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Abstract
Very recently Warma (2019 SIAM J. Control Optim. to appear) has shown that 
for nonlocal PDEs associated with the fractional Laplacian, the classical notion 
of controllability from the boundary does not make sense and therefore it must 
be replaced by a control that is localized outside the open set where the PDE 
is solved. Having learned from the above mentioned result, in this paper we 
introduce a new class of source identification and optimal control problems 
where the source/control is located outside the observation domain where the 
PDE is satisfied. The classical diffusion models lack this flexibility as they 
assume that the source/control is located either inside or on the boundary. This 
is essentially due to the locality property of the underlying operators. We use 
the nonlocality of the fractional operator to create a framework that now allows 
placing a source/control outside the observation domain. We consider the 
Dirichlet, Robin and Neumann source identification or optimal control problems. 
These problems require dealing with the nonlocal normal derivative (that we 
shall call interaction operator). We create a functional analytic framework and 
show well-posedness and derive the first order optimality conditions for these 
problems. We introduce a new approach to approximate, with convergence rate, 
the Dirichlet problem with nonzero exterior condition. The numerical examples 
confirm our theoretical findings and illustrate the practicality of our approach.

Keywords: fractional Laplacian, interaction operator, weak and very-weak 
solutions, Dirichlet control problem, Robin control problem, external control
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1.  Introduction and motivation

In many real life applications a source or a control is placed outside (disjoint from) the obser-
vation domain Ω where the PDE is satisfied. Some examples of inverse and optimal control 
problems where this situation may arise are: (i) acoustic testing, when the loudspeakers are 
placed far from the aerospace structures [38]; (ii) magnetotellurics (MT), which is a technique 
to infer earth’s subsurface electrical conductivity from surface measurements [48, 55]; (iii) 
magnetic drug targeting (MDT), where drugs with ferromagnetic particles in suspension are 
injected into the body and the external magnetic field is then used to steer the drug to relevant 
areas, for example, solid tumors [7, 8, 41]; (iv) electroencephalography (EEG) is used to 
record electrical activities in brain [42, 56], in case one accounts for the neurons disjoint from 
the brain, one will obtain an external source problem.

This is different from the traditional approaches where the source/control is placed either 
inside the domain Ω or on the boundary ∂Ω of Ω. This is not surprising since in many cases 
we do not have a direct access to ∂Ω. See for instance, the setup in figure 1. In such applica-
tions the existing models can be ineffective due to their strict requirements. Indeed think of the 
source identification problem for the most basic Poisson equation:

−∆u = f in Ω, u = z on ∂Ω,� (1.1)

where the source is either f  (force or load) or z (boundary control) see [6, 39, 47]. In (1.1) 

there is no provision to place the source in Ω̂ ⊂ RN \ Ω, i.e. a domain that is disjoint from Ω, 
see figure 1 for two examples of Ω and Ω̂. The issue is that the operator ∆ has ‘lesser reach’, 
in other words, it is a local operator. On the other hand the fractional Laplacian (−∆)s with 
0  <  s  <  1 (that we shall define below) is a nonlocal operator. This difference in behavior can 
be easily seen in our numerical examples in section 7.2 where we observe that we cannot see 
the external source as s approaches 1.

Recently, nonlocal diffusion operators such as the fractional Laplacian (−∆)s have emerged 
as an excellent alternative to model diffusion. Under a probabilistic framework this operator 
can be derived as the limit of the so-called long jump random walk [49]. Recall that ∆ is the 
limit of the classical random walk or the Brownian motion. More applications of these models 
appear in (but not limited to) image denoising and phase field modeling [4, 10]; fractional dif-
fusion maps (data analysis) [5]; magnetotellurics (geophysics) [55].

Coming back to the question of source/control placement, we next state the exterior value 
problem corresponding to (−∆)s. Find u in an appropriate function space satisfying

(−∆)su = f in Ω, u = z on RN \ Ω.� (1.2)

As in the case of (1.1), besides f  being the source/control in Ω, we can also place the source/
control z in the exterior domain RN \ Ω. However, the action of z in (1.2) is significantly dif-
ferent from (1.1). Indeed, the source/control in (1.1) is placed on the boundary ∂Ω, but the 
source/control z in (1.2) is placed in RN \ Ω which is what we wanted to achieve in figure 1. 
For completeness, we refer to [12] for the optimal control problem, with f  being the source/
control and [11, 13] for another inverse problem to identify the coefficients in the fractional 
p -Laplacian.

