
Dependent-Test-Aware Regression Testing Techniques

Wing Lam
University of Illinois
Urbana, Illinois, USA
winglam2@illinois.edu

August Shi
University of Illinois
Urbana, Illinois, USA
awshi2@illinois.edu

Reed Oei
University of Illinois
Urbana, Illinois, USA
reedoei2@illinois.edu

Sai Zhang∗

Google
Kirkland, Washington, USA

saizhang@google.com

Michael D. Ernst
University of Washington
Seattle, Washington, USA
mernst@cs.washington.edu

Tao Xie
Peking University
Beijing, China

taoxie@pku.edu.cn

ABSTRACT

Developers typically rely on regression testing techniques to

ensure that their changes do not break existing functionality. Un-

fortunately, these techniques suffer from flaky tests, which can both

pass and fail when run multiple times on the same version of code

and tests. One prominent type of flaky tests is order-dependent

(OD) tests, which are tests that pass when run in one order but fail

when run in another order. Although OD tests may cause flaky-test

failures, OD tests can help developers run their tests faster by allow-

ing them to share resources. We propose to make regression testing

techniques dependent-test-aware to reduce flaky-test failures.

To understand the necessity of dependent-test-aware regression

testing techniques, we conduct the first study on the impact of OD

tests on three regression testing techniques: test prioritization, test

selection, and test parallelization. In particular, we implement 4 test

prioritization, 6 test selection, and 2 test parallelization algorithms,

and we evaluate them on 11 Java modules with OD tests. When we

run the orders produced by the traditional, dependent-test-unaware

regression testing algorithms, 82% of human-written test suites and

100% of automatically-generated test suites with OD tests have at

least one flaky-test failure.

We develop a general approach for enhancing regression test-

ing algorithms to make them dependent-test-aware, and apply our

approach to 12 algorithms. Compared to traditional, unenhanced re-

gression testing algorithms, the enhanced algorithms use provided

test dependencies to produce orders with different permutations

or extra tests. Our evaluation shows that, in comparison to the or-

ders produced by unenhanced algorithms, the orders produced by

enhanced algorithms (1) have overall 80% fewer flaky-test failures

due to OD tests, and (2) may add extra tests but run only 1% slower

on average. Our results suggest that enhancing regression testing

algorithms to be dependent-test-aware can substantially reduce

flaky-test failures with only a minor slowdown to run the tests.

∗Most of Sai Zhang’s work was done when he was at the University of Washington.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’20, July 18ś22, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07.
https://doi.org/10.1145/3395363.3397364

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.

KEYWORDS

flaky test, regression testing, order-dependent test

ACM Reference Format:

Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.

2020. Dependent-Test-Aware Regression Testing Techniques. In Proceedings

of the 29th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’20), July 18ś22, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3395363.3397364

1 INTRODUCTION

Developers rely on regression testing, the practice of running tests

after every change, to check that the changes do not break existing

functionalities. Researchers have proposed a variety of regression

testing techniques to improve regression testing. These regression

testing techniques produce an order (a permutation of a subset

of tests in the test suite) in which to run tests. Examples of such

traditional regression testing techniques include test prioritization

(run all tests in a different order with the goal of finding failures

sooner) [37, 40, 45, 56, 57, 62], test selection (run only a subset of

tests whose outcome can change due to the code changes) [20, 32,

35, 51, 52, 70], and test parallelization (schedule tests to run across

multiple machines) [38, 41, 50, 63].

Unfortunately, regression testing techniques suffer from flaky

tests, which are tests that can both pass and fail when run multiple

times on the same version of code and tests [42, 47ś49]. Flaky-

test failures mislead developers into thinking that their changes

break existing functionalities, wasting the developers’ productivity

as they search for non-existent faults in their changes. In fact,

Herzig et al. [33] reported that test result inspections, which include

verifying whether a test failure is a flaky-test failure, can cost about

$7.2 million per year for products such as Microsoft Dynamics.

Flaky-test failures can also lead developers to start ignoring test

failures during builds. Specifically, a recent study [64] has reported

how developers ignore flaky-test failures. Another study [54] found

that when developers ignored flaky-test failures during a build, the

deployed build experienced more crashes than builds that did not

contain flaky-test failures. Harman and O’Hearn [31] have even

suggested that all tests should be assumed flaky and that regression

testing techniques should be improved to reduce flaky-test failures.

298

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

One prominent type of flaky tests is order-dependent (OD) tests [44,

47, 72]. An OD test is a test that passes or fails depending only on

the order in which the test is run. Typically, the order in which

OD tests pass is the order in which developers prefer to run the

tests; we refer to this order as the original order. Running the tests

in orders other than the original order may cause flaky-test failures

from OD tests, which we refer to as OD-test failures.

Although OD tests may cause OD-test failures, OD tests can

help developers run their tests faster by allowing the tests to share

resources [6]. For example, one test may create a database that

another test uses, allowing the latter test to run faster as an OD test

instead of recreating the database. Every popular Java testing frame-

work already permits developers to specify dependencies among

tests, including JUnit [2ś4], TestNG [13], DepUnit [10], Cucum-

ber [9], and Spock [1]. In fact, as of May 2020, the JUnit annotations

@FixMethodOrder and @TestMethodOrder, and the TestNG attributes

dependsOnMethods and dependsOnGroups appear in over 197k Java

files on GitHub.

Regression testing techniques should not assume that all tests are

independent, since developers may still want OD tests. Specifically,

these techniques should produce only test orders where each test

has the same test outcome as it has when run in the original order.

For example, if all of the tests pass in the original order, they should

also pass in the order produced by a regression testing technique.

However, traditional regression testing techniques may not achieve

this goal if the test suite contains OD tests.

To understand how problematic the assumption of independent

tests is to regression testing techniques as well as how neccessary

it is for these techniques to be dependent-test-aware, we conduct

the first study on the impact of OD tests on traditional regression

testing techniques. Based on prior literature, we implement 4 test

prioritization, 6 test selection, and 2 test parallelization algorithms1.

We apply each algorithm to 11 Java modules from 8 projects, ob-

tained from a prior dataset of OD tests [44]. Each module contains

tests written by developers, which we refer to as human-written

tests, and at least one test in the module is an OD test. Due to the

attractiveness of automatic test generation tools to reduce develop-

ers’ testing efforts, we also use Randoop [53], a state-of-the-art test

generation tool, to obtain automatically-generated tests for each

module. For both types of tests, all 12 regression testing algorithms

produce orders that cause OD-test failures from tests that pass in the

original order. Our findings provide empirical evidence that these

regression testing algorithms should not ignore test dependencies.

We propose a new, general approach to enhance traditional re-

gression testing algorithms to make them dependent-test-aware.

Similar to unenhanced algorithms, our enhanced algorithms take

as input the necessary metadata for the algorithms (e.g., coverage

information for a test prioritization algorithm) and the original

order. Besides the metadata, our enhanced algorithms also take as

input a set of test dependencies (e.g., test 𝑡1 should be run only after

running test 𝑡2). Our general approach enhances traditional algo-

rithms by first using the traditional algorithms to produce an order,

and then reordering or adding tests to the order such that any OD

test is ordered and selected while satisfying the test dependencies.

1We refer to an algorithm as a specific implementation of a regression testing technique.

We evaluate our general approach by applying it to 12 regres-

sion testing algorithms and comparing the orders produced by the

enhanced algorithms to those produced by the unenhanced ones.

Specifically, we run both the enhanced and unenhanced algorithms

on multiple versions of our evaluation projects. To evaluate our

enhanced algorithms, we use DTDetector [72] to automatically

compute a set of test dependencies. Our use of an automated tool

to compute test dependencies demonstrates that even if developers

are not manually specifying test dependencies in their projects now,

they can still likely achieve the results of our work by using auto-

mated tools such as DTDetector. Ideally, one would automatically

compute test dependencies frequently, so that they are up-to-date

and orders produced with them would not cause OD-test failures.

However, such an ideal is often infeasible because automatically

computing these test dependencies can take substantial time. To

imitate how developers may infrequently recompute test depen-

dencies, for each of our evaluation projects we compute a set of

test dependencies on one version and use them for future versions.

Our evaluation finds that the orders from the enhanced algo-

rithms cause substantially fewer OD-test failures and run only

marginally slower than the orders from the unenhanced algorithms.

Although our enhanced algorithms may not be using the most

up-to-date test dependencies, our evaluation still finds that the al-

gorithms produce orders that have 80% fewer OD-test failures than

the orders produced by the unenhanced algorithms. Furthermore,

although our enhanced algorithms may add tests for test selection

and parallelization, we find that the orders with extra tests run only

1% slower on average. Our results suggest that making regression

testing algorithms dependent-test-aware can substantially reduce

flaky-test failures with only a minor slowdown to run the tests.

This paper makes the following main contributions:

Study. A study of how OD tests affect traditional regression testing

techniques such as test prioritization, test selection, and test par-

allelization. When we apply regression testing techniques to test

suites containing OD tests, 82% of the human-written test suites

and 100% of the automatically-generated test suites have at least

one OD-test failure.

Approach. A general approach to enhance traditional regression

testing techniques to be dependent-test-aware. We apply our gen-

eral approach to 12 traditional, regression testing algorithms, and

make them and our approach publicly available [8].

Evaluation. An evaluation of 12 traditional, regression testing

algorithms enhanced with our approach, showing that the orders

produced by the enhanced algorithms can have 80% fewer OD-test

failures, while being only 1% slower than the orders produced by

the unenhanced algorithms.

2 IMPACT OF DEPENDENT TESTS

To understand how often traditional regression testing tech-

niques lead to flaky-test failures due to OD tests, denoted as OD-test

failures, we evaluate a total of 12 algorithms from three well-known

regression testing techniques on 11 Java modules from 8 real-world

projects with test suites that contain OD tests.

299

Dependent-Test-Aware Regression Testing Techniques ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 1: Four evaluated test prioritization algorithms from

prior work [24].

