and distributed version control systems impact software
changes? In ICSE, pages 322–333, 2014.

[12] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In FSE, pages 235–245, 2014.

[13] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula. CloudBuild: Microsoft’s
distributed and caching build service. In ICSE, pages 11–20, 2016.

[14] M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test
selection. In ICSE DEMO, pages 713–716, 2015.

[15] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In ISSTA, pages 211–222,
2015.

[16] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov. Evaluating regression
test selection opportunities in a very large open-source ecosystem. In
ISSRE, pages 112–122, 2018.

[17] M. Harman and P. O’Hearn. From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis. In SCAM,
pages 1–23, 2018.

[18] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for
Java software. In OOPSLA, pages 312–326, 2001.

[19] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing
less without sacrificing quality. In ICSE, pages 483–493, 2015.

[20] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: Assurance, security, and flexibility. In
ESEC/FSE, pages 197–207, 2017.

[21] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs,
and benefits of continuous integration in open-source projects. In ASE,
pages 426–437, 2016.

[22] A. Labuschagne, L. Inozemtseva, and R. Holmes. Measuring the cost of
regression testing in practice: A study of Java projects using continuous
integration. In ESEC/FSE, pages 821–830, 2017.

[23] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In FSE, pages 583–594, 2016.

[24] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of
flaky tests. In FSE, pages 643–653, 2014.

[25] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco. Taming Google-scale continuous testing. In ICSE-SEIP,
pages 233–242, 2017.

[26] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large
software systems. In FSE, pages 241–251, 2004.

[27] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia.
The impact of test suite granularity on the cost-effectiveness of regres-
sion testing. In ICSE, pages 130–140, 2002.

[28] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. TOSEM, 6(2):173–210, 1997.

[29] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka.
Optimizing test placement for module-level regression testing. In ICSE,
pages 689–699, 2017.

[30] A. Shi, P. Zhao, and D. Marinov. Dataset for understanding and
improving regression test selection in continuous integration. 2019.
https://zenodo.org/record/3268234#.XR2RRYhKg2w.

[31] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric. File-level vs.
module-level regression test selection for .NET. In ESEC/FSE, pages
848–853, 2017.

[32] G. Xu and A. Rountev. Regression test selection for AspectJ software.
In ICSE, pages 65–74, 2007.

[33] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker. Hey,
you have given me too many knobs! Understanding and dealing with
over-designed configuration in system software. In ESEC/FSE, pages
307–319, 2015.

[34] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. STVR, 22(2):67–120, 2012.

[35] T. Yu and T. Wang. A study of regression test selection in continuous
integration environments. In ISSRE, pages 135–143, 2018.

[36] A. Zaidman and F. Palomba. Does refactoring of test smells induce
fixing flaky tests? In ICSME, pages 1–12, 2017.

[37] L. Zhang. Hybrid regression test selection. In ICSE, pages 199–209,
2018.

[38] L. Zhang, M. Kim, and S. Khurshid. FaultTracer: A change impact and
regression fault analysis tool for evolving Java programs. In FSE, pages
40:1–40:4, 2012.

[39] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact
of continuous integration on other software development practices: a
large-scale empirical study. In ASE, pages 60–71, 2017.

