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OPTIMAL CONTROL OF FRACTIONAL SEMILINEAR PDES∗

Harbir Antil1,∗∗ and Mahamadi Warma2

Abstract. In this paper, we consider the optimal control of semilinear fractional PDEs with both
spectral and integral fractional diffusion operators of order 2s with s ∈ (0, 1). We first prove the
boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions
on domain and data. We next introduce an optimal growth condition on the nonlinearity to show
the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the
data. We further apply our ideas to show existence of solutions to optimal control problems with
semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity
(twice continuously differentiable) we derive the first and second order optimality conditions.
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1. Introduction

Fractional order operators have recently emerged as a modeling alternative in various branches of science.
Their success can be attributed to the fact that fractional order operators can capture sharp transitions across
an interface. These are nonlocal operators that can model multiscale behavior. One such instance occurs in
electrical signal propagation in cardiac tissue where the presence of fractional diffusion has been experimentally
validated [17]. There are several applications where the underlying models are semilinear and contain fractional
diffusion operators: phase field models [4], fluid dynamics [26, 28], diffusion of biological species [45] (see [21] for
the local case). For completeness we also mention the role of fractional operators in imaging science [4, 9]. Even
with the existing applications, the emphasis of growing literature on fractional diffusion equations has been
largely limited to linear fractional PDEs. The purpose of this paper is to consider two prototypical semilinear
fractional PDEs and the corresponding optimal control problems.

Let Ω ⊂ RN be an arbitrary bounded open set with boundary ∂Ω. In this paper, we investigate the well-
posedness of the semilinear fractional equation

(LD)su+ f(x, u) = z in Ω, (1.1)
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and we also consider an optimal control problem

min
z∈Zad

J(u, z) := J1(u) + J2(z), (1.2)

subject to the state equation (1.1) and the control constraints

z ∈ Zad :=
{
z ∈ L∞(Ω) : za ≤ z ≤ zb, a.e. in Ω

}
. (1.3)

Here za, zb ∈ L∞(Ω) with za(x) ≤ zb(x) for a.e. x ∈ Ω. The precise conditions on J1 and J2 will be given in
Section 4 and Remark 4.6.

In (1.1), f : Ω×R→ R is measurable and satisfies certain conditions (that we shall specify later) and (LD)s

(0 < s < 1) denotes the fractional s powers of the realization in L2(Ω) of the operator L formally given by

Lu := −
N∑

i,j=1

Di

(
aij(x)Dju

)
, Di :=

∂

∂xi
, (1.4)

with the Dirichlet boundary condition u = 0 on ∂Ω. The coefficients aij are assumed to be measurable, belong
to L∞(Ω), are symmetric, that is,

aij(x) = aji(x) ∀ i, j = 1, . . . , N and for a.e. x ∈ Ω,

and satisfy the ellipticity condition, that is, there exists a constant γ > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ γ|ξ|2, ∀ ξ ∈ RN and a.e. x ∈ Ω.

Besides equation (1.1), we also consider the following semilinear elliptic system{
(−∆)su+ f(x, u) = z in Ω,

u = 0 in RN \ Ω,
(1.5)

where (−∆)s denotes the integral fractional Laplace operator (see Sect. 3.3), together with the optimal control
problem (1.2) and the control constraints (1.3).

Notice that both (LD)s and (−∆)s are nonlocal operators if 0 < s < 1 and f is nonlinear with respect to
u. This makes it challenging to identify the minimal assumptions on Ω, f and z in the study of the existence,
uniqueness, regularity and the numerical analysis of (1.1) and (1.5). The main contributions of this paper are
summarized as follows:

(i) We identify minimal conditions on f without any regularity assumption on the domain Ω that lead to
existence, uniqueness and boundedness of solutions to (1.1) and (1.5). Our main assumption reads that f
is monotone in the second variable and f(x, t)→∞ as t→∞.

(ii) We introduce an optimal growth condition on f (see (3.4)) that allows us to prove the Lipschitz continuity
of the solution map: z 7→ S(z) := u. Usually, a local Lipschitz continuity on f is assumed in most of the
literature. In absence of this Lipschitz continuity we also prove existence of solution to (1.2). Our growth
condition is not a regularity assumption on f and therefore is weaker than a local Lipschitz continuity.

(iii) We study the optimality conditions for the optimization problems and under standard assumptions on f
we derive the second order sufficient conditions. We notice that if the pair (N, s) fulfills the assumptions
of Lemma 4.1, we do not get the 2-norm discrepancy.
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We refer to [16, 24, 25, 44] and the references therein for the case s = 1 and [5] for the exterior control of linear
equation with integral fractional Laplacian. We emphasize that even though the aforementioned list of references
for s = 1 is incomplete but these references provide a comprehensive overview of the field of semilinear optimal
control problems.

To the best of our knowledge most of our results are new not only for the spectral case but also the integral
fractional case. We further notice that the results of (ii) can be applied to the classical semilinear problems as
well. When aij = δij where the latter denotes the Kronecker delta, we developed a complete analysis, including
discretization, and error estimates, for (1.1) in [8]. Such an error analysis can be directly applied to (1.1) under
the usual assumptions on Ω and the coefficients aij . By following the approach of [8] in conjunction with the
estimates for the linear problem [2] a similar error analysis can be developed for (1.5).

In order to avoid repetition we will focus on the semilinear problem (1.1) with the spectral fractional
operator (LD)s. However, to prove our crucial results in (i) and (ii) we rely on an integral representation of
(LD)s (cf. (2.5)). This integral representation is similar to the representation of the fractional operator (−∆)s

(cf. Sect. 3.3) and all the results discussed for (LD)s directly transfer to (−∆)s under minor modifications. We
refer to Section 3.3, Remarks 4.5(b) and 5.12 for more details.

The remainder of the paper is organized as follows. In Section 2 we state some preliminary results and
introduce our function spaces. Our main work starts from Section 3 where we first prove the existence of
solutions to (1.1) in Sobolev spaces. We next show that the inverse of the solution operator is bounded and
continuous under the newly introduced growth condition in (3.4), we also study the compactness of such an
operator. We prove L∞-bound of solutions in Theorem 3.7. We also derive an L∞-bound on the difference of
two solutions u1, u2 corresponding to given z1, z2 in Proposition 3.10 without any additional assumptions on
f . In Section 3.3 we show that all our results also hold for the system (1.5) with very minor modifications in
the proofs. An example of f is given in Section 3.4. We next prove the existence of a solution to our optimal
control problem in Section 4 by just assuming the above mentioned growth condition on f . Under additional
regularity assumptions on f with respect to the second variable, we derive the first order necessary and second
order sufficient conditions in Section 5.

2. Notation and preliminary results

Throughout this section without any mention, Ω ⊂ RN (N ≥ 1) denotes an arbitrary bounded open set with
boundary ∂Ω. For each result, if a regularity of Ω is needed, then we shall specify and if no specification is given,
then we mean that the result holds without any regularity assumption on the open set.

2.1. Fractional order Sobolev spaces

Let H1
0 (Ω) = D(Ω)

H1(Ω)
where D(Ω) is the space of infinitely continuously differentiable functions with

compact support in Ω, and

H1(Ω) =
{
u ∈ L2(Ω) :

∫
Ω

|∇u|2 dx <∞
}

is the first order Sobolev space endowed with the norm

‖u‖H1(Ω) =

(∫
Ω

|u|2 dx+

∫
Ω

|∇u|2 dx

) 1
2

.

Next, for 0 < s < 1, we define the fractional order Sobolev space

Hs(Ω) :=

{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy <∞

}
,
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and we endow it with the norm defined by

‖u‖Hs(Ω) =

(∫
Ω

|u|2 dx+

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

We also let

Hs
0(Ω) := D(Ω)

Hs(Ω)
,

and

H
1
2
00(Ω) :=

{
u ∈ H 1

2 (Ω) :

∫
Ω

u2(x)

dist(x, ∂Ω)
dx <∞

}
.

Note that

‖u‖Hs0 (Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

(2.1)

defines a norm on Hs
0(Ω) if 1

2 < s < 1.

Remark 2.1. It is well-known (see e.g. [33], Thm. 1.4.2.4 and p. 25) that if Ω has a Lipschitz continuous
boundary, then Hs(Ω) = Hs

0(Ω) if and only if 0 < s ≤ 1/2. If 1/2 < s < 1, then Hs
0(Ω) is a proper closed

subspace of Hs(Ω). In particular, we also have that H
1/2
00 (Ω) $ H

1/2
0 (Ω) = H1/2(Ω). A complete description of

this fact for arbitrary bounded open sets is contained in [46].

The fractional order Sobolev spaces can be also defined by using interpolation theory. That is, for every
0 < s < 1,

Hs(Ω) = [H1(Ω), L2(Ω)]1−s,

and for every s ∈ (0, 1) we have that

Hs
0(Ω) = [H1

0 (Ω), L2(Ω)]1−s if s ∈ (0, 1) \ {1/2} and H
1
2
00(Ω) = [H1

0 (Ω), L2(Ω)] 1
2
.

Here, for 0 < θ < 1, [·, ·]θ denotes the complex interpolation space.
Since Ω is assumed to be bounded we have the following continuous embedding:

Hs
0(Ω) ↪→


L

2N
N−2s (Ω) if N > 2s,

Lp(Ω), p ∈ [1,∞) if N = 2s,

C0,s−N2 (Ω) if N < 2s.

(2.2)

We notice that if N ≥ 2, then N ≥ 2 > 2s for every 0 < s < 1, or if N = 1 and 0 < s < 1
2 , then N = 1 > 2s,

and thus the first embedding in (2.2) will be used. If N = 1 and s = 1
2 , then we will use the second embedding.

Finally, if N = 1 and 1
2 < s < 1, then N = 1 < 2s and hence, the last embedding will be used.

For more details on fractional order Sobolev spaces we refer the reader to [3, 29, 33, 37, 46] and their
references.
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2.2. The fractional powers of the elliptic operator

Let LD be the realization in L2(Ω) of L given in (1.4) with the boundary condition u = 0 on ∂Ω. That is,
LD is the positive and self-adjoint operator on L2(Ω) associated with the closed and bilinear form

ED(u, v) =

N∑
i,j=1

∫
Ω

aij(x)DiuDjv dx, u, v ∈ H1
0 (Ω),

in the sense that{
D(LD) =

{
u ∈ H1

0 (Ω) : ∃ w ∈ L2(Ω), ED(u, v) = (w, v)L2(Ω) ∀ v ∈ H1
0 (Ω)

}
,

LDu = w.

It is well-known that LD has a compact resolvent and its eigenvalues form a non-decreasing sequence 0 < λ1 ≤
λ2 ≤ · · · ≤ λn ≤ · · · of real numbers satisfying limn→∞ λn =∞. We denote by (ϕn)n∈N the orthonormal basis
of eigenfunctions associated with (λn)n∈N.

