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Abstract

Code injection attacks, like the one used in the high-profile 2017
Equifax breach, have become increasingly common, now ranking
#1 on OWASP’s list of critical web application vulnerabilities. Static
analyses for detecting these vulnerabilities can overwhelm develop-
ers with false positive reports. Meanwhile, most dynamic analyses
rely on detecting vulnerabilities as they occur in the field, which
can introduce a high performance overhead in production code.
This paper describes a new approach for detecting injection vul-
nerabilities in applications by harnessing the combined power of
human developers’ test suites and automated dynamic analysis.
Our new approach, RIVULET, monitors the execution of developer-
written functional tests in order to detect information flows that
may be vulnerable to attack. Then, RIVULET uses a white-box test
generation technique to repurpose those functional tests to check
if any vulnerable flow could be exploited. When applied to the ver-
sion of Apache Struts exploited in the 2017 Equifax attack, RIVULET
quickly identifies the vulnerability, leveraging only the tests that
existed in Struts at that time. We compared RIVULET to the state-of-
the-art static vulnerability detector Julia on benchmarks, finding
that RIvULET outperformed Julia in both false positives and false
negatives. We also used RIVULET to detect new vulnerabilities.
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1 Introduction

In the high-profile 2017 Equifax attack, millions of individuals’
private data was stolen, costing the firm nearly one and a half
billion dollars in remediation efforts [55]. This attack leveraged
a code injection exploit in Apache Struts (CVE-2017-5638) and is
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just one of over 8,200 similar code injection exploits discovered in
recent years in popular software [44]. Code injection vulnerabilities
have been exploited in repeated attacks on US election systems [10,
18, 39, 61], in the theft of sensitive financial data [56], and in the
theft of millions of credit card numbers [33]. In the past several
years, code injection attacks have persistently ranked at the top
of the Open Web Application Security Project (OWASP) top ten
most dangerous web flaws [46]. Injection attacks can be damaging
even for applications that are not traditionally considered critical
targets, such as personal websites, because attackers can use them
as footholds to launch more complicated attacks.

In a code injection attack, an adversary crafts a malicious in-
put that gets interpreted by the application as code rather than
data. These weaknesses, “injection flaws,” are so difficult to detect
that rather than suggesting testing as a defense, OWASP suggests
that developers try to avoid using APIs that might be targeted by
attackers altogether or enforce site-wide input filtering. Consider
again the Equifax hack: the underlying weakness that was exploited
was originally introduced in 2011 and sat undetected in production
around the world (not just at Equifax) for six years [4, 43]. While
some experts blame Equifax for the successful attack — a patch had
been released two months prior to the attack, but was not applied —
one really has to ask: how is it possible that critical vulnerabilities
go unnoticed in production software for so long?

With the exception of safety-critical and similar “high-assurance”
software, general best practices call for developers to extensively
test their applications, to perform code reviews, and perhaps to run
static analyzers to detect potentially weak parts of their software.
Unfortunately, testing is a never-ending process: how do developers
know that they’ve truly tested all input scenarios? To catch code
injection exploits just-in-time, researchers have proposed deploying
dynamic taint tracking frameworks, which track information flows,
ensuring that untrusted inputs do not flow into sensitive parts of
applications, e.g., interpreters [8, 21, 38, 54, 58, 63]. However, these
approaches have prohibitive runtime overheads: even the most
performant can impose a slowdown of at least 10-20% and often far
more [8, 12, 15, 31]. Although black-box fuzzers can be connected
with taint tracking to detect vulnerabilities in the lab, it is difficult to
use these approaches on stateful applications or those that require
structured inputs [23, 32]. While some static analysis tools have
seen recent developer adoption [9, 19, 45], statically detecting code
injection vulnerabilities is challenging since static analysis tools
must perform interprocedural data flow analysis [7, 59, 60, 71].

Our key idea is to use dynamic taint tracking before deployment
to amplify developer-written tests to check for injection vulnera-
bilities. These integration tests typically perform functional checks.
Our approach re-executes these existing test cases, mutating values
that are controlled by users (e.g., parts of each of the test’s HTTP
requests) and detecting when these mutated values result in real



attacks. To our knowledge, this is the first approach that combines
dynamic analysis with existing tests to detect injection attacks.

Key to our test amplification approach is a white-box context-
sensitive input generation strategy. For each user-controlled value,
state-of-the-art testing tools generate hundreds of attack strings to
test the application [32, 49, 50]. By leveraging the context of how
that user-controlled value is used in security-sensitive parts of the
application, we can trivially rule out most of the candidate attack
strings for any given value, reducing the number of values to check
by orders of magnitude. Our testing-based approach borrows ideas
from both fuzzing and regression testing, and is language agnostic.

We implemented this approach in the JVM, creating a tool that we
call RivULET. RIVULET Reveals Injection VUlInerabilities by Leverag-
ing Existing Tests, and does not require access to application source
code, and runs in commodity, off-the-shelf JVMs, integrating di-
rectly with the popular build automation platform Maven.

Like any testing-based approach, RIVULET is not guaranteed to
detect all vulnerabilities. However, RIVULET guarantees that every
vulnerability that it reports meets strict criteria for demonstrating
an attack. We found that RIvULET performed as well as or better
than a state-of-the-art static vulnerability detection tool [59] on
several benchmarks. RIvULET discovers the Apache Struts vulner-
ability exploited in 2017 Equifax hack within minutes. When we
ran RIvULET with the open-source project Jenkins, RIvuLeT found
a previously unknown cross-site scripting vulnerability, which was
confirmed by the developers. On the educational project iTrust [22],
RivuLeT found 5 previously unknown vulnerabilities. Unlike the
state-of-the-art static analysis tool that we used, Julia [59], RIVULET
did not show any false positives.

Using dynamic analysis to detect injection vulnerabilities before
deployment is hard, and we have identified two key challenges
that have limited past attempts: (1) Unlike static analysis, dynamic
analysis requires a representative workload to execute the applica-
tion under analysis; and (2) For each potential attack vector, there
may be hundreds of input strings that should be checked. RIvULET
addresses these challenges, making the following key contributions:

o A technique for re-using functional test cases to detect secu-
rity vulnerabilities by modifying their inputs and oracles

o Context-sensitive mutational input generators for SQL, OGNL,
and XSS that handle complex, stateful applications

e Embedded attack detectors to verify whether rerunning a
test with new inputs leads to valid attacks

RIvULET is publicly available under the MIT license [24, 25].

2 Background and Motivating Example

Injection vulnerabilities come in a variety of flavors, as attack-
ers may be able to insert different kinds of code into the target
application. Perhaps the most classic type of injection attack is SQL
Injection (SQLI), where attackers can control the contents of an SQL
statement. For instance, consider this Java-like code snippet that is
intended to select and then display the details of a user from a data-
base: execQuery ("SELECT % from Users where name = '" +
name + "'");. If an attacker can arbitrarily control the value of
the name variable, then they may perform a SQL injection attack.
For instance, the attacker could supply the value name = "Bob'
OR '"1'="1" which, when joined to the query string will produce
where name = 'Bob' OR '1'='1"', which would resultin all rows
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in this user table being selected. SQLI attacks may result in data
breaches, denial of service attacks, and privilege escalations.

Remote Code Execution (RCE) vulnerabilities are a form of injec-
tion vulnerabilities where an attacker can execute arbitrary code
on an application server using the same system-level privileges as
the application itself. Command injection attacks are a particularly
dangerous form of RCE where an attacker may directly execute
shell commands on the server. Other RCE attacks may target fea-
tures of the application runtime that parse and execute code in
other languages such as J2EE EL [47] or OGNL [66, 67].