Label Ordered by

T1 Total statement coverage of each test
T2 Additional statement coverage of each test
T3 Total method coverage of each test
T4 Additional method coverage of each test

Table 2: Six evaluated test selection algorithms. The algo-

rithms select a test if it covers new, deleted, or modified cov-

erage elements. We also consider reordering the tests after

selection. These algorithms form the basis of many other

test selection algorithms [20, 51, 52, 55, 70].

Selection
Label granularity Ordered by

S1 Statement Test ID (no reordering)
S2 Statement Total statement coverage of each test
S3 Statement Additional statement coverage of each test
S4 Method Test ID (no reordering)
S5 Method Total method coverage of each test
S6 Method Additional method coverage of each test

Table 3: Two evaluated test parallelization algorithms. These

algorithms are supported in industrial-strength tools [7].

Label Algorithm description

P1 Parallelize on test ID
P2 Parallelize on test execution time

2.1 Traditional Regression Testing Techniques

Test prioritization, selection, and parallelization are traditional

regression testing techniques that aim to detect faults faster than

simply running all of the tests in the given test suite. We refer to

the order in which developers typically run all of these tests as

the original order. These traditional regression testing techniques

produce orders (permutations of a subset of tests from the original

order) that may not satisfy test dependencies.

2.1.1 Test Prioritization. Test prioritization aims to produce an

order for running tests that would fail and indicate a fault sooner

than later [67]. Prior work [24] proposed test prioritization algo-

rithms that reorder tests based on their (1) total coverage of code

components (e.g., statements, methods) and (2) additional cover-

age of code components not previously covered. These algorithms

typically take as input coverage information from a prior version

of the code and test suite, and they use that information to re-

order the tests on future versions2. We evaluate 4 test prioritization

algorithms proposed in prior work [24]. Table 1 gives a concise

description of each algorithm. Namely, the algorithms reorder tests

such that the ones with more total coverage of code components

(statements or methods) are run earlier, or reorder tests with more

additional coverage of code components not previously covered to

run earlier.

2.1.2 Test Selection. Test selection aims to select and run a subsuite

of a program’s tests after every change, but detect the same faults

2There is typically no point collecting coverage information on a future version to
reorder and run tests on that version, because collecting coverage information requires
one to run the tests already.

as if the full test suite is run [67]. We evaluate 6 test selection

algorithms that select tests based on their coverage of modified

code components [20, 32]; Table 2 gives a concise description of

each algorithm. The algorithms use program analysis to select

every test that may be affected by recent code modifications [32].

Each algorithm first builds a control-flow graph (CFG) for the then-

current version of the program 𝑃old, runs 𝑃old’s test suite, and maps

each test to the set of CFG edges covered by the test. When the

program is modified to 𝑃new, the algorithm builds 𝑃new’s CFG and

then selects the tests that cover łdangerousž edges: program points

where 𝑃old and 𝑃new’s CFGs differ. We choose to select based on two

levels of code-component granularity traditionally evaluated before,

namely statements and methods [67]. We then order the selected

tests. Ordering by test ID (an integer representing the position

of the test in the original order) essentially does no reordering,

while the other orderings make the algorithm a combination of test

selection followed by test prioritization.

2.1.3 Test Parallelization. Test parallelization schedules the input

tests for execution across multiple machines to reduce test latencyÐ

the time to run all tests. Two popular automated approaches for

test parallelization are to parallelize a test suite based on (1) test

ID and (2) execution time from prior runs [7]. A test ID is an inte-

ger representing the position of the test in the original order. We

evaluate one test parallelization algorithm based on each approach

(as described in Table 3). The algorithm that parallelizes based on

test ID schedules the 𝑖th test on machine 𝑖 mod 𝑘 , where 𝑘 is the

number of available machines and 𝑖 is the test ID. The algorithm

that parallelizes based on the tests’ execution time (obtained from a

prior execution) iteratively schedules each test on the machine that

is expected to complete the earliest based on the tests already sched-

uled so far on that machine. We evaluate each test parallelization

algorithm with 𝑘 = 2, 4, 8, and 16 machines.

2.2 Evaluation Projects

Our evaluation projects consist of 11 modules from 8 Maven-

based Java projects. These 11 modules are a subset of modules from

the comprehensive version of a published dataset of flaky tests [44].

We include all of the modules (from the dataset) that contain OD

tests, except for eight modules that we exclude because they are

either incompatible with the tool that we use to compute coverage

information or they contain OD tests where the developers have

already specified test orderings in which the OD tests should run

in. A list of which modules that we exclude from the dataset and

the reasons for why we exclude them are on our website [8].

In addition to the existing human-written tests, we also evaluate

automatically-generated tests. Automated test generation tools [21,

22, 25, 53, 73] are attractive because they reduce developers’ testing

efforts. These tools typically generate tests by creating sequences of

method calls into the code under test. Although the tests are meant

to be generated independently from one another, these tools often

do not enforce test independence because doing so can substantially

increase the runtime of the tests (e.g., restarting the VM between

each generated test). This optimization results in automatically-

generated test suites occasionally containing OD tests. Given the

increasing importance of automatically-generated tests in both

research and industrial use, we also investigate them for OD tests.

300

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

Table 4: Statistics of the projects used in our evaluation.

LOC # Tests # OD tests # Evaluation Days between versions
ID Project Source Tests Human Auto Human Auto versions Average Median

M1 apache/incubator-dubbo - m1 2394 2994 101 353 2 (2%) 0 (0%) 10 4 5
M2 - m2 167 1496 40 2857 3 (8%) 0 (0%) 10 25 18
M3 - m3 2716 1932 65 945 8 (12%) 0 (0%) 10 10 8
M4 - m4 198 1817 72 2210 14 (19%) 0 (0%) 6 32 43
M5 apache/struts 3015 1721 61 4190 4 (7%) 1 (<1%) 6 61 22
M6 dropwizard/dropwizard 1718 1489 70 639 1 (1%) 2 (<1%) 10 11 6
M7 elasticjob/elastic-job-lite 5323 7235 500 566 9 (2%) 4 (1%) 2 99 99
M8 jfree/jfreechart 93915 39944 2176 1233 1 (<1%) 0 (0%) 5 13 2
M9 kevinsawicki/http-request 1358 2647 160 4537 21 (13%) 0 (0%) 10 42 4
M10 undertow-io/undertow 4977 3325 49 967 6 (12%) 1 (<1%) 10 22 15
M11 wildfly/wildfly 7022 1931 78 140 42 (54%) 20 (14%) 10 37 19

Total / Average / Median 122803 66531 3372 18637 111 (3%) 28 (<1%) 89 25 8

Specifically, we use Randoop [53] version 3.1.5, a state-of-the-art

random test generation tool. We configure Randoop to generate at

most 5,000 tests for each evaluation project, and to drop tests that

are subsumed by other tests (tests whose sequence of method calls

is a subsequence of those in other tests).

2.3 Methodology

Regression testing algorithms analyze one version of code to

obtain metadata such as coverage or time information for every test

so that they can compute specific orders for future versions. For

each of our evaluation projects, we treat the version of the project

used in the published dataset [44] as the latest version in a sequence

of versions. In our evaluation, we define a łversionž for a project as

a particular commit that has a change for the module containing

the OD test, and the change consists of code changes to a Java

file. Furthermore, the code must compile and all tests must pass

through Maven. We go back at most 10 versions from this latest

version to obtain the First Version (denoted as firstVer) of each

project. We may not obtain 10 versions for an evaluation project

if it does not have enough commits that satisfy our requirements,

e.g., commits that are old may not be compilable anymore due to

missing dependencies. We refer to each subsequent version after

firstVer as a subseqVer . For our evaluation, we use firstVer to obtain

the metadata for the regression testing algorithms, and we evaluate

the use of such information on the subseqVers. For automatically-

generated test suites, we generate the tests on firstVer and copy

the tests to subseqVers. Any copied test that does not compile on a

subseqVer is dropped from the test suite when run on that version.

Table 4 summarizes the information of each evaluation project.

Column łLOCž is the number of non-comment, non-blank lines in

the project’s source code and human-written tests as reported by

sloc [11] for firstVer of each evaluation project. Column ł# Testsž

shows the number of human-written tests and those generated by

Randoop [53] for firstVer of each evaluation project. Column ł#

Evaluation versionsž shows the number of versions from firstVer

to latest version that we use for our evaluation, and column łDays

between versionsž shows the average and median number of days

between the versions that we use for our evaluation.

To evaluate how often OD tests fail when using test prioritization

and test parallelization algorithms, we execute these algorithms

on the version immediately following firstVer , called the Second

Version (denoted as secondVer). For test selection, we execute the

algorithms on all versions after firstVer up to the latest version (the

version from the dataset [44]). The versions that we use for each

of our evaluation projects are available online [8]. For all of the

algorithms, they may rank multiple tests the same (e.g., two tests

cover the same statements or two tests take the same amount of

time to run). To break ties, the algorithms deterministically sort

tests based on their ordering in the original order. Therefore, with

the same metadata for the tests, our the algorithms would always

produce the same order.

For the evaluation of test prioritization algorithms, we count the

number of OD tests that fail in the prioritized order on secondVer .

For test selection, given the change between firstVer and the future

versions, we count the number of unique OD tests that fail from

the possibly reordered selected tests on all future versions. For test

parallelization, we count the number of OD tests that fail in the

parallelized order on any of the machines where tests are run on

secondVer . All test orders are run three times and a test is counted

as OD only if it consistently fails for all three runs. Note that we

can just count failed tests as OD tests because we ensure that all

tests pass in the original order of each version that we use.

Note that the general form of the OD test detection problem

is NP-complete [72]. To get an approximation for the maximum

number of OD-test failures with which the orders produced by

regression testing algorithms can cause, we apply DTDetector [72]

to randomize the test ordering for 100 times on firstVer and all

subseqVers. We choose randomization because prior work [44, 72]

found it to be the most effective strategy in terms of time cost when

finding OD tests. The DTDetector tool is sound but incomplete,

i.e., every OD test that DTDetector finds is a real OD test, but

DTDetector is not guaranteed to find every OD test in the test suite.