For any θ ≥ 0, we also introduce the following fractional order Sobolev space:

Hθ(Ω) :=

{
u =

∞∑
n=1

unϕn ∈ L2(Ω) : ‖u‖2Hθ(Ω) :=

∞∑
n=1

λθnu
2
n <∞

}
,

where un = (u, ϕn)L2(Ω) =
∫

Ω
uϕn dx. If 0 < s < 1, then it is well-known that

Hs(Ω) =

{
Hs

0(Ω) if s 6= 1
2 ,

H
1
2
00(Ω) if s = 1

2 .
(2.3)

It follows from (2.3) that the embedding (2.2) holds with Hs
0(Ω) replaced by Hs(Ω).

Definition 2.2. Let 0 < s < 1. The spectral fractional s powers of LD is defined on Hs(Ω) by

(LD)su :=

∞∑
n=1

λsnunϕn with un =

∫
Ω

uϕn dx.

We notice that in this case we have

‖u‖Hs(Ω) = ‖(LD)
s
2u‖L2(Ω). (2.4)

In addition D(Ω) ↪→ Hs(Ω) ↪→ L2(Ω), so, the operator (LD)s is unbounded, densely defined and with bounded
inverse (LD)−s in L2(Ω). But it can also be viewed as a bounded operator from Hs(Ω) into its dual H−s(Ω) :=
(Hs(Ω))?. The following integral representation of (LD)s given in ([20], Thm. 2.3) will be useful. For every
u, v ∈ Hs(Ω), we have that

〈(LD)su, v〉H−s(Ω),Hs(Ω) =
1

2

∫
Ω

∫
Ω

(
u(x)− u(y)

)(
v(x)− v(y)

)
KL
s (x, y) dxdy +

∫
Ω

κs(x)u(x)v(x) dx, (2.5)

where

0 ≤ KL
s (x, y) :=

s

Γ(1− s)

∫ ∞
0

WL
Ω (t, x, y)

t1+s
dt, x, y ∈ Ω,
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and

0 ≤ κs(x) =
s

Γ(1− s)

∫ ∞
0

(
1− e−tLD1(x)

) dt

t1+s
, x ∈ Ω.

Here, Γ is the usual Gamma function, (e−tLD )t≥0 denotes the strongly continuous semigroup on L2(Ω) generated
by −LD and WL

Ω is the associated heat kernel, that is,

WL
Ω (t, x, y) =

∞∑
n=1

e−tλnϕn(x)ϕn(y), t > 0, x, y ∈ Ω.

From the representation (2.5) we immediately see that (LD)s is a nonlocal operator. We also notice that the
case of fractional powers of elliptic operators with non-zero boundary conditions has been investigated in [7].

For more details on fractional powers of more general operators we refer the reader to [1, 12, 20, 35, 43] and
the references therein.

2.3. Some results on Orlicz spaces

Here, we give some important properties of Orlicz type spaces that will be used throughout the paper. These
results, with the exception of Remark 2.8, are the same as the ones stated in ([8], Sect. 2.2). We refer to [8] and
the references therein for more details.

Assumption 2.3. For a function f : Ω× R→ R we consider the following assumption:

f(x, ·) is odd, strictly increasing for a.e. x ∈ Ω,

f(x, 0) = 0 for a.e. x ∈ Ω,

f(x, ·) is continuous for a.e. x ∈ Ω,

f(·, t) is measurable for all t ∈ R,
lim
t→∞

f(x, t) =∞ for a.e. x ∈ Ω.

Let f̃(x, ·) be the inverse of f(x, ·). Define F, F̃ : Ω× R→ [0,∞) by

F (x, t) :=

∫ |t|
0

f(x, τ) dτ and F̃ (x, t) :=

∫ |t|
0

f̃(x, τ) dτ, ∀ t ∈ R and for a.e. x ∈ Ω. (2.6)

Assumption 2.4. Under the setting of Assumption 2.3, and for a.e. x ∈ Ω, let both F (x, ·) and F̃ (x, ·) satisfy
the global (42)-condition, that is, there exist two constants c1, c2 ∈ (0, 1] independent of x, such that for a.e.
x ∈ Ω and for all t ∈ R,

c1tf(x, t) ≤ F (x, t) ≤ tf(x, t) and c2tf̃(x, t) ≤ F̃ (x, t) ≤ tf̃(x, t). (2.7)

Let

LF (Ω) :=
{
u : Ω→ R measurable : F (·, u(·)) ∈ L1(Ω)

}
be the Musielak-Orlicz space. The space LF̃ (Ω) is defined similarly with F replaced by F̃ .
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Remark 2.5. If Assumption 2.4 holds, then by ([30], Thms. 1 and 2) (see also [3], Thm. 8.19), LF (Ω) endowed
with the Luxemburg norm given by

‖|u|‖F,Ω := inf

{
k > 0 :

∫
Ω

F

(
x,
u(x)

k

)
dx ≤ 1

}
,

is a reflexive Banach space. The same result also holds for LF̃ (Ω).

We have the following result.

Lemma 2.6. ([8], Lem. 1.5) Let Assumption 2.4 hold. Then f(·, u(·)) ∈ LF̃ (Ω) for all u ∈ LF (Ω).

Definition 2.7. Let 0 < s < 1. Under Assumption 2.4 we can define the Banach space V0 by

V0 = V0(Ω, F ) :=
{
u ∈ Hs(Ω) : F (·, u(·)) ∈ L1(Ω)

}
,

and we endow it with the norm defined by

‖|u|‖V0 := ‖|u|‖Hs(Ω) + ‖|u|‖F,Ω.

In this case V0 is a reflexive Banach space. It follows from (2.2) that we have the continuous embedding

V0 ↪→ Hs(Ω) ↪→ L2?(Ω), (2.8)

where we have set

2? =
2N

N − 2s
if N ≥ 2 > 2s or if N = 1 and 0 < s <

1

2
.

If N = 1 and s = 1
2 , then 2? is any number in the interval [1,∞). If N = 1 and 1

2 < s < 1, then we have the
continuous embedding

V0 ↪→ Hs(Ω) ↪→ C0,s− 1
2 (Ω). (2.9)

We refer to [3, 15, 40] and their references for further properties of Orlicz type spaces.
We conclude this section with the following observation.

Remark 2.8. In Assumption 2.3, the assumption that f is odd can be removed. In that case, we let

Λ(x, t) :=

∫ t

0

f(x, τ) dτ and Λ̃(x, t) :=

∫ t

0

f̃(x, τ) dτ, ∀ t ∈ R and for a.e. x ∈ Ω,

and one replaces F and F̃ in (2.6) by the following: for x ∈ Ω fixed, we define

F (x, t) := max{Λ(x, t),Λ(x,−t)} and F̃ (x, t) := max{Λ̃(x, t), Λ̃(x,−t)}, ∀ t ∈ R. (2.10)

By definition, we have that F, F̃ : Ω×R→ [0,∞), F (x, ·), F̃ (x, ·) are even functions (for a.e. x ∈ Ω) as the ones
in (2.6). Assuming that these functions satisfy Assumption 2.4, then all the results in the paper remain true

without any modification in the proofs. Of course if f(x, ·) is odd, then F and F̃ defined in (2.10) coincide with
the ones given in (2.6). We have chosen the representation (2.6) only for simplicity.
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3. Analysis of the semilinear elliptic problem

In this section, we give some existence, uniqueness and regularity results of weak solutions to the problems
(1.1) and (1.5). We also introduce an optimal growth condition on the nonlinearity f which leads to the Lipschitz
continuity of the solution map.

3.1. Existence of weak solutions

We shall denote by (V0)? = (Hs(Ω) ∩ LF (Ω))? the dual of the reflexive Banach spaces V0. Throughout the
remainder of the paper, given a reflexive Banach space X and its dual X?, we shall denote by 〈·, ·〉X?,X their
duality map. Now we can introduce our notion of weak solution to (1.1).

Definition 3.1. A u ∈ V0 is said to be a weak solution of (1.1) if the identity

FD(u, v) :=

∫
Ω

(LD)
s
2u(LD)

s
2 v dx+

∫
Ω

f(x, u)v dx = 〈z, v〉(V0)?,V0 , (3.1)

holds for every v ∈ V0 and the right hand side of (3.1) makes sense.

We have the following result of existence and uniqueness of weak solution.

Proposition 3.2 (Existence of weak solution). Let Assumption 2.4 hold. Then for every z ∈ (V0)?, (1.1)
has a unique weak solution u. In addition, if z ∈ H−s(Ω) ↪→ (V0)?, then there is a constant C > 0 such that

‖u‖Hs(Ω) ≤ C‖z‖H−s(Ω). (3.2)

Proof. The proof follows the lines of the case L = −∆ contained in ([8], Prop. 2.8). We omit it for brevity.

The following result gives further estimates for the difference of two solutions.

Proposition 3.3. Let Assumption 2.4 hold. Let z1, z2 ∈ H−s(Ω) ↪→ (V0)? and u1, u2 ∈ V0 be the corresponding
weak solutions of (1.1). Then there is a constant C = C(N, s,Ω) > 0 such that

C‖u1 − u2‖L2(Ω) ≤ ‖u1 − u2‖Hs(Ω) ≤ ‖z1 − z2‖H−s(Ω). (3.3)

Proof. Taking v = u1 − u2 as a test function in (3.1), we get that∫
Ω

|(LD)
s
2 (u1 − u2)|2 dx+

∫
Ω

[f(x, u1)− f(x, u2)] (u1 − u2) dx = 〈z1 − z2, u1 − u2〉H−s(Ω),Hs(Ω).

Since f(x, ·) is monotone for a.e. x ∈ Ω, we have that [f(x, u1)− f(x, u2)] (u1−u2) ≥ 0. Thus, from the preceding
identity we can deduce that

‖u1 − u2‖2Hs(Ω) =

∫
Ω

|(LD)
s
2 (u1 − u2)|2 dx ≤ 〈z1 − z2, u1 − u2〉H−s(Ω),Hs(Ω) ≤ ‖z1 − z2‖H−s(Ω)‖u1 − u2‖Hs(Ω).

The above estimate together with the embedding Hs(Ω) ↪→ L2(Ω) imply (3.3).

Remark 3.4. From Proposition 3.2 (its proof), we have that for every u ∈ V0 there exists a unique AF (u) ∈
(V0)? such that FD(u, v) = 〈AF (u), v〉(V0)?,V0 for every v ∈ V0. This defines an operator AF : V0 → (V0)? which
is hemi-continuous, strictly monotone, continuous, surjective and bounded.

Next we give further qualitative properties of the above mentioned operator.