The purpose of this paper is to introduce and study a new class of the Dirichlet, Robin 
and Neumann source identification problems or the optimal control problems. We shall use 
these terms interchangeably but we will make a distinction in our numerical experiments. 
We emphasize that yet another class of identification where the unknown is the fractional 
exponent s for the spectral fractional Laplacian (which is different from the operator under 
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consideration) was recently considered in [46]. We refer to [10] for the case when s is a func-
tion of x ∈ Ω.

Now we describe our problems.
Let Ω ⊂ RN, N � 1, be a bounded open set with boundary ∂Ω. Let (ZD, UD) and (ZR, UR), 

where the subscripts D and R indicate Dirichlet and Robin, be Banach spaces. The goal of this 
paper is to consider the following two external control or source identification problems. The 
source/control in our case is denoted by z. Our objective function consists of two parts and 
we shall denote by J the part that depends on the state u. The precise assumptions on J will be 
given in section 4.

	 •	�Fractional Dirichlet exterior control problem: Given ξ � 0 a constant penalty param
eter, we consider the minimization problem:

min
(u,z)∈(UD,ZD)

J(u) +
ξ

2
‖z‖2

ZD
,� (1.3a)

		 subject to the fractional Dirichlet exterior value problem: find u ∈ UD solving
{
(−∆)su = 0 in Ω,
u = z in RN \ Ω,� (1.3b)

		 and the control constraints

z ∈ Zad,D,� (1.3c)

		 with Zad,D ⊂ ZD being a closed and convex subset.
	 •	�Fractional Robin exterior control problem: Given ξ � 0 a constant penalty parameter, 

we consider the minimization problem:

min
(u,z)∈(UR,ZR)

J(u) +
ξ

2
‖z‖2

ZR
,� (1.4a)

		 subject to the fractional Robin exterior value problem: find u ∈ UR solving

{
(−∆)su = 0 in Ω,
Nsu + κu = κz in RN \ Ω,� (1.4b)

Figure 1.  Let a diffusion process occurs inside a domain Ω which is the sphere in 
Case. (A) (left) and the letter M in Case. (B) (right). We are interested in the source 
identification or controlling this diffusion process by placing the source/control in a 
set Ω̂ which is disjoint from Ω. Case (A): Ω̂ is the triangular pipe. Case (B): Ω̂ is the 
structure on the top of the letter M.

H Antil et alInverse Problems 35 (2019) 084003
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		 and the control constraints

z ∈ Zad,R,� (1.4c)

		 with Zad,R ⊂ ZR being a closed and convex subset. In (1.4b), Nsu is the nonlocal normal 
derivative of u that will be defined in section 2, κ ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω) and is 
non-negative. We notice that the latter assumption is not a restriction since otherwise we 
can replace κ throughout by |κ|.

The precise conditions on Ω and the Banach spaces involved will be given in the subsequent 
sections. Notice that both exterior value problems (1.3b) and (1.4b) are ill-posed if the condi-
tions are enforced on ∂Ω. The main difficulties in (1.3) and (1.4) stem from the following facts.

	 •	�Nonlocal diffusion operator. The fractional Laplacian (−∆)s is a nonlocal operator. 
This can be easily seen from its definition.

	 •	�Nonlocal normal derivative. The first order optimality conditions for (1.3), the very-
weak solution to the Dirichlet problem (1.3b) and the Robin exterior value problem (1.4b) 
require to study Nsu which is the so-called nonlocal-normal derivative of u. Thus we not 
only have the nonlocal operator (−∆)s in the domain but also in the exterior RN \ Ω, 
i.e. a double nonlocality. An approximation of Nsu, especially numerically, is extremely 
challenging.

	 •	�Exterior conditions in RN \ Ω and not boundary conditions on ∂Ω. The conditions in 
(1.3b) and (1.4b) need to be specified in RN \ Ω instead on ∂Ω as otherwise the problems 
(1.3) and (1.4) are ill-posed as we have already mentioned above.

	 •	�Very-weak solutions of nonlocal exterior value problems. A typical choice for ZD is 
L2(RN \ Ω). As a result, the Dirichlet exterior value problem (1.3b) can only have very-
weak solutions (see [14, 15, 17] for the case s  =  1). To the best of our knowledge this is 
the first work that considers the notion of very-weak solutions for nonlocal (fractional) 
exterior value problems associated with the fractional Laplace operator.

	 •	�Regularity of the optimization variables. The standard shift-theorem which holds for 
local operators such as ∆ does not always hold for nonlocal operators such as (−∆)s (see 
for example [34]).

In view of all these aforementioned challenges it is clear that the standard techniques which 
are now well established for local problems do not directly extend to the nonlocal problems 
investigated in the present paper.