Thus, the reported number is a lower bound of the total number

of OD tests. Column ł# OD testsž in Table 4 reports the number of

OD tests that DTDetector finds when it is run on all versions of our

evaluation projects.

There are flaky tests that can pass or fail on the same version of

code but are not OD tests (e.g., flaky tests due to concurrency). For

all of the test suites, we run each test suite 100 times in its original

order and record the tests that fail as flaky but not as OD tests. We

use this set of non-order-dependent flaky tests to ensure that the

tests that fail on versions after firstVer are likely OD tests and not

other types of flaky tests.

301

Dependent-Test-Aware Regression Testing Techniques ISSTA ’20, July 18–22, 2020, Virtual Event, USA

2.4 Results

Table 5 and Table 6 summarize our results (parallelization is

averaged across 𝑘 = 2, 4, 8, and 16). The exact number of OD-test

failures for each regression testing algorithm is available on our

website [8]. In Table 5, each cell shows the percentage of unique OD

tests that fail in all of the orders produced by the algorithms of a

technique over the number of known OD tests for that specific eval-

uation project. Cells with a łn/až represent test suites (of evaluation

projects) that do not contain any OD tests according to DTDetector

and the regression testing algorithms. The łTotalž row shows the

percentage of OD tests that fail across all evaluation projects per

technique over all OD tests found by DTDetector. In Table 6, each

cell shows the percentage of OD tests across all evaluation projects

that fail per algorithm. The dependent tests that fail in any two

cells of Table 6 may not be distinct from one another.

On average, 3% of human-written tests and <1% of automatic-

ally-generated tests are OD tests. Although the percentage of OD

tests may be low, the effect that these tests have on regression

testing algorithms is substantial. More specifically, almost every

project’s human-written test suite has at least one OD-test failure

in an order produced by one or more regression testing algorithms

(the only exceptions are jfree/jfreechart (M8) and wildfly/wildfly

(M11)). These OD-test failures waste developers’ time or delay the

discovery of a real fault.

According to Table 6, it may seem that algorithms that order tests

by Total coverage (T1, T3, S2, S5) always have fewer OD-test failures

than their respective algorithms that order tests by Additional cov-

erage (T2, T4, S3, S6), particularly for test prioritization algorithms.

However, when we investigate the algorithm and module that best

exhibit this difference, namely kevinsawicki/http-request’s (M9)

test prioritization results, we find that this one case is largely re-

sponsible for the discrepancies that we see for the test prioritization

algorithms. Specifically, M9 contains 0 OD-test failures for T1 and

T3, but 14 and 24 OD-test failures for T2 and T4, respectively. All

OD tests that fail for M9’s T2 and T4 would fail when one particular

test is run before them; we refer to this test that runs before as the

dependee test. The dependent tests all have similar coverage, so in

the Additional orders, these tests are not consecutive and many of

them come later in the orders. The one dependee test then comes

inbetween some dependent tests, causing the ones that come later

than the dependee test to fail. In the Total orders, the dependee test

has lower coverage than the dependent tests and is always later

in the orders. If we omit M9’s prioritization results, we no longer

observe any substantial difference in the number of OD-test failures

between the Total coverage and Additional coverage algorithms.

2.4.1 Impact on Test Prioritization. Test prioritization algorithms

produce orders that cause OD-test failures for the human-written

test suites in eight evaluation projects. For automatically-gener-

ated test suites, test prioritization algorithms produce orders that

cause OD-test failures in three projects. Our findings suggest that

orders produced by test prioritization algorithms are more likely to

cause OD-test failures in automatically-generated test suites than

human-written test suites. Overall, we find that test prioritization

algorithms produce orders that cause 23% of the human-written

OD tests and 54% of the automatically-generated OD tests to fail.

Table 5: Percentage of OD tests that fail in orders produced

by different regression testing techniques.

OD tests that fail (per evaluation project)
Prioritization Selection Parallelization

ID Human Auto Human Auto Human Auto

M1 50% n/a 100% n/a 50% n/a
M2 67% n/a 67% n/a 0% n/a
M3 12% n/a 50% n/a 0% n/a
M4 7% n/a 14% n/a 14% n/a
M5 0% 100% 25% 100% 75% 100%
M6 100% 0% 0% 0% 0% 100%
M7 44% 50% 0% 0% 0% 25%
M8 0% n/a 0% n/a 0% n/a
M9 71% n/a 71% n/a 0% n/a
M10 17% 0% 17% 0% 0% 100%
M11 0% 60% 0% 0% 0% 30%

Total 23% 54% 24% 4% 5% 36%

Table 6: Percentage of OD tests that fail in orders produced

by individual regression testing algorithms.

OD tests that fail (per algorithm)
Prioritization Selection Parallelization

Type T1 T2 T3 T4 S1 S2 S3 S4 S5 S6 P1 P2

Human 5% 25% 5% 20% 1% 28% 31% 1% 5% 9% 2% 5%
Auto 36% 43% 71% 25% 4% 4% 4% 4% 4% 4% 21% 64%

2.4.2 Impact on Test Selection. Test selection algorithms produce

orders that cause OD-test failures for the human-written test suites

in seven evaluation projects and for the automatically-generated

test suites in one project. These test selection algorithms produce

orders that cause 24% of the human-written OD tests and 4% of the

automatically-generated OD tests to fail. The algorithms that do

not reorder a test suite (S1 and S4) produce orders that cause fewer

OD-test failures than the algorithms that do reorder. This finding

suggests that while selecting tests itself is a factor, reordering tests

is generally a more important factor that leads to OD-test failures.

2.4.3 Impact on Test Parallelization. Test parallelization algorithms

produce orders that cause OD-test failures because the algorithms

may schedule an OD test on a different machine than the test(s)

that it depends on. We again find that the parallelization algorithm

that reorders tests, P2, produces orders that cause more OD-test

failures than P1. This result reaffirms our finding from Section 2.4.2

that reordering tests has a greater impact on OD-test failures than

selecting tests. The percentages reported in Table 5 and Table 6

are calculated from the combined set of OD tests that fail due to

parallelization algorithms for 𝑘 = 2, 4, 8, and 16 machines. The

orders of these algorithms cause 5% of the human-written OD tests

and 36% of the automatically-generated OD tests to fail on average.

2.5 Findings

Our study suggests the following two main findings.

(1) Regression testing algorithms that reorder tests in the

given test suite aremore likely to experienceOD test failures

than algorithms that do not reorder tests in the test suite. We

see this effect both by comparing test selection algorithms that do

not reorder tests (S1 and S4) to those that do, as well as comparing

a test parallelization algorithm, P2, which does reorder tests, to

P1, which does not. Developers using algorithms that reorder tests

302

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

would especially benefit from our dependent-test-aware algorithms

described in Section 3.

(2) Human-written and automatically-generated test suites

are likely to fail due to test dependencies. As shown in Table 5,

we find that regression testing algorithms produce orders that cause

OD-test failures in 82% (9 / 11) of human-written test suites with

OD tests, compared to the 100% (5 / 5) of automatically-gener-

ated test suites. Both percentages are substantial and showcase the

likelihood of OD-test failures when using traditional regression

testing algorithms that are unaware of OD tests.

3 DEPENDENT-TEST-AWARE REGRESSION
TESTING TECHNIQUES

When a developer conducts regression testing, there are two

options: running the tests in the original order or running the tests

in the order produced by a regression testing algorithm. When

the developer runs the tests in the original order, a test might

fail because either (1) there is a fault somewhere in the program

under test, or (2) the test is flaky but it is not a OD test (e.g., flaky

due to concurrency). However, when using a traditional regression

testing algorithm, there is a third reason for why tests might fail:

the produced orders may not be satisfying the test dependencies.

Algorithms that are susceptible to this third reason do not adhere to

a primary design goal of regression testing algorithms. Specifically,

the orders produced by these algorithms should not cause OD-test

failures: if the tests all pass in the original order, then the algorithms

should produce only orders in which all of the tests pass (and dually,

if tests fail in the original order, then the algorithms should produce

only orders in which these tests fail).3 Since many real-world test

suites contain OD tests, a regression testing algorithm that assumes

its input contains no OD tests can produce orders that cause OD-

test failures, violating this primary design goal (which we see from

our results in Section 2).

We propose that regression testing techniques should be dependent-

test-aware to remove OD-test failures. Our general approach com-

pletely removes all possible OD-test failures with respect to the

input test dependencies. In practice, such test dependencies may

or may not always be complete (all test dependencies that prevent

OD-test failures are provided) or minimal (only test dependencies

that are needed to prevent OD-test failures are provided). Never-

theless, our general approach requires as input an original order,

a set of test dependencies, and an order outputted by a traditional

regression testing algorithm to output an updated, enhanced order

that satisfies the given test dependencies.

3.1 Example

Figure 1 shows an illustrated example of the orders produced

by an unenhanced algorithm and its corresponding enhanced algo-

rithm. The unenhanced algorithm does not take test dependencies

into account, and therefore may produce orders that cause OD-test

failures. Specifically, the unenhanced algorithm produces the Unen-

hanced Order. On the other hand, the enhanced algorithm produces

the Enhanced Order, a test order that satisfies the provided test

dependencies of the test suite. The enhanced algorithm does so by

3Another design goal is to maximize fault-finding ability over time, i.e., efficiency. The
efficiency goal is a trade-off against the correctness goal.

Original Order

𝑡1

𝑡2

𝑡3

𝑡4
...

Unenhanced

regression testing

algorithm

Unenhanced Order

𝑡3

𝑡2

𝑡1

𝑡4
...

test

dependencies

⟨𝑡1→ 𝑡2⟩

Enhanced

regression testing

algorithm +

Enhanced Order

𝑡3

𝑡1

𝑡2

𝑡4
...