OPTIMAL CONTROL OF FRACTIONAL SEMILINEAR PDES 9

Proposition 3.5. Let AF : V0 → (V0)? be the surjective, continuous and bounded operator mentioned in
Remark 3.4. Then AF is also injective, hence invertible and its inverse A−1

F is bounded from (V0)? into V0.
In addition, if f satisfies the following growth condition: there exists a constant c ∈ (0, 1] such that

c|f(x, ξ − η)| ≤ |f(x, ξ)− f(x, η)| (3.4)

for a.e. x ∈ Ω and for all ξ, η ∈ R, then A−1
F is also continuous from (V0)? into V0. Furthermore, if r > (2?)′ =

2N
N+2s , then A−1

F : Lr(Ω)→ V0 and A−1
F : Lr(Ω)→ Lp(Ω) are compact for every p ∈ (1, 2?).

Proof. Recall that by Remark 3.4, the operator AF is strictly monotone. More precisely, we have that

〈AF (u)−AF (v), u− v〉(V0)?,V0 = FD(u, u− v)−FD(v, u− v) > 0,

for all u, v ∈ V0 with u 6= v. This shows that AF is injective and hence, A−1
F exists. The estimate

FD(u, u) = 〈AF (u), u〉(V0)?,V0 ≤ ‖AF (u)‖(V0)?‖u‖V0 ,

together with the coercivity of FD, that is, lim‖u‖V0→∞
FD(u,u)
‖u‖V0

=∞ (see [8], Prop. 2.8), imply that

lim
‖u‖V0→∞

‖AF (u)‖(V0)? =∞.

Thus A−1
F : (V0)? → V0 is bounded.

Next, assume that the nonlinearity f satisfies (3.4). Notice that it follows from (3.4) that

(f(x, ξ)− f(x, η))(ξ − η) ≥ cf(x, ξ − η)(ξ − η), (3.5)

for a.e. x ∈ Ω and for all ξ, η ∈ R. The estimate (3.5) together with the (∆2)-condition (2.7) imply that for
every u, v ∈ V0,∫

Ω

(f(x, u)− f(x, v))(u− v) dx ≥
∫

Ω

cf(x, u− v)(u− v) dx ≥
∫

Ω

F (x, u− v) dx. (3.6)

We show that A−1
F : (V0)? → V0 is continuous. Assume that A−1

F is not continuous. Then there exist a sequence
{zn}n∈N ⊂ (V0)? with zn → z in (V0)? as n→∞, and a constant K > 0 such that

‖A−1
F (zn)−A−1

F (z)‖V0 ≥ K for all n ∈ N. (3.7)

Let un := A−1
F (zn) and u := A−1

F (z). Since {zn}n∈N is a bounded sequence and A−1
F is bounded, we have that

{un}n∈N is a bounded sequence in V0. Since V0 is a reflexive Banach space, by possibly passing to a subsequence
if necessary, we may assume that un converges weakly to some v ∈ V0 as n → ∞. Since AF (un) − AF (v) →
z −AF (v) in (V0)? as n→∞, and (v − un) ⇀ 0 in V0 as n→∞, it follows that

lim
n→∞

〈AF (un)−AF (v), un − v〉(V0)?,V0 = 0. (3.8)

Using (3.6) we get that for every n ∈ N,∫
Ω

|(LD)
s
2 (un − v)|2 dx+

∫
Ω

F (x, un − v) dx ≤ c〈AF (un)−AF (v), un − v〉(V0)?,V0 .
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This estimate together with (3.8) imply that

lim
n→∞

∫
Ω

|(LD)
s
2 (un − v)|2 dx = 0 and lim

n→∞

∫
Ω

F (x, un − v) dx = 0.

Thus, using the (∆2)-condition (2.7), we get that un → v in V0 as n→∞. Since AF is demi-continuous (this
follows from the fact that AF is hemi-continuous, monotone and bounded by Rem. 3.4), it follows that

zn = AF (un) ⇀ AF (v) in (V0)? and zn → z = AF (u) in (V0)? as n→∞.

The uniqueness of the weak limit implies that AF (u) = z = AF (v) and hence, by the injectivity of AF we get
that u = v. We have shown that

lim
n→∞

|‖A−1
F (zn)−A−1

F (z)‖V0 = lim
n→∞

‖un − u‖V0 = 0,

and this contradicts (3.7). Thus, A−1
F : (V0)? → V0 is continuous.

Next let 1 < q < 2?. Since the embedding V0 ↪→ Lq(Ω) is compact, then by duality, the embedding Lr(Ω) ↪→
(V0)? is compact for every r > (2?)′ = 2N

N+2s . This, together with the fact that A−1
F : (V0)? → V0 is continuous

and bounded, imply that A−1
F : Lr(Ω) → V0 is compact for every r > (2?)′ = 2N

N+2s . It remains to show that

A−1
F is also compact as a map into Lp(Ω) for every p ∈ (1, 2?). Since A−1

F is bounded, we have to show that the
image of every bounded set B ⊂ Lr(Ω) is relatively compact in Lp(Ω) for every 1 < p < 2?. Let {un}n∈N be a
sequence in A−1

F (B) and zn := AF (un) ∈ B. Since B is bounded, it follows that {zn}n∈N is bounded. Since A−1
F

is compact as a map into V0, we have that there is a subsequence denoted again {zn}n∈N such that A−1
F (zn)→ u

in V0 as n→∞, and hence also in L2(Ω). We have to show that un → u in Lp(Ω) as n→∞. Let p ∈ [2, 2?).
Since {un}n∈N is bounded in L2?(Ω), a standard interpolation inequality shows that there is τ ∈ (0, 1) such that

‖un − um‖Lp(Ω) ≤ ‖un − um‖τL2(Ω)‖un − um‖
1−τ
L2? (Ω)

≤ C‖un − um‖τL2(Ω), (3.9)

for some constant C > 0 independent of n. More precisely 1
p = τ

2 + 1−τ
2? . Since 2 ≤ p < 2?, a simple calculation

gives that 0 < τ = 2(2?−p)
p(2?−2) < 1. Now, as un converges in L2(Ω), it follows from (3.9) that {un}n∈N is a Cauchy

sequence in Lp(Ω) and therefore converges in Lp(Ω). Hence, A−1
F : Lr(Ω) → Lp(Ω) is compact for every p ∈

[2, 2?). The case p ∈ (1, 2) follows from the embedding L2(Ω) ↪→ Lp(Ω). The proof is finished.

We conclude this subsection with the following comment.

Remark 3.6. We mention that even if the results in Proposition 3.5 are not explicitly used further in the present
article, they are important in their own and can be used to obtain some qualitative properties of solutions to
associated semilinear parabolic problems. In addition, using these results, one can define the functions J1 and
J2 (see Sect. 4) on Lp(Ω) for p ∈ (1, 2?) and obtain some of the results. Further properties of AF will be given
in Section 4 since the operator S defined in (4.1) and (4.2) is nothing else than the restriction of A−1

F to L∞(Ω)
and L2(Ω), respectively.

3.2. Regularity of weak solutions

The following theorem is the first main result of this section.
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Theorem 3.7. Let Assumption 2.4 hold and assume that z ∈ Lp(Ω) with


p > N

2s if N > 2s,

p > 1 if N = 2s,

p = 1 if N < 2s.

(3.10)

Then every weak solution u of (1.1) belongs to L∞(Ω) and there is a constant C = C(N, s, p,Ω) > 0 such that

‖u‖L∞(Ω) ≤ C‖z‖Lp(Ω). (3.11)

Remark 3.8. We mention that if N = 1 and 1
2 < s < 1, then it follows from (2.9) that the weak solution of

(1.1) is globally Hölder continuous on Ω and in this case there is nothing to prove. Thus we need to prove the
theorem only in the cases N ≥ 2, or N = 1 and 0 < s ≤ 1

2 .

Proof of Theorem 3.7. The proof of this theorem also follows along the lines of the proof of the corresponding
result for the case L = −∆ contained in ([8], Thm. 2.9). It can also be obtained by taking u2 = 0 and z2 = 0 in
the proof of Proposition 3.10 below and in that case the growth condition (3.4) on f is not needed.

We notice that the proof of ([8], Thm. 2.9) (hence, the proof of Thm. 3.7) uses the following result ([36],
Lem. B.1) which will be also used in the proof of Proposition 3.10 below.

Lemma 3.9. Let Ξ = Ξ(t) be a nonnegative, non-increasing function on a half line t ≥ k0 ≥ 0 such that there
are positive constants c, α and δ (δ > 1) with

Ξ(h) ≤ c(h− k)−αΞ(k)δ for h > k ≥ k0.

Then

Ξ(k0 + d) = 0 with dα = cΞ(k0)δ−12αδ/(δ−1).

Next we give an L∞-estimate for the difference of two solutions which is the second main result of this section.

Proposition 3.10. Assume that Assumption 2.4 holds and that f satisfies the growth condition (3.4). Let
z1, z2 ∈ Lp(Ω) with p as in (3.10) and let u1, u2 ∈ V0 ∩ L∞(Ω) be the corresponding weak solutions of (1.1).
Then there is a constant C = C(N, p, s,Ω) > 0 such that

‖u1 − u2‖L∞(Ω) ≤ C‖z1 − z2‖Lp(Ω). (3.12)

Proof. We prove the proposition in two steps.
Step 1. Let k ≥ 0. Set v := u1 − u2 and vk := (|v| − k)+ sgn(v). We claim that vk ∈ V0 and

cFD(vk, vk) ≤ FD(u1, vk)−FD(u2, vk), (3.13)

for every k ≥ 0, where c ∈ (0, 1] is the constant appearing in (3.4). Indeed, using ([46], Lem. 2.7) we get that
vk ∈ V0. Let Ak := {x ∈ Ω : |v(x)| ≥ k}, A+

k := {x ∈ Ω : v(x) ≥ k} and A−k := {x ∈ Ω : v(x) ≤ −k} so that
Ak = A+

k ∪A
−
k . It follows from the representation (2.5) that
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FD(u1, vk)−FD(u2, vk)

=

∫
Ω

(LD)
s
2 (u1 − u2)(LD)

s
2 (vk) dx+

∫
Ω

(
f(x, u1)− f(x, u2)

)
vk(x) dx

=
1

2

∫
Ω

∫
Ω

(
(u1 − u2)(x)− (u1 − u2)(y)

)(
vk(x)− vk(y)

)
KL
s (x, y) dxdy

+

∫
Ω

κs(x)(u1 − u2)(x)vk(x) dx+

∫
Ω

(
f(x, u1)− f(x, u2)

)
vk(x) dx. (3.14)

Proceeding exactly as the proof of ([8], Thm. 2.9) we get that

1

2

∫
Ω

∫
Ω

(
(u1 − u2)(x)− (u1 − u2)(y)

)(
vk(x)− vk(y)

)
KL
s (x, y) dxdy

+

∫
Ω

κs(x)(u1 − u2)(x)vk(x) dx

≥1

2

∫
Ω

∫
Ω

|vk(x)− vk(y)|2KL
s (x, y) dxdy +

∫
Ω

κs(x)|vk(x)|2 dx =

∫
Ω

|(LD)
s
2 (vk)|2 dx. (3.15)

We notice that∫
Ω

(
f(x, u1)− f(x, u2)

)
vk dx =

∫
Ω

cf(x, vk)vk dx+

∫
Ω

[
f(x, u1)− f(x, u2)− cf(x, vk)

]
vk dx, (3.16)

where c ∈ (0, 1] is the constant appearing in (3.4). For a.e. x ∈ A+
k , we have that

cf(x, vk(x)) = cf(x, u1(x)− u2(x)− k) ≤ cf(x, u1(x)− u2(x)) ≤ f(x, u1(x))− f(x, u2(x)).