The purpose of this paper is to discuss our approach to deal with these nontrivial issues. We 
emphasize that to the best of our knowledge this is the first work that considers the optimal 
control problems (source identification problems) (1.3b) and (1.4b) where the control/source 
is applied from the outside. Let us also mention that this notion of controllability of PDEs 
from the exterior has been introduced by Warma in [53] for the nonlocal heat equation associ-
ated with the fractional Laplacian and in [40] for the wave type equation with the fractional 
Laplace operator to study their controllability properties. The case of the strong damping wave 
equation is included in [54] where some controllability results have been obtained. In case of 
problems with the spectral fractional Laplacian the boundary control has been established in 
[9]. For completeness, we also mention some interesting works on fractional Calderón type 
inverse problems [31, 37, 44]. Notice that fractional operators further provide flexibility to 
approximate arbitrary functions [25, 28, 34, 36].

We mention that we can also deal with the fractional Neumann exterior control problem. 
That is, given ξ � 0 a constant penalty parameter,

H Antil et alInverse Problems 35 (2019) 084003
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min
(u,z)∈(UN ,ZN)

J(u) +
ξ

2
‖z‖2

ZN
,

subject to the fractional Neumann exterior value problem: find u ∈ UN  solving
{
(−∆)su + u = 0 in Ω,
Nsu = z in RN \ Ω,� (1.5)

and the control constraints

z ∈ Zad,N .

The term u is added in (1.4b) just to ensure the uniqueness of solutions. The proofs follow 
similarly as the two cases we consider in the present paper with very minor changes. Since the 
paper is already long, we shall not give any details on this case.

Below we mention the novelties of the present paper.

	 (i)	�Weak and very-weak solutions. For the first time, we introduce and study the notion 
of very-weak solutions to the Dirichlet exterior value problem (1.3b) which is suitable 
for optimal control problems. We also study weak solutions of the Robin exterior value 
problem (1.4b).

	(ii)	�Approximation of the Dirichlet weak and very-weak solutions by the Robin weak 
solutions. We approximate the weak and very-weak solutions of the nonhomogeneous 
Dirichlet exterior value problem by using a suitable Robin exterior value problem. This 
allows us to circumvent approximating the nonlocal normal derivative and it is one of 
the key contribution of this paper. Recall that for the very-weak solution of the Dirichlet 
problem we need to evaluate the nonlocal normal derivative of the test functions (see 
definition 3.3) and for the Dirichlet control problem we need to evaluate the nonlocal 
normal derivative of the adjoint variable (see theorem 4.3). This is a new approach to 
impose non-zero exterior conditions for the fractional Dirichlet exterior value problem. 
We refer to an alternative approach [3] where the authors use the Lagrange multipliers to 
impose nonzero Dirichlet exterior conditions.

	(iii)	�We study both Dirichlet and Robin exterior control problems.
	(iv)	�We approximate (with rate) the Dirichlet exterior control problem by a suitable Robin 

exterior control problem.

The rest of the paper is organized as follows. We begin with section 2 where we introduce the 
relevant notations and the function spaces needed. The material in this section is well-known. 
Our main work starts from section 3 where we study first the weak and very-weak solutions 
for the Dirichlet exterior value problem in section 3.1. This is followed by the well-posedness 
of the Robin exterior value problem in section 3.2. The Dirichlet exterior control problem 
is considered in section 4 and Robin in section 5. We show how to approximate the weak 
solutions to the Dirichlet problem and the solutions to the Dirichlet exterior control problem 
in section 6. Section 7.1 is devoted to the experimental rate of convergence to approximate 
the Dirichlet exterior value problem using the Robin problem. In section 7.2 we consider a 
source identification problem in the classical sense, however our source is located outside the 
observation domain where the PDE is satisfied. Section 7.3 is devoted to two optimal control 
problems.

Remark 1.1 (Practical aspects).  From a practical point of view, having the source/con-
trol over the entire RN \ Ω can be very expensive. But this can be easily fixed by appropriately 
describing Zad. Indeed in case of figure 1 we can set the support of functions in Zad to be in Ω̂.

H Antil et alInverse Problems 35 (2019) 084003
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2.  Notations and preliminaries

Unless otherwise stated, Ω ⊂ RN (N � 1) is a bounded open set and 0  <  s  <  1. We let

Ws,2(Ω) :=
{

u ∈ L2(Ω) :
∫

Ω

∫

Ω

|u(x)− u(y)|2

|x − y|N+2s dxdy < ∞
}

,

and we endow it with the norm defined by

‖u‖Ws,2(Ω) :=
(∫

Ω

|u|2 dx +
∫

Ω

∫

Ω

|u(x)− u(y)|2

|x − y|N+2s dxdy
) 1

2

.