Figure 1: Example of an unenhanced and its enhanced,

dependent-test-aware regression testing algorithms.

first using the unenhanced algorithm to produce the Unenhanced

Order and then enforcing the test dependencies on to the order by

reordering or adding tests.

We define two different types of test dependencies, positive and

negative dependencies. A positive test dependency ⟨𝑝 → 𝑑⟩ denotes

that for OD test 𝑑 to pass, it should be run only after running test

𝑝 , the test that 𝑑 depends on. A negative test dependency ⟨𝑛 ↛ 𝑑⟩

denotes that for OD test 𝑑 to pass, it should not be run after test 𝑛.

Previous work [61] refers to test 𝑝 as a state-setter and test 𝑑 in a

positive dependency as a brittle. It also refers to test 𝑛 as a polluter

and 𝑑 in a negative dependency as a victim. For simplicity, we refer

to the tests that OD tests depend on (i.e., 𝑝 and 𝑛) as dependee tests.

For both types of dependencies, the dependee and OD test do not

need to be run consecutively, but merely in an order that adheres

to the specified dependencies.

In Figure 1, there is a single, positive test dependency ⟨𝑡1 → 𝑡2⟩

in the input test dependencies. ⟨𝑡1 → 𝑡2⟩ denotes that the OD test 𝑡2
should be run only after running test 𝑡1. In the Unenhanced Order,

the positive test dependency ⟨𝑡1 → 𝑡2⟩ is not satisfied and 𝑡2 will

fail. Our enhanced algorithm prevents the OD-test failure of 𝑡2 by

modifying the outputted order of the unenhanced algorithm so

that the test dependency (𝑡2 should be run only after running 𝑡1) is

satisfied in the Enhanced Order.

3.2 General Approach for Enhancing
Regression Testing Algorithms

Figure 2 shows our general algorithm, enhanceOrder, for enhanc-

ing an order produced by a traditional regression testing algorithm

to become dependent-test-aware. enhanceOrder takes as input 𝑇𝑢 ,

which is the order produced by the traditional unenhanced algo-

rithm that enhanceOrder is enhancing (this order can be a different

permutation or subset of 𝑇orig), the set of test dependencies 𝐷 , and

the original test suite 𝑇orig , which is an ordered list of tests in the

original order. While in theory one could provide test dependencies

that are not linearizable (e.g., both ⟨𝑡1 → 𝑡2⟩ and ⟨𝑡2 → 𝑡1⟩ in 𝐷),

we assume that the provided test dependencies are linearizable,

and 𝑇orig is the tests’ one total order that satisfies all of the test

dependencies in 𝐷 . For this reason, enhanceOrder does not check

for cycles within 𝐷 . Based on 𝑇𝑢 , enhanceOrder uses the described

inputs to output a new order (𝑇𝑒) that satisfies the provided test

dependencies 𝐷 .

enhanceOrder starts with an empty enhanced order 𝑇𝑒 and then

adds each test in the unenhanced order𝑇𝑢 into𝑇𝑒 using the addTest

function (Line 7). To do so, enhanceOrder first computes𝑇𝑎 , the set

303

Dependent-Test-Aware Regression Testing Techniques ISSTA ’20, July 18–22, 2020, Virtual Event, USA

enhanceOrder(𝑇𝑢 , 𝐷,𝑇orig):

1: 𝑇𝑒 ← []

2: 𝑃 ← {⟨𝑝 → 𝑑⟩ ∈ 𝐷} // Positive test dependencies

3: 𝑁 ← {⟨𝑛 ↛ 𝑑⟩ ∈ 𝐷} // Negative test dependencies

4: 𝑇𝑎 ← 𝑇𝑢 ◦ (𝑃
−1)∗ // Get all transitive positive dependee tests

5: for 𝑡 : 𝑇𝑢 do // Iterate 𝑇𝑢 sequence in order

6: if 𝑡 ∈ 𝑇𝑒 then continue end if

7: 𝑇𝑒 ← addTest(𝑡,𝑇𝑒 ,𝑇𝑢 ,𝑇orig,𝑇𝑎, 𝑃, 𝑁)

8: end for

9: return 𝑇𝑒

addTest(𝑡,𝑇𝑒 ,𝑇𝑢 ,𝑇orig,𝑇𝑎, 𝑃, 𝑁):

10: 𝐵 ← {𝑡 ′ ∈ 𝑇𝑢 ∪𝑇𝑎 |⟨𝑡
′ → 𝑡⟩ ∈ 𝑃 ∨ ⟨𝑡 ↛ 𝑡 ′⟩ ∈ 𝑁 }

11: 𝐿 ← sort(𝐵 ∩𝑇𝑢 , 𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝑇𝑢)) ⊕ sort(𝐵 \𝑇𝑢, 𝑜𝑟𝑑𝑒𝑟𝐵𝑦 (𝑇orig))

12: for 𝑏 : 𝐿 do // Iterate the before tests in order of 𝐿

13: if 𝑏 ∈ 𝑇𝑒 then continue end if

14: 𝑇𝑒 ← addTest(𝑏,𝑇𝑒 ,𝑇𝑢 ,𝑇orig,𝑇𝑎, 𝑃, 𝑁)

15: end for

16: return 𝑇𝑒 ⊕ [𝑡]

Figure 2: General approach to enhance an order from tradi-

tional regression testing algorithms.

of tests that the tests in𝑇𝑢 transitively depend on from the positive

test dependencies (Line 4). 𝑇𝑎 represents the tests that the tradi-

tional test selection or parallelization algorithms did not include in

𝑇𝑢 , but they are needed for OD tests in 𝑇𝑢 to pass. enhanceOrder

then iterates through 𝑇𝑢 in order (Line 5) to minimize the pertur-

bations that it makes to the optimal order found by the traditional

unenhanced algorithm. The addTest function adds a test 𝑡 into the

current𝑇𝑒 while ensuring that all of the provided test dependencies

are satisfied. Once all of 𝑇𝑢 ’s tests are added into 𝑇𝑒 , enhanceOrder

returns 𝑇𝑒 .

On a high-level, the function addTest has the precondition that

all of the tests in the current enhanced order 𝑇𝑒 have their test

dependencies satisfied in 𝑇𝑒 , and addTest has the postcondition

that test 𝑡 is added to the end of 𝑇𝑒 (Line 16) and all tests in 𝑇𝑒 still

have their test dependencies satisfied. To satisfy these conditions,

addTest starts by obtaining all of the tests that need to run before

the input test 𝑡 (Line 10), represented as the set of tests 𝐵.

The tests in 𝐵 are all of the dependee tests within the positive

test dependencies 𝑃 for 𝑡 , i.e., all tests 𝑝 where ⟨𝑝 → 𝑡⟩ are in 𝑃 .

Note that these additional tests must come from either𝑇𝑢 or𝑇𝑎 (the

additional tests that the traditional algorithm does not add to 𝑇𝑢).

Line 10 just includes into 𝐵 the direct dependee tests of 𝑡 and not

those that it indirectly depends on; these indirect dependee tests

are added to 𝑇𝑒 through the recursive call to addTest (Line 14). The

tests in 𝐵 also include the dependent tests within the negative test

dependencies 𝑁 whose dependee test is 𝑡 , i.e., all tests 𝑑 where ⟨𝑡 ↛

𝑑⟩ are in 𝑁 . addTest does not include test 𝑑 that depends on 𝑡 from

the negative test dependencies if 𝑑 is not in 𝑇𝑢 or 𝑇𝑎 . Conceptually,

these are tests that the unenhanced algorithm originally did not find

necessary to include (i.e., for test selection the test is not affected

by the change, or for test parallelization the test is scheduled on

another machine), and they are also not needed to prevent any OD

tests already included in 𝑇𝑢 from failing.

Once addTest obtains all of the tests that need to run before 𝑡 ,

it then adds all of these tests into the enhanced order 𝑇𝑒 , which

addTest accomplishes by recursively calling addTest on each of

these tests (Line 14). Line 11 first sorts these tests based on their

order in the unenhanced order 𝑇𝑢 . This sorting is to minimize

the perturbations that it makes to the optimal order found by the

unenhanced algorithm. For any additional tests not in 𝑇𝑢 (tests

added through𝑇𝑎), they are sorted to appear at the end and based on

their order in the original order, providing a deterministic ordering

for our evaluation (in principle, one can use any topological order).

Once all of the tests that must run before 𝑡 are included into 𝑇𝑒 ,

addTest adds 𝑡 (Line 16).

OD-test failures may still arise even when using an enhanced

algorithm because the provided test dependencies (𝐷) may not be

complete. For example, a developer may forget to manually specify

some test dependencies, and even if the developer uses an automatic

tool for computing test dependencies, such tool may not find all

dependencies as prior work [72] has shown that computing all

test dependencies is an NP-complete problem. Also, a developer

may have made changes that invalidate some of the existing test

dependencies or introduce new test dependencies, but the developer

does not properly update the input test dependencies.

4 EVALUATION OF GENERAL APPROACH

Section 2 shows how both human-written and automatically-

generated test suites with OD tests have OD-test failures when

developers apply traditional, unenhanced regression testing algo-

rithms on these test suites. To address this issue, we apply our

general approach described in Section 3 to enhance 12 regression

testing algorithms and evaluate them with the following metrics.

• Effectiveness of reducing OD-test failures: the reduction

in the number of OD-test failures after using the enhanced

algorithms. Ideally, every test should pass, because we confirm

that all tests pass in the original order on the versions that we

evaluate on (the same projects and versions from Section 2.2).

This metric is the most important desideratum.

• Efficiency of orders: how much longer-running are orders

produced by the enhanced regression testing algorithms than

those produced by the unenhanced algorithms.

4.1 Methodology

To evaluate 12 enhanced regression testing algorithms, we start

with firstVer for each of the evaluation projects described in Sec-

tion 2.2. Compared to the unenhanced algorithms, the only addi-

tional input that the enhanced algorithms require is test dependen-

cies 𝐷 . These test dependencies 𝐷 and the other metadata needed

by the regression testing algorithms are computed on firstVer of

each evaluation project. The details on how we compute test de-

pendencies for our evaluation are in Section 4.2. With 𝐷 and the

other inputs required by the unenhanced and enhanced algorithms,

we then evaluate these algorithms on subseqVers of the projects.

