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Abstract
This paper introduces the notion of state constraints for optimal control problems gov-
erned by fractional elliptic partial differential equations. Several mathematical tools
are developed during the process to study these problems, for instance, the charac-
terization of the dual of fractional-order Sobolev spaces and the well-posedness of
fractional elliptic equations with measure-valued data. These tools are widely appli-
cable. We show well-posedness of the optimal control problem and derive the first-
order optimality conditions. Notice that the adjoint equation is a fractional partial
differential equation with a measure as the right-hand-side datum. We use the char-
acterization of the fractional- order dual spaces to study the regularity of solutions of
the state and adjoint equations. We emphasize that the classical case was considered
by E. Casas, but almost none of the existing results are applicable to our fractional
case. As an application of the regularity result of the adjoint equation, we establish the
Sobolev regularity of the optimal control. In addition, under this setup, even weaker
controls can be used.
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1 Introduction

The main goal of this paper is to introduce and study an optimal control problem
with fractional partial differential equation (PDE) as constraints. We shall denote the
fractional exponent by s ∈]0, 1[. The main novelty of the paper is due to additional
constraints on the state u and the control z. Recently, article [1] has derived a fractional
Helmholtz equation using the first principle arguments. The authors have also shown a
direct qualitative match between the numerical simulations and real data for a problem
in geophysical electromagnetics. This fractional Helmholtz equation is a generaliza-
tion of our state equation in (2a). We further notice that the fractional operators are
also starting to play a pivotal role in other applications: imaging science, phase field
models, diffusion of biological species, and data science, see [2] and the references
therein. In view of these applications, control or source identification problems for
fractional equations are natural and have also motivated the current study.

Optimal control of fractional PDEs with control constraints has recently received a
lot of attention. We refer to [3] for the optimal control of fractional semilinear PDEs
with both spectral and integral fractional Laplacians with distributed control, see also
[4] for such a control of an integral operator. We refer to [5] for the boundary control
with the spectral fractional Laplacian and [6,7] for the exterior optimal control of
fractional PDEs. See [8] for the optimal control of quasi-linear fractional PDEs where
the control is in the coefficients.

We remark that the classical case (s = 1), is well known, see, for instance, [9–13]
and the references therein. Nevertheless, none of these existing works are directly
applicable to the case of fractional state constraints as stated in (2b). To be more
precise, for the classical case s = 1, the result on boundedness of solutions assumes
that p > N

2 (cf. (2c)) and the classical notion of veryweak solutions (cf. Definition 4.2)
does not extend to the fractional case. Moreover, the characterization of the dual of
classical integer-order Sobolev spaces, which is needed to establish the regularity of
solutions to the adjoint equation, was not known for fractional-order Sobolev spaces
(cf. Corollary 7.3). This additional adjoint regularity is then used to establish a higher
regularity result for the optimal control.

The rest of the paper is organized as follows. In Sect. 2, we introduce the prob-
lem under consideration and state the main difficulties and novelties. In Sect. 3, we
introduce the underlying notations and state some preliminary results. Our main work
starts from Sect. 4, where we establish the continuity of solutions to the state equation
and the well-posedness of the fractional PDEs with measured valued data. In Sect. 5,
we show the well-posedness of the optimal control problem and derive the optimal-
ity conditions. In Sect. 6, we derive the characterization of the dual spaces of the
fractional-order Sobolev spaces. We conclude the paper by giving higher regularity
results for the associated adjoint and control variables in Sect. 7. In addition, we also
discuss the case where we have weaker than L p-controls.
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2 Problem Formulation

Let � ⊂ R
N (N ≥ 1) be a bounded open set with boundary ∂�. The main goal of

this paper is to introduce and study an optimal control problem with both control and
state constraints:

min
(u,z)∈(U ,Z)

J (u, z) (1)

subject to the fractional elliptic PDE: find u ∈ U solving

(−�)su = z in �, u = 0 in RN\�, (2a)

as constraints and additional state constraints

u|� ∈ K := {
w ∈ C0(�) : w(x) ≤ ub(x), ∀x ∈ �

}
, (2b)

where C0(�) is the space of all continuous functions in � that vanish on ∂� and
ub ∈ C(�). Moreover, we also consider the control constraints

z ∈ Zad ⊂ L p(�) (2c)

with Zad being a nonempty, closed, and convex set. In (2c), the real number p satisfies

p >
N

2s
if N > 2s, p > 1 if N = 2s, p = 1 if N < 2s. (3)

Notice that for z ∈ L p(�), with p as in (3), we have that u solving (2a) belong to
L∞(�) (see, e.g., [3]).We refer to Sect. 5 for more details and the precise assumptions
on the functional J .

We remark that the case s = 1 is classical, see, for instance, [9–13] and the refer-
ences therein. Nevertheless, none of these existing works are directly applicable to the
case of fractional state constraints as stated in (2b). To bemore precise, for the classical
case s = 1, the result on boundedness of solutions assumes that p > N

2 and the notion
of very weak solutions does not extend to the case 0 < s < 1. Moreover, the char-
acterization of the dual of integer-order Sobolev spaces, which is needed to establish
the regularity of solutions to the adjoint equation, was not known for fractional-order
Sobolev spaces. This adjoint regularity is then used to establish a higher regularity
result for the optimal control.
Main Difficulties and Novelties of the Paper

(a) Nonlocal equation. Equation (2a) is nonlocal. In order to realize (−�)su in �, it
is necessary to know u in all of RN . In addition, in order for the system (2a) to
be well-posed, the condition u = 0 must be prescribed in RN \ � and not on ∂�,
as in the classical case of the Laplace operator.

(b) Continuity of the state solution with L p-data. Similarly to the classical case, we
need to show that the solution u of (2a) is continuous whenever z ∈ L p(�). We
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shall show that if z ∈ L p(�) with p satisfying (3), then every weak solution to
(2a) belongs to C0(�). This continuity result, in a sense, weakens the regularity
requirements on z in comparison with [14, Proposition 1.1] where they have
assumed that z ∈ L∞(�), and it also allows us to solve our control problem by
taking Zad ⊂ L p(�).

(c) Equation with measure valued data. The adjoint equation (see, Eq. (11)) associ-
ated with (2a) is a fractional PDE with a measure-valued datum. Firstly, we shall

show in Theorem 4.2 the well-posedness of such PDEs in L
p

p−1 (�) where p is
as in (3), and secondly, we shall prove in Corollary 7.2 that solutions belong to

W̃
t, p

p−1
0 (�) under suitable assumptions on p and 0 < t < 1.

(d) Characterization of the dual space W̃−s,p′
(�). Let 1 ≤ p < ∞, p′ := p

p−1

and let W̃−s,p′
(�) denote the dual of W̃ s,p

0 (�) (see, Sect. 3). In Theorem 6.1,
we shall show that if 1 ≤ p < ∞ and f ∈ W̃−s,p′

(�), then there is pair of
functions ( f 0, f 1) ∈ L p′

(�) × L p′
(RN × R

N ) such that for every v ∈ W̃ s,p
0 ,

we have: f (v) = 〈 f , v〉 = ∫
�

f 0v dx + ∫
RN

∫
RN f 1(x, y) v(x)−v(y)

|x−y| Np +s
dxdy. This

characterization is one of the main novelties of the current paper.
(e) Higher regularity of solutions to the Dirichlet problem (2a). Using the above

characterization of the dual spaces, we shall show in Corollary 7.1 that if 0 < t <

s < 1 and 2 < N
s < p ≤ ∞, or 1 ≤ p′ < 2 and 1

p′ < t < 1, and z ∈ W̃−t,p,
then weak solutions of the Dirichlet problem (2a) are also continuous up to the
boundary of �. This is the first time that such a regularity result has been proved
(with very weak right-hand-side data) for the fractional Laplace operator.