Cross-site Scripting (XSS) vulnerabilities are similar to RCE, but
result in code being executed by a user’s browser, rather than on
the server. XSS attacks occur when a user can craft a request that
inserts arbitrary HTML, Javascript code, or both into the response
returned by the server-side application. Such an attack might hijack
a user’s session (allowing the attacker to impersonate the user on
that website), steal sensitive data, or inject key loggers. Server-side
XSS attacks may be reflected or persistent. Reflected XSS attacks are
typically used in the context of a phishing scheme, where a user
is sent a link to a trusted website with the attack embedded in the
link. Persistent XSS attacks occur when a payload is stored in the
host system (e.g., in a database) and is presented to users who visit
the compromised site.

Developers defend their software from injection attacks through
input validation and sanitization. Broadly, validation is a set of
whitelisting techniques, such as: “only accept inputs that match a
limited set of characters,” while sanitization is a set of transforma-
tions that render attacks harmless, such as: “escape all quotation
marks in user input” Ideally, each user-controlled input (also re-
ferred to as a “tainted source”) that can reach critical methods that
may result in code execution (also referred to as a “sensitive sink”)
will be properly sanitized, validated, or both. Reaching such an ideal
state is non-trivial [37]. Hence, the key challenge in detecting these
vulnerabilities is to detect flows from tainted sources to sensitive
sinks that have not been properly sanitized.

Listing 1 shows a simplified example of two genuine cross-site
scripting vulnerabilities. Lines 9 and 10 show a parameter provided
by the user flowing into the response sent back to the browser with-
out proper sanitization. In the first case (line 9), the vulnerability
occurs despite an attempt to sanitize the user’s input (using the
Apache Commons-Language library function escapeHtml4), and
in the second case (line 10), there is no sanitization at all.

1@Override

2public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException {

3 String name = request.getParameter("name");

4 response.setContentType ("text/html");

5 String escaped = StringEscapeUtils.escapeHtml4 (name);

6 String content = "<a href=\"%s\">hello </a>";

7 try(PrintWriter pw = response.getWriter ()) {

8 pw. println ("<html><body>");

9 pw.println (String . format(content , escaped));

10 pw.println (String . format(content , name));

11 pw.println (" </body></html>");

12}

13}

Listing 1: Two example XSS vulnerabilities. An untrusted user
input from an HTTP request flows into the response to the browser
on lines 9 and 10.
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Figure 1: High-Level Overview of RIVvOLET. RIVULET detects vulnerabilities in three phases. Key to our approach is the repeated
execution of developer-provided test cases with dynamic taint tracking. First, each developer-provided test is executed using taint tracking
to detect which tests expose potentially vulnerable data flows. HTTP requests made during a test are intercepted and parsed into their
syntactic elements which are then tainted with identifying information. Then, source-sink flows observed during test execution are recorded
and passed with contextual information to a rerun generator. The rerun generator creates rerun configurations using the supplied flow

and contextual information, and executes these reruns, swapping out developer-provided inputs for malicious payloads. Source-sink flows
observed during test re-execution are passed to an attack detector which verifies source-sink flows that demonstrate genuine vulnerabilities.
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In either case, providing the input string javascript:alert(
'XSS"); for the parameter "name" will result in JavaScript code
executing in the client’s browser if they click on the link. The
chosen sanitizer escapes any HTML characters in the input string
(i.e., preventing an injection of a <script> tag), but is insufficient
for this case, as an attacker need only pass the prefix javascript:
in their payload to cause code to execute when the user clicks on
this link (many XSS attack payloads do not include brackets or
quotes for this reason [50]).

To fix this vulnerability, the developer needs to apply a sanitiz-
ing function that prevents the insertion of JavaScript code. Static
analysis tools, such as the state-of-the-art Julia platform [59], typ-
ically assume that library methods pre-defined as sanitizers for a
class of attack (e.g., XSS sanitizers) eliminate vulnerabilities for the
data flows that they are applied to. In our testing-based approach,
sanitizer methods do not need to be annotated by users. Instead
we test whether a flow is adequately sanitized by attempting to
generate a counterexample (i.e., a malicious payload that produces
a successful injection attack).

3 Approach Overview

Generating tests that expose the rich behavior of complicated,
stateful web applications can be quite difficult. For instance, con-
sider a vulnerability in a health records application that can only
be discovered by logging in to a system, submitting some health
data, and sending a message to a healthcare provider. Fuzzers have
long struggled to generate inputs that follow a multi-step workflow
like this example [23, 32]. Instead, RIVULET begins by executing the
existing, ordinary test suite that developers have written, which
does not need to have any security checks included in it: in this
healthcare messaging example, an existing test might simply check
that the workflow completes without an error. As we show in our
evaluation (§5), even small test suites can be used by RIVULET to
detect vulnerabilities.

Figure 1 shows a high-level overview of RIVULET’s three-step
process to detect injection vulnerabilities in web applications. First,
RIVULET uses dynamic taint tracking while running each test to
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observe data flows from “sources,” untrusted system inputs con-
trolled by a potentially malicious actor, to “sinks,” sensitive parts of
an application that may be vulnerable to injection attacks. These
source-sink flows do not necessarily represent vulnerabilities: it is
possible that a sanitizer function correctly protects the application.
Hence, when a source-sink flow is observed, RIVULET generates
malicious payloads based on contextual information of the sink
method. Then, tests are re-executed and those untrusted source
values are replaced with generated payloads, probing for weak or
missing sanitizers. Lastly, specialized logic based on the type of
vulnerability, e.g., XSS, is used as an oracle to determine whether a
re-execution demonstrates a successful attack, thereby transform-
ing a functional test into a security test.

In this way, source-sink flows are verified as vulnerable only if
a successful attack can be demonstrated using a concrete exploit.
This standard produces few false positives. Test reruns enable our
technique to consider input sanitization and validation without
requiring sanitization and validation methods to be explicitly speci-
fied or modeled. Verifying whether a sanitizer or validator is correct
in all cases is a hard problem and beyond the scope of this work.
However, if a system sanitizes or validates input improperly before
it flows into a sink method, then one of the malicious payloads
may be able to demonstrate a successful attack, causing the flow
to be verified. Our implementation of RIvULET (described in §4)
automatically detects SQL injection, remote code execution, and
cross-site scripting vulnerabilities: developers do not need to spec-
ify any additional sources or sinks in order to find these kinds of
vulnerabilities. Section 4 describes, in detail, the specific strategy
that RIvULET uses to find these kinds of vulnerabilities.

3.1 Detecting Candidate Tests

RIVULET co-opts existing, functional test cases to test for security
properties by mutating user-controlled inputs and adding security-
based oracles to detect code that is vulnerable to injection attacks.
We assume that developers write tests that demonstrate typical ap-
plication behavior, and our approach relies on automated testing to
detect weak or missing sanitization. This assumption is grounded in



best practices for software development: we assume that developers
will implement some form of automated functional testing before
scrutinizing their application for security vulnerabilities. RIVULET
detects candidate tests by executing each test using dynamic taint
tracking, identifying tests that expose potentially vulnerable source-
sink flows, each of which we refer to as a violation. By leveraging
developer tests, our approach can detect vulnerabilities that can
only be revealed through a complex sequence of actions. These
vulnerabilities can be difficult for test generation approaches to
detect, but are critical when dealing with stateful applications [32].