In between firstVer and subseqVers there may be tests that exist

in one but not the other. We refer to tests that exist in firstVer

as old tests and for tests that are introduced by developers in a

future version as new tests. When running the old tests on future

versions, we use the enhanced algorithms, which use coverage or

304

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

time information from firstVer (also needed by the unenhanced

algorithms) and 𝐷 . Specifically, for all of the algorithms, we use

the following procedure to handle changes in tests between firstVer

and a subseqVer .

(1) The test in firstVer is skipped if subseqVer no longer contains

the corresponding test.

(2) Similar to most traditional regression testing algorithms, we

treat tests with the same fully-qualified name in firstVer and

subseqVer as the same test.

(3) We ignore new tests (tests in subseqVer but not in firstVer),

because both unenhanced and enhanced regression testing

algorithms would treat these tests the same (i.e., run all of

these tests before or after old tests).

4.2 Computing Test Dependencies

Developers can obtain test dependencies for a test suite by

(1) manually specifying the test dependencies, or (2) using auto-

matic tools to compute the test dependencies [26, 29, 44, 65, 72].

For our evaluation, we obtain test dependencies through the lat-

ter approach, using automatic tools, because we want to evaluate

the scenario of how any developer can benefit from our enhanced

algorithms without having to manually specify test dependencies.

Among the automatic tools to compute test dependencies, both

DTDetector [72] and iDFlakies [44] suggest that randomizing a test

suite many times is the most cost effective way to compute test

dependencies. For our evaluation, we choose to use DTDetector

since it is the more widely cited work on computing test depen-

dencies. Before we compute test dependencies, we first filter out

tests that are flaky but are not OD tests (e.g., tests that are flaky

due to concurrency [44, 47]) for each of our evaluation projects. We

filter these tests by running each test suite 100 times in its original

order and removing all tests that had test failures. We remove these

tests since they can fail for other reasons and would have the same

chance of affecting unenhanced and enhanced algorithms. To simu-

late how developers would compute test dependencies on a current

version to use on future versions, we compute test dependencies

on a prior version (firstVer) of a project’s test suite and use them

with our enhanced algorithms on future versions (subseqVers).

4.2.1 DTDetector. DTDetector [72] is a tool that detects test depen-

dencies by running a test suite in a variety of different orders and

observing the changes in the test outcomes. DTDetector outputs a

test dependency if it observes a test 𝑡 to pass in one order (denoted

as 𝑝𝑜) and fail in a different order (denoted as 𝑓 𝑜). Typically, 𝑡 de-

pends on either some tests that run before 𝑡 in 𝑝𝑜 to be dependee

tests in a positive test dependency (some tests must always run

before 𝑡), or some tests that run before 𝑡 in 𝑓 𝑜 to be dependee tests

in a negative test dependency (some tests must always run after

𝑡). 𝑡 can also have both a positive dependee test and a negative

dependee test; this case is rather rare, and we do not observe such

a case in our evaluation projects. DTDetector outputs the minimal

set of test dependencies by delta-debugging [28, 68] the list of tests

coming before 𝑡 in 𝑝𝑜 and 𝑓 𝑜 to remove as many tests as possible,

while still causing 𝑡 to output the same test outcome.

When we use DTDetector directly as its authors intended, we

find that DTDetector’s reordering strategies require many hours to

Table 7: Average time in seconds to run the test suite and

average time to compute test dependencies for an OD test.

łPrioritizationž and łParallelizationž show the average time

per algorithm, while łAll 6ž shows the average time across

all 6 algorithms. ł-ž denotes cases that have no OD test for

all algorithms of a particular technique.

Suite Time to precompute test dependencies
run time Prioritization Parallelization All 6

ID Human Auto Human Auto Human Auto Human Auto

M1 7.3 0.3 64 - 24 - 44 -
M2 0.4 0.2 95 - - - 95 -
M3 184.2 0.2 1769 - - - 1769 -
M4 0.1 0.2 19 - 13 - 17 -
M5 2.4 0.4 - 396 31 215 31 275
M6 4.1 0.3 75 - - 29 75 29
M7 20.4 45.6 241 242 - 176 241 216
M8 1.2 1.3 - - - - - -
M9 1.2 0.1 28 - - - 28 -
M10 19.9 0.8 157 - - 39 157 39
M11 2.3 0.4 - 484 - 210 - 438

run and are designed to search for test dependencies by random-

izing test orders; however, we are interested in test dependencies

only in the orders that arise from regression testing algorithms. To

address this problem, we extend DTDetector to compute test depen-

dencies using the output of the regression testing algorithms. This

strategy is in contrast to DTDetector’s default strategies, which

compute test dependencies for a variety of orders that may not

resemble the outputs of regression testing algorithms. Specifically,

for test prioritization or test parallelization, we use the orders pro-

duced by their unenhanced algorithms. DTDetector will find test

dependencies for any test that fails in these orders, since these tests

now have a passing order (all tests must have passed in the original

order) and a failing order. Using these two orders, DTDetector will

minimize the list of tests before an OD test, and we would then use

the minimized list as test dependencies for the enhanced algorithms.

If the new test dependencies with the enhanced algorithms cause

new failing OD tests, we repeat this process again until the orders

for the enhanced algorithms no longer cause any OD-test failure.

For test selection, we simply combine and use all of the test

dependencies that we find for the test prioritization and test paral-

lelization algorithms. We use the other algorithms’ orders because

it is difficult to predict test selection orders on future versions, i.e.,

the tests selected in one version will likely be different than the

tests selected in another version. This methodology simulates what

developers would do: they know what regression testing algorithm

to use but do not know what changes they will make in the future.

4.2.2 Time to Precompute Dependencies. Developers should not

compute test dependencies as they are performing regression test-

ing. Instead, as we show in our evaluation, test dependencies can

be collected on the current version and be reused later.

Developers can compute test dependencies infrequently and of-

fline. Recomputing test dependencies can be beneficial if new test

dependencies are needed or if existing test dependencies are no

longer needed because of the developers’ recent changes. While

the developers are working between versions 𝑣𝑖 and 𝑣𝑖+1, they can

use that time to compute test dependencies. Table 7 shows the time

in seconds to compute the test dependencies that we use in our

305

Dependent-Test-Aware Regression Testing Techniques ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 8: Percentage of how many fewer OD-test failures oc-

cur in the test suites produced by the enhanced algorithms

compared to those produced by the unenhanced algorithms.

Higher percentages indicate that the test suites by the en-

hanced algorithms have fewer OD-test failures.

% Reduction in OD-test failures
Prioritization Selection Parallelization

ID Human Auto Human Auto Human Auto

M1 100% n/a 50% n/a 100% n/a
M2 100% n/a 100% n/a - n/a
M3 100% n/a -25% n/a - n/a
M4 100% n/a 60% n/a 100% n/a
M5 - 60% 0% 100% 100% 82%
M6 100% - - - - 100%
M7 100% 57% - - - 12%
M8 - n/a - n/a - n/a
M9 100% n/a 92% n/a - n/a
M10 100% - 100% - - 100%
M11 - 56% - - - 29%

Total 100% 57% 79% 100% 100% 66%

evaluation. The table shows the average time to compute test depen-

dencies per OD test across all test prioritization or parallelization

algorithms (for the columns under łPrioritizationž and łParalleliza-

tionž, respectively), and the time under łAll 6ž is the average time to

compute dependencies per OD test across all six test prioritization

and parallelization algorithms (as explained in Section 4.2.1, the

test dependencies that test selection uses are the combination of

those from test prioritization and parallelization). The reported

time includes the time for checks such as rerunning failing tests

multiple times to ensure that it is actually an OD test (i.e., it is not

flaky for other reasons) as to avoid the computation of non-existent

test dependencies.

Although the time to compute test dependencies is substantially

more than the time to run the test suite, we can see from Tables 4

and 7 that the time between versions is still much more than the

time to compute test dependencies. For example, while it takes

about half an hour, on average, to compute test dependencies per

OD test in M3’s human-written test suite, the average number

of days between the versions of M3 is about 10 days, thus still

giving developers substantial time in between versions to compute

test dependencies. Although such a case does not occur in our

evaluation, even if the time between 𝑣𝑖 and 𝑣𝑖+1 is less than the time

to compute test dependencies, the computation can start running on

𝑣𝑖 while traditional regression testing algorithms (that may waste

developers’ time due to OD-test failures) can still run on 𝑣𝑖+1. Once

computation finishes, the enhanced regression testing algorithms

can start using the computed test dependencies starting at the

current version of the code (e.g., version 𝑣𝑖+𝑛 when the computation

starts on 𝑣𝑖). As we show in Section 4.3, these test dependencies

are still beneficial many versions after they are computed.

4.3 Reducing Failures

Table 8 shows the reduction in the number of OD-test failures

from the orders produced by the enhanced algorithms compared

to those produced by the unenhanced algorithms. We denote cases

that have no OD tests (as we find in Section 2.4) as łn/až, and cases

where the unenhanced algorithms do not produce an order that

causes any OD-test failures as ł-ž. Higher percentages indicate that

the enhanced algorithms are more effective than the unenhanced

algorithms at reducing OD-test failures.

Concerning human-written tests, we see that enhanced prioriti-

zation and parallelization algorithms are very effective at reducing

the number of OD-test failures. In fact, the enhanced prioritization

and parallelization algorithms reduce the number of OD-test fail-

ures by 100% across all of the evaluation projects. For test selection,

the algorithms reduce the number of OD-test failures by 79%. This

percentage is largely influenced by M3, where the enhanced selec-

tion orders surprisingly lead to more failures than the unenhanced

orders as indicated by the negative number (-25%) in the table.