(f) Higher regularity of the optimal control. Using the above higher regularity of

the adjoint variable, we shall establish the Wt, p
p−1 (�)-regularity of the optimal

control. This higher regularity of the optimal control is crucial to establish some
rates of convergence of the numerical methods.

3 Notations and Preliminaries

We follow the notations from our previous work [6]. Unless otherwise stated,� ⊂ R
N

(N ≥ 1) is an arbitrary bounded open set, 0 < s < 1 and 1 ≤ p < ∞. For a function
u defined inRN (or in�), we shall denote by Ds,pu, the function defined inRN ×R

N

(or in � × �) by Ds,pu[x, y] := u(x) − u(y)

|x − y| Np +s
.

Then, we define the Sobolev space

Ws,p(�) :=
{
u ∈ L p(�) : Ds,pu ∈ L p(� × �)

}

and we endow it with the norm ‖u‖Ws,p(�) :=
(∫

�
|u|p dx + ‖Ds,pu‖p

L p(�×�)

) 1
p
.

We let Ws,p
0 (�) := D(�)

Ws,p(�)
, where D(�) is the space of test functions.
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Since� is assumed to be bounded, we have the following continuous embeddings:

Ws,2
0 (�) ↪→

{
L p(�), if N ≥ 2s,

C0,s− N
2 (�), if N < 2s,

(4)

with p = 2� := 2N

N − 2s
if N > 2s, and p ∈ [1,∞[ arbitrary if N = 2s.

A complete characterization ofWs,p
0 (�), for arbitrary bounded open sets, is given in

[15]. By [16, Theorem 1.4.2.4, p. 25] (see also, [15,17]) if� has a Lipschitz continuous
boundary and 1

p < s < 1, then

‖u‖Ws,p
0 (�) = ‖Ds,pu‖L p(�×�) (5)

defines an equivalent norm on Ws,p
0 (�). In that case, we shall use this norm for

Ws,p
0 (�).
In order to study the problem (2a), we need to consider the following function

space:

W̃ s,p
0 (�) :=

{
u ∈ Ws,p(RN ) : u = 0 on R

N\�
}
.

Let � ⊂ R
N be a bounded open set with a Lipschitz continuous boundary. By [18,

Theorem 6], D(�) is dense in W̃ s,p
0 (�). Moreover, for every 0 < s < 1 a simple

calculation gives

‖u‖p
W̃ s,p

0 (�)
:=

∫

RN

∫

RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

= ‖Ds,pu‖p
L p(�×�) +

∫

�

|u|pκ(x) dx, (6)

where κ(x) := 2
∫

RN \�
1

|x − y|N+sp
dy, x ∈ �.

Remark 3.1 (a) The embeddings (4) hold with Ws,2
0 (�) replaced by W̃ s,2

0 (�).

(b) Let p satisfy (3) and p′ := p
p−1 . Then, it is easy to see that W̃

s,2
0 (�) ↪→ L p′

(�).

We next state an important result for W̃ s,p
0 (�) taken from [16, Corollary 1.4.4.5].

Theorem 3.1 Let � ⊂ R
N be a bounded open set with a Lipschitz continuous bound-

ary and 1 < p < ∞. If 1
p < s < 1, then W̃ s,p

0 (�) = Ws,p
0 (�) with equivalent

norms.

Under the hypotheses of Theorem 3.1, we have that if 1
p < s < 1, then

‖u‖W̃ s,p
0 (�) = ‖Ds,pu‖L p(�×�). (7)
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In other words, the integral involving the function κ(x) in (6) is not relevant.
If 0 < s < 1, p ∈]1,∞[ and p′ := p

p−1 , then the space W̃−s,p′
(�) is defined as

the dual of W̃ s,p
0 (�).

We are now ready to define the fractional Laplacian. We set

L
1
s (R

N ) :=
{
u : RN → R measurable and

∫

RN

|u(x)|
(1 + |x |)N+2s dx < ∞

}
.

For u∈L1
s (R

N ) and ε > 0, we let (−�)sεu(x):=CN ,s

∫

{y∈RN ,|y−x |>ε}
u(x)−u(y)

|x−y|N+2s dy,

x ∈ R
N , where CN ,s is a normalization constant and is given by CN ,s :=

s22s	
( 2s+N

2

)

π
N
2 	(1 − s)

, with 	 being the standard Euler Gamma function (see, e.g., [19,20]).

The fractional Laplacian for u ∈ L
1
s (R

N ) is defined by

(−�)su(x) := CN ,sP.V.
∫

RN

u(x) − u(y)

|x − y|N+2s dy = lim
ε↓0(−�)sεu(x), x ∈ R

N , (8)

provided that the limit exists.
Next, we define the operator (−�)sD in L2(�) as follows:

D((−�)sD) :=
{
u|� : u ∈ W̃ s,2

0 (�) and (−�)su ∈ L2(�)
}
,

(−�)sD(u|�) := (−�)su in �. (9)

Then, (−�)sD is the realization in L2(�) of (−�)s with theDirichlet exterior condition
u = 0 in RN \ �.

Finally, we close this section by recalling the integration-by-parts formula for
(−�)s (see, e.g., [21]).

Proposition 3.1 Let u ∈ W̃ s,2
0 (�) with (−�)su ∈ L2(�). Then, for every v ∈

W̃ s,2
0 (�) we have

CN ,s

2

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy =
∫

�

v(−�)su dx . (10)

4 The State and Adjoint Equations

Throughout the remainder of the paper, given a Banach space X and its dual X�, we
shall denote by 〈·, ·〉X�,X their duality pairing.

The purpose of this section is to show that weak solutions of (2a) are continuous
up to the boundary of �, and to study the existence and uniqueness of very weak
solutions to the system

(−�)su = μ in �, u = 0 in RN\�, (11)
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where μ ∈ M(�), the space of all Radon measures on �. More precisely, M(�) =
(C0(�))∗, i.e.,M(�) is the dual of C0(�) such that

〈μ, v〉(C0(�))�,C0(�) =
∫

�

v dμ, μ ∈ M(�), v ∈ C0(�).

In addition,wehave the followingnormon this space:‖μ‖M(�)= sup
v∈C0(�),|v|≤1

∫

�

v dμ.

We will first show the continuity of weak solutions to (2a). We recall that the
paper [14] proves the optimal Hölder Cs-regularity of u under the condition that the
datum z ∈ L∞(�). However, in our setting, we have only assumed that z ∈ L p(�).
Therefore, the result of [14] does not apply. We state the notion of weak solutions to
(2a).