In this model, developers do not need to write test cases that
demonstrate an attack — instead, they need only write test cases
that expose an information flow that is vulnerable to an attack. For
instance, consider a recent Apache Struts vulnerability (CVE-2017-
9791) that allowed user-provided web form input to flow directly
into the Object-Graph Navigation Language (OGNL) engine. Struts
includes a sample application for keeping track of the names of
different people, this application can be used to demonstrate this
vulnerability by placing an attack string in the “save person” form.
To detect this vulnerability, we do not need to observe a test case
that uses an attack string in the input, instead, we need only observe
any test that saves any string through this form in order to observe
the insecure information flow. Once this is detected, RIVULET, can
then re-execute and perturb the test case, mutating the value of the
form field, eventually demonstrating the exploit.

3.2 Rerun Generation and Execution

The next phase in RIVULET’s vulnerability detection process
is to re-execute each test, perturbing the inputs that the server
received from the test case in order to add malicious payloads. A
significant challenge to our approach is in the potentially enormous
number of reruns that RIVULET needs to perform in order to test
each potentially vulnerable source-sink flow. If an application has
thousands of tests, each of which may have dozens of potentially
vulnerable flows, it is crucial to limit the number of times that each
test needs to be perturbed and re-executed. Unfortunately, it is
typical to consider over 100 different malicious XSS payloads for
each potentially vulnerable input [32, 50], and other attacks may
still call for dozens of malicious payloads.

Instead, RIVULET uses a white-box, in situ approach to payload
generation in order to drastically reduce the number of reruns
needed to evaluate a source-sink flow. Successful injection attacks
often need to modify the syntactic structure of a query, document or
command from what was intended by the developer [62]. By looking
at the placement of taint tags (representing each source) within
structured values that reach sink methods, i.e., the syntactic context
into which untrusted values flow, the number of payloads needed
to test a flow can be limited to only those capable of disrupting that
structure from the tainted portions of the value.

For instance, when an untrusted value reaches a sink method
vulnerable to SQL injection attacks, developers usually intend for
the value to be treated as a string or numeric literal. Consider the
following SQL query: SELECT * FROM animals WHERE name = '
%Tiger%'; where the word Tiger is found to be tainted. In order
to modify the structure of the query, a payload must be able to end
the single-quoted string literal containing the tainted portion of
the query. Payloads which do not contain a single-quote would be
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ineffective in this context, e.g., payloads that aim to end double-
quoted string literals, and do not need to be tested when evaluating
this flow. RIVULET uses a similar approach for generating payloads
for other kinds of attacks, as we will describe in § 4.2.

3.3 Attack Detection

The attack detector component provides the oracle for each mod-
ified test (removing any existing assertions), determining if the new
input resulted in a successful attack on the system under test. There
is a natural interdependence between payload generation and attack
detection. Attack detection logic must be able to determine the suc-
cess of an attack using any of the payloads that could be generated
by RivuLET. Likewise, generated payloads should aim to trigger a
successful determination from the detection logic. This relationship
can be used not only to guide payload generation, but also to enable
stricter (and simpler to implement) criteria for determining what
constitutes a successful attack. Specifically, it is not necessary to
recognize all possible successful attacks, but instead, only those
generated by the system. Furthermore, this reduces the difficulty
of formulating an appropriate detection procedure, particularly for
certain types of attacks. RIVULET’s attack detectors inspect both the
taint tags and concrete values of data that reaches sensitive sinks.

4 Implementation

Our implementation of RIVULET for Java is built using the Phos-
phor taint tracking framework [8], and automatically configures
the popular build and test management platform Maven to perform
dynamic taint tracking during the execution of developer-written
tests, generate malicious payloads based on source-sink flows ob-
served during test execution, and execute test reruns. Developers
can use RIVULET by simply adding a single maven extension to
their build configuration file: RIvULET and Maven automatically
configure the rest. Out of the box, RIVULET detects cross-site script-
ing, SQL injection, and OGNL injection vulnerabilities without any
additional configuration. Phosphor propagates taint tags by rewrit-
ing Java bytecode using the ASM bytecode instrumentation and
analysis framework [51], and does not require access to applica-
tion or library source code. We chose Phosphor since it is capable
of performing taint tracking on all Java data types, ensuring that
RIVULET is not limited in its selection of source and sink methods
to only methods that operate on strings.

4.1 Executing Tests with Dynamic Tainting

RIvuLET’s approach for dynamic taint tracking within test cases
is key to its success. Taint tracking allows data to be annotated
with labels (or “taint tags”), which are propagated through data
flows as the application runs. It is particularly critical to determine
where these tags are applied (the “source methods”) and how they
correspond to the actual input that could come from a user, since
it is at these same source methods that RIVULET injects malicious
values when rerunning tests.

Many approaches to applying taint tracking to HTTP requests
in the JVM use high-level Java API methods as taint sources, such
as ServletRequest.getParameter () for parameters or, for cook-
ies,HttpServletRequest.getCookies() [13, 20, 40, 59]. However,
these approaches can be brittle: if a single source is missed or a new
version of the application engine is used (which adds new sources),



there may be false negatives. Moreover, since application middle-
ware (between the user’s socket request and these methods) per-
forms parsing and validation, mutating these values directly could
result in false positives when replaying and mutating requests. If
RIvULET performed its injection after the middleware parses the
HTTP request from the socket (i.e., as a user application reads a
value from the server middleware), RIVULET might generate some-
thing that could never have passed the middleware’s validation. For
instance, if performing a replacement on the method getCookies()
, RIVULET might try to generate a replacement value NAME=alert(
String.fromCharCode(88,88,83)), which could never be a valid
return value from this method source, since HT TP cookies may not
contain commas [41].

Instead of using existing Java methods as taint sources, RIVULET
uses bytecode instrumentation to intercept the bytes of HTTP
requests directly as they are read from sockets. Intercepted bytes are
then buffered until a full request is read from the socket. Requests
read from the socket are parsed into their syntactic elements, e.g.,
query string, entity-body, and headers. Each element then passes
through a taint source method which taints the characters of the
element with the name of the source method, the index of the
character in the element, and a number assigned to the request that
was parsed. The original request is then reconstructed from the
tainted elements and broken down back into bytes which are passed
to the object that originally read from the socket. This technique
allows a tainted value to be traced back to a range of indices in a
syntactic element of a specific request. Thus, this tainting approach
enables precise replacements to be made during test re-executions.

We have integrated RIvULET with the two most popular Java
HTTP servers, Tomcat [5] and Jetty [68], using bytecode manipu-
lation. RIvULET modifies components in Tomcat and Jetty which
make method calls to read bytes from a network socket to instead
pass the receiver object (i.e., the socket) and arguments of the call
to the request interceptor. The interceptor reads bytes from any
socket passed to it, parses the bytes into a request and taints the
bytes based on their semantic location within the parsed request.
It would be easy to add similar support to other Java web servers,
however, Tomcat and Jetty are the most popular platforms by far.

4.2 Rerun Generation

RIVULET uses an easy-to-reconfigure, predefined set of sink meth-
ods, which we enumerate by vulnerability type below. When a sink
method is called, the arguments passed to the call are recursively
checked for taint tags, i.e, arguments are checked, the fields of
the arguments are checked, the fields of the fields of arguments
checked, and so on until to a fixed maximum checking depth is
reached. If a tainted value is found during the checking process,
a source-sink flow is recorded. When R1vULET finishes checking
the arguments of the call, it passes contextual information and flow
information to a generator that handles the type of vulnerability
associated with the sink method that was called. The contextual
information consists of the receiver object of the sink method call
and the arguments of the call. The flow information consists of the
source information contained in the labels of the tainted values that
were found and a description of the sink method that was called.