Multiplying this inequality with vk(x) ≥ 0 gives for a.e. x ∈ A+
k ,

[
f(x, u1(x))− f(x, u2(x))− cf(x, vk(x))

]
vk(x) ≥ 0. (3.17)

Similarly, for a.e. x ∈ A−k , we have that

cf(x, vk(x)) = cf(x, u1(x)− u2(x) + k) ≥ cf(x, u1(x)− u2(x)) ≥ f(x, u1(x))− f(x, u2(x)).

Hence, multiplying this inequality with vk(x) ≤ 0, we get that for a.e. x ∈ A−k ,

[
f(x, u1(x))− f(x, u2(x))− cf(x, uk(x))

]
vk(x) ≥ 0. (3.18)

Combining (3.16), (3.17) and (3.18) we get that for every k ≥ 0,

∫
Ω

(
f(x, u1)− f(x, u2)

)
vk dx ≥ c

∫
Ω

f(x, vk)vk dx. (3.19)
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Now it follows from (3.14), (3.15) and (3.19) that

FD(u1, vk)−FD(u2, vk) ≥
∫

Ω

|(LD)
s
2 (vk)|2 dx+ c

∫
Ω

f(x, vk)vk dx

≥ c
(∫

Ω

|(LD)
s
2 (vk)|2 dx+

∫
Ω

f(x, vk)vk dx

)
= cFD(vk, vk),

and we have shown the claim (3.13).
Step 2. It follows from (3.13) that there is a constant C > 0 such that for every k ≥ 0,

C‖vk‖2L2? (Ω) ≤ c‖vk‖
2
Hs(Ω) ≤ cFD(vk, vk) ≤ FD(u1, vk)−FD(u2, vk) =

∫
Ω

(z1 − z2)vk dx. (3.20)

Let p1 ∈ [1,∞] be such that 1
p + 1

2? + 1
p1

= 1 where 2? = 2N
N−2s > 2. Since p > N

2s = 2?

2?−2 , we have that

1

p1
= 1− 1

2?
− 1

p
>

2?

2?
− 1

2?
− 2? − 2

2?
=

1

2?
=⇒ p1 < 2?. (3.21)

Using the classical Hölder inequality and noticing that vk = 0 on Ω \ Ak, we get from (3.20) that there is a
constant C = C(N, s, p) > 0 such that for every k ≥ 0,

cFD(vk, vk) ≤
∫

Ω

(z1 − z2)vk dx =

∫
Ak

(z1 − z2)vk dx ≤‖z1 − z2‖Lp(Ω)‖vk‖L2? (Ω)‖χAk‖Lp1 (Ω), (3.22)

where χAk denotes the characteristic function of the set Ak. Using (3.20), (3.22), (2.8) and the fact that∫
Ω
f(x, vk)vk dx ≥ 0, we get that there are two constants C,C1 > 0 such that for every k ≥ 0,

C‖vk‖2L2? (Ω) ≤ c‖vk‖
2
Hs(Ω) ≤ cFD(vk, vk) ≤ C1‖z1 − z2‖Lp(Ω)‖vk‖L2? (Ω)‖χAk‖Lp1 (Ω).

This estimate implies that there is a constant C > 0 such that for every k ≥ 0,

‖vk‖L2? (Ω) ≤ C‖z1 − z2‖Lp(Ω)‖χAk‖Lp1 (Ω). (3.23)

Let h > k. Then Ah ⊂ Ak and on Ah we have |vk| ≥ h− k. It follows from (3.23) that for every h > k ≥ 0,

‖χAh‖L2? (Ω) ≤ C(h− k)−1‖z1 − z2‖Lp(Ω)‖χAk‖Lp1 (Ω). (3.24)

Let δ := 2?

p1
> 1 by (3.21). Then using the Hölder inequality again we get that there is a constant C > 0 such

that for every k ≥ 0,

‖χAk‖Lp1 (Ω) ≤ C‖χAk‖δL2? (Ω). (3.25)

It follows from (3.24) and (3.25) that there is a constant C > 0 such that for every h > k ≥ 0,

‖χAh‖L2? (Ω) ≤ C(h− k)−1‖z1 − z2‖Lp(Ω)‖χAk‖δL2? (Ω).

Using Lemma 3.9 with Ξ(k) = ‖χAk‖L2? (Ω), we get that there is a constant C2 > 0 such that

‖χAK‖L2? (Ω) = 0 with K = CC2‖z1 − z2‖Lp(Ω).

We have shown (3.12) and the proof is finished.
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Remark 3.11. We mention that all the results given in Proposition 3.10 remain true if one replaces the growth
condition (3.4) with the following local Lipschitz continuity condition: for all M > 0 there exists a constant
LM > 0 such that f satisfies

|f(x, ξ)− f(x, η)| ≤ LM |ξ − η|, (3.26)

for a.e. x ∈ Ω and ξ, η ∈ R with |η|, |ξ| ≤M . Of course in that case the constant C that appears in (3.12) also
depends on the Lipschitz constant LM . A condition such as (3.26) is needed to prove the H2s+β(Ω) regularity
for u provided that z ∈ Hβ(Ω) where 0 ≤ β < 1 (see [8], Cor. 2.15). This higher regularity is important for finite
element error estimates as shown in ([8], Sect. 4).

3.3. The case of the fractional Laplace operator

In this section, we consider the semilinear elliptic problem (1.5). Firstly, the fractional Laplace operator
(−∆)s is given formally for x ∈ RN by

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = CN,s lim

ε↓0

∫
{y∈RN :|x−y|≥ε}

u(x)− u(y)

|x− y|N+2s
dy, (3.27)

whenever the limit exists, and CN,s is a normalization constant depending only on N and s. We refer to
[18, 19, 29, 47] for the class of functions for which the limit exists and for further properties and applications of
this operator.

Secondly, in order to give our notion of solution to (1.5) we need the fractional order Sobolev space

Hs
0(Ω) := {u ∈ Hs(RN ) : u = 0 in RN \ Ω}.

For every 0 < s < 1, we have that Hs
0(Ω) endowed with the norm

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

,

is a Hilbert space, and we shall denote by H−s(Ω) its dual. It is well known (see e.g. [29]) that the embedding
(2.2) holds with Hs

0(Ω) replaced by Hs
0(Ω). We notice that there is a priori no obvious inclusion between Hs

0(Ω)
and Hs

0(Ω). In fact for an arbitrary bounded open set, the two spaces are different since by [32], D(Ω) is not
always dense in Hs

0(Ω). But if Ω has a Lipschitz continuous boundary, then by [32], D(Ω) is dense in Hs
0(Ω). In

that case we have that Hs
0(Ω) = Hs

0(Ω) if 1
2 < s < 1. For 0 < s ≤ 1

2 , even if Ω is smooth, the two spaces do not
coincide. In fact if Ω has a Lipschitz continuous boundary and 0 < s ≤ 1

2 , then by Remark 2.1, Hs
0(Ω) = Hs(Ω).

This shows that the constant function 1 belongs to Hs(Ω) = Hs
0(Ω), but clearly 1 6∈ Hs

0(Ω).
Here is our notion of solution to the system (1.5).

Definition 3.12. A u ∈ Hs
0(Ω) is said to be a weak solution of (1.5) if the identity

CN,s
2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
Ω

f(x, u)v dx = 〈z, v〉H−s(Ω),Hs0 (Ω),

holds for every v ∈ Hs
0(Ω) and the right hand side makes sense.
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Thirdly, notice that the operator (−∆)s defined in (3.27) does not incorporate a boundary condition. We let
(−∆)sD be the selfadjoint operator on L2(Ω) associated with the bilinear form

ED(u, v) :=
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy, u, v ∈ Hs

0(Ω),

in the sense that{
D((−∆)sD) =

{
u ∈ Hs

0(Ω), ∃ w ∈ L2(Ω), ED(u, v) = (w, v)L2(Ω) ∀v ∈ Hs
0(Ω)

}
(−∆)sDu = w.

Then (−∆)sD is the realization in L2(Ω) of (−∆)s with the Dirichlet exterior condition u = 0 in RN \ Ω. More
precisely, we have that

D((−∆)sD) = {u ∈ Hs
0(Ω) : (−∆)sDu ∈ L2(Ω)}, (−∆)sDu = (−∆)su.

With this setting, the system (1.5) can be rewritten as

(−∆)sDu+ f(x, u) = z in Ω.

We also mention that even if we take aij = δij , that is, L = −∆, the operators (LD)s and (−∆)sD are different.
More precisely their eigenvalues and eigenfunctions are different. We refer to [14, 42] for more details on this
topic.

Finally, we notice the following.

Remark 3.13. Letting Ṽ0 := Hs
0(Ω) ∩ LF (Ω), then all the results in Sections 3.1 and 3.2 hold for the system

(1.5) if one replaces in the statements and proofs V0, Hs(Ω) and H−s(Ω) by Ṽ0, Hs
0(Ω) and H−s(Ω), respectively

and the form FD by

FD(u, v) =
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
Ω

f(x, u)v dx, (3.28)

for u, v ∈ Hs
0(Ω). All the proofs follow similarly with very minor modifications. In fact in the proofs of all the

results in Sections 3.1 and 3.2, the main tool is the representation (2.5) of the operator (LD)s. Here also, using
the definition of (−∆)sD and (3.28) we get that for u, v ∈ Hs

0(Ω) (using that u = v = 0 in RN \ Ω),

〈(−∆)sDu, v〉H−s(Ω),Hs0 (Ω) =
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

+
CN,s

2

∫
Ω

∫
RN\Ω

u(y)v(y)

|x− y|N+2s
dxdy +

CN,s
2

∫
RN\Ω

∫
Ω

u(x)v(x)

|x− y|N+2s
dxdy

=
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
Ω

κ̃s(x)u(x)v(x) dx,

where we have set

κ̃s(x) = CN,s

∫
RN\Ω

dy

|x− y|N+2s
.
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This shows that we have a similar representation as in (2.5) where in the present situation the kernel KL
s (x, y)

and κs(x) are replaced by CN,s|x− y|−N−2s and κ̃s(x), respectively.

3.4. An example

We conclude this section with the following example.