Definition 4.1 (Weak solutions to the Dirichlet problem) Given z ∈ W̃−s,2(�). A
function u ∈ W̃ s,2

0 (�) is said to be a weak solution of (2a) if for every v ∈ W̃ s,2
0 (�),

we have

CN ,s

2

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy = 〈z, v〉.

The following theorem is the first main result of this section.

Theorem 4.1 Let � be a bounded Lipschitz domain satisfying the exterior cone con-
dition. Assume that z ∈ L p(�) with p as in (3). Then, every weak solution u of (2a)
belongs to C0(�) and there is a constant C = C(N , s, p,�) > 0 such that

‖u‖C0(�) ≤ C‖z‖L p(�). (12)

Proof Let z ∈ L p(�) and let {zn}n∈N ⊂ L∞(�) be a sequence such that ‖zn −
z‖L p(�) → 0 as n → ∞.
For each n ∈ N, let un solve the following Dirichlet problem:

(−�)sun = zn in �, un = 0 in RN\�. (13)

By [14, Proposition 1.1], un ∈ Cs(RN ). Next, subtracting (2a) from (13), we deduce
that

(−�)s(un − u) = zn − z in �, (un − u) = 0 in RN\�.

Since (zn − z) ∈ L p(�), applying [3, Theorem 3.7], we get that ‖un − u‖L∞(�) ≤
C‖zn − z‖L p(�) → 0 as n → ∞ . Thus, ‖un − u‖L∞(�) → 0 as n → ∞. Since
un ∈ C0(�), it follows that u ∈ C0(�). ��
In Corollary 7.1, we shall reduce the assumed L p(�)-regularity requirement on z in
Theorem 4.1.

Next, we introduce the notion of very weak solutions to the problem (11).
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Definition 4.2 (Very weak solutions to the Dirichlet problem with measure data) Let
p be as in (3) and 1

p + 1
p′ = 1. Let μ ∈ M(�). A function u ∈ L p′

(�) is said to be a

very weak solution to (11), if for every v ∈ V := {v ∈ C0(�)∩ W̃ s,2
0 (�) : (−�)sv ∈

L p(�)} we have
∫

�

u(−�)sv dx =
∫

�

v dμ. (14)

The following theorem is the second main result of this section.

Theorem 4.2 Let � be a bounded Lipschitz domain satisfying the exterior cone con-
dition. Let μ ∈ M(�), p as in (3) and p′ := p

p−1 . Then, there exists a unique

u ∈ L p′
(�) that solves (11) according to Definition 4.2, and there is a constant

C = C(N , s, p,�) > 0 such that

‖u‖L p′ (�)
≤ C‖μ‖M(�). (15)

Proof For a given ξ ∈ L p(�), we begin by considering the following auxiliary prob-
lem:

(−�)sv = ξ in �, v = 0 in RN\�. (16)

Since L p(�) ↪→ L p′
(�) ↪→ W̃−s,2(�) (by Remark 3.1), it follows that there is a

unique v ∈ W̃ s,2
0 (�) satisfying (16). By Theorem 4.1, v ∈ C0(�).

Consider a mapping � : L p(�) → C0(�), ξ �→ �ξ := v. Notice that, � is
linear and continuous (by Theorem 4.1). Let us define u := �∗μ. Then, u ∈ L p′

(�).
We show that u solves (11). Notice that,

∫

�

uξ dx =
∫

�

u(−�)sv dx =
∫

�

(�∗μ)ξ dx =
∫

�

v dμ, (17)

for every v ∈ V . Thus, we have constructed a function u ∈ L p′
(�) that solves (11),

according to Definition 4.2. Next, we show uniqueness of solutions. Assume that (11)
has two solutions u1 and u2 with the same right-hand-side datum μ. Then, it follows

from (14) that
∫

�

(u1 − u2)(−�)sv dx = 0, for every v ∈ V . It follows from the

fundamental lemma of the calculus of variations that u1 = u2 a.e. in � and we have
shown the uniqueness of solutions. It remains to prove the required estimate (15).
From (17), we have that

∣∣∣∣

∫

�

uξ dx

∣∣∣∣ ≤ ‖μ‖M(�)‖v‖C0(�) ≤ C‖μ‖M(�)‖ξ‖L p(�), (18)

where in the last estimate we have used Theorem 4.1. Then, dividing both sides of (18)
by ‖ξ‖L p(�) and taking the supremum over ξ ∈ L p(�), we obtain (15). The proof is
finished. ��
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The regularity of solutions to (11), given in Theorem 4.2, will be improved in
Corollary 7.2.

5 The Optimal Control Problem

The purpose of this section is to study the existence of solutions to the optimal control
problem (2) and establish thefirst-order optimality conditions. Throughout this section,
we shall assume that � is a bounded Lipschitz domain satisfying the exterior cone
condition. Moreover, p is as in (3).

We begin by rewriting the optimal control problem (2). Let (−�)sD be the operator
defined in (9). Then, the problem (2) can be rewritten as follows:

min
(u,z)∈(U ,Z)

J (u, z)

subject to the constraints:

(−�)sDu = z in �, u|� ∈ K and z ∈ Zad .

(19)

Next, we introduce the relevant function spaces. We let

Z := L p(�) and U :=
{
u ∈ W̃ s,2

0 (�) ∩ C0(�) : ((−�)sD)u|� ∈ L p(�)
}
.

Then, U is a Banach space with the graph norm ‖u‖U := ‖u‖W̃ s,2
0 (�)

+ ‖u‖C0(�) +
‖(−�)sDu‖L p(�). We let Zad ⊂ Z a nonempty, closed, and convex set and K as in
(2b), i.e.,

K := {
w ∈ C0(�) : w(x) ≤ ub(x), ∀x ∈ �

}
. (20)

Notice that for every z ∈ Z , due to Theorem 4.1, there is a unique u ∈ U that solves
the state equation (2a).Thus, the control-to-state (solution) map, S : Z → U , z �→
Sz =: u, is well-defined, linear, and continuous. SinceU ↪→ C0(�), we can consider
the control-to-state map as E ◦ S : Z → C0(�).

Next,wedefine the admissible control set as Ẑad:= {z∈Z : z ∈ Zad and (E◦S)z∈K},
and as a result, the reduced minimization problem is given by

min
z∈Ẑad

J (z) := J ((E ◦ S)z, z). (21)

Next, we state the well-posedness result for (2) and equivalently for (21).

Theorem 5.1 Let Zad be a bounded, closed, and convex subset of Z and K a convex
and closed subset of C0(�) such that Ẑad �= ∅. If J : L2(�) × L p(�) → R, with p
as in (3), is weakly lower semicontinuous, then there is a solution to (21).

Proof The proof is based on the so-called directmethod or theWeierstrass theorem [22,
Theorem 3.2.1].We provide some details for completeness.We can always construct a
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minimizing sequence {zn}∞n=1 ⊂ Z such that inf z∈Zad J (z) = limn→∞ J (zn). Since
Zad is bounded, it follows that {zn}∞n=1 is a bounded sequence. Since Z is reflexive,
we have that there exists a weakly convergent subsequence {zn}∞n=1 (not relabeled)
such that zn⇀z̄ in Z as n → ∞. Next, since Zad is closed and convex, thus weakly
closed, we have that z̄ ∈ Zad .