Rerun generators create rerun configurations identifying the
test case that should be rerun, the detector that should be used to
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determine whether a successful attack was demonstrated by the
rerun, the original source-sink flow that the rerun is trying to verify,
and at least one replacement. Replacements define a replacement
value, information used to identify the source value that should be
replaced (target information), and possibly a “strategy” for how the
source value should be replaced. A replacement can either be built
as a “payload” replacement or a “non-payload” replacement.

Payload replacements are automatically assigned target infor-

mation and sometimes a strategy based on flow information. For
example, the labels on a tainted value that reached some sink might
show that the value came from indices 6 — 10 of the second call
to the source getQueryString(). One payload replacement built
off of that flow information would direct that the second time
getQueryString() is called that its return value should be replaced
using a strategy that replaces only indices six through ten with a re-
placement value. Payload replacements are how malicious payloads
are normally specified, thus every rerun is required to have at least
one of them. Non-payload replacements are useful for specifying
secondary conditions that an attack may need in order to succeed,
such as changing the “Content-Type” header of a request.
SQL Injection. The rerun generator for SQL injection uses all java
.sql.Statement and java.sql.Connection methods that accept
SQL code as sinks, and considers three primary SQL query contexts
in which a tainted value may appear: literals, comments, LIKE
clauses. Tainted values appearing in other parts of the query are
treated similarly to unquoted literals. Tainted values appearing
in LIKE clauses are also considered to be in literals, thus cause
both the payloads for tainted literals and tainted LIKE clauses to
be generated. If a tainted value appears in a literal, the generator
first determines the “quoting” for the literal. A literal can be either
unquoted (like a numeric literal might be), single-quoted, double-
quoted, or backtick-quoted (used for table and column identifiers in
MySQL). Payloads for tainted literals are prefixed by a string that
is based on the quoting of the literal in order to attempt to end the
literal. The quoting can also be used to determine an appropriate
ending for payloads. If a tainted value appears in a comment, the
generator first determines the characters used to end and start
the type of comment the value appears in. Payloads for tainted
comments are prefixed by the end characters for the comment and
ended with the start characters for the comment. If a tainted value
appears in a LIKE clause, the generator creates payloads containing
SQL wildcard characters.

RIVULET generates 2—-5 SQL injection payloads for a tainted
value in a particular context out of 20 unique payloads that could
be generated for the same tainted value across all of the contexts
considered by the SQL injection rerun generator. If wildcard pay-
loads for LIKE clause are not generated then only 2-3 payloads
are generated per context. This is a reduction from Kiezun et al.’s
Ardilla, which uses 6 SQL injection patterns and does not consider
tainted backtick-quoted values, comments, or LIKE clauses [32].
Cross-Site Scripting. RIVULET uses special sink checking logic for
XSS, checking data as it is sent over-the-wire to the browser. The
overloaded variants of SocketChannel.write() are used as sink
methods for XSS attacks. In order to give the XSS generator all of
the HTML content for a single response at once, RIVULET stores the
bytes written to a socket until a full response can be parsed from
the bytes. If the parsed response contains HTML content and the



HTML in the response’s entity-body contains a tainted value, then
that HTML is passed to the XSS rerun generator.

The XSS rerun generator parses HTML content into an HTML
document model using the Jsoup library [29]. This model is tra-
versed, generating payloads for each tainted value encountered. The
XSS rerun generator considers 5 primary HTML document contexts
in which a tainted value may appear: tag names, attribute names,
attribute values, text or data content, and comments. Different pay-
loads are capable of introducing a script-triggering mechanism into
the document’s structure depending on the context. RIVULET also
addresses context-specific issues like the quoting of attribute values
or whether content is contained in an element which causes the
tokenizer to leave the data state during parsing [74].

The XSS generator also considers whether a tainted value was
placed in a context that would already be classified as an embedded
script or the address of an external script. Furthermore, if a tainted
value appears in a context that would be classified as an embedded
script then the generator also determines whether the tainted value
is contained within a string literal, template literal, or comment.

RIVULET generates 3—7 XSS payloads for a tainted value in a

particular context out of over 100 unique payloads that could be
generated for the same tainted value across all of the contexts
considered by the XSS rerun generator. By comparison, OWASP’s
“XSS Filter Evasion Cheat Sheet” features 152 unique payloads for
cross-site scripting attacks [50] and Ardilla uses 106 patterns for
creating cross-site scripting attacks [32].
Command and OGNL Injection. The command injection rerun
generator creates payloads with common UNIX commands like 1s,
considering java.lang.ProcessBuilder and java.lang.Runtime
methods as sinks.

The OGNL injection rerun generator creates payloads that facili-
tate attack detection. It can be difficult to specify generic criteria
for detecting any OGNL injection attack because the language is
designed to allow users to execute “non-malicious” code. OGNL
expressions can modify Java objects’ properties, access Java objects’
properties and make method calls [66]. Applications using OGNL
can limit the code that user specified expressions can execute by
whitelisting or blacklisting certain patterns [67]. The evaluation
of improperly validated OGNL expressions can enable a user to
execute arbitrary code. The OGNL rerun generator uses payloads
that we collected from the Exploit Database [16] and simplified to
integrate more tightly with RIvULET’s attack detection mechanism.
Rerun Execution. Rerun configurations created by the rerun gen-
erators specify test cases that should be re-executed. Values are
replaced when they are assigned a label at a source method and
the information on the label being assigned to the value meets
the criteria specified by one of the current rerun configuration’s
replacements. Replacements may dictate a strategy for replacing
the original value; strategies can specify ways of combining an
original value with a replacement value, a way of modifying the
replacement value, or both. For example, a strategy could specify
that only a certain range of indices in the original value should be
replaced, that the replacement value should be percent encoded,
or both. RIvULET automatically converts values to ensure that the
type of a replacement value is appropriate (e.g., converting between
a string and a character array).
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4.3 Attack Detection

Rerun configurations specify which vulnerability-specific attack
detector should be used to check flows during a test re-execution.
SQL Injection. Our approach for detecting SQL injection attack
builds on Halfond et al’s “syntax-aware evaluation” model, which
calls for checking that all parts of SQL queries except for string
and numeric literals come from trusted sources [21]. We determine
a SQL injection attack to be successful if a tainted SQL keyword
not contained in a literal or comment is found within a query that
reached a sink vulnerable to SQL injection. Alternatively, an attack
is deemed successful if a sink-reaching query contains a LIKE clause
with an unescaped tainted wildcard character (i.e., % or _) as the
system could be vulnerable to a SQL wildcard denial-of-service
attack [49]. The attack detector for SQL injection uses ANTLR, a
parser generation tool [65] and JSqlParser, a SQL statement parser
that supports multiple SQL dialects [30], to parse SQL statements
that reach sink methods vulnerable to SQL injection attacks.
Cross-Site Scripting. The World Wide Web Consortium’s (W3C’s)
Recommendation for HTML 5.2 specifies mechanisms which can
trigger the execution of embedded or external scripts: “processing
of script elements,” “navigating to javascript: URLs,” “event han-
dlers,” “processing of technologies like SVG that have their own
scripting features” [73]. Only the syntactic components of an HTML
document that are capable of activating a script-triggering mecha-
nism are vulnerable to script injections. As such, we determine the
success of an XSS attack by checking these vulnerable components.