There are two main reasons for why an enhanced order can still

have OD-test failures: (1) changes from later versions introduce

new tests that are OD tests and are not in firstVer , and (2) the

computed test dependencies from firstVer are incomplete; as such,

the regression testing algorithms would have OD-test failures due

to the missing test dependencies. In the case of (1), if this case

were to happen, then both enhanced and unenhanced orders would

be equally affected, and for our evaluation, we simply ignored all

newly added tests. In the case of (2), it is possible that the test

dependencies computed on firstVer are incomplete for the same OD

tests on a new version, either because the missing test dependencies

are not captured on firstVer or because the test initially is not an

OD test in firstVer but becomes one due to newly introduced test

dependencies in the new version. In fact, for M3’s human-written

test selection results, we see that the reason for why the enhanced

orders have more OD-test failures is that the enhanced orders in

later versions expose a test dependency that is missing from what

is computed on firstVer . As we describe in Section 4.2, to efficiently

compute test dependencies on firstVer , we use only the orders of

test prioritization and test parallelization instead of many random

orders as done in some previous work [44, 72]. It is important to

note that such a case occurs in our evaluation only for M3, but

nonetheless, this case does demonstrate the challenge of computing

test dependencies effectively and efficiently.

For automatically-generated tests, the enhanced algorithms are

also quite effective at reducing OD-test failures, though they are

not as effective as the enhanced algorithms for human-written

tests. For test selection, only M5’s unenhanced orders have OD-test

failures, and the enhanced orders completely remove all of the OD-

test failures across all versions. Specifically, the OD test that fails is

missing a postiive dependee test, and the enhanced test selection

algorithms would add in that missing positive dependee test into

the selected tests, which prevents the OD-test failure. Similarly, the

enhanced test parallelization algorithms also add in some missing

positive dependee tests, leading to a reduction in OD-test failures.

Once again though, there are still some OD-test failures because

some test dependencies were not captured on firstVer .

In summary, we find that the orders produced by all of the en-

hanced regression testing algorithms collectively reduce the num-

ber of OD-test failures by 81% and 71% for human-written and

automatically-generated tests, respectively. When considering both

human-written and automatically-generated tests together, the en-

hanced regression testing algorithms produce orders that reduce

the number of OD-test failures by 80% compared to the orders

produced by the unenhanced algorithms.

306

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

Table 9: Percentage slower that orders produced by the en-

hanced algorithms run compared to those produced by the

unenhanced algorithms. Higher percentages indicate that

orders produced by the enhanced algorithms are slower.

% Time Slowdown
Selection Parallelization

ID Human Auto Human Auto

M1 9% = 16% 7%
M2 -1% = 9% -8%
M3 3% = 0% 0%
M4 5% = -2% -2%
M5 = 1% -1% -1%
M6 -1% = 2% -3%
M7 6% = 1% 0%
M8 = = 5% 4%
M9 11% = 2% 3%
M10 -5% = 2% -14%
M11 = = -2% -7%

Total 1% 1% 1% 0%

4.4 Efficiency

To accommodate test dependencies, our enhanced regression

testing algorithms may add extra tests to the orders produced by

the unenhanced test selection or parallelization algorithms (𝑇𝑎 on

Line 4 in Figure 2). The added tests can make the orders produced

by the enhanced algorithms run slower than those produced by the

unenhanced algorithms. Table 9 shows the slowdown of running

the orders from the enhanced test selection and parallelization algo-

rithms. We do not compare the time for orders where the enhanced

and unenhanced algorithms produce the exact same orders (not

only just running the same tests but also having the same order-

ing of the tests), since both orders should have the same running

time modulo noise. We mark projects that have the same orders for

enhanced and unenhanced with ł=ž in Table 9. For parallelization,

we compare the runtime of the longest running subsuite from the

enhanced algorithms to the runtime of the longest running subsuite

from the unenhanced algorithms. For each of the projects in Table 9,

we compute the percentage by summing up the runtimes for all

of the enhanced orders in the project, subtracting the summed up

runtimes for all of the unenhanced orders, and then dividing the

summed up runtimes for all of the unenhanced orders. The overall

percentage in the final row is computed the same way except we

sum up the runtimes for the orders across all of the projects.

Overall, we see that the slowdown is rather small, and the small

speedups (indicated by negative numbers) are mainly due to noise

in the tests’ runtime. For test parallelization of automatically-gener-

ated tests, we do observe a few cases that do not appear to be

due to noise in the tests’ runtime though. Specifically, we see that

there are often speedups even when tests are added to satisfy test

dependencies (e.g., M10). We find that in these cases the enhanced

orders are faster because the OD-test failures encountered by the

unenhanced orders actually slow down the test suite runtime more

than the tests added to the enhanced orders that prevent the OD-test

failures. This observation further demonstrates that avoiding OD-

test failures is desirable, because doing so not only helps developers

avoid having to debug non-existent faults in their changes, but can

also potentially speed up test suite runtime.

The overall test suite runtime slowdown of the enhanced algo-

rithms compared to the unenhanced ones is 1% across all of the

orders produced and across all types of tests (human-written and

automatically-generated) for all of the evaluation projects.

4.5 Findings

Our evaluation suggests the following two main findings.

Reducing Failures. The enhanced regression testing algorithms

can reduce the number of OD-test failures by 81% for human-writ-

ten test suites. The enhanced algorithms are less effective for auto-

matically-generated test suites, reducing OD-test failures by 71%,

but the unenhanced algorithms for these test suites generally cause

fewer OD-test failures. Across all regression testing algorithms, the

enhanced algorithms produce orders that cause 80% fewer OD-test

failures than the orders produced by the unenhanced algorithms.

Efficiency. Our enhanced algorithms produce orders that run only

marginally slower than those produced by the unenhanced algo-

rithms. Specifically, for test selection and test parallelization, the

orders produced by the enhanced algorithms run only 1% slower

than the orders produced by the unenhanced algorithms.

5 DISCUSSION

5.1 General Approach vs. Customized
Algorithms

In our work, we focus on a general approach for enhancing

existing regression testing algorithms. Our approach works on any

output of these existing regression testing algorithms to create an

enhanced order that satisfies the provided test dependencies. While

our approach works for many different algorithms that produce an

order, it may not generate the most optimal order for the specific

purpose of the regression testing algorithm being enhanced.

For example, we enhance the orders produced by test paralleliza-

tion algorithms by adding in the missing tests for an OD test to pass

on the machine where it is scheduled to run. A more customized

test parallelization algorithm could consider the test dependencies

as it decides which tests get scheduled to which machines. If the

test dependencies are considered at this point during the test par-

allelization algorithms, then it could create faster, more optimized

scheduling of tests across the machines. However, such an approach

would be specific to test parallelization (and may even need to be

specialized to each particular test parallelization algorithm) and

may not generalize to other regression testing algorithms. Never-

theless, it can be worthwhile for future work to explore customized

regression testing algorithms that accommodate test dependencies.

5.2 Cost to Provide Test Dependencies

Developers may create OD tests purposefully to optimize test

execution time by doing some expensive setup in one test and have

that setup be shared with other, later-running tests. If developers

are aware that they are creating such tests, then the human cost

for providing test dependencies to our enhanced algorithms is low.

If developers are not purposefully creating OD tests, and they are

unaware that they are creating OD tests, then it would be beneficial

to rely on automated tools to discover such OD tests for them

307

Dependent-Test-Aware Regression Testing Techniques ISSTA ’20, July 18–22, 2020, Virtual Event, USA

and use the outputs of these tools for our enhanced algorithms,

as we demonstrate in our evaluation. The cost to automatically

compute test dependencies (machine cost) is cheaper than the cost

for developers to investigate test failures (human cost). Herzig et

al. [33] quantified human and machine cost. They reported that the

cost to inspect one test failure for whether it is a flaky-test failure

is $9.60 on average, and the total cost of these inspections can be

about $7 million per year for products such as Microsoft Dynamics.

They also reported that machines cost $0.03 per minute. For our

experiments, the longest time to compute test dependencies for an

OD test is for M3, needing about half an hour, which equates to

just about $0.90.

5.3 Removing OD Tests

OD-test failures that do not indicate faults in changes are detri-

mental to developers in the long run, to the point that, if these

failures are not handled properly, one might wonder why a de-

veloper does not just remove these OD tests entirely. However, it

is important to note that these tests function exactly as they are

intended (i.e., finding faults in the code under test) when they are

run in the original order. Therefore, simply removing them would

mean compromising the quality of the test suite to reduce OD-test

failures, being often an unacceptable tradeoff. Removing OD tests is

especially undesirable for developers who are purposefully writing

them for the sake of faster testing [6], evident by the over 197k

Java files (on GitHub) that use some JUnit annotations or TestNG

attributes to control the ordering of tests as of May 2020. As such,

we hope to provide support for accommodating OD tests not just

for regression testing algorithms but for different testing tasks. We

believe that our work on making regression testing algorithms

dependent-test-aware is an important step in this direction.

5.4 Evaluation Metrics

In our evaluation, we focus on the reduction in the number of

OD-test failures in enhanced orders over unenhanced orders as well

as the potential increase in testing time due to the additional tests

that we may need for test selection and test parallelization (Sec-

tion 4.4). Concerning test prioritization algorithms, prior work com-

monly evaluates them using Average Percentage of Faults Detected

(APFD) [56, 67]. Traditionally, researchers evaluate the quality of dif-

ferent test prioritization algorithms by seeding faults/mutants into

the code under test, running the tests on the faulty code, and then

mapping what tests detect which seeded fault/mutant. To compare

the orders produced by the different test prioritization algorithms,

researchers would measure APFD for each order, which represents

how early an order has a test that detects each fault/mutant.

In ourwork, we use real-world software that does not have failing

tests due to faults in the code, ensured by choosing versions where

the tests pass in the original order (Section 2.3). We do not seed

faults/mutants as we want to capture the effects of real software

evolution. As such, we do not and cannot measure APFD because

there would be no test failures due to faults in the code under test;

APFD would simply be undefined in such cases. Any test failures

that we observe would be either OD-test failures or test failures

due to other sources of flakiness.