Next, we notice that C0(�) is non-reflexive. However, we have that un = Szn ∈
U ↪→ C0(�) and S ∈ L(Z ,C0(�)). Thus, there is a subsequence {un} (not-relabeled)
that converges weakly� to ū in C0(�) as n → ∞. Since K is also weakly closed, we
have that ū ∈ K.

Owing to the uniqueness of the limit and the assumption that Ẑad is nonempty, we
can deduce that z̄ ∈ Ẑad . Finally, it remains to show that z̄ is a solution to (21). This
follows from the weak lower-semicontinuity assumption on J . The proof is finished.

��
Before deriving the first-order necessary optimality conditions, we make the fol-

lowing assumption.

Assumption 5.2 (Compatibility condition betweenK and Zad ) There is a pair (û, ẑ) ∈
U × Z that fulfills

(−�)sDû = ẑ in �, ẑ ∈ Zad , û(x) < ub(x) ∀x ∈ � . (22)

Notice that the last condition in Assumption 5.2 says that the state constraints in K
are satisfied strictly. Assumption 5.2 is a compatibility condition between Zad andK.
For instance, in the absence of state constraints, it is immediately fulfilled. In addition,
if Zad = Z , then again Assumption 5.2 is satisfied, see [12, p. 87] for the classical
case. But having both control and state constraints requires a compatibility condition
between K and Zad as otherwise the solution set might be empty. We need the state
constraints to be strictly satisfied for the existence of Lagrange multipliers, see [13,
p. 340] for the classical case.

Using the definition ofU , we have that (−�)sD : U �→ Z is a bounded operator and
from Theorem 4.1, it is also surjective. We have the following first-order necessary
optimality conditions.

Theorem 5.3 Let J : L2(�)× L p(�) → R, with p as in (3), be continuously Fréchet
differentiable and assume that (22) holds. Let (ū, z̄) be a solution to the optimization
problem (2). Then, there exist a Lagrange multiplier μ̄ ∈ (C0(�))� and an adjoint
variable ξ̄ ∈ L p′

(�) such that

(−�)sDū = z̄ in �, (23a)

〈ξ̄ , (−�)sDv〉L p′ (�),L p(�)
= (Ju(ū, z̄), v)L2(�) +

∫

�

v dμ̄, ∀ v ∈ U

(23b)

〈ξ̄ + Jz(ū, z̄), z − z̄〉L p′ (�),L p(�)
≥ 0, ∀ z ∈ Zad

(23c)

μ̄ ≥ 0, ū(x) ≤ ub(x) in �, and
∫

�

(ub − ū) dμ = 0. (23d)
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Proof We begin by checking the requirements for [12, Lemma 1.14]. We notice that
(−�)sD : U �→ Z is bounded and surjective. Moreover, the condition (22) implies
that the interior of the set K is nonempty. It remains to show the existence of a pair
(û, ẑ) ∈ U × Zad such that

(−�)sD(û − ū) − (ẑ − z̄) = 0 in �. (24)

Since (ū, z̄) solves the state equation, it follows from (24) that

(−�)sDû = ẑ in �. (25)

Notice that for every ẑ ∈ Zad , there is a unique û that solves (25) and, in particular,
(û, ẑ) works. Thus, the conditions of [12, Lemma 1.14] hold. Then, [12, Theorem
1.56] immediately implies that (23a)–(23c) hold. Instead of (23d), we obtain that

μ̄ ∈ K◦, u(x) ≤ ub(x), x ∈ �, and 〈μ̄, ū〉C0(�)∗,C0(�) = 0, (26)

whereK◦ denotes the polar cone. Then, the equivalence between (26) and (23d) follows
from a classical result in functional analysis (see, e.g., [12, p. 88] for more details).
The proof is finished. ��

6 Characterization of the Dual of Fractional-Order Sobolev Spaces

Given 0 < s < 1, 1 ≤ p < ∞ and p′ := p
p−1 , the aim of this section is to give a

complete characterization of the space W̃−s,p′
(�). Recall that, W̃−s,p′

(�) is defined
as the dual of the space W̃ s,p

0 (�). Some of the arguments here are motivated by the
classical case s = 1.

We start by stating this abstract result taken from [23, p. 194].

Lemma 6.1 If X and W are two Banach spaces, then X × W endowed with the norm
‖(x, y)‖X×W := ‖x‖X + ‖y‖W is also a Banach space and the dual space (X ×W )�

is isometrically isomorphic to X� × W �.

Let 1 ≤ p < ∞ and let Y := L p(�) × L p(RN × R
N ) be endowed with the norm

‖(v1, v2)‖Y :=
(
‖v1‖p

L p + ‖v2‖p
L p(RN×RN )

) 1
p
. For v ∈ W̃ s,p

0 (�), we associate the

vector Pv ∈ Y given by

Pv := (v, Ds,pv). (27)

Since‖Pv‖Y = ‖(v, Ds,pv)‖Y = ‖v‖W̃ s,p
0 (�),we have that P is an isometry andhence

injective. Therefore, P : W̃ s,p
0 (�) �→ Y is an isometric isomorphism of W̃ s,p

0 (�) onto
its image Z ⊂ Y . Also, Z is a closed subspace of Y , because W̃ s,p

0 (�) is complete
(isometries preserve completion).

Throughout this section without any mention, we shall let Y := L p(�)×L p(RN ×
R

N ).
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Lemma 6.2 Let 1 ≤ p < ∞. Then, for every f ∈ Y �, there exists a unique u =
(u1, u2) ∈ L p′

(�) × L p′
(RN × R

N ) such that for every v = (v1, v2) ∈ Y , we have

f (v) =
∫

�

u1v1 dx +
∫

RN×RN
u2v2 dx and

‖ f ‖Y ∗ = ‖u‖L p′ (�)×L p′ (RN×RN )
= ‖u1‖L p′ (�)

+ ‖u2‖L p′ (RN×RN )
.

Proof Let w ∈ L p(�). Then, (w, 0) ∈ Y . We define f1(w) := f (w, 0). Then,
f1 ∈ (L p(�))�. For arbitrary w1, w2, w ∈ L p(�) and scalars α, β, we have

f1(αw1 + βw2) = f (αw1 + βw2, 0) = f (α(w1, 0) + β(w2, 0))

= α f ((w1, 0)) + β f ((w2, 0)) = α f1(w1) + β f1(w2),

and | f1(w)| = | f ((w, 0))| ≤ ‖ f ‖Y �‖(w, 0)‖Y = ‖ f ‖Y �‖w‖L p(�). Thus, f1 ∈
(L p(�))� = L p′

(�).
Similarly, let w ∈ L p(RN × R

N ). Then, (0, w) ∈ Y and if we define f2(w) :=
f (0, w), we have f2 ∈ (L p(RN × R

N ))� = L p′
(RN × R

N ).
Therefore, by the Riesz Representation theorem there exist a unique u1 ∈ L p′

(�)

and a unique u2 ∈ L p′
(RN ×R

N ) such that f (v1, 0) = f1(v1) = 〈u1, v1〉L p′ (�),L p(�)

for every v1 ∈ L p(�) and f (0, v2) = f2(v2) = 〈u2, v2〉L p′ (RN×RN ),L p(RN×RN )
for

every v2 ∈ L p(RN × R
N ).