In order to study (1.3b) we also need to define

Ws,2
0 (Ω) :=

{
u ∈ Ws,2(RN) : u = 0 in RN \ Ω

}
.

Then

‖u‖Ws,2
0 (Ω) :=

(∫

RN

∫

RN

|u(x)− u(y)|2

|x − y|N+2s dxdy
) 1

2

defines an equivalent norm on Ws,2
0 (Ω).

We shall use W−s,2(RN) and W−s,2(Ω) to denote the dual spaces of Ws,2(RN) and Ws,2
0 (Ω), 

respectively, and 〈·, ·〉 to denote their duality pairing whenever it is clear from the context.
We also define the local fractional order Sobolev space

Ws,2
loc(R

N \ Ω) :=
{

u ∈ L2(RN \ Ω) : uϕ ∈ Ws,2(RN \ Ω), ∀ ϕ ∈ D(RN \ Ω)
}

.
� (2.1)

To introduce the fractional Laplace operator, we set

L1
s (RN) :=

{
u : RN → R measurable,

∫

RN

|u(x)|
(1 + |x|)N+2s dx < ∞

}
.

For u ∈ L1
s (RN) and ε > 0, we let

(−∆)s
εu(x) = CN,s

∫

{y∈RN ,|y−x|>ε}

u(x)− u(y)
|x − y|N+2s dy, x ∈ RN ,

where the normalized constant CN,s is given by

CN,s :=
s22sΓ

( 2s+N
2

)

π
N
2 Γ(1 − s)

,� (2.2)

and Γ is the usual Euler Gamma function (see, e.g. [20, 22–24, 26, 51, 52]). The fractional 
Laplacian (−∆)s is defined for u ∈ L1

s (RN) by the formula

(−∆)su(x) = CN,s P.V.
∫

RN

u(x)− u(y)
|x − y|N+2s dy = lim

ε↓0
(−∆)s

εu(x), x ∈ RN ,

� (2.3)
provided that the limit exists. It has been shown in [21, proposition 2.2] that for u ∈ D(Ω), 
we have

lim
s↑1−

∫

RN
u(−∆)su dx =

∫

RN
|∇u|2dx = −

∫

RN
u∆u dx = −

∫

Ω

u∆u dx,

H Antil et alInverse Problems 35 (2019) 084003
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that is where the constant CN,s plays a crucial role.
Next, for u ∈ Ws,2(RN) we define the nonlocal normal derivative Ns as:

Nsu(x) := CN,s

∫

Ω

u(x)− u(y)
|x − y|N+2s dy, x ∈ RN \ Ω.� (2.4)

We shall call Ns the interaction operator. Notice that the term ‘interaction’ has also been used 
by Du et al in [29]. Clearly Ns is a nonlocal operator and it is well defined on Ws,2(RN) as we 
discuss next.

Lemma 2.1.  The interaction operator Ns maps continuously Ws,2(RN) into Ws,2
loc(RN \ Ω). 

As a result, if u ∈ Ws,2(RN), then Nsu ∈ L2(RN \ Ω).

Proof.  We refer to [32, lemma 3.2] for the proof of the first part. The second part is a direct 
consequence of (2.1).� □ 

Despite the fact that Ns is defined on RN \ Ω, it is still known as the ‘normal’ derivative. 
This is due to its similarity with the classical normal derivative as we discuss next.

Proposition 2.2.  Let Ω ⊂ RN be a bounded open set with a Lipschitz continuous bound-
ary. Then the following assertions hold.

	(a)	�The divergence theorem for (−∆)s. Let u ∈ C2
0(RN), i.e. C2 functions on RN  that vanish 

at ±∞. Then
∫

Ω

(−∆)su dx = −
∫

RN\Ω
Nsu dx.

	(b)	�The integration by parts formula for (−∆)s. Let u ∈ Ws,2(RN) be such that 
(−∆)su ∈ L2(Ω). Then for every v ∈ Ws,2(RN) we have that

∫

Ω

v(−∆)su dx =
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy

−
∫

RN\Ω
vNsu dx,

� (2.5)
		 where R2N \ (RN \ Ω)2 := (Ω× Ω) ∪ (Ω× (RN \ Ω)) ∪ ((RN \ Ω)× Ω).
	 (c)	�The limit as s ↑ 1−. Let u, v ∈ C2

0(RN). Then

lim
s↑1−

∫

RN\Ω
vNsu dx =

∫

∂Ω

v
∂u
∂ν

dσ.

Remark 2.3.  Comparing the properties (a)–(c) in proposition 2.2 with the classical prop-
erties of the standard Laplacian ∆ we can immediately infer that Ns plays the same role for 
(−∆)s that the classical normal derivative does for ∆. For this reason, we call Ns the nonlocal 
normal derivative.