Example 3.14. Let q ∈ [1,∞) and let b : Ω → (0,∞) be a function in L∞(Ω) such that b(x) > 0 for a.e.
x ∈ Ω. Define f : Ω × R → R by f(x, t) = b(x)|t|q−1t. It is clear that f satisfies Assumption 2.3 and the

associated function F : Ω × R → [0,∞) is given by F (x, t) = 1
q+1b(x)|t|q+1. For a.e. x ∈ Ω, the inverse f̃(x, ·)

of f(x, ·) is given by f̃(x, t) = (b(x))
− 1
q |t|

1−q
q t. Therefore, the complementary function F̃ of F is given by

F̃ (x, t) = q
q+1 (b(x))

− 1
q |t|

q+1
q . Hence,

tf(x, t) = (q + 1)F (x, t) and tf̃(x, t) =
q + 1

q
F̃ (x, t),

and we have shown that Assumption 2.4 is also satisfied.
Next, let us show that f satisfies the growth condition (3.4). If ξ = 0 or η = 0 then the assertion (3.4) is

obvious since f(x, 0) = 0. Hence, we assume that ξ 6= 0 and η 6= 0. Moreover, since |f(x,−γ)| = |f(x, γ)| we
may assume without loss of generality that |η| ≥ |ξ|. Hence, there exists α ∈ R with |α| ≥ 1 such that η = αξ.
It follows that

|f(x, ξ − η)| = |b(x)| · |ξ − αξ|q = |b(x)| · |1− α|q|ξ|q

and

|f(x, ξ)− f(x, η)| = |b(x)| · ||ξ|q sgn(ξ)− |α|q|ξ|q sgn(α) sgn(ξ)|
= |b(x)| · |ξ|q · |1− |α|q sgn(α)|.

The proof is done if c|1−α|q ≤ |1− |α|q sgn(α)| for all α ∈ R \ (−1, 1). For α = 1 this inequality is obvious. For
α > 1 this inequality is equivalent to

c(α− 1)q ≤ αq − 1⇐⇒ c ≤ αq − 1

(α− 1)q
= g(α),

where g : [1,∞)→ R is given by g(x) := (xq − 1)/(x− 1)q. Differentiating shows that g′(x) ≤ 0, hence,

inf
x>1

g(x) = lim
x→∞

g(x) = 1 ≥ c.

To finish, we prove the case α ≤ −1. In this case, we have to show that

c(1 + |α|)q ≤ 1 + |α|q ⇔ c ≤ 1 + |α|q

(1 + |α|)q
= h(|α|),

where h : [1,∞)→ R is given by h(x) = (1 + xq)/(1 + x)q. Differentiating shows that h′(x) ≥ 0, hence,

inf
x≥1

h(x) = h(1) = c,

and this completes the proof of (3.4). In particular, we have that f also satisfies the condition (3.26).
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4. Optimal control problem: existence

Now as the state equation (1.1) has a unique solution, it follows that the control-to-state map (solution map)

S : L∞(Ω)→ Hs(Ω) ∩ L∞(Ω), z 7→ S(z) = u, (4.1)

is well defined. We notice that S is also well defined as a map from Lp(Ω) into Hs(Ω) ∩ L∞(Ω) where p is as in
(3.10). We further remark that we have defined S on L∞(Ω) but we shall see below that J2 will be defined over
L2(Ω). This mismatch leads to the well-established concept of the so-called 2-norm discrepancy ([44], Sect. 4)
while studying the second order sufficient conditions in Section 5. Remarkably, for enough certain (N, s) pairs
we can set p = 2 and define

S : L2(Ω)→ Hs(Ω) ∩ L∞(Ω), (4.2)

and as a result we can avoid the 2-norm discrepancy. This is due to the following result.

Lemma 4.1. Let 0 < s < 1 and N ∈ N. If N < 4s, then one can take p = 2 in (3.10) to obtain all the results
in Theorem 3.7 and Proposition 3.10.

Proof. The proof is a direct consequence of the definition of p in (3.10).

If (N, s) fulfills the conditions of Lemma 4.1, then we define S as in (4.2), otherwise we let S be as in (4.1).
In order to accommodate both cases (4.1) and (4.2), we define

S : Lp̃(Ω)→ Hs(Ω) ∩ L∞(Ω), where p̃ =

{
2 if Lemma 4.1 holds,
+∞ otherwise.

(4.3)

We shall see that when p̃ = 2 we do not have the 2-norm discrepancy.
We begin by showing that under the growth assumption (3.4), the mapping S is Lipschitz continuous.

Lemma 4.2 (S is Lipschitz continuous). Let Assumption 2.4 hold. Let z1, z2 ∈ H−s(Ω) and u1, u2 ∈ Hs(Ω)
be the corresponding weak solutions of (1.1). Then there is a constant C = C(N, s,Ω) > 0 such that

‖u1 − u2‖L2(Ω) ≤ C‖u1 − u2‖Hs(Ω) ≤ C‖z1 − z2‖H−s(Ω). (4.4)

In addition, let p be as in (3.10). Let Assumption 2.4 hold and assume that f satisfies the growth condition
(3.4). Let u1, u2 ∈ Hs(Ω) ∩ L∞(Ω) be the weak solutions to (1.1) with right hand sides z1 and z2 in Lp(Ω),
respectively. Then there is a constant C = C(N, p, s,Ω) > 0 such that

‖u1 − u2‖L∞(Ω) + ‖u1 − u2‖Hs(Ω) ≤ C‖z1 − z2‖Lp(Ω). (4.5)

Proof. Firstly, (4.4) is due to Proposition 3.3. In this case one does not need the growth assumption (3.4) on f .
It follows from (3.3) that there is a constant C > 0 such that

‖u1 − u2‖Hs(Ω) ≤ C‖u1 − u2‖H−s(Ω) ≤ C‖z1 − z2‖Lp(Ω).

Secondly, since by assumption f satisfies (3.4), it follows from (3.12) in Proposition 3.10 that

‖u1 − u2‖L∞(Ω) ≤ C‖z1 − z2‖Lp(Ω).

Now (4.5) follows from the above two estimates. The estimate (4.5) shows that S is Lipschitz continuous as a
map from Lp(Ω) into Hs(Ω) ∩ L∞(Ω) and hence, as a map from L∞(Ω) into Hs(Ω) ∩ L∞(Ω).
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Remark 4.3. In view of Lemma 4.1 we can replace p by p̃ in Lemma 4.2.

Now we recall the cost functional from (1.2), i.e., J(u, z) := J1(u) + J2(z). We let J1 : L2(Ω) → (−∞,∞]
and J2 : L2(Ω)→ (−∞,∞], and as a result we can write the reduced minimization problem

min
z∈Zad

J (z) := J1(S(z)) + J2(z). (4.6)

Next we state the existence of solutions to (4.6) and equivalently to the system (1.2) and (1.3).

Theorem 4.4 (Existence of optimal control). Let the assumptions of Theorem 3.7 hold. Assume in addition
that f satisfies the growth condition (3.4) and that

f(·, w(·)) ∈ L2(Ω) for every w ∈ L∞(Ω). (4.7)

Then under the following assumptions on J1 and J2,

(i) J1 : L2(Ω)→ [0,+∞] is proper and lower semicontinuous;
(ii) J2 : L2(Ω)→ (−∞,+∞] is proper, convex, lower-semicontinuous and bounded from below;

the minimization problem (4.6) admits a solution.

Proof. We begin by noticing that J is bounded from below. Therefore, the infimum

j := inf
z∈Zad

J (z)

exists. Let {(un, zn)}n∈N be a minimizing sequence, that is, zn ∈ Zad and un = S(zn), for n ∈ N, are such that
J (zn)→ j as n→∞.

Notice that Zad ⊂ L∞(Ω) ⊂ Lp(Ω) for every 1 < p <∞. Let p > N
2s . Since zn ∈ Zad we have that ‖zn‖Lp(Ω) ≤

‖zn‖L∞(Ω) ≤ max{‖za‖L∞(Ω), ‖zb‖L∞(Ω)}. Since Lp(Ω) is a reflexive Banach space, we have that by taking
a subsequence if necessary, we may assume that {zn}n∈N converges weakly in Lp(Ω) to some z̄ ∈ Zad, i.e.,
zn ⇀ z̄ as n→∞. This z̄ is the candidate for our optimal control. Notice that the aforementioned argument
covers both cases of p̃ defined in (4.3).

Next we shall show that the state {un}n∈N converges, as n → ∞, to some ū in a suitable sense and (ū, z̄)
satisfies the state equation. Towards this end we introduce the sequence

bn(·) := f(·, un(·)), n ∈ N.

Since

‖un‖L∞(Ω) ≤ C‖zn‖Lp(Ω) ≤ C max{‖za‖L∞(Ω), ‖zb‖L∞(Ω)}, (4.8)

it follows from the fact that f(x, ·) is increasing and (4.7) that {bn}n∈N is bounded in L2(Ω). As a consequence,
taking a subsequence if necessary, we may assume that bn ⇀ b in L2(Ω) as n→∞. Notice that for every n ∈ N,
un satisfies the identity ∫

Ω

(LD)
s
2un(LD)

s
2 v dx =

∫
Ω

Bnv dx, ∀ v ∈ V0, (4.9)

where Bn := −f(·, un) + zn converges weakly in L2(Ω) to −b+ z̄ as n→∞. Taking v = un as a test function
in (4.9), we get that there is a constant C > 0 (independent of n) such that

‖un‖Hs(Ω) ≤ C‖Bn‖L2(Ω).



OPTIMAL CONTROL OF FRACTIONAL SEMILINEAR PDES 19

Since {Bn}n∈N is a bounded sequence in L2(Ω), it follows from the preceding estimate that {un}n∈N is bounded
in Hs(Ω), hence as before, we may assume that un ⇀ ū in Hs(Ω) as n→∞ and thus, strongly in L2(Ω) since
the embedding Hs(Ω) ↪→ L2(Ω) is compact. Since by (4.8), {un}n∈N is uniformly bounded in L∞(Ω) and by the
uniqueness of the limit, we can deduce that ū ∈ L∞(Ω). We have already shown that ū ∈ Hs(Ω). Thus, using
(4.7) and (2.7), we get that ∫

Ω

F (x, ū) dx ≤
∫

Ω

ūf(x, ū) dx <∞.