Now let v := (v1, v2) ∈ Y . We can write v = (v1, v2) = (v1, 0) + (0, v2). Hence,

f (v) = f (v1, 0) + f (0, v2) = f1(v1) + f2(v2) =
∫

�

u1v1 dx +
∫

RN×RN
u2v2 dx .

Moreover,

| f (v)| ≤ ‖u1‖L p′ (�)
‖v1‖L p(�) + ‖u2‖L p′ (RN×RN )

‖v2‖L p(RN×RN )

≤ ‖u‖L p′ (�)×L p′ (RN×RN )
‖v‖Y .

Therefore,

‖ f ‖Y � ≤ ‖u‖L p′ (�)×L p′ (RN×RN )
. (28)

The proof of the first part is complete. It then remains to show that the norms in (28)
are equal.

Let us first consider the case 1 < p < ∞. Define

v1(x) :=
{

|u1(x)|p′−2u1(x), if u1(x) �= 0,

0, if u1(x) = 0,
and

v2(x, y) :=
{

|u2(x, y)|p′−2u2(x, y), if u2(x, y) �= 0,

0, if u2(x, y) = 0.
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Then, for v = (v1, v2) we have

| f (v)| = | f (v1, v2)| = | f ((v1, 0) + (0, v2))| = | f1(v1) + f2(v2)|
=

∣∣∣ 〈u1, v1〉L p′ (�),L p(�)
+ 〈u2, v2〉L p′ (RN×RN ),L p(RN×RN )

∣∣∣

= ‖u1‖p′
L p′ (�)

+ ‖u2‖p′
L p′ (RN×RN )

= ‖u‖p′
L p′ (�)×L p′ (RN×RN )

= |〈u, v〉Y �,Y | = ‖v‖Y ‖u‖Y � = ‖v‖Y ‖u‖L p′ (�)×L p′ (RN×RN )
,

where we have used the equality in Hölder’s inequality and the equality holds because
|vi |p = |ui |p′

. Moreover, we have used the fact that Y � ∼= L p′
(�) × L p′

(RN × R
N )

due to Lemma 6.1.
Let us consider the case p = 1. Then, Y = L1(�) × L1(RN × R

N ) and we
can set (due to Lemma 6.1) Y � = L∞(�) × L∞(RN × R

N ). Notice that ‖u‖Y � :=
max

{‖u1‖L∞(�), ‖u2‖L∞(RN×RN )

}
. To get the desired result, it is sufficient to show

that ‖ f ‖Y � ≥ ‖u‖Y � . Now, for any ε > 0 and k = 1 there exists a measurable
set A ⊂ � (or ⊂ R

N × R
N when k = 2) with finite, nonzero measure such that

|uk(x)| ≥ ‖u‖Y � − ε, for almost every x ∈ A.

Next, we define vk(x) :=
{

uk (x)|uk(x)| , for x ∈ A and uk(x) �= 0,

0, elsewhere .

Set v := (vk, 0) if k = 1, otherwise set v := (0, vk). Then,

| f (v)| =
∣∣∣〈uk, vk〉Y �,Y

∣∣∣ =
∫

A
|uk(x)| dx ≥

(
‖u‖Y � − ε

)
‖v‖Y

= (‖u‖L∞(�)×L∞RN×RN ) − ε
) ‖v‖Y .

Since ε is chosen arbitrarily, we have that the result follows from the definition of the
operator norm. The proof is finished. ��

Theorem 6.1 Let 1 ≤ p < ∞ and f ∈ W̃−s,p′
(�). Then, there exists ( f 0, f 1) ∈

L p′
(�) × L p′

(RN × R
N ) such that for all v ∈ W̃ s,p

0 (�),

〈 f , v〉W̃−s,p′ (�),W̃ s,p
0 (�)

=
∫

�

f 0v dx +
∫

RN

∫

RN
f 1(x, y)Ds,pv[x, y] dx dy, (29)

‖ f ‖W̃−s,p′ (�)
= inf

{
‖( f 0, f 1)‖L p′ (�)×L p′ (RN×RN )

}
, (30)

where the infimum is taken over all ( f 0, f 1) ∈ L p′
(�) × L p′

(RN × R
N ) for which

(29) holds. Moreover, if 1 < p < ∞, then ( f 0, f 1) is unique.

Proof Define the linear functional L̂ : Z → R, where Z ⊂ Y is the range of P given
in (27), by

L̂(Pv) = f (v), v ∈ W̃ s,p
0 (�)
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W̃ s,p
0 (�) Z ⊂ Y

R.

P

L̂f

Since P is an isometric isomorphism onto Z , it follows that L̂ ∈ Z� and

‖L̂‖Z� = sup
‖Pv‖Y=1

|〈L̂, Pv〉Y �,Y | = sup
‖v‖

W̃
s,p
0

=1
|〈 f , v〉W̃−s,p′ (�),W̃ s,p

0 (�)
| = ‖ f ‖W−s,p′ (�)

.

By theHahn–Banach theorem, there exists an L ∈ Y � = L p′
(�)×L p′

(RN×R
N )with

‖L‖Y � = ‖L̂‖Z� . Since L ∈ Y �, usingLemma6.2,we have that there exists ( f 0, f 1) ∈
L p′

(�) × L p′
(RN × R

N ) such that L(v) =
∫

�

f 0v1 dx +
∫

RN

∫

RN
f 1v2 dxdy for

every v = (v1, v2) ∈ Y . Notice that when 1 < p < ∞, ( f 0, f 1) is unique due to the
uniform convexity of the Banach space L p(�) × L p(RN × R

N ).
Thus, for v ∈ W̃ s,p

0 (�) we have Pv ∈ Y . Using the definition of L̂ , we get

f (v) = L̂(Pv) = L(Pv) = L(v, Ds,pv) =
∫

�

f 0v dx +
∫

RN

∫

RN
f 1Ds,pv dxdy,

which is (29), after noticing that 〈 f , v〉W̃−s,p′ (�),W̃ s,p
0 (�)

= f (v). Moreover, we have

‖ f ‖W̃−s,p′ (�)
= ‖L̂‖Z� = ‖L‖Y � = ‖( f 0, f 1)‖L p′ (�)×L p′ (RN×RN )

.

Now, for arbitrary (g0, g1) ∈ L p′
(�) × L p′

(RN × R
N ), for which (29) holds

for all v ∈ W̃ s,p
0 (�), we can define Lg as Lg(u) = 〈g0, u1〉L p′ (�),L p(�)

+
〈g1, u2〉L p′ (RN×RN ),L p(RN×RN )

, ∀ u ∈ Y .

Then, Lg ∈ Y � and Lg|Z = L̂ (due to (29)). As a result, ‖L̂‖Z� ≤ ‖Lg‖Y � . Thus,
‖ f ‖W̃−s,p′ (�)

≤ ‖g‖L p′ (�)×L p′ (RN×RN )
.

The proof is complete. ��

In view of Theorem 3.1(b), we have the following result.