6 THREATS TO VALIDITY

A threat to validity is that our evaluation considers only 11 mod-

ules from 8 Java projects. These modules may not be representative

causing our results not to generalize. Our approach might behave

differently on different programs, such as ones from different appli-

cation domains or those not written in Java.

Another threat to validity is our choice of 12 traditional regres-

sion testing algorithms. Future work could evaluate other algo-

rithms based on static code analysis, system models, history of

known faults, and test execution results, and so forth. Future work

could also enhance other techniques that run tests out of order,

such as mutation testing [59, 69, 70], test factoring [23, 58, 66], and

experimental debugging techniques [63, 68, 71].

Another threat is the presence of non-order-dependent flaky

tests when we compute test dependencies. Non-order-dependent

tests may also affect the metrics that we use for the regression

testing algorithms (e.g., coverage and timing of tests can be flaky),

thereby affecting the produced orders. We mitigate this threat by

filtering out non-order-dependent flaky tests through the rerunning

of tests in the original order. We also suggest that developers use

tools [44, 60] to identify these tests and remove or fix them; a

developer does not gain much from a test whose failures they

would ignore. In future work, we plan to evaluate the impact of

these issues and to improve our algorithms to directly handle these

non-order-dependent tests.

7 RELATED WORK

7.1 Test Dependence Definitions and Studies

Treating test suites as sets of tests [34] and assuming test indepen-

dence is common practice in the testing literature [20, 32, 35, 37, 38,

40, 41, 50ś52, 56, 57, 62, 63, 70, 71]. Little prior research considered

test dependencies in designing or evaluating testing techniques.

Bergelson and Exman [18] described a form of test dependencies

informally: given two tests that each pass, the composite execution

of these tests may still fail. That is, if 𝑡1 and 𝑡2 executed by them-

selves pass, executing the sequence ⟨𝑡1, 𝑡2⟩ in the same context

may fail. In the context of databases, Kapfhammer and Soffa [39]

formally defined independent test suites and distinguished them

from other suites. However, this definition focuses on program and

database states that may not affect actual test outcomes [15, 16, 39].

We use a definition of OD test [72] based on test outcomes. Huo and

Clause [36] studied assertions that depend on inputs not controlled

by the tests themselves.

Some prior work [14, 27, 47] studied the characteristics of flaky

tests Ð tests that have non-deterministic outcomes. Test dependen-

cies do not imply non-determinism: a testmay non-deterministically

pass/fail without being affected by any other test. Non-determinism

does not imply test dependencies: a program may have no sources

of non-determinism, but two of its tests can be dependent. One line

of work that mentions test determinism as an assumption defines it

too narrowly, with respect to threads but ignoring code interactions

with the external environment [32, 52]. Furthermore, a test may

deterministically pass/fail even if it performs non-deterministic

operations. Unlike our work in this paper, the preceding prior work

neither evaluated the impact of OD-test failures on regression test-

ing techniques, nor proposed an approach to accommodate them.

308

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

7.2 Techniques to Detect Test Dependencies

Various techniques have been proposed to detect test dependen-

cies automatically. PolDet [29] finds tests that pollute the shared

stateÐ tests that modify some location on the heap shared across

tests or on the file system. However, the tests that PolDet detects

do not fail themselves, and while they pollute shared state, no other

tests currently in the test suite may fail due to that polluted shared

state. In contrast, we use DTDetector [72], which not only dynami-

cally identifies dependee polluting tests but also identifies the tests

that depend on and fail due to the polluted state (OD tests). DTDe-

tector can also identify test dependencies caused by other factors,

such as database and network access. Biagiola et al. [19] studied

test dependencies within web applications, noting the challenges in

tracking the test dependencies in shared state between server- and

client-side parts of web applications. They proposed a technique

for detecting these test dependencies based on string analysis and

natural language processing. Waterloo et al. [65] built a static anal-

ysis tool to detect inter-test and external dependencies. Electric

Test [17] over-approximates test dependencies by analyzing data

dependencies of tests. The tool is not publicly available, but the

authors informed us that the work was continued by Gambi et al.

into PRADET [26], which also outputs test dependencies. We have

tried using PRADET but encountered issues with it on some of

our projects. Lam et al. [44] released iDFlakies, a toolset similar to

DTDetector. Both toolsets come with similar strategies, namely to

run tests in different orders as to detect OD tests. We choose to

use DTDetector instead of iDFlakies since DTDetector is the more

widely cited work. Lam et al. also released a dataset of flaky tests,

with ∼50% OD tests and we use their dataset for our evaluation.

7.3 Techniques for Managing Flaky Tests

Only a few techniques and tools have been developed to pre-

vent or accommodate the impact of test dependence. Some testing

frameworks provide mechanisms for developers to specify the or-

der in which tests must run. For tests written in Java, JUnit since

version 4.11 supports executing tests in lexicographic order by test

method name [5], while TestNG [12] supports execution policies

that respect programmer-written dependence annotations. Other

frameworks such as DepUnit [10], Cucumber [9], and Spock [1]

also provide similar mechanisms for developers to manually define

test dependencies. These test dependencies specified by develop-

ers could be used directly by our general approach, or to improve

the test dependencies computed using automatic tools (by adding

missing or removing unnecessary test dependencies). Haidry and

Miller [30] proposed test prioritization that prioritizes tests based

on their number of OD tests, hypothesizing that running tests with

more test dependencies is more likely to expose faults. In our work,

we enhance traditional test prioritization algorithms (along with

other regression testing algorithms) to satisfy test dependencies.

VMVM [16] is a technique for accommomdating test dependen-

cies through a modified runtime environment. VMVM’s runtime re-

sets the reachable shared state (namely, the parts of the in-memory

heap reachable from static variables in Java) between test runs. The

restoration is all done within one JVM execution of all tests, pro-

viding benefits of isolation per test without needing to start/stop

separate JVMs per test. Similar to the work by Kapfhammer and

Soffa [39], VMVM considers a test as an OD test if it accesses a mem-

ory location that has been written by another test, being neither

necessary nor sufficient to affect the test outcome. Note that VMVM

does not aim to detect OD tests, and resets shared state for all tests,

regardless of pollution or not. In our work, we focus on coping with

OD tests run in a single, standard JVM, and we propose enhanced

regression testing algorithms to accommodate test dependencies as

to reduce OD-test failures. Nemo [46] is a tool that considers test de-

pendencies for test suite minimization. Our work aims at different

regression testing techniques and can be used in conjunction with

Nemo. iFixFlakies [61] is a tool for automatically fixing OD tests.

iFixFlakies relies on finding code from łhelpersž, which are tests in

the existing test suite that prevent OD-test failures when run before

an OD test, to fix the OD tests. However, iFixFlakies cannot fix OD

tests if these OD tests have no helpers. Developers would still need

to use our enhanced algorithms that avoid OD-test failures even

when there are no helpers or when they plan on using test depen-

dencies to run their tests faster. Lam et al. [43] presented FaTB, a

technique for accommodating Async Wait-related flaky tests. FaTB

automatically finds the time tests should wait for asynchronous

method calls to reduce the test-runtime and frequency of flaky-test

failures. Our enhanced algorithms accommodate OD tests, which

are a different type of flaky tests than Async Wait-related ones.

8 CONCLUSION

Test suites often contain OD tests, but traditional regression

testing techniques ignore test dependencies. In this work, we have

empirically investigated the impact of OD tests on regression test-

ing algorithms. Our evaluation results show that 12 traditional,

dependent-test-unaware regression testing algorithms produce or-

ders that cause OD-test failures in 82% of the human-written test

suites and 100% of the automatically-generated test suites that con-

tain OD tests. We have proposed a general approach that we then

use to enhance the 12 regression testing algorithms so that they

are dependent-test-aware. We have made these 12 algorithms and

our general approach publicly available [8]. Developers can use the

enhanced algorithms with test dependencies manually provided

or automatically computed using various tools, and the enhanced

algorithms are highly effective in reducing the number of OD-test

failures. Our proposed enhanced algorithms produce orders that

result in 80% fewer OD-test failures, while being 1% slower to run

than the unenhanced algorithms.

ACKNOWLEDGMENTS

We thank Jonathan Bell, Sandy Kaplan, Martin Kellogg, Darko Mari-

nov, and the anonymous referees who provided feedback on our pa-

per. This material is based on research sponsored by DARPA under

agreement numbers FA8750-12-2-0107, AFRL FA8750-15-C-0010,

and FA8750-16-2-0032. The U.S. Government is authorized to repro-

duce and distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. This work was also par-

tially supported by NSF grant numbers CNS-1564274, CNS-1646305,

CNS-1740916, CCF-1763788, CCF-1816615, and OAC-1839010. Tao

Xie is affiliated with Key Laboratory of High Confidence Software

Technologies (Peking University), Ministry of Education.

309

Dependent-Test-Aware Regression Testing Techniques ISSTA ’20, July 18–22, 2020, Virtual Event, USA

REFERENCES
[1] 2011. Spock Stepwise. https://www.canoo.com/blog/2011/04/12/spock-stepwise.
[2] 2012. JUnit and Java 7. http://intellijava.blogspot.com/2012/05/junit-and-java-

7.html.
[3] 2013. JUnit test method ordering. http://www.java-allandsundry.com/2013/01.
[4] 2013. Maintaining the order of JUnit3 tests with JDK 1.7. https://coderanch.com/

t/600985/engineering/Maintaining-order-JUnit-tests-JDK.
[5] 2013. Test execution order in JUnit. https://github.com/junit-team/junit/blob/

master/doc/ReleaseNotes4.11.md#test-execution-order.
[6] 2016. Running your tests in a specific order. https://www.ontestautomation.

com/running-your-tests-in-a-specific-order
[7] 2019. Run tests in parallel using the Visual Studio Test task. https://docs.

microsoft.com/en-us/azure/devops/pipelines/test/parallel-testing-vstest.
[8] 2020. Accommodating Test Dependence Project Web. https://sites.google.com/

view/test-dependence-impact
[9] 2020. Cucumber Reference - Scenario hooks. https://cucumber.io/docs/cucumber/

api/#hooks.
[10] 2020. DepUnit. https://www.openhub.net/p/depunit.
[11] 2020. SLOCCount. https://dwheeler.com/sloccount
[12] 2020. TestNG. http://testng.org.
[13] 2020. TestNG Dependencies. https://testng.org/doc/documentation-main.html#

dependent-methods.
[14] Stephan Arlt, Tobias Morciniec, Andreas Podelski, and Silke Wagner. 2015. If A

fails, can B still succeed? Inferring dependencies between test results in automo-
tive system testing. In ICST. Graz, Austria, 1ś10.