Proof of proposition 2.2.  The proofs of Parts (a) and (c) are contained in [27, lemma 3.2] 
and [27, proposition 5.1], respectively. The proof of Part (b) for smooth functions can be found 
in [27, lemma 3.3]. The version given here is obtained by using a density argument (see [53, 
proposition 3.7]).� □ 
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3. The state equations

Before analyzing the optimal control problems (1.3) and (1.4) for a given function z, we shall 
focus on the Dirichlet (1.3b) and Robin (1.4b) exterior value problems. We shall assume that 
Ω is a bounded domain with a Lipschitz continuous boundary.

3.1. The Dirichlet problem for the fractional Laplacian

We begin by rewriting the system (1.3b) in a more general form. That is,
{
(−∆)su = f in Ω,
u = z in RN \ Ω.� (3.1)

Here is our notion of weak solution.

Definition 3.1 (Weak solution to the Dirichlet problem).  Let f ∈ W−s,2(Ω), 
z ∈ Ws,2(RN \ Ω) and z̃ ∈ Ws,2(RN) be such that z̃|RN\Ω = z. A function u ∈ Ws,2(RN) is said 
to be a weak solution to (3.1) if u − z̃ ∈ Ws,2

0 (Ω) and

CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy = 〈 f , v〉,

for every v ∈ Ws,2
0 (Ω).

Firstly, we notice that since Ω is assumed to have a Lipschitz continuous boundary, we 
have that, for z ∈ Ws,2(RN \ Ω), there exists z̃ ∈ Ws,2(RN) such that z̃|RN\Ω = z. Secondly, 
the existence and uniqueness of a weak solution u to (3.1) and the continuous dependence of 
u on the data f  and z have been considered in [34] (see also [32, 50]). More precisely we have 
the following result.

Proposition 3.2.  Let f ∈ W−s,2(Ω) and z ∈ Ws,2(RN \ Ω). Then there exists a unique 
weak solution u to (3.1) in the sense of definition 3.1. In addition there is a constant C  >  0 
such that

‖u‖Ws,2(RN) � C
(
‖f‖W−s,2(Ω) + ‖z‖Ws,2(RN\Ω)

)
.� (3.2)

Even though such a result is typically sufficient in most situations, nevertheless it is not 
directly useful in the current context of optimal control problem (1.3) since we are interested 
in taking the space ZD = L2(RN \ Ω). Thus we need existence of solutions (in some sense) to 
the fractional Dirichlet problem (3.1) when z ∈ L2(RN \ Ω). In order to tackle this situation 
we introduce our notion of very-weak solution for (3.1).

Definition 3.3 (Very-weak solution to the Dirichlet problem).  Let z ∈ L2(RN \ Ω) 
and f ∈ W−s,2(Ω). A function u ∈ L2(RN) is said to be a very-weak solution to (3.1) if the 
identity

∫

Ω

u(−∆)sv dx = 〈 f , v〉 −
∫

RN\Ω
zNsv dx,� (3.3)

holds for every v ∈ V := {v ∈ Ws,2
0 (Ω) : (−∆)sv ∈ L2(Ω)}.

H Antil et alInverse Problems 35 (2019) 084003
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Remark 3.4.  We mention the following facts.

	 (a)	�We have shown in proposition 3.2 that if z ∈ Ws,2(RN \ Ω), then the Dirichlet problem 
(3.1) has a unique weak solution u ∈ Ws,2(RN). In [30], letting

V(Ω) :=
{

v : RN → R, v ∈ L2(Ω) and
∫

Ω

∫

RN

|v(x)− v(y)|2

|x − y|N+2s dxdy < ∞
}

,

		 the authors have shown that if z ∈ V(Ω) and f ∈ V(Ω)∗, then the Dirichlet problem (3.1) 
has a unique weak solution u ∈ V(Ω). Notice that Ws,2(RN) ↪→ V(Ω) ↪→ Ws,2(Ω). The 
difference between the two notions is only the space where the exterior data and the 
solutions belong.

	(b)	�For the very-weak solution, we have just assumed that z ∈ L2(RN \ Ω) (no additional 
regularity) and this has not been studied in [30] or elsewhere.

Next we prove the existence and uniqueness of a very-weak solution to (3.1).

Theorem 3.5.  Let f ∈ W−s,2(Ω) and z ∈ L2(RN \ Ω). Then there exists a unique very-
weak solution u to (3.1) according to definition 3.1 that fulfills

‖u‖L2(Ω) � C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
,� (3.4)

for a constant C  >  0. In addition, if z ∈ Ws,2(RN \ Ω), then the following assertions hold.