Corollary 6.1 Let 1 < p < ∞, 1
p < s < 1 and f ∈ W̃−s,p′

(�). Then, there exists a

unique ( f 0, f 1) ∈ L p′
(�) × L p′

(� × �) such that for every v ∈ W̃ s,p
0 (�),

〈 f , v〉W̃−s,p′ (�),W̃ s,p
0 (�)

=
∫

�

f 0v dx +
∫

�

∫

�

f 1(x, y)Ds,pv[x, y] dx dy, (31)

‖ f ‖W̃−s,p′ (�)
= inf

{
‖( f 0, f 1)‖L p′ (�)×L p′ (�×�)

}
, (32)

where the infimum is taken over all ( f 0, f 1) ∈ L p′
(�) × L p′

(� × �) for which (31)
holds.
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7 Improved Regularity of State and Higher Regularity of Adjoint

In this section, we study the higher regularity properties of solutions to the Dirichlet
problem (2a), with a right-hand side z ∈ W̃−t,p(�), for suitable values of p ∈]1,∞[
and 0 < t < 1.

7.1 Regularity of the State

Throughout the remainder of this section, for u, v ∈ W̃ s,2
0 (�), we shall let

E(u, v) := CN ,s

2

∫

RN

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy. (33)

We start with the following theorem which can be viewed as the first main result
of this section.

Theorem 7.1 Let f0 ∈ L p(�) with p > N
2s and f1 ∈ Lq(� × �) with q > N

s if

N ≥ 2s and q ≥ 2 if N < 2s. Then, there exists a unique function u ∈ W̃ s,2
0 (�)

satisfying

E(u, v) =
∫

�

f0v dx +
∫

�

∫

�

f1(x, y)Ds,2v[x, y] dxdy, (34)

for every v ∈ W̃ s,2
0 (�). In addition, u ∈ L∞(�) and there is a constant C > 0 such

that

‖u‖L∞(�) ≤ C
(‖ f0‖L p(�) + ‖ f1‖Lq (�×�)

)
. (35)

To prove the theorem, we need the following lemma taken from [24, Lemma B.1].

Lemma 7.1 Let � = �(t) be a nonnegative, non-increasing function on a half line
t ≥ k0 ≥ 0 such that there are positive constants c, α and δ (δ > 1) with

�(h) ≤ c(h − k)−α�(k)δ for h > k ≥ k0.

Then, �(k0 + d) = 0 with dα = c�(k0)
δ−12αδ/(δ−1).

Proof of Theorem 7.1 We prove the result in several steps.
Step 1. Firstly, we show that there is a unique u ∈ W̃ s,2

0 (�) satisfying (34). Indeed,

recall that W̃ s,2
0 (�) ↪→ L p′

(�), by Remark 3.1. Notice also that if N ≥ 2s, then
q ≥ 2. Since � is bounded, we have that, in all the cases, the continuous embedding
Lq(� × �) ↪→ L2(� × �) holds. Hence, using the classical Hölder inequality, we
get that there is a constant C > 0 such that

∣∣∣∣

∫

�

f0v dx +
∫

�

∫

�

f1(x, y)Ds,2v[x, y] dxdy
∣∣∣∣

≤ C
(‖ f0‖L p(�) + ‖ f1‖L2(�×�)

) ‖v‖W̃ s,2
0 (�)

.
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Since the bilinear form E is continuous and coercive, it follows from the classical
Lax–Milgram lemma that there is unique u ∈ W̃ s,2

0 (�) satisfying (34).
Step 2. Notice that, if N < 2s, then it follows from the embedding (4) that u ∈

L∞(�). We give the proof for the case N > 2s. The case N = 2s follows with a
simple modification of the case N > 2s.

Step 3. Let u ∈ W̃ s,2
0 (�) be the unique function satisfying (34). Let k ≥ 0 be

a real number and set uk := (|u| − k)+sgn(u). By [15, Lemma 2.7], we have that
uk ∈ W̃ s,2

0 (�) for every k ≥ 0. Proceeding as in the proof of [25, Theorem 2.9] (see
also [3, Proposition 3.10 and Section 3.3]), we get that for every k ≥ 0,

E(uk, uk) ≤ E(uk, u) =
∫

�

f0uk dx +
∫

�

∫

�

f1(x, y)Ds,2uk[x, y] dxdy. (36)

Let Ak := {x ∈ � : |u(x)| ≥ k}. Then, it is clear that

uk =
[
(|u| − k)sign(u)

]
χAk . (37)

Let p1 ∈ [1,∞] be such that
1

p
+ 1

2�
+ 1

p1
= 1, where we recall that 2� := 2N

N−2s .

Since by assumption p > N
2s = 2�

2�−2 , we have that

1

p1
= 1 − 1

2�
− 1

p
= 2�

2�
− 1

2�
− 1

p
>

2�

2�
− 1

2�
− 2� − 2

2�
= 1

2�
�⇒ p1 < 2�.

(38)

Using (37), the continuous embedding W̃ s,2
0 (�) ↪→ L2�

(�), and theHölder inequality,
we get that there is a constant C > 0 such that for every k ≥ 0,

∫

�

f0uk dx =
∫

Ak

f0uk dx ≤ ‖ f0‖L p(�)‖uk‖W̃ s,2
0 (�)

‖χAk‖L p1 (�). (39)

Let δ1 := 2�

p1
. Then, δ1 > 1 by (38), but this not needed here. We have that for

every k ≥ 0,

‖χAk‖L p1 (�) = |Ak |
1
p1 =

(
|Ak | 1

2�
) 2�

p1 = ‖χAk‖
2�
p1

L2� (�)
= ‖χAk‖δ1

L2� (�)
. (40)

Step 4.Next, let q1 ∈ [1,∞] be such that 1
q

+ 1

2
+ 1

q1
= 1. Since q > N

s = 2 N
2s =

2 2�

2�−2 , we have

1

q1
= 1 − 1

2
− 1

q
= 2

2�

2 · 2�
− 1

2
− 1

q
>

2 · 2�

2 · 2�
− 1

2
− 2� − 2

2 · 2�
= 1

2�
�⇒ q1 < 2�.

(41)

123



Journal of Optimization Theory and Applications (2020) 186:1–23 17

Using (37), the continuous embedding W̃ s,2
0 (�) ↪→ L2�

(�), and theHölder inequality
again, we can deduce that there is a constant C > 0 such that for every k ≥ 0,

∫

�

∫

�

f1(x, y)Ds,2uk[x, y] dxdy =
∫

Ak

∫

Ak

f1(x, y)Ds,2uk[x, y] dxdy

+
∫

Ak

∫

�\Ak

f1(x,y)Ds,2uk[x,y] dxdy+
∫

�\Ak

∫

Ak

f1(x,y)Ds,2uk[x,y] dxdy
≤ C‖ f1‖Lq (�×�)‖uk‖W̃ s,2

0 (�)
‖χAk‖Lq1 (�). (42)

Let δ2 := 2�

q1
. Then, δ2 > 1 by (41), which is also not needed here. As in (40), for

every k ≥ 0,

‖χAk‖Lq1 (�) = ‖χAk‖δ2

L2� (�)
. (43)

Step 5. Let δ := min{δ1, δ2} > 1. It follows from (40) that ‖χAk‖L p1 (�) =
‖χAk‖δ1

L2� (�)
= ‖χAk‖δ

L2� (�)
‖χAk‖δ1−δ

L2� (�)
≤ ‖χ�‖δ1−δ

L2� (�)
‖χAk‖δ

L2� (�)
for every k ≥ 0.