RIVULET intercepts and buffers the bytes of HTTP responses
until a full response can be parsed from the bytes. Then, the parsed
document is checked for components that could activate a script-
triggering mechanism. Depending on the mechanism potentially
activated by the component, a portion of the component is then
classified as either an embedded script or the address of an exter-
nal script. The following rules are used to identify embedded and
external scripts in the response: (1) The inner content of every
“script” tag is classified as an embedded script. (2) The HTML entity
decoded value of every “src” attribute specified for a “script” tag
is classified as an external script’s address. (3) The HTML entity
decoded value of every “href” attribute specified for a “base” tag
is classified as an external script’s address because of its potential
impact on elements in the document using relative URLs. (4) The
HTML entity decoded value of every event handler attribute, e.g.,
“onload,” specified for any tag is classified as an embedded script.
(5) The HTML entity decoded value of every attribute listed as hav-
ing a URL value in W3C’s Recommendation for HTML 5.2 [73], e.g.,
the “href” attribute, is examined. If the decoded value starts with
“javascript:”, then the portion of the decoded value after “javascript:”
is classified as an embedded script.

Embedded scripts are checked for values successfully injected
into non-literal, non-commented portions of the script. To do so,
the portions of the script that are not contained in JavaScript string
literals, template literals, or comments are checked for a predefined
target string. This target string is based on the malicious payload
being used in the current test re-execution, e.g., alert is an appro-
priate target string for the payload <script>alert(1)</script>,
but other payloads may have more complicated target strings. If the
target string is found in the non-literal, non-commented portions



of the script and it is tainted, then the attack is deemed successful.
Since the target string must be tainted to be deemed a successful
attack, a vulnerability will be reported only if an attacker could
inject that target string into the application.

External script addresses are checked for successfully injected
URLs that could potentially be controlled by a malicious actor. The
start of each address is checked for a predefined target URL. The
target URL is based on the malicious payload being used in the
current test re-execution. If the target URL is found at the start of
an address and is tainted, then the attack is deemed successful.

The XSS attack detector stores bytes written to a socket by calls to
SocketChannel.write() until a full response can be parsed (using
Jsoup [29]) from the bytes stored for a particular socket. The rules
described above are then applied to the document model parsed
from the entity-body. The embedded script checks are also per-
formed using ANTLR [65] and a simplified grammar for JavaScript
to identify string literals, template literals, and comments.
Command and OGNL Injection. A command injection attack
is determined to be successful if any tainted value flows into a
sink vulnerable to command injection (such as ProcessBuilder.
command() and Runtime.exec()). Additionally, if a call is made to
ProcessBuilder.start(), the detector will deem an attack suc-
cessful if the “command” field of the receiver object for the call is
tainted. This relatively relaxed standard is a product of a lack of
legitimate reasons for allowing untrusted data to flow into these
sinks and the severity of the security risk that doing so presents.
This approach could be fine-tuned to perform more complicated
argument parsing (similar to the XSS detector), however, in practice,
we found it sufficient, producing no false positives on our evalua-
tion benchmarks. We use a similar tactic to test for successful OGNL
injection attacks since the OGNL payloads generated by RIVULET
are crafted to perform command injection attacks.

4.4 Limitations

Our approach is not intended to be complete; it is only capable of
detecting vulnerabilities from source-sink flows that are exposed by
a test case. Hence, RIVULET requires applications to have existing
test cases, although we believe that this is a fair assumption to make,
and in our evaluation, show that RIVULET can detect a real vulnera-
bility even when presented with a very small test suite (for Apache
Struts). This limitation could be mitigated by integrating our ap-
proach with an automatic test generation technique. Vulnerabilities
caused by a nondeterministic flow are hard for RIvULET to detect,
even if the flow occurs during the original test run, because the flow
may fail to occur during the re-execution of the test. RIvULET does
not detect XSS attacks which rely on an open redirection vulnera-
bility [69]. More generally, RIVULET can only detect attacks that we
have constructed generators and detectors for, but this is primarily
a limitation of RIvULET’s implementation, and not its approach.
We note that even static analysis tools can only claim soundness to
the extent that their model holds in the code under analysis: in our
empirical evaluation of a sound static-analysis tool, we found that
the static analyzer missed several vulnerabilities (§5.1).

Since Phosphor is unable to track taint tags through code outside
of the JVM, RIvULET is also unable to do so. As a result, RIVULET
cannot detect persistent XSS vulnerabilities caused by a value stored
in an external database, but it can detect one caused by a value
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stored in Java heap memory. We plan to propose extensions to
Phosphor to overcome this limitation, building off of work demon-
strating the feasibility of persisting taint tags in databases in the
Android-based TaintDroid system [64]. At present, RIVULET can
only detect vulnerabilities that result from explicit (data) flow, and
not through implicit (control) flows, or side-channels such as timing
[53], a limitation shared by most other tools, including Julia [59].
Experimental support for implicit flow tracking in Phosphor may
lift this limitation in the future. Despite these limitations, we have
found RIvULET to be effective at detecting injection vulnerabilities.

5 Evaluation
We performed an empirical evaluation of RIvULET, with the goal
of answering several research questions:

RQ1: How does RIVULET perform in comparison to a state-of-the-
art static analysis tool?

RQ2: Does RIVULET scale to large projects and their test suites?

RQ3: How significantly does RIVULET’s contextual payload gen-
eration reduce the number of reruns needed?

To answer these questions, we applied both RIvuLET and the
state-of-the-art static analysis tool Julia [59] to several suites of
vulnerability detection benchmarks. These curated benchmarks are
intentionally seeded with vulnerabilities, allowing us to compare
RivuLET and Julia in terms of both precision and recall. We were also
able to use one of these benchmarks to compare RIVULET against
six commercial vulnerability detection tools. These benchmarks
allow us to evaluate the efficacy of RIVULET’s attack generators
and detectors, but since they are micro-benchmarks, they do not
provide much insight into how RIvULET performs when applied to
real, developer-provided test suites. To this end, we also applied
RIvVULET to three larger applications and their test suites.

We conducted all of our experiments on Amazon’s EC2 infras-
tructure, using a single “c5d.4xlarge” instance with 16 3.0Ghz Intel
Xeon 8000-series CPUs and 32 of RAM, running Ubuntu 16.04 “xe-
nial” and OpenJDK 1.8.0_222. We evaluated Julia by using the Julia-
Cloud web portal, using the most recent version publicly available
as of August 16, 2019. When available (for Juliet-SQLI, Juliet-XSS
and all of OWASP), we re-use results reported by the Julia au-
thors [59]. When we executed it ourselves, we confirmed our usage
of Julia through personal communication with a representative of
JuliaSoft, and greatly thank them for their assistance.

5.1 ROQ1: Evaluating RivuLET on Benchmarks
In order to evaluate the precision and recall of RIvULET and Julia,
we turn to third-party vulnerability detection benchmarks, specifi-
cally NIST’s Juliet Benchmark version 1.3 [42], OWASP’s Bench-
mark version 1.2 [48], Livshits’ securibench-micro [36], and the
Application Vulnerability Scanner Evaluation Project’s WAVSEP
version 1.5 [11]. Each of these benchmarks contains test cases with
vulnerabilities that are representative of real vulnerabilities found
in various applications. From these tests, we can collect the number
of true positives and false negatives reported by each tool. The
benchmarks also contain test cases with variants of those vulner-
abilities that are not vulnerable, allowing us to also collect the
number of false positives and true negatives reported by each tool.
Each benchmark consists of a series of web servlets (and in
some cases, also non-servlet applications) that are tests well-suited



Table 1: Comparison of RIvULET and Julia [59] on third-party benchmarks. For each vulnerability type in each benchmark suite we
show the total number of test cases (for both true and false alarm tests). For RivuLET and Julia, we report the number of true positives, false
positives, true negatives, false negatives, and analysis time in minutes. Times are aggregate for the whole benchmark suite.