This implies that ū ∈ LF (Ω) and thus, ū ∈ V0 = Hs(Ω) ∩ LF (Ω). Next, we show that ū is the weak solution
associated with z̄. Firstly, since un converges a.e. to ū in Ω as n→∞, it follows from the continuity of f(x, ·)
that f(·, un(·))→ f(·, ū(·)) a.e. in Ω as n→∞. Secondly, as un, ū ∈ L∞(Ω) for every n ∈ N, it follows from (4.7)
that f(·, un(·)), f(·, ū(·)) ∈ L2(Ω) for every n ∈ N. Thirdly, it follows from (4.8) that there is a constant M > 0
(independent of n) such that |un(x)| ≤M for a.e. x ∈ Ω . Since f(x, ·) is strictly increasing and f(x, 0) = 0, for
a.e. x ∈ Ω, we have that |f(x, un(x))| ≤ f(x,M) and f(·,M) ∈ L2(Ω) by (4.7). Therefore, using the Lebesgue
Dominated Convergence Theorem, we get that f(·, un(·)) → f(·, ū(·)) in L2(Ω) as n → ∞. Thus, taking the
limit as n→∞ in both sides of the following identity∫

Ω

(LD)
s
2un(LD)

s
2 v dx+

∫
Ω

f(x, un)v dx =

∫
Ω

znv dx, ∀ v ∈ V0,

and using all the above convergences, we can conclude that ū is the weak solution of (1.1) corresponding to
the right hand side z̄. It remains to show that z̄ is the optimal control. This is due to the lower semicontinuity
of J1, i.e., since S(zn) → S(z̄) in L2(Ω) as n → ∞, we have that lim infn→∞ J1(S(zn)) ≥ J1(S(z̄)). Since J2

is convex, proper and lower semicontinuous (cf. (ii)), it follows that it is weakly lower semicontinuous (see e.g.
[13], Thm. 3.3.3), i.e., lim infn→∞ J2(zn) ≥ J2(z̄). It then follows that

inf
z∈Zad

J (z) = lim inf
n→∞

J(un, zn) ≥ J(S(z̄), z̄) ≥ inf
z∈Zad

J (z),

and this completes the proof.

Remark 4.5. We notice the following facts.

(a) First, we mention that the nonlinearity f given in Example 3.14 also satisfies (4.7).

(b) Second, we notice that all the results proved in this section also hold for S̃ : Lp̃ → Hs
0(Ω) ∩ L∞(Ω), that

is, the solution operator to (1.5).

Remark 4.6 (Nonsmooth cost functionals). Notice that the condition (i) in Theorem 4.4 already allows
nonsmooth J1 such as J1(u) := ‖u−ud‖L1(Ω) which is non-smooth but Lipschitz continuous, where ud ∈ L1(Ω) is
given. The proof in Theorem 4.4 extends in a straightforward manner to other nonsmooth control regularizations
such as BV-regularization, i.e., when J2(z) :=

∫
Ω
|∇z| or when J(u, z) := J1(u) + J2(z) +

∫
Ω
|z| dx (with J1 and

J2 as in Thm. 4.4) by following ([11], Thm. 3.4), see also [10].

5. Optimal control problem: first and second order
optimality conditions

Before we investigate more regularity of the control-to-state map, we make the following further regularity
assumptions on the nonlinearity f .

Assumption 5.1. We assume the following.

(i) The function f(x, ·) is k-times, with k = 1, 2, continuously differentiable for a.e. x ∈ Ω.
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(ii) For all M > 0 there exists a constant LM > 0 such that f satisfies (3.26) and∣∣∣∣∂kf∂uk
(x, ξ)− ∂kf

∂uk
(x, η)

∣∣∣∣ ≤ LM |ξ − η|,
for a.e. x ∈ Ω and all ξ, η ∈ R with |ξ|, |η| ≤M .

(iii)
∂f

∂u
(·, 0) ∈ L∞(Ω).

(iv)
∂2f

∂u2
(·, 0) ∈ L∞(Ω).

Remark 5.2. We mention the following facts.

(a) For notational convenience, we will write fu and fuu instead of ∂f
∂u and ∂2f

∂u2 , respectively.
(b) If f satisfies Assumption 5.1(i)–(ii) with k = 1 and u ∈ L∞(Ω), then (iii) implies that there is a constant

C > 0 such that

‖fu(·, u)‖L∞(Ω) ≤ ‖fu(·, u)− fu(·, 0)‖L∞(Ω) + ‖fu(·, 0)‖L∞(Ω)

≤ C
(
‖u‖L∞(Ω) + ‖fu(·, 0)‖L∞(Ω)

)
<∞. (5.1)

(c) Similarly, if f satisfies Assumption 5.1(i)-(ii) with k = 2 and u ∈ L∞(Ω), then (iv) implies that there is a
constant C > 0 such that

‖fuu(·, u)‖L∞(Ω) ≤ C
(
‖u‖L∞(Ω) + ‖fuu(·, 0)‖L∞(Ω)

)
<∞. (5.2)

Next we show that S is twice continuously Fréchet differentiable.

Lemma 5.3 (Twice Fréchet differentiability of S). Let Assumptions 2.4 and 5.1 hold. Then the mapping
S : Lp̃(Ω)→ Hs(Ω)∩L∞(Ω), where p̃, is as in (4.3), is twice continuously Fréchet differentiable. Moreover, for
all z, ζ ∈ Lp̃(Ω), S′(z)ζ = uζ ∈ Hs(Ω) ∩ L∞(Ω) is defined as the unique weak solution of

(LD)suζ + fu(·, u)uζ = ζ inΩ, (5.3)

where u = S(z). Furthermore, for every z, ζ1, ζ2 ∈ Lp̃(Ω),

S′′(z)[ζ1, ζ2] := (S′′(z)ζ1)ζ2 = uζ1,ζ2 ∈ Hs(Ω) ∩ L∞(Ω),

is the unique weak solution of

(LD)suζ1,ζ2 + fu(·, u)uζ1,ζ2 = −fuu(·, u)uζ1uζ2 in Ω, (5.4)

where u = S(z) and uζi = S′(z)ζi, i = 1, 2.

Proof. The proof is based on the implicit function theorem. Let p̃ be as in (4.3). We introduce the space

W =
{
u ∈ Hs(Ω) ∩ L∞(Ω), (LD)su ∈ Lp̃(Ω)

}
with norm

‖u‖W = ‖u‖Hs(Ω)∩L∞(Ω) + ‖(LD)su‖Lp̃(Ω).
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We next introduce the function

F :W × Lp̃(Ω)→ Lp̃(Ω), F(u, z) = (LD)su+ f(·, u)− z,

with (u, z) ∈ W × Lp̃(Ω). Under Assumption 5.1(i), F is of class C2. Moreover, Assumptions 2.4 and 5.1(i)
imply that fu ≥ 0. Notice that since u ∈ L∞(Ω), it follows from (5.1) that fu(·, u) ∈ L∞(Ω). Then applying
Theorem 3.7 to the operator

Fu(u, z) = (LD)s + fu(·, u),

we deduce that Fu(u, z) is an isomorphism from W to Lp̃(Ω). Since F(u, z) = 0 if and only if u = S(z), we can
apply the implicit function theorem ([38], Thm. 2.7.2) to deduce that S is of class C2 and fulfills F(S(z), z) = 0.
Therefore (5.3) follows easily. Moreover, (5.4) follows after (in addition) using Assumption 5.1(iv). The proof is
finished.

Throughout the remainder of the paper we restrict ourselves to the case where

J1(u) =
1

2
‖u− ud‖2L2(Ω) and J2(z) =

µ

2
‖z‖2L2(Ω). (5.5)

The given function ud ∈ L2(Ω) and µ > 0 is the cost of the control. We further remark that these results can
be directly extended to a more general setting as described in the monograph [44].

Next, we introduce the adjoint state φ ∈ Hs(Ω) as the unique weak solution of the adjoint equation

(LD)sφ+ fu(·, u)φ = u− ud in Ω, (5.6)

where u ∈ L∞(Ω) is given. Using Assumptions 2.4 and 5.1(i) we have that fu(x, u(x)) ≥ 0 for a.e. x ∈ Ω.

Lemma 5.4 (Existence of solutions to the adjoint equation). Let Assumptions 2.4 and 5.1(i)–(iii) hold
for k = 1. Let u ∈ L∞(Ω) and ud ∈ L2(Ω) be given. Then there exists a unique φ ∈ Hs(Ω) weak solution to
(5.6). In addition, φ ∈ H2s(Ω). Finally, if ud in Lp(Ω) where p is as in (3.10), then φ ∈ L∞(Ω).

Proof. Since fu(·, u) ∈ L∞(Ω) and fu(·, u) ≥ 0, the existence and uniqueness follow by using Assumption 5.1(iii)
and Proposition 3.2. Since (notice that (5.6) is a linear equation in φ)

φk = λ−sk

∫
Ω

(u− ud − fu(·, u)φ)ϕk dx,

then using the definition of the H2s-norm (see (2.4)) we can deduce that

‖φ‖H2s(Ω) = ‖u− ud − fu(·, u)φ‖L2(Ω).

The L∞(Ω)-regularity of φ follows from Theorem 3.7. The proof is finished.

Lemma 5.5 (J is twice Fréchet differentiable). Let the assumptions of Lemma 5.3 and Lemma 5.4 hold.
Then the functional J : Lp̃(Ω)→ R is twice continuously Fréchet differentiable. Moreover for every z, ζ, ζ1, ζ2 ∈
Lp̃(Ω) there holds

J ′(z)ζ =

∫
Ω

(φ+ µz)ζ dx,
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and

J ′′(z)[ζ1, ζ2] =

∫
Ω

(
S′(z)ζ1S

′(z)ζ2 − φfuu(x, S(z))S′(z)ζ1S
′(z)ζ2

)
dx+ µ

∫
Ω

ζ1ζ2 dx.

Proof. The proof is based on the chain rule, the results from Lemma 5.3 together with the fact that∫
Ω

(S(z)− ud)S′(z)v dx =

∫
Ω

φv dx

and ∫
Ω

(S(z)− ud)S′′(z)[ζ1, ζ2] dx = −
∫

Ω

φfuu(x, S(z))S′(z)ζ1S
′(z)ζ2 dx,

which can be deduced from the weak formulations of (5.3), (5.4) and (5.6).

Since J is non-convex, in general due to the semilinear state equation, we cannot expect a unique solution to
the optimal control problem. We introduce locally optimal solutions: z̄ ∈ Zad is locally optimal or local solution
to (4.6) if there exists an ε > 0 such that

J (z̄) ≤ J (z) ∀z ∈ Zad ∩Bε(z̄),

where the Lp̃-ball Bε(z̄) centered at z̄ with radius ε is defined by

Bε(z̄) :=
{
z ∈ Lp̃(Ω), ‖z − z̄‖Lp̃(Ω) ≤ ε

}
.

Theorem 5.6 (First order necessary conditions). For every local solution z̄ of (4.6), there exist a unique
optimal state ū = S(z̄) and an optimal adjoint state φ̄ such that∫

Ω

(φ̄+ µz̄)(z − z̄) dx ≥ 0 ∀z ∈ Zad, (5.7)

which is equivalent to

z̄(x) = Π[za(x),zb(x)]

(
− 1

µ
φ̄(x)

)
for a.e. x ∈ Ω. (5.8)

Here, Π[za(x),zb(x)](w(x)) = min
{
zb(x),max{za(x), w(x)}

}
.

Proof. The proof of (5.7) is standard, see ([44], Lem. 4.18). For the equivalence between (5.7) and (5.8) we refer
to ([44], p. 217).