Similarly, it follows from (43) that ‖χAk‖Lq1 (�) ≤ ‖χ�‖δ2−δ

L2� (�)
‖χAk‖δ

L2� (�)
for

every k ≥ 0.
We have shown that there is a constant C > 0 such that for every k ≥ 0,

max{‖χAk‖L p1 (�), ‖χAk‖Lq1 (�)} ≤ C‖χAk‖δ

L2� (�)
. (44)

Using (36), (39), (42), (44), and the fact that there is a constant C > 0 such that
C‖uk‖W̃ s,2

0 (�)
≤ E(uk, uk), we get that there is a constant C > 0 such that for every

k ≥ 0,

‖uk‖W̃ s,2
0 (�)

≤ C
(‖ f0‖L p(�) + ‖ f1‖Lq (�×�)

) ‖χAk‖δ

L2� (�)
. (45)

Using the continuous embedding W̃ s,2
0 (�) ↪→ L2�

(�) and (45), we get that there is a
constant C > 0 such that for every k ≥ 0,

‖uk‖L2� (�) ≤ C
(‖ f0‖L p(�) + ‖ f1‖Lq (�×�)

) ‖χAk‖δ

L2� (�)
. (46)

Step 6.Now let h > k ≥ 0. Then, Ah ⊂ Ak and in Ah , we have that |uk | ≥ (h− k).
Thus, it follows from (46) that there is a constantC > 0 such that for every h > k ≥ 0,

‖χAh‖L2� (�) ≤ C(h − k)−1 (‖ f0‖L p(�) + ‖ f1‖Lq (�×�)

) ‖χAk‖δ

L2� (�)
. (47)

Let �(k) := ‖χAk‖L2� (�). It follows from (47) that for all h > k ≥ 0, we have

�(h) ≤ C(h − k)−1 (‖ f0‖L p(�) + ‖ f1‖Lq (�×�)

)
�(k)δ.

123



18 Journal of Optimization Theory and Applications (2020) 186:1–23

Applying Lemma 7.1 to the function�, we can deduce that there is a constant C1 > 0
such that �(K ) = 0 with K := C1C

(‖ f0‖L p(�) + ‖ f1‖Lq (�×�)

)
. We have shown

(35) as needed. ��
The following theorem is the second main result of this section. Here, we reduce

the regularity of the datum z, if one compares with [3, Theorem 3.7].

Theorem 7.2 Let � ⊂ R
N be a bounded open set with a Lipschitz continuous bound-

ary. Let 2 < N
s < p ≤ ∞ and 0 <

p−1
p = 1

p′ < t < s < 1. Then, for

every z ∈ W̃−t,p(�), there is a unique solution u ∈ W̃ s,2
0 (�) of (2a). In addition,

u ∈ L∞(�) and there is a constant C > 0 such that

‖u‖L∞(�) ≤ C‖z‖W̃−t,p(�). (48)

Proof We prove the result in several steps.
Step 1. Firstly, for z ∈ W̃−t,p(�), by a solution to (2a), we mean a function

u ∈ W̃ s,2
0 (�) satisfying

E(u, v) = 〈z, v〉W̃−t,p(�),W̃ t,p′ (�)
, ∀ v ∈ W̃ t,p′

0 (�), (49)

provided that the left- and right-hand-side expressions make sense.
Step 2.Secondly, since 1

p′ < t < 1 and z ∈ W̃−t,p(�), it follows fromCorollary 6.1

that there exists a pair of functions ( f 0, f 1) ∈ L p(�) × L p(� × �) such that, for

every v ∈ W̃ t,p′
0 (�), we have

〈z, v〉W̃−t,p(�),W̃ t,p′ (�)
=

∫

�

f 0v dx +
∫

�

∫

�

f 1(x, y)Dt,p′v[x, y] dx dy. (50)

Choose ( f 0, f 1) ∈ L p(�) × L p(� × �) satisfying (50) and are such that

‖z‖W̃−t,p(�) = ‖ f 0‖L p(�) + ‖ f 1‖L p(�×�). (51)

Since 0 < t < s < 1 and 2 > p′, it follows that the continuous embedding

W̃ s,2
0 (�) ↪→ W̃ t,p′

0 (�) holds. More precisely, there is a constant C > 0 such that

∣∣Dt,p′v[x, y]∣∣ = |v(x) − v(y)|
|x − y| p′

N +t
= |v(x) − v(y)|

|x − y| 2
N +s

|x − y|s−t+ 2−p′
N

≤ C
∣∣Ds,2v[x, y]∣∣ ,

wherewe used that s−t+ 2−p′
N > 0. Thus, ‖Dt,p′v‖L p′ (�×�)

≤ C‖Ds,2v‖L2(�×�) for

every v ∈ W̃ s,2
0 (�). Hence, (50) also holds for every v ∈ W̃ s,2

0 (�) and the expressions
in (49) make sense.
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Step 3. We claim that there is a unique u ∈ W̃ s,2
0 (�) satisfying (49). Indeed, let

v ∈ W̃ s,2
0 (�). Using Step 2 and Remark 3.1, we get that there is a constant C > 0

such that for every v ∈ W̃ t,p′
0 (�),

∣∣∣〈z, v〉W̃−t,p(�),W̃ t,p′ (�)

∣∣∣ =
∣∣∣∣

∫

�

f 0v dx +
∫

�

∫

�

f 1(x, y)Dt,p′v[x, y] dx dy

∣∣∣∣

≤‖ f 0‖L p(�)‖v‖L p′ (�)
+ ‖ f 1‖L p(�×�)‖Dt,p′v‖L p′ (�×�)

≤C
(
‖ f 0‖L p(�) + ‖ f 1‖L p(�×�)

)
‖v‖W̃ s,2

0 (�)
.

We have shown that the right-hand side of (50) defines a linear continuous functional
on W̃ s,2

0 (�). Thus, the claim follows by applying the Lax–Milgram lemma.

Step 4. It follows from Step 3 that the unique function u ∈ W̃ s,2
0 (�) satisfying (49)

is such that for every v ∈ W̃0
t,p′

(�), we have

E(u, v) = 〈z, v〉
W̃−t,p(�),W̃ t,p′

0 (�)

≤ C
∫

�

| f 0v| dx +
∫

�

∫

�

∣∣∣ f 1(x, y)Ds,2v[x, y]
∣∣∣ dx dy.

Therefore, proceeding exactly as in the proof of Theorem 7.1, we get that u ∈ L∞(�)

and there is a constant C>0 such that ‖u‖L∞(�)≤C
(‖ f 0‖L p(�)+‖ f 1‖L p(�×�)

)=
C‖z‖W̃−t,p(�), where we have used (51).We have shown (48) and the proof is finished.

��
We have the following regularity result as a corollary of Theorems 4.1 and 7.2.

Corollary 7.1 Let� ⊂ R
N be a bounded Lipschitz domain satisfying the exterior cone

condition. Let 2 < N
s < p ≤ ∞ and 0 <

p−1
p = 1

p′ < t < s < 1. Let z ∈ W̃−t,p(�)

and let u ∈ W̃ s,2
0 (�) be the unique weak solution of (2a). Then, u ∈ C0(�).