# Test Cases RIVULET Julia
Suite Type True Alarm False Alarm ‘ TP FP TN FN Time TP FP TN FN Time
RCE 444 444 444 0 444 0 444 0 444 0
Juliet SQL 2,220 2,220 | 2,220 0 2,220 0 25 | 2,220 0 2,220 0 33
XSS 1,332 1,332 | 1,332 0 1,332 0 1,332 0 1,332 0
RCE 126 125 126 0 125 0 126 20 105 0
OWASP SQL 272 232 272 0 232 0 3 272 36 196 0 15
XSS 246 209 246 0 209 0 246 19 190 0
. . SQL 3 0 3 0 0 0 3 0 0 0
Securibench-Micro o 86 21| 8 0 21 1 oo 7 9 !
SQL 132 10 132 0 10 0 132 0 10 0
WavSep XSS 79 70 79 0 70 21 79 6 1 0 2

for analysis by a static analyzer like Julia. However, RIVULET re-
quires executable, JUnit-style test cases to perform its analysis.
Each servlet is designed to be its own standalone application to
analyze, and they are not stateful. Hence, for each benchmark, we
generated JUnit test cases that requested each servlet over HTTP,
passing along some default, non-malicious parameters as needed.
Where necessary, we modified benchmarks to resolve runtime er-
rors, mostly related to invalid SQL syntax in the benchmark. We
ignored several tests from securibench-micro that were not at all
suitable to dynamic analysis (some had infinite loops, which would
not result in a page being returned to the user), and otherwise in-
cluded only tests for the vulnerabilities targeted by RivuLeT (RCE,
SQLI and XSS). Most of these benchmarks have only been ana-
lyzed by static tools, and not executed, and hence, such issues may
not have been noticed by prior researchers. For transparency and
reproducibility, all benchmark code is included in this paper’s ac-
companying artifact [24].

Table 1 presents our findings from applying both RivuLeT and
Julia to these benchmarks. RivuLeT had near perfect recall and
precision, identifying every true alarm test case as a true positive
but one, and every false alarm test case as a true negative. In three
interesting Securibench-Micro test cases, the test case was non-
deterministically vulnerable: with some random probability the test
could be vulnerable or not. In two of these cases, RIVULET eventually
detected the vulnerability after repeated trials (the vulnerability
was exposed with a 50% probability and was revealed after just
several repeated trials). However, in the case that we report a false
negative (simplified and presented in Listing 2), the probability of
any attack succeeding on the test was just 1/232, and RIvuLET could
not detect the vulnerability within a reasonable time bound. We
note that this particularly difficult case does not likely represent a
significant security flaw, since just like RIVULET, an attacker can
not control the probability that their attack would succeed. This
test case likely represents the worst-case pathological application
that RIvULET could encounter.

In comparison, Julia demonstrated both false positives and false
negatives. Many of the false positives were due to Julia’s lack of
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sensitivity for multiple elements in a collection, resulting in over-
tainting all elements in a collection. We confirmed with JuliaSoft
that the tool’s false negatives were not bugs, and instead generally
due to limitations in recovering exact dynamic targets of method
calls when the receiver of a method call was retrieved from the heap,
causing it to (incorrectly) assume a method call to not be a sink.
Listing 3 shows an example of one such case, where Julia reports a
vulnerability on Line 3 but not on Line 6 since it is unable to pre-
cisely determine the dynamic target of the second println. Unlike
the very tricky non-deterministic case that RIVULET struggled to
detect, we note that this form of data flow is not uncommon, and
this limitation may significantly impact Julia’s ability to detect XSS
vulnerabilities in applications that pass the servlet’s PrintWriter
between various application methods.

We also collected execution times to analyze each entire bench-
mark for both tools. For RIVULET, we report the total time needed
to execute each benchmark (including any necessary setup, such
as starting a MySQL server), and for Julia, we report the execution
time from the cloud service. Despite its need to execute thousands
of JUnit tests, RIVULET ran as fast or faster than Julia in all cases.

void doGet(HttpServletRequest req, HttpServletResponse
resp) f{

Random r new Random () ;

if (r.nextInt() 3)

resp.getWriter () . println(req. getParameter ("name"));

Listing 2: Simplified code of the vulnerability RIvULET
misses. r.nextInt() returns one of the 232 integers randomly.

Iprivate PrintWriter writer;

2void doGet(HttpServletRequest req,
resp) {

resp.getWriter () . println(req.getParameter ("dummy"));

//XSS reported on line above

this. writer resp.getWriter () ;

6 this.writer.println(req.getParameter ("other"));

7 //No XSS reported on line above

8}

HttpServletResponse

[ IO

Listing 3: Example of a false negative reported by Julia



Table 2: Comparison between RIvuLET and different vulner-
ability detection tools on the OWASP benchmark. For each
vulnerability type, we report the true positive rate and false positive
rate for the tool. Each SAST-0" tool is one of: Checkmarx CxSAST,
Coverity Code Advisor, HP Fortify, IBM AppScan, Parasoft Jtest,
and Veracode SAST.

RCE SQL XSS
Tool TPR FPR TPR  FPR TPR  FPR
SAST-01 35% 18% 37% 13% 34% 25%
SAST-02 67% 42% 94% 62% 67% 42%
SAST-03 59% 35% 82% 47% 49% 22%
SAST-04 72% 42% 83% 51% 66% 40%
SAST-05 62% 57% 77% 62% 41% 25%
SAST-06 100% 100% 100% 90% 85% 45%
RIVULET 100% 0% 100% 0% 100% 0%

Most of RIVULET’s time on these benchmarks was spent on the
false positive tests, which act as a “worst case scenario” for its exe-
cution time: if RIVULET can confirm a flow is vulnerable based on a
single attack payload, then it need not try other re-run configura-
tions for that flow. However, on the false positive cases, RIVULET
must try every possible payload (in the case of XSS, this is up to
7, although it may also try different encoding strategies for each
payload, depending on the source).

Unfortunately, it is not possible to report a direct comparison
between RIVULET and any commercial tools (except for Julia) due
to licensing restrictions. However, the OWASP benchmark is dis-
tributed with anonymized results from applying six proprietary
tools (Checkmarx CxSAST, Coverity Code Advisor, HP Fortify, IBM
AppScan, Parasoft Jtest, and Veracode SAST) to the benchmark, and
we report these results in comparison to RIvULET. Table 2 presents
these results (each commercial tool is anonymized), showing the
true positive rate and false positive rate for each tool. RIVULET
outperforms each of these commercial static analysis tools in both
true positive and false positive detection rates.

5.2 RQ2: RIivurLET on Large Applications

While the benchmarks evaluated in § 5.1 are useful for evaluating
the potential to detect vulnerabilities, they are limited in that they
are micro-benchmarks. They help us make general claims about
how RIvULET might perform when applied to an arbitrary applica-
tion. However, since each micro-benchmark is designed to be easily
executed (and indeed, we automatically generated tests to execute
them), it is not possible to judge how RIvULET performs when using
existing, developer-written, test cases on real applications.