	(a)	�Every weak solution of (3.1) is also a very-weak solution.
	(b)	�Every very-weak solution of (3.1) that belongs to Ws,2(RN) is also a weak solution.

Proof.  In order to show the existence of a very-weak solution we shall apply the Babuška–
Lax–Milgram theorem.

Firstly, let (−∆)s
D be the realization of (−∆)s in L2(Ω) with the zero Dirichlet exterior 

condition u  =  0 in RN \ Ω. More precisely,

D((−∆)s
D) = V and (−∆)s

Du = (−∆)su in Ω.

Then a norm on V  is given by ‖v‖V = ‖(−∆)s
Dv‖L2(Ω) which follows from the fact that the 

operator (−∆)s
D is invertible (since by [45] (−∆)s

D has a compact resolvent and its first ei-
genvalue is strictly positive). Secondly, let F  be the bilinear form defined on L2(Ω)× V  by

F(u, v) :=
∫

Ω

u(−∆)sv dx.

Then F  is clearly bounded on L2(Ω)× V . More precisely there is a constant C  >  0 such that

|F(u, v)| � ‖u‖L2(Ω)‖(−∆)sv‖L2(Ω) � C‖u‖L2(Ω)‖v‖V , ∀ (u, v) ∈ L2(Ω)× V .

Thirdly, we show the inf-sup conditions. From the definition of V , we have that

v ∈ Ws,2
0 (Ω) and (−∆)sv ∈ L2(Ω) ⇐⇒ v ∈ V .

Letting u := (−∆)s
Dv

‖(−∆)s
Dv‖L2(Ω)

∈ L2(Ω), we obtain that

H Antil et alInverse Problems 35 (2019) 084003



10

sup
u∈L2(Ω),‖u‖L2(Ω)=1

|(u, (−∆)s
Dv)L2(Ω)| �

|((−∆)s
Dv, (−∆)s

Dv)L2(Ω)|
‖(−∆)s

Dv‖L2(Ω)

� ‖(−∆)s
Dv‖L2(Ω) = ‖v‖V .

Next we choose v ∈ V  as the unique weak solution of the Dirichlet problem

(−∆)s
Dv =

u
‖u‖L2(Ω)

in Ω,

for some 0 �= u ∈ L2(Ω). Then we readily obtain that

sup
v∈V ,‖v‖V=1

|(u, (−∆)sv)L2(Ω)| �
|(u, u)L2(Ω)|
‖u‖L2(Ω)

= ‖u‖L2(Ω) > 0,

for all 0 �= u ∈ L2(Ω). Finally, we have to show that the right-hand-side in (3.3) defines a 
linear continuous functional on V . Indeed, applying the Hölder inequality in conjunction with 
lemma 2.1 we obtain that there is a constant C  >  0 such that

∣∣∣∣∣
∫

RN\Ω
zNsv dx

∣∣∣∣∣ � ‖z‖L2(RN\Ω)‖Nsv‖L2(RN\Ω) � C‖z‖L2(RN\Ω)‖v‖Ws,2
0 (Ω),

� (3.5)

where in the last step we have used the fact that ‖v‖Ws,2
0 (Ω) = ‖v‖Ws,2(RN) for v ∈ Ws,2

0 (Ω). 
Moreover

|〈 f , v〉| � ‖f‖W−s,2(Ω)‖v‖Ws,2
0 (Ω).

In view of the last two estimates, the right-hand-side in (3.3) defines a linear continuous func-
tional on V . Therefore all the requirements of the Babuška–Lax–Milgram theorem hold. Thus, 
there exists a unique u ∈ L2(Ω) satisfying (3.3). Let u  =  z in RN \ Ω. Then u ∈ L2(RN) and 
satisfies (3.3). We have shown the existence and uniqueness of a very-weak solution.

Next we show the estimate (3.4). Let u ∈ L2(RN) be a very-weak solution. Let v ∈ V  be a 
weak solution of (−∆)s

Dv = u in Ω. Taking this v as a test function in (3.3) and using (3.5), 
we get that there is a constant C  >  0 such that

‖u‖2
L2(Ω) �‖f‖W−s,2(Ω)‖v‖Ws,2

0 (Ω) + ‖z‖L2(RN\Ω)‖Nsv‖L2(RN\Ω)

�C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
‖v‖Ws,2

0 (Ω)

�C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
‖(−∆)s

Dv‖L2(Ω)

�C
(
‖f‖W−s,2(Ω) + ‖z‖L2(RN\Ω)

)
‖u‖L2(Ω).

We have shown (3.4) and this completes the proof of the first part.