[15] Jonathan Bell. 2014. Detecting, isolating, and enforcing dependencies among and
within test cases. In FSE. Hong Kong, 799ś802.

[16] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In ICSE.
Hyderabad, India, 550ś561.

[17] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
dependency detection for safe Java test acceleration. In ESEC/FSE. Bergamo, Italy,
770ś781.

[18] Benny Bergelson and Iaakov Exman. 2006. Dynamic test composition in hierar-
chical software testing. In Convention of Electrical and Electronics Engineers in
Israel. Eilat, Israel, 37ś41.

[19] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and Paolo Tonella.
2019. Web test dependency detection. In ESEC/FSE. Tallinn, Estonia, 154ś164.

[20] Lionel C. Briand, Yvan Labiche, and S. He. 2009. Automating regression test
selection based on UML designs. Information and Software Technology 51, 1
(January 2009), 16ś30.

[21] Koen Claessen and John Hughes. 2000. QuickCheck: A lightweight tool for
random testing of Haskell programs. In ICFP. Montreal, Canada, 268ś279.

[22] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An automatic
robustness tester for Java. Software: Practice and Experience 34, 11 (September
2004), 1025ś1050.

[23] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil. 2006.
Carving differential unit test cases from system test cases. In FSE. Portland, OR,
USA, 253ś264.

[24] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Prioritiz-
ing test cases for regression testing. In ISSTA. Portland, OR, USA, 102ś112.

[25] Gordon Fraser and Andreas Zeller. 2011. Generating parameterized unit tests. In
ISSTA. Toronto, Canada, 364ś374.

[26] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test dependency
detection. In ICST. Vasteras, Sweden, 1ś11.

[27] Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. 2015.
Making system user interactive tests repeatable: When and what should we
control?. In ICSE. Florence, Italy, 55ś65.

[28] Alex Groce, Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr. 2014.
Cause reduction for quick testing. In ICST. Cleveland, OH, USA, 243ś252.

[29] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
Detecting state-polluting tests to prevent test dependency. In ISSTA. Baltimore,
MD, USA, 223ś233.

[30] Shifa Zehra Haidry and Tim Miller. 2013. Using dependency structures for
prioritization of functional test suites. IEEE Transactions on Software Engineering
39, 2 (2013), 258ś275.

[31] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportu-
nities and open problems for static and dynamic program analysis. In SCAM.
1ś23.

[32] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. 2001.
Regression test selection for Java software. In OOPSLA. Tampa Bay, FL, USA,
312ś326.

[33] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
art of testing less without sacrificing quality. In ICSE. Florence, Italy, 483ś493.

[34] William E. Howden. 1975. Methodology for the generation of program test data.
IEEE Transactions on Computers C-24, 5 (May 1975), 554ś560.

[35] Hwa-You Hsu and Alessandro Orso. 2009. MINTS: A general framework and
tool for supporting test-suite minimization. In ICSE. Vancouver, BC, Canada,

419ś429.
[36] Chen Huo and James Clause. 2014. Improving oracle quality by detecting brittle

assertions and unused inputs in tests. In FSE. Hong Kong, 621ś631.
[37] Bo Jiang, Zhenyu Zhang, W. K. Chan, and T. H. Tse. 2009. Adaptive random test

case prioritization. In ASE. Auckland, NZ, 233ś244.
[38] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test

information to assist fault localization. In ICSE. Orlando, Florida, 467ś477.
[39] Gregory M. Kapfhammer and Mary Lou Soffa. 2003. A family of test adequacy

criteria for database-driven applications. In ESEC/FSE. Helsinki, Finland, 98ś107.
[40] Jung-Min Kim and Adam Porter. 2002. A history-based test prioritization tech-

nique for regression testing in resource constrained environments. In ICSE. Or-
lando, Florida, 119ś129.

[41] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. 2013. Optimizing unit
test execution in large software programs using dependency analysis. In APSys.
Singapore, 19:1ś19:6.

[42] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
ISSTA. Beijing, China, 101ś111.

[43] Wing Lam, Kıvanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A
Study on the Lifecycle of Flaky Tests. In ICSE. Seoul, South Korea, pagesśtoś
appear.

[44] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In ICST. Xi’an,
China, 312ś322.

[45] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining prioriti-
zation: Continuous prioritization for continuous integration. In ICSE. Gothenburg,
Sweden, 688ś698.

[46] Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek. 2018. Nemo:
Multi-criteria test-suite minimization with integer nonlinear programming. In
ICSE. Gothenburg, Sweden, 1039ś1049.

[47] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In FSE. Hong Kong, 643ś653.

[48] John Micco. 2016. Flaky tests at Google and how we mitigate them. https:
//testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

[49] John Micco. 2017. The state of continuous integration testing @ Google. https:
//ai.google/research/pubs/pub45880

[50] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khurshid, and
Darko Marinov. 2007. Parallel test generation and execution with Korat. In
ESEC/FSE. Dubrovnik, Croatia, 135ś144.

[51] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro
Orso. 2011. Regression testing in the presence of non-code changes. In ICST.
Berlin, Germany, 21ś30.

[52] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In FSE. Newport Beach, CA, USA, 241ś251.

[53] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In ICSE. Minneapolis, MN, USA, 75ś
84.

[54] Md Tajmilur Rahman and Peter C. Rigby. 2018. The impact of failing, flaky, and
high failure tests on the number of crash reports associated with Firefox builds.
In ESEC/FSE. Lake Buena Vista, FL, USA, 857ś862.

[55] Gregg Rothermel, Sebastian Elbaum, Alexey G. Malishevsky, Praveen Kallakuri,
and Xuemei Qiu. 2004. On test suite composition and cost-effective regression
testing. ACM Transactions on Software Engineering and Methodology 13, 3 (July
2004), 277ś331.

[56] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. IEEE Transactions on Software
Engineering 27, 10 (October 2001), 929ś948.

[57] Matthew J. Rummel, Gregory M. Kapfhammer, and Andrew Thall. 2005. Towards
the prioritization of regression test suites with data flow information. In SAC.
Santa Fe, NM, USA, 1499ś1504.

[58] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. 2005. Automatic
test factoring for Java. In ASE. Long Beach, CA, USA, 114ś123.

[59] David Schuler, Valentin Dallmeier, and Andreas Zeller. 2009. Efficient mutation
testing by checking invariant violations. In ISSTA. Chicago, IL, USA, 69ś80.

[60] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
assumptions on deterministic implementations of non-deterministic specifica-
tions. In ICST. Chicago, IL, USA, 80ś90.

[61] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In ESEC/FSE.
Tallinn, Estonia, 545ś555.

[62] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively prioritizing tests in
development environment. In ISSTA. Rome, Italy, 97ś106.

[63] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. In ISSTA. Lugano, Switzerland, 314ś324.

[64] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An empirical study of
flaky tests in Android apps. In ICSME, NIER Track. Madrid, Spain, 534ś538.

310

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie

[65] Matias Waterloo, Suzette Person, and Sebastian Elbaum. 2015. Test analysis:
Searching for faults in tests. In ASE. Lincoln, NE, USA, 149ś154.

[66] Ming Wu, Fan Long, Xi Wang, Zhilei Xu, Haoxiang Lin, Xuezheng Liu, Zhenyu
Guo, Huayang Guo, Lidong Zhou, and Zheng Zhang. 2010. Language-based
replay via data flow cut. In FSE. Santa Fe, NM, USA, 197ś206.

[67] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and
prioritization: A survey. Journal of Software Testing, Verification and Reliability
22, 2 (March 2012), 67ś120.

[68] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 3 (February 2002),
183ś200.

[69] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster mutation
testing inspired by test prioritization and reduction. In ISSTA. Lugano, Switzer-
land, 235ś245.

[70] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2012. Regres-
sion mutation testing. In ISSTA. Minneapolis, MN, USA, 331ś341.

[71] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. In OOPSLA. Indianapolis,
IN, USA, 765ś784.

[72] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In ISSTA. San Jose, CA, USA, 385ś396.

[73] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. 2011. Combined static
and dynamic automated test generation. In ISSTA. Toronto, Canada, 353ś363.

311

	Abstract
	1 Introduction
	2 Impact of Dependent Tests
	2.1 Traditional Regression Testing Techniques
	2.2 Evaluation Projects
	2.3 Methodology
	2.4 Results
	2.5 Findings

	3 Dependent-Test-Aware Regression Testing Techniques
	3.1 Example
	3.2 General Approach for Enhancing Regression Testing Algorithms

	4 Evaluation of General Approach
	4.1 Methodology
	4.2 Computing Test Dependencies
	4.3 Reducing Failures
	4.4 Efficiency
	4.5 Findings

	5 Discussion
	5.1 General Approach vs. Customized Algorithms
	5.2 Cost to Provide Test Dependencies
	5.3 Removing OD Tests
	5.4 Evaluation Metrics

	6 Threats to Validity
	7 Related Work
	7.1 Test Dependence Definitions and Studies
	7.2 Techniques to Detect Test Dependencies
	7.3 Techniques for Managing Flaky Tests

	8 Conclusion
	References