Remark 5.7. A necessary and sufficient condition for (5.7) to hold is that for a.e. x ∈ Ω,
z̄(x) = za(x) if φ̄(x) + µz̄(x) > 0,

z̄(x) ∈ [za(x), zb(x)] if φ̄(x) + µz̄(x) = 0,

z̄(x) = zb(x) if φ̄(x) + µz̄(x) < 0,

(5.9)
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or equivalently the following pointwise inequality in R:

(φ̄(x) + µz̄(x))(z − z̄(x)) ≥ 0 ∀z ∈ [za(x), zb(x)] and for a.e. x ∈ Ω.

We refer to ([44], Lem. 2.26) for a proof. We notice from (5.9) that |φ̄(x) + µz̄(x)| > 0 implies z̄ = za or z̄ = zb.
The set of all x ∈ Ω where |φ̄(x) + µz̄(x)| > 0 will be called later, a strongly active set.

Remark 5.8 (Nonsmooth cost functionals). We let J1 be as in (5.5). The first order optimality conditions
when J2(z) :=

∫
Ω
|∇z| are technical and are part of our future project (cf. [23] for the case of the classical

Laplacian). On the other hand in case J(u, z) = J1(u) + J2(z) + ν‖z‖L1(Ω) with J1, J2 as in (5.5) and constants
za, zb fulfilling za < 0 < zb, the first order optimality conditions are a modification of (5.8) by using the charac-
terization of the subdifferential of the L1(Ω)-norm (cf. [22], Cor. 3.2 and [27] for details). In particular, for a.e.
x ∈ Ω, we obtain the following:

(a) z̄(x) = Π[za,zb]

(
− 1
µ (φ̄(x) + νζ̄(x))

)
;

(b) z̄(x) = 0 if and only if |φ̄(x)| ≤ ν;
(c) ζ̄(x) = Π[−1,1]

(
− 1
ν φ̄(x)

)
.

Before we state the second order necessary and sufficient conditions we first introduce the set of strongly
active constraints (or strongly active set) Aτ (z̄) (see also Rem. 5.7). For τ ≥ 0 an arbitrary but fixed parameter,
we let

Aτ (z̄) := {x ∈ Ω : |φ̄(x) + µz̄(x)| > τ}.

We also define the τ -critical cone (cf. [31]) associated to a control z̄ as

Cτ (z̄) :=
{
v ∈ Lp̃(Ω), v fulfills (5.11)

}
, (5.10)

where for a.e. x ∈ Ω,

v(x)

 ≥ 0, if z̄(x) = za(x),
≤ 0, if z̄(x) = zb(x),
0, if x ∈ Aτ (z̄).

(5.11)

Proposition 5.9 (Second order necessary conditions). Let z̄ ∈ Zad be a locally optimal control. Then
J ′′(z̄)[z, z] ≥ 0 for all z ∈ C0(z̄).

Proof. The proof is identical to the classical case s = 1 and is contained in ([44], Thm. 4.27).

Theorem 5.10 (Quadratic growth condition). Let z̄ ∈ Zad be a control satisfying the first order optimality
conditions (5.7). Assume that there exist two constants τ > 0 and δ > 0 such that

J ′′(z̄)[z, z] ≥ δ‖z‖2L2(Ω) ∀z ∈ Cτ (z̄). (5.12)

Then there are two constants % > 0 and β > 0 such that

J (z) ≥ J (z̄) + β‖z − z̄‖2L2(Ω) ∀z ∈ Zad ∩B%(z̄). (5.13)

Notice that (5.12) can be easily checked in several cases, for instance, when the state equation is linear and, as
a result the underlying optimal control problem is strictly convex. Nevertheless, in certain cases of non-convex
optimal control problems it is also possible to prove (5.12), see for instance [6]. Before proving Theorem 5.10
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we need the following auxiliary result which shall help us to deal with the 2-norm discrepancy. Notice that the
2-norm discrepancy only occurs when p̃ = +∞.

Lemma 5.11. Assume that Assumption 5.1 holds and let J : Lp̃(Ω) → R. Then for each M > 0 there is a
constant L(M) > 0 such that

|J ′′(z + h)[z1, z2]− J ′′(z)[z1, z2]| ≤ L(M)‖h‖Lp̃(Ω)‖z1‖L2(Ω)‖z2‖L2(Ω), (5.14)

for all z, h, z1, z2 ∈ Lp̃(Ω) satisfying max{‖z‖Lp̃(Ω), ‖h‖Lp̃(Ω)} ≤M .

Proof. We begin by setting u = S(z), uh = S(z+h) with the corresponding adjoint state φ and φh, respectively.
Moreover, let ui = S′(z)zi and ui,h = S′(z + h)zi for i = 1, 2. Using Lemma 5.5 we have

J ′′(z + h)[z1, z2]− J ′′(z)[z1, z2]

=

∫
Ω

(u1,hu2,h − u1u2) dx−
∫

Ω

φhfuu(x, uh)u1,hu2,h dx+

∫
Ω

φfuu(x, u)u1u2 dx

=

∫
Ω

(u1,hu2,h − u1u2) dx−
∫

Ω

φh (fuu(x, uh)u1,hu2,h − fuu(x, u)u1u2) dx

+

∫
Ω

(φ− φh)fuu(x, u)u1u2 dx.

Therefore

|J ′′(z + h)[z1, z2]− J ′′(z)[z1, z2]|
≤ ‖u1,hu2,h − u1u2‖L1(Ω) + ‖φ− φh‖L∞(Ω)‖fuu(·, u)u1u2‖L1(Ω)

+ ‖φh‖L∞(Ω)‖fuu(·, uh)u1,hu2,h − fuu(·, u)u1u2‖L1(Ω) = (I) + (II) + (III).

We shall estimate (I), (II) and (III) separately. We have

(I) ≤ ‖u1,h‖L2(Ω)‖u2,h − u2‖L2(Ω) + ‖u1,h − u1‖L2(Ω)‖u2‖L2(Ω). (5.15)

From (5.3) we recall that ui and ui,h solve the linear equations

(LD)sui + fu(·, u)ui = zi in Ω, (LD)sui,h + fu(·, uh)ui,h = zi in Ω. (5.16)

Using the properties of these linear equations and the fact that fu ≥ 0, we get that ‖ui‖L2(Ω) ≤ C‖zi‖L2(Ω) and
‖ui,h‖L2(Ω) ≤ C‖zi‖L2(Ω) for some constant C > 0. It then remains to estimate ‖ui,h − ui‖L2(Ω) for i = 1, 2.
Subtracting the two equations in (5.16) and rearranging the terms we obtain that

(LD)s(ui,h − ui) + fu(·, u)(ui,h − ui) = −(fu(·, uh)− fu(·, u))ui,h in Ω. (5.17)

We can estimate the L2-norm of the right hand side as

‖ (fu(·, uh)− fu(·, u))ui,h‖L2(Ω) ≤ ‖fu(·, uh)− fu(·, u)‖L∞(Ω)‖ui,h‖L2(Ω) ≤ ‖h‖Lp̃(Ω)‖zi‖L2(Ω),

where in the last step we have used the Lipschitz continuity of fu (Assumption 5.1) and S (cf. Lem. 4.2 and
Rem. 4.3), and the aforementioned estimate for ‖ui,h‖L2(Ω). Combining this estimate with the well-posedness
of (5.17) (cf. (5.3)) we obtain (for i = 1, 2) that there is a constant C > 0 such that

‖ui,h − ui‖L2(Ω) ≤ C‖h‖Lp̃(Ω)‖zi‖L2(Ω).
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Substituting this in the above estimate (5.15) of (I), we get that

(I) ≤ C‖z1‖L2(Ω)‖h‖Lp̃(Ω)‖z2‖L2(Ω). (5.18)

Next we estimate (II). Subtracting the adjoint equations (cf. (5.6)) for φ and φh we obtain that

LsD(φh − φ) + fu(x, u)(φh − φ) = uh − u+ (fu(x, u)− fu(x, uh))φh.

From the well-posedness of this equation and the L∞-estimate (under the assumptions of Lem. 5.4), we get that
there is a constant C > 0 such that

‖φh − φ‖L∞(Ω) ≤ ‖uh − u‖L∞(Ω) + ‖fu(·, u)− fu(·, uh)‖L∞(Ω)‖φh‖L∞(Ω) ≤ C‖h‖Lp̃(Ω),

where in the last step we have used the following: (a) the Lipschitz continuity of the control to state map (4.5)
(cf. Rem. 4.3), i.e., ‖uh − u‖L∞(Ω) ≤ C‖h‖Lp̃(Ω) which further implies that ‖uh‖L∞(Ω) is uniformly bounded
(cf. Lem. 4.1); (b) the uniform boundedness of φh which is due to the adjoint equation for φh (since uh is
uniformly bounded); (c) the Lipschitz continuity of fu(x, ·). To complete the estimate for (II), we need to
estimate ‖fuu(·, u)u1u2‖L1(Ω). We notice that

‖fuu(·, u)u1u2‖L1(Ω) ≤ C‖fuu(·, u)‖L∞(Ω)‖u1‖L2(Ω)‖u2‖L2(Ω) ≤ C‖z1‖L2(Ω)‖z2‖L2(Ω),

where we have used the assumption that fuu is bounded when u is bounded (cf. (5.2) and Assumption 5.1(i),
(ii), and (iv)). As a result, we get that

(II) ≤ C‖h‖Lp̃(Ω)‖z1‖L2(Ω)‖z2‖L2(Ω). (5.19)

Next we estimate (III). We first recall that ‖φh‖L∞(Ω) is uniformly bounded with respect to h. Furthermore

‖fuu(·, uh)u1,hu2,h − fuu(·, u)u1u2‖L1(Ω)

≤ ‖ (fuu(·, uh)− fuu(·, u))u1,hu2,h‖L1(Ω) + ‖fuu(·, u) (u1,hu2,h − u1u2) ‖L1(Ω)

≤ ‖fuu(·, uh)− fuu(·, u)‖L∞(Ω)‖u1,h‖L2(Ω)‖u2,h‖L2(Ω) + ‖fuu(·, u)‖L∞(Ω)‖u1,hu2,h − u1u2‖L1(Ω)

≤ C‖h‖Lp̃(Ω)‖z1‖L2(Ω)‖z2‖L2(Ω),

where in the last step we have used the Lipschitz continuity of fuu (Assumption 5.1(ii)) and the aforementioned
estimates for ‖ui,h‖L2(Ω), i = 1, 2, the aforementioned boundedness of fuu(·, u) and the estimate for ‖u1,hu2,h −
u1u2‖L1(Ω) as in the case of (I). We have shown that
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(III) ≤ C‖h‖Lp̃(Ω)‖z1‖L2(Ω)‖z2‖L2(Ω). (5.20)

Finally (5.14) follows from (5.18), (5.19) and (5.20). The proof is finished.

Now we are ready to give the proof of Theorem 5.10 which is inspired from ([44], Chap. 5). We emphasize
that the proof can also be deduced from the general theory given in [25]. In fact we shall apply the abstract
result from [25] for the case p̃ = 2.