To provide more detailed results on how RIvULET performs on
larger, real applications, we applied it to three different open-source
Java web applications and their existing JUnit test suites. iTrust
is an electronic health record system iteratively developed over
25 semesters by students at North Carolina State University [22,
26]. We evaluated iTrust version 1.23, the most recent version of
iTrustl — a newer “iTrust2” is under development, but has far less
functionality than iTrust1 [22]. A prior version of iTrust was also
used in the evaluation of Mohammadi et al.’s XSS attack testing tool,
although the authors were unable to provide a detailed list of the
vulnerabilities that they detected or the specific version of iTrust
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used [40]. We also assessed a recent revision, 8349cebb, of Jenkins,
a popular open-source continuous integration server [28], using
its test suite. Struts is an open-source web application framework
library which is used to build enterprise software [3]. Struts is
distributed with sample applications that use the framework, as
well as JUnit tests for those applications. We evaluated RIvULET with
one such sample application (rest-showcase), using Struts version
2.3.20_1, which is known to have a serious RCE vulnerability.

Table 3 presents the results of this experiment, showing for each
project the number of tests, and then for each injection category the
number of vulnerable flows, reruns executed, reruns that succeeded
in finding a vulnerability, and the number of unique vulnerabilities
found. RIVULET reported no false positives. We briefly discuss the
vulnerabilities that RIvULET detected in each application below.

In iTrust, RIvULET detected five pages with XSS vulnerabilities,
where a user’s submitted form values were reflected back in the
page. While these values were in only five pages, each page had
multiple form inputs that were vulnerable, and hence, RIVULET re-
ported a total of 289 different rerun configurations that demonstrate
these true vulnerabilities. There were no flows into SQL queries in
iTrust: while iTrust uses a MySQL database, it exclusively accesses
it through correct use of the preparedStatement API, which is
designed to properly escape all parameters. We reported all five
vulnerabilities to the iTrust developers and submitted a patch.

We also submitted iTrust to the Julia cloud platform for analysis,
which produced 278 XSS injection warnings. We did not have ade-
quate resources to confirm how many of these warnings are false
positives, but did check to ensure that Julia included all of the XSS
vulnerabilities that RIvULET reported. We describe one example that
we closely investigated and found to be a false positive reported by
Julia. The vulnerability consists of a page with a form that allows
the user to filter a list of hospital rooms and their occupants by
filtering on three criteria. After submitting the form, the criteria
submitted by the user are echoed back on the page without passing
through any standard sanitizer, hence Julia raises an alert. While
RivulET did not alert that there was a vulnerability on this page,
it did observe the same potentially vulnerable data flow, and gen-
erated and executed rerun configurations to test it (not finding it
to be vulnerable). We carefully inspected this code to confirm that
RIvULET’s assessment of these flows was correct, and found that
the filter criteria would only be displayed on the page if there were
any rooms that matched those criteria. The only circumstances
that an exploit could succeed here would be if an administrator
had defined a hospital or ward named with a malicious string —
in that case, that same malicious string could be used in the filter.
While perhaps not a best practice, this does not represent a serious
risk — an untrustworthy administrator could easily do even more
nefarious actions than create the scenario to enable this exploit.

In Jenkins, RIvULET detected a single XSS vulnerability, but
that vulnerability was exposed by multiple test cases, and hence,
RIvULET created 9 distinct valid test rerun configurations that
demonstrated the vulnerability. We contacted the developers of
Jenkins who confirmed the vulnerability, assigned it the identifier
CVE-2019-10406, and patched it. Jenkins does not use a database,
and hence, had no SQL-related flows. We did not observe flows
from user-controlled inputs to command execution APIs. Jenkins’



Table 3: Results of executing RIVULET on open-source applications. For each application we show the number of lines of Java code (as
measured by cloc [14]) the number of test methods, and the time it takes to run those tests with and without RIvULET. For each vulnerability
type, we show the number of potentially vulnerable flows detected by RivuLET (Flows), the naive number of reruns that would be performed
without RIvULET’s contextual payload generators (Rerunsy), the actual number of reruns (Reruns), the number of reruns succeeding in

exposing a vulnerability (Crit), and the number of unique vulnerabilities discovered (Vuln). There were no SQL-related flows.

‘ Time (Minutes)

RCE XSS

Application LOC Tests ‘ Baseline RIVULET ‘ Flows Reruns, Reruns Crit Vuln ‘ Flows Reruns, Reruns Crit Vuln
iTrust 80,002 1,253 6 239 0 0 0 0 0 124 117,778 5,424 289 5
Jenkins 185,852 9,330 85 1,140 0 0 0 0 0 534 294,489 13,562 9 1
Struts Rest-Showcase 152,582 15 0.3 5 53 2,609 2,609 4 1 9 6,254 228 0 0

slower performance was caused primarily by its test execution con-
figuration, which calls for every single JUnit test class to execute in
its own JVM, with its own Tomcat server running Jenkins. Hence,
for each test, a web server must be started, and Jenkins must be
deployed on that server. This process is greatly slowed by load-time
dynamic bytecode instrumentation performed by RIvULET’s under-
lying taint tracking engine (Phosphor), and could be reduced by
hand-tuning Phosphor for this project.

In Struts, RIVULET detected a command injection vulnerability,
CVE-2017-5638, the same used in the Equifax attack (this vulner-
ability was known to exist in this revision). Again, multiple tests
exposed the vulnerability, and hence RIvULET generated multiple
rerun configurations that demonstrate the vulnerabilities. In this
revision of struts, a request with an invalid HTTP Content-Type
header can trigger remote code execution, since that header flows
into the OGNL expression evaluation engine (CVE-2017-5638), and
RivuLET demonstrates this vulnerability by modifying headers to
include OGNL attack payloads. The struts application doesn’t use a
database, and hence, had no SQL-related flows.

The runtime for RIVULET varied from 5 minutes to about 19
hours. It is not unusual for automated testing tools (i.e., fuzzers)
to run for a full day, or even several weeks [34], and hence, we
believe that even in the case of Jenkins, RIVULET’s performance is
acceptable. Moreover, RIVULET’s test reruns could occur in parallel,
dramatically reducing the wall-clock time needed to execute it.

5.3 RQ3: Reduction in Reruns

This research question evaluates RIvULET s reduction in the num-
ber of reruns needed to test whether a given source-sink flow is
vulnerable to an attack compared to a naive approach. To do so, we
considered the number of payloads that a more naive attack gener-
ator such as Ardilla [32] or Navex [2] might create for each class of
vulnerability, and then estimate the number of reruns needed. To
estimate the number of payloads used for XSS testing, we referred
to the OWASP XSS testing cheat sheet, which has 152 distinct pay-
loads [50]. We assume that for RCE testing, the naive generator
would generate the same 12 payloads that RIVULET uses (RIVULET
does not use context in these payloads). We assume that the naive
generator will also consider multiple encoding schemes for each
payload (as RIvULET does). Hence, to estimate the number of reruns
created by this naive generator, we divide the number of reruns
actually executed by the total number of payloads that RIvULET
could create, and then multiply this by the number of payloads that
the naive generator would create (e.g., Reruns/7 = 152 for XSS).
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Table 3 shows the number of reruns generated by this naive
generator as Reruns,. As expected, RIVULET generates far fewer
reruns, particularly with its XSS generator, where it generated 22x
fewer reruns for Jenkins than the naive generator would have. Fur-
thermore, given that RIVULET took 19 hours to complete on Jenkins,
prior approaches that do not use RIVULET’s in situ rerun genera-
tion would be infeasible for the project. Hence, we conclude that
RIVULET’s context-sensitive payload generators are quite effective
at reducing the number of inputs needed to test if a source-sink
flow is vulnerable to attack.