Next we prove the last two assertions of the theorem. Assume that z ∈ Ws,2(RN \ Ω).

	 (a)	�Let u ∈ Ws,2(RN) ↪→ L2(RN) be a weak solution of (3.1). It follows from the definition 
that u  =  z in RN \ Ω and
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CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy = 〈 f , v〉,� (3.6)

		 for every v ∈ V . Since v = 0 in RN \ Ω, we have that
∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy

=

∫ ∫

R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy.

� (3.7)

		 Using (3.6) and (3.7), the integration by parts formula (2.5) together with the fact that 
u  =  z in RN \ Ω, we get that

CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy

= 〈 f , v〉

=

∫

Ω

u(−∆)sv dx +
∫

RN\Ω
uNsv dx

=

∫

Ω

u(−∆)sv dx +
∫

RN\Ω
zNsv dx.

		 Thus u is a very-weak solution of (3.1).
	(b)	�Finally let u be a very-weak solution of (3.1) and assume that u ∈ Ws,2(RN). Since u  =  z 

in RN \ Ω, we have that z ∈ Ws,2(RN \ Ω) and if z̃ ∈ Ws,2(RN) satisfies z̃|RN\Ω = z, then 
clearly (u − z̃) ∈ Ws,2

0 (Ω). Since u is a very-weak solution of (3.1), then by definition, for 
every v ∈ V = D((−∆)s

D), we have

∫

Ω

u(−∆)sv dx = 〈 f , v〉 −
∫

RN\Ω
zNsv dx.� (3.8)

		 Since u ∈ Ws,2(RN) and v = 0 in RN \ Ω, then using (2.5) again we get that

CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy

=
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy

=

∫

Ω

u(−∆)sv dx +
∫

RN\Ω
uNsv dx

=

∫

Ω

u(−∆)sv dx +
∫

RN\Ω
zNsv dx.

�

(3.9)

		 It follows from (3.8) and (3.9) that for every v ∈ V , we have

CN,s

2

∫

RN

∫

RN

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy = 〈 f , v〉.� (3.10)
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		 Since V  is dense in Ws,2
0 (Ω), we have that (3.10) remains true for every v ∈ Ws,2

0 (Ω). We 
have shown that u is a weak solution of (3.1) and the proof is finished.� □ 

3.2. The Robin problem for the fractional Laplacian

In order to study the Robin problem (1.4b) we consider the Sobolev space introduced in [27]. 
For g ∈ L1(RN \ Ω) fixed, we let

Ws,2
Ω,g :=

{
u : RN → R measurable, ‖u‖Ws,2

Ω,g
< ∞

}
,

where

‖u‖Ws,2
Ω,g

:=

(
‖u‖2

L2(Ω) + ‖ |g| 1
2 u‖2

L2(RN\Ω) +

∫ ∫

R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s dxdy

) 1
2

.� (3.11)

Let µ be the measure on RN \ Ω given by dµ = |g|dx . With this setting, the norm in (3.11) can 
be rewritten as

‖u‖Ws,2
Ω,g

:=

(
‖u‖2

L2(Ω) + ‖u‖2
L2(RN\Ω,µ) +

∫ ∫

R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s dxdy

) 1
2

.

� (3.12)

If g  =  0, we shall let Ws,2
Ω,0 = Ws,2

Ω . The following result has been proved in [27, proposition 
3.1].

Proposition 3.6.  Let g ∈ L1(RN \ Ω). Then Ws,2
Ω,g  is a Hilbert space.

Throughout the remainder of the article, for g ∈ L1(RN \ Ω), we shall denote by (Ws,2
Ω,g)

� 
the dual of Ws,2

Ω,g .

Remark 3.7.  We mention the following facts.

	 (a)	�Recall that

R2N \ (RN \ Ω)2 = (Ω× Ω) ∪ (Ω× (RN \ Ω)) ∪ ((RN \ Ω)× Ω),

		 so that
∫ ∫

R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s dxdy =

∫

Ω

∫

Ω

|u(x)− u(y)|2

|x − y|N+2s dxdy

+

∫

Ω

∫

RN\Ω

|u(x)− u(y)|2

|x − y|N+2s dxdy +
∫

RN\Ω

∫

Ω

|u(x)− u(y)|2

|x − y|N+2s dxdy.