Proof of Theorem 5.10. Let z ∈ Zad with ‖z − z̄‖Lp̃(Ω) ≤ %. We set h := z − z̄. Applying Taylor’s theorem
we have that

J (z) = J (z̄) + J ′(z̄)h+
1

2
J ′′(z̄ + θh)h2

= J (z̄) + J ′(z̄)h+
1

2
J ′′(z̄)h2 +

1

2
(J ′′(z̄ + θh)− J ′′(z̄))h2

with θ = θ(x) ∈ (0, 1). Using Lemma 5.11 we have that there is a constant L > 0 such that

J (z) ≥ J (z̄) + J ′(z̄)h+
1

2
J ′′(z̄)h2 − L‖h‖Lp̃(Ω)‖h‖2L2(Ω).

Since J ′(z̄)h =
∫

Ω
(µz̄ + φ̄)h dx and also ‖h‖Lp̃(Ω) ≤ %, we get that

J (z) ≥ J (z̄) +

∫
Aτ

(µz̄ + φ̄)h dx+

∫
Ω\Aτ

(µz̄ + φ̄)h dx+
1

2
J ′′(z̄)h2 − %L‖h‖2L2(Ω)

≥ J (z̄) +

∫
Aτ

(µz̄ + φ̄)h dx+
1

2
J ′′(z̄)h2 − %L‖h‖2L2(Ω),

where we have used Remark 5.7. From the first-order necessary conditions we have that J ′(z̄)h ≥ 0, and as a
result

J (z) ≥ J (z̄) + τ

∫
Aτ

|h(x)| dx+
1

2
J ′′(z̄)h2 − %L‖h‖2L2(Ω).

We next split h into two parts, h = h0 + h1 as

h0(x) :=

{
h(x) if x 6∈ Aτ
0 if x ∈ Aτ .

Notice that h0 fulfills the sign conditions in Cτ (z̄). Since h0 = 0 on Aτ , then h0 ∈ Cτ (z̄). Thus

J (z) ≥ J (z̄) + τ

∫
Aτ

|h(x)| dx+
1

2
J ′′(z̄)(h0 + h1)2 − %L‖h‖2L2(Ω). (5.21)

Next we estimate 1
2J
′′(z̄)(h0 + h1)2. Since h0 ∈ Cτ (z̄), then from (5.12) we have that

1

2
J ′′(z̄)h2

0 ≥
δ

2
‖h0‖2L2(Ω).
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Let p̃′ be such that 1
p̃ + 1

p̃′ = 1 with the convention that p̃′ = 1 if p̃ = +∞. By applying Young’s inequality we

see that (for a generic constant C)

|J ′′(z̄)[h0, h1]| ≤ C‖h0‖L2(Ω)‖h1‖L2(Ω) ≤
δ

4
‖h0‖2L2(Ω) + C‖h1‖2L2(Ω)

≤ δ

4
‖h0‖2L2(Ω) + C‖h1‖Lp̃′ (Ω)‖h1‖Lp̃(Ω)

≤ δ

4
‖h0‖2L2(Ω) + C1%‖h1‖Lp̃′ (Ω),

where in the last step we have used that ‖h1‖Lp̃(Ω) ≤ %. Similarly, we have that∣∣∣1
2
J ′′(z̄)h2

1

∣∣∣ ≤ C‖h1‖2L2(Ω) ≤ C2%‖h1‖Lp̃′ (Ω).

After summing the above inequalities we obtain that

1

2
J ′′(z̄)(h0 + h1)2 ≥ δ

2
‖h0‖2L2(Ω) −

(δ
4
‖h0‖2L2(Ω) + (C1 + C2)%‖h1‖Lp̃′ (Ω)

)
≥ δ

4
‖h0‖2L2(Ω) − (C1 + C2)%‖h1‖Lp̃′ (Aτ ),

where in the last step we have also used that h1 = 0 on Ω \Aτ . Substituting this in (5.21) and rearranging the
terms we obtain that

J (z) ≥ J (z̄) + τ‖h‖L1(Aτ ) − (C1 + C2)%‖h‖Lp̃′ (Aτ ) +
δ

4
‖h‖2L2(Ω\Aτ ) − %L‖h‖

2
L2(Ω), (5.22)

where we have used that ‖h1‖Lp̃′ (Aτ ) = ‖h‖Lp̃′ (Aτ ) and ‖h0‖L2(Ω) = ‖h‖L2(Ω\Aτ ). Now we consider two cases.

Case 1. p̃ = +∞. Then p̃′ = 1. Choosing % small enough in (5.22) so that (C1 + C2)% ≤ τ
2 we obtain that

J (z) ≥ J (z̄) +
τ

2
‖h‖L1(Aτ ) +

δ

4
‖h‖2L2(Ω\Aτ ) − %L‖h‖

2
L2(Ω)

≥ J (z̄) +
τ

2
‖h‖2L2(Aτ ) +

δ

4
‖h‖2L2(Ω\Aτ ) − %L‖h‖

2
L2(Ω),

where we have assumed that % ≤ 1 (without loss of generality) which implies that h(x)2 ≤ h(x) for a.e. x ∈ Ω
and thus ‖h‖L1(Aτ ) ≥ ‖h‖2L2(Aτ ). Thus, we obtain

J (z) ≥ J (z̄) + min
{τ

2
,
δ

4

}
‖h‖2L2(Ω) − %L‖h‖

2
L2(Ω)

≥ J (z̄) +
1

2
min

{τ
2
,
δ

4

}
‖h‖2L2(Ω),

where in the last step we have set % = 1
2L min

{
τ
2 ,

δ
4

}
which can be made small enough since L can be made

large enough. We have shown (5.13).
Case 2. p̃ = 2. Then p̃′ = 2. We notice that there is no 2-norm discrepancy for us in this case, thus the situation
is similar to ([39], Thm. 4.29). We shall use the results in ([25], Thms. 2.3 and 2.7).

(i) Firstly, we notice that J : L2(Ω)→ R is of class C2. Moreover, J ′(z) and J ′′(z) can be extended to linear
and bilinear forms, respectively, on L2(Ω).
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(ii) Let {(zk, ζk)}k ∈ Zad × L2(Ω) be a sequence such that ‖zk − z‖L2(Ω) → 0 and ζk ⇀ ζ weakly in L2(Ω) as
k →∞. We claim that

J ′(z)ζ = lim
k→∞

J ′(zk)ζk, (5.23)

J ′′(z)[ζ, ζ] ≤ lim inf
k→∞

J ′′(zk)[ζk, ζk], (5.24)

if ζ = 0, then C lim inf
k→∞

‖ζk‖2L2(Ω) ≤ lim inf
k→∞

J ′′(zk)[ζk, ζk], (5.25)

holds for some constant C > 0.
Indeed, since {zk}k converges to z in L2(Ω) as k →∞, therefore using Lemma 5.3 and the continuity of S,
we get that S(zk)→ S(z) in Hs(Ω)∩L∞(Ω) as k →∞. Using this property in the adjoint equation (5.6),
we can deduce that φ(zk)→ φ(z) in Hs(Ω) ∩ L∞(Ω) as k →∞. Next, since (φ(zk) + µzk)→ (φ(z) + µz)
in L2(Ω) and ζk ⇀ ζ weakly in L2(Ω), as k →∞, we have that (φ(zk) + µzk)ζk ⇀ (φ(z) + µz)ζ in L1(Ω)
as k →∞. Then from the expression of J ′(z)ζ in Lemma 5.5, we can deduce that

lim
k→∞

J ′(zk)ζk = lim
k→∞

∫
Ω

(φ(zk) + µzk) ζk dx =

∫
Ω

(φ(z) + µz) ζ dx = J ′(z)ζ,

and we have shown (5.23).
From the expression of J ′′ in Lemma 5.5, we have that

J ′′(zk)[ζk, ζk] =

∫
Ω

(
|S′(zk)ζk|2 − φ(zk)fuu(x, S(zk))|S′(zk)ζk|2

)
dx+ µ

∫
Ω

ζ2
k dx. (5.26)

Since S′(zk)ζk is the unique weak solution of (5.3) with right-hand side ζk, and ζk ⇀ ζ weakly in L2(Ω)
as k → ∞, hence the sequence {ζk}k∈N is bounded, we have that S′(zk)ζk is bounded in Hs(Ω). Thus,
after a subsequence if necessary, we have that S′(zk)ζk converges weakly to S′(z)ζ in Hs(Ω) and strongly
in L2(Ω) (since the embedding Hs(Ω) ↪→ L2(Ω) is compact) as k →∞. Using similar arguments together
with the properties of fuu and φ we can deduce that

lim
k→∞

∫
Ω

(
φ(zk)fuu(x, S(zk))|S′(zk)ζk|2

)
dx =

∫
Ω

(
φ(z)fuu(x, S(z))|S′(z)ζ|2

)
dx.

Now taking the limit as k →∞ of (5.26) and using the above convergences, we get

lim inf
k→∞

J ′′(zk)[ζk, ζk] = lim
k→∞

∫
Ω

(
|S′(zk)ζk|2 − φ(zk)fuu(x, S(zk))S′(zk)ζkS

′(zk)ζk
)

dx+ µ lim inf
k→∞

∫
Ω

ζ2
k dx

≥
∫

Ω

(
|S′(z)ζ|2 − φ(z)fuu(x, S(z))S′(z)ζS′(z)ζ

)
dx+ µ

∫
Ω

ζ2 dx = J ′′(z)[ζ, ζ],

where in the last integral, we have used the weak lower semicontinuity of the L2(Ω)-norm. We have shown
(5.24).
It remains to show (5.25). Since ζ = 0, then all the integral terms except the last one in the expression of
J ′′(zk)[ζk, ζk] vanish and (5.25) follows with C = µ.

(iii) The relation between Cτ (z̄) in (5.10) and Cz̄ in ([25], Thm. 2.3): In case za, zb are constants this is
discussed in ([25], pp. 273–274) which can be extended to the case when za and zb are bounded functions.

Now the estimate (5.13) follows from the above properties by applying ([25], Thms. 2.3 and 2.7). The proof is
finished.
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Remark 5.12. We mention that all the results in this section, except the H2s-elliptic regularity result in
Lemma 5.4, hold for the map S̃ by replacing in all the statements and proofs, (LD)s by (−∆)sD. For (−∆)sD
only local maximal elliptic regularity can be achieved. More precisely, for the integral fractional Laplacian, we
have the following situation concerning the solution φ of the corresponding adjoint equation.

• By [34] if 0 < s < 1
2 and Ω is smooth, then φ ∈ H2s(Ω).

• If 1
2 ≤ s < 1, an example has been given in [41] where Ω is smooth but φ 6∈ H2s(Ω).

In general, that is, for all 0 < s < 1 and an aribitrary bounded open set, one can only achieve a local elliptic
maximal regularity, that is, φ always belongs to H2s

loc(Ω) (see e.g. [14] for more details).

Acknowledgements. The authors thank both reviewers for their careful reading of the manuscript and for their useful
comments that helped to improve the quality of the final version of the paper.
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