5.4 Threats to Validity

Perhaps the greatest threat to the validity of our experimental re-
sults comes from our selection of evaluation subjects. Researchers
and practitioners alike have long struggled to establish a repro-
ducible benchmark for security vulnerabilities that is representative
of real-world flaws to enable a fair comparison of different tools
[34]. Thankfully, in the context of injection vulnerabilities, there
are several well-regarded benchmarks. To further reduce the threat
of benchmark selection, we used four such benchmarks (Juliet,
OWASP, Securibench-Micro and WavSep). Nonetheless, it is pos-
sible that these benchmarks are not truly representative of real
defects — perhaps we overfit to the benchmarks. However, we are
further encouraged because these benchmarks include test cases
that expose the known limitations of both RIvULET and Julia: for
RivuLET, the benchmark suite contains vulnerabilities that are ex-
posed only non-deterministically, and for Julia, the benchmark suite
contains tests that are negatively impacted by the imprecision of
the static analysis. To aid reproducibility of our results, we have
made RIvVULET (and scripts to run the benchmarks) available under
the MIT open source license [24, 25].

To demonstrate RIvULET’s ability to find vulnerabilities using
developer-written tests, we were unable to find any appropriate
benchmarks, and instead evaluate RIVULET on several open-source
projects. It is possible that these projects are not representative
of the wider population of web-based Java applications or their
tests. However, the projects that we selected demonstrate a wide
range of testing practices: Jenkins topping in with 9,330 tests, and
Struts with only 15, showing that RIVULET can successfully find
vulnerabilities even in projects with very few tests. We are quite
interested in finding industrial collaborators so that we can apply
RIVULET to proprietary applications as well, however, we do not
have any such collaborators at this time.



6 Related Work

Dynamic taint tracking has been proposed as a runtime approach
to detect code injection attacks in production applications, as a
sort of last line of defense [8, 21, 38, 54, 58, 63]. However, these
approaches are generally not adopted due to prohibitive runtime
overhead: even the most performant can impose a slowdown of
at least 10-20% and often far more [8, 12, 15, 31]. Although prior
work has used the term test amplification to refer to techniques
that automatically inject exceptions or system callbacks in existing
tests [1, 75, 76], we believe that RIVULET is the first to use dynamic
taint tracking to amplify test cases.

A variety of automated testing tools have been proposed to de-
tect injection vulnerabilities before software is deployed. These
tools differ from black-box testing tools in that they assume that
the tester has access to the application server, allowing the tool
to gather more precise feedback about the success of any given
attack. Kiezun et al’s Ardilla detects SQL injection and XSS vul-
nerabilities in PHP-based web applications through a white-box
testing approach [32]. Ardilla uses symbolic execution to explore
different application states, then for each state, uses dynamic taint
tracking to identify which user-controlled inputs flow to sensitive
sinks, generating attack payloads for those inputs from a dictionary
of over 100 attack strings. Similar to Ardilla, Alhuzali et al.’s Navex
automatically detects injection vulnerabilities in PHP code using
concolic execution to generate sequences of HTTP requests that
reach vulnerable sinks [2]. RIVULET improves on these approaches
by leveraging the context of the complete value flowing into each
vulnerable sink, allowing it to focus its payload generation to ex-
clude infeasible attack strings. The naive rerun generator that we
used as a comparison in our experiments roughly represents the
number of attack strings that Ardilla would have tested, showing
that RIvULET provides a significant reduction inputs tested. Unlike
these systems’ automated input generators, RIVULET uses developer-
provided functional tests to perform its initial exploration of the
application’s behavior, a technique that we found to work quite
well. If a more robust concolic execution tool were available for
Java, it would be quite interesting to apply a similar approach to
RivuLET, which could reduce our reliance on developer-provided
test cases to discover application behavior.

Other tools treat the application under test as a black-box, testing
for vulnerabilities by generating inputs and observing commands as
they are sent to SQL servers, or HTML as it is returned to browsers.
Mohammadi et al. used a grammar-based approach to generate over
200 XSS attack strings, however, our context-sensitive approach
considers the location of taint tags within the resulting document,
allowing RIVULET to select far fewer payloads for testing [40]. Simos
et al. combined a grammar-based approach for generating SQL in-
jection attack strings with a combinatorial testing methodology for
testing applications for SQL injection vulnerabilities [57]. Thomé et
al’s evolutionary fuzzer generates inputs to trigger SQL injection
vulnerabilities using a web crawler [70]. Others have considered
mutation-based approaches to detect SQL injection [6] and XML
injection vulnerabilities [27]. In contrast, RIVULET uses data flow
information to target only inputs that flow to vulnerable sinks.

While our work considers injection vulnerabilities that are trig-
gered through code that runs on a web server, other work focuses
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on injection vulnerabilities that exist entirely in code that runs in
client browsers. Lekies et al. deployed a taint tracking engine inside
of a web browser, traced which data sources could flow into vulner-
able sinks, and then generated XSS attacks based on the HTML and
JavaScript context surrounding each value at the sink [35]. RIVULET
also uses taint tracking to generate attack payloads, expanding
this approach to generate SQL and RCE injection attacks, and uses
existing test cases to expose non-trivial application behavior.

A variety of static taint analysis approaches have also been used
to detect injection vulnerabilities [7, 59, 60, 71]. The most recent
and relevant is Julia, which uses an interprocedural, flow-sensitive
and context-sensitive static analysis to detect injection vulnerabil-
ities [59]. Compared to a dynamic approach like RIVULET, static
approaches have the advantage of not needing to execute the code
under analysis. However, in the presence of reflection, deep class
hierarchies, and dynamic code generation (all of which are often
present in large Java web applications), static tools tend to strug-
gle to balance between false positives and false negatives. In our
benchmark evaluation, we found that RivULET outperformed Julia.

While RIVULET uses specialized input generation and attack de-
tection to find code injection vulnerabilities, a variety of fuzzers use
taint tracking to instead find program crashes. For instance, Buzz-
Fuzz uses taint tracking to target input bytes that flow to a sink and
replace those bytes with large, small, and zero-valued integers [17].
VUzzer takes a similar approach, but records values that inputs are
compared to in branches and uses those same values as inputs (e.g.,
ifit sees if (taintedData[49] == 105)... it would try value 105
in taintedData byte 49) [52]. Similarly, TaintScope uses fuzzing to
detect cases where fuzzed inputs flow through checksum-like rou-
tines and uses a symbolic representation of these checksum bytes
when generating new inputs in order to pass input validation [72].
RIvULET’s key novelties over existing taint-based fuzzers are its
context-sensitive input generation which enables the creation of
complex, relevant attacks and its attack detectors which report
injection vulnerabilities rather than just program crashes.

7 Conclusion

Despite many efforts to reduce their incidence in practice, code
injection attacks remain common, and are ranked as #1 on OWASP’s
most recent list of critical web application vulnerabilities [46]. We
have presented a new approach to automatically detect these vul-
nerabilities before software is released, by amplifying existing ap-
plication tests with dynamic taint tracking. RIvULET applies novel,
context-sensitive, input generators to efficiently and effectively test
applications for injection vulnerabilities. On four benchmark suites,
RivuLET had near perfect precision and recall, detecting every true
vulnerability (except for one pathological case) and raising no false
alarms. Using developer-provided integration tests, RIvuLET found
six new vulnerabilities and confirmed one old vulnerability in three
large open-source applications. RIVULET is publicly available under
the MIT license [25], and an artifact containing RIVULET and the
experiments described in this paper is also publicly available [24].
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