Proof Let z ∈ W̃−t,p(�) and {zn}n≥1 ⊂ L∞(�) a sequence such that zn → z in
W̃−t,p(�) as n → ∞. Let un ∈ W̃ s,2

0 (�) satisfy E(un,v)=〈zn, v〉W̃−t,p(�),W̃ t,p′ (�)
=∫

�

znv dx for every v ∈ W̃ s,2
0 (�). It follows, from Theorem 4.1, that un ∈ C0(�).

Since un − u ∈ W̃ s,2
0 (�) and satisfies E(un − u, v) = 〈zn − z, v〉W̃−t,p(�),W̃ t,p′ (�)

for

every v ∈ W̃ s,2
0 (�), it follows, from Theorem 7.2, that (un −u) ∈ L∞(�) and there is

a constant C > 0 (independent of n) such that ‖un − u‖L∞(�) ≤ C‖zn − z‖W̃−t,p(�).
Since un ∈ C0(�) and zn → z in W̃−t,p(�) as n → ∞, it follows from the preceding
estimate that un → u in L∞(�) as n → ∞. Thus, u ∈ C0(�) and the proof is
finished. ��

Next, we improve the regularity of u solving (11) with a measure μ as the right-
hand-side datum. Notice that such a result will immediately improve the regularity
of the adjoint variable ξ̄ solving (23b). Recall that the best result so far proved for
solutions of (11) is given in Theorem 4.2.
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Corollary 7.2 Let� ⊂ R
N be a bounded Lipschitz domain satisfying the exterior cone

condition. Let 2 < N
s < p ≤ ∞ and 0 <

p−1
p = 1

p′ < t < s < 1. Let μ ∈ M(�).

Then, there is a unique solution u ∈ W̃ t,p′
0 (�) to (11) and there is a constant C > 0

such that ‖u‖
W̃ t,p′

0 (�)
≤ C‖μ‖M(�).

Proof Theproof follows exactly as the proof ofTheorem4.2with the exception that, for
the inequality (18), we use Corollary 7.1 to get

∣∣∫
�
uξ dx

∣∣ ≤ ‖μ‖M(�)‖v‖C0(�) ≤
C‖μ‖M(�)‖ξ‖W̃−t,p(�). The preceding estimate implies that u ∈ (W̃−t,p(�))� =
W̃ t,p′

0 (�). The proof is finished. ��
Recall that the “strong form” of the adjoint equation (23b) is given by

(−�)s ξ̄ = Ju(ū, z̄) + μ̄ in �, ξ̄ = 0 in RN \ �. (52)

Using Corollary 7.2 and the fact that Ju(ū, z̄) ∈ L2(�), we obtain the following
regularity result.

Corollary 7.3 (Regularity of the adjoint variable) Let μ̄ ∈ M(�) and let ξ̄ be the
Lagrangemultiplier given in Theorem5.3. Then, under the conditions of Corollary 7.2,

we have that ξ̄ ∈ W̃ t,p′
0 (�).

7.2 Regularity of Control

In this section, we apply the results obtained in the previous section to the optimal
control problem. In the literature, a typical cost functional J is given by (cf. the
monograph [26])

J (u, z) := 1

2
‖u − ud‖2L2(�)

+ g(z) , (53)

where ud ∈ L2(�) is given. When g(z) := α
2 ‖z‖2

L2(�)
, with given parameter α > 0,

then (23c) becomes

z̄ = PZad

(
−α−1ξ̄

)
, (54)

wherePZad denotes the projection onto the set Zad . Recall that, ξ̄ is the adjoint variable
solving (23b). We emphasize that Zad is still the same as before, and with a choice of
J (·, ·), all the assumptions in the previous results hold. Recall that the boundedness
of Zad enforces L p(�) regularity on the control z, in addition with the choice of
g(z) = α

2 ‖z‖2
L2(�)

in (53), we are enforcing L2(�) regularity on the control z. As a
result, p is always greater than equal to 2. Finally, (54) can improve the regularity of
the optimal control from L p(�) to Wt,p′

(�).

Theorem 7.3 (Regularity of control) Let the conditions of Corollary 7.3 hold and J be
as in (53) with g(z) := α

2 ‖z‖2
L2(�)

with α > 0. Given a, b ∈ Wt,p′
(�) with a < b a.e.
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in �, let Zad := {z ∈ L p(�) : a(x) ≤ z(x) ≤ b(x), a.e. in �}. Then, the optimal
control z̄ ∈ Wt,p′

(�).

Proof Under the assumption on Zad , the projection in (54) becomes PZad (ξ̄ ) :=
max{a,min{b, ξ̄}}. Since ξ̄ in W̃ t,p′

0 (�), in particular, we have ξ̄ |� ∈ Wt,p′
(�). Next

since b ∈ Wt,p′
(�), using [15, Lemma 2.7], we have that v := min{b, ξ̄ } ∈ Wt,p′

(�).
Similarly, max{a, v} ∈ Wt,p′

(�). Thus, from (54), we obtain that z̄ ∈ Wt,p′
(�) and

the proof is complete. ��
Remark 7.1 We notice that since z̄ ∈ Wt,p′

(�) (by Theorem 7.3), we have that
the regularity of the corresponding solution ū to the state equation (2a) can also
be improved. More precisely, by [27, Theorem 7.1 and p524], we have that ū ∈
Hs(t+2s)

p′ (�) ∩ W̃ s,2
0 (�). We refer to [28, Equation (2.9)] for the precise definition of

the space Hs(t+2s)
p′ (�).

7.3 Control in ˜W−t,p(Ä) Instead of Lp(Ä)

Let �, s, t and p be as in Corollary 7.1. Then, all the results obtained in Sect. 5
for the optimal control problem hold, with obvious modification of the proofs, if one
considers the spaces

Z := W̃−t,p(�) and U :=
{
u ∈ W̃ s,2

0 (�) ∩ C0(�) : ((−�)sDu)|� ∈ W̃−t,p(�)
}
.

Notice that, in this case, Zad is a closed and convex subset of W̃−t,p(�) instead of
L p(�). We further emphasize that even in this case, the adjoint variable still enjoys
the higher regularity as given in Corollary 7.3. Furthermore, the result given in Theo-
rem 7.3 remains valid if we replace L p(�) by W̃−t,p(�).

8 Conclusions and FutureWork

Summary. We have introduced a novel characterization of fractional-order Sobolev
spaces. For domains with exterior cone condition, we have shown continuity of solu-
tions to fractional PDEs and we have established well-posedness of fractional PDEs
withmeasure-valued data. These results are crucial to study the state (and control) con-
strained optimal control problems discussed in the paper. They have helped to establish
the well-posedness of the control problem, deriving the optimality conditions and the
regularity of the optimal control.
Perspectives/OpenProblems.There has already been a follow-up to the currentwork in
[29], which describes a numerical method to solve the optimal control problem. It will
be of interest to the community to relax the aforementioned exterior cone condition to
show the continuity of solutions to fractional PDEs. In Corollary 6.1, where under the
assumption 1

p < s < 1, we are able to replace the integral over RN (cf. Theorem 6.1)
by an integral over �, it will be interesting to extend this result to the full range of s,
i.e., also when 0 < s ≤ 1

p .
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