� (3.13)

	(b)	�If g ∈ L1(RN \ Ω) and u ∈ Ws,2
Ω,g, then using the Hölder inequality we get that

∣∣∣∣∣
∫

RN\Ω
gu dx

∣∣∣∣∣ �
∫

RN\Ω
|g| 1

2 ||g 1
2 |u| dx �

(∫

RN\Ω
|g| dx

) 1
2
(∫

RN\Ω
|gu2| dx

) 1
2

�‖g‖
1
2
L1(RN\Ω)

‖u‖L2(RN\Ω,µ) � ‖g‖
1
2
L1(RN\Ω)

‖u‖Ws,2
Ω,g

.
� (3.14)
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		 It follows from (3.14) that in particular, L1(RN \ Ω,µ) ↪→ (Ws,2
Ω,g)

�.

	 (c)	�By definition (using also (3.13)), Ws,2
Ω,g ↪→ Ws,2

Ω ↪→ Ws,2(Ω), so that we have the following 
continuous embeddings:

Ws,2
Ω,g ↪→ Ws,2

Ω ↪→ L
2N

N−2s (Ω).� (3.15)

		 It follows from (3.15) that the embeddings Ws,2
Ω,g ↪→ L2(Ω) and Ws,2

Ω ↪→ L2(Ω) are com-
pact.

We consider a generalized version of the system (1.4b) with nonzero right-hand-side f . 
That is, the problem:

{
(−∆)su = f in Ω,
Nsu + κu = κz in RN \ Ω.� (3.16)

Throughout the following sections, the measure µ is defined with g replaced by κ. That is, 
dµ = κdx (recall that κ is assumed to be non-negative). Here is our notion of weak solution.

Definition 3.8.  Let z ∈ L2(RN \ Ω,µ) and f ∈ (Ws,2
Ω,κ)

�. A function u ∈ Ws,2
Ω,κ is said to be 

a weak solution of (3.16) if the identity

CN,s

2

∫ ∫

R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy +

∫

RN\Ω
κuv dx

= 〈 f , v〉(Ws,2
Ω,κ)

�,Ws,2
Ω,κ

+

∫

RN\Ω
κzv dx,

�

(3.17)

holds for every v ∈ Ws,2
Ω,κ.

We have the following existence result.

Proposition 3.9.  Let κ ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω). Then for every z ∈ L2(RN \ Ω,µ) 
and f ∈ (Ws,2

Ω,κ)
�, there exists a weak solution u ∈ Ws,2

Ω,κ of (3.16).

Proof.  Let D(E) = Ws,2
Ω,κ and E : D(E)× D(E) → R be given by

E(u, v) :=
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy +

∫

RN\Ω
κuv dx.

� (3.18)

Then E is a bilinear, symmetric, continuous and closed form on L2(Ω). Hence, for every 
z ∈ L2(RN \ Ω,µ) ⊂ (Ws,2

Ω,κ)
� and f ∈ (Ws,2

Ω,κ)
�, there is a function u ∈ Ws,2

Ω,κ such that

E(u, v) =〈 f , v〉(Ws,2
Ω,κ)

�,Ws,2
Ω,κ

+ 〈z, v〉(Ws,2
Ω,κ)

�,Ws,2
Ω,κ

=〈 f , v〉(Ws,2
Ω,κ)

�,Ws,2
Ω,κ

+

∫

RN\Ω
κzv dx,

for every v ∈ Ws,2
Ω,κ. That is, u satisfies (3.17). Thus u is a weak solution of (3.16). The proof 

is finished.� □ 
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Remark 3.10.  Notice that similarly to the classical Neumann problem when κ ≡ 0, propo-
sition 3.9 only guarantees uniqueness of solutions to (1.4b) up to a constant. In case we as-
sume κ to be strictly positive, uniqueness can be guaranteed under assumption 6.1 below. In 
that case we can also show that there is a constant C  >  0 such that

‖u‖Ws,2
Ω,κ

� C
(
‖f‖(Ws,2

Ω,κ)
� + ‖z‖L2(RN\Ω,µ)

)
.� (3.19)

4.  Fractional Dirichlet exterior control problem

We begin by introducing the appropriate function spaces needed to study (1.3). We let

ZD := L2(RN \ Ω), UD := L2(Ω).

In view of theorem 3.5 the following (solution-map) control-to-state map

S : ZD → UD, z �→ Sz = u,

is well-defined, linear and continuous. We also notice that for z ∈ ZD, we have that 
u := Sz ∈ L2(RN). As a result we can write the reduced fractional Dirichlet exterior control 
problem as follows:

min
z∈Zad,D

J (z) := J(Sz) +
ξ

2
‖z‖2

ZD
,� (4.1)

where ξ � 0. The precise conditions on J depend on the result we would like to obtain. For 
this reason they will be given in the statements of our results.

We then have the following well-posedness result for (4.1) and equivalently (1.3).

Theorem 4.1.  Let Zad,D be a closed and convex subset of ZD. Let ξ > 0 with J � 0 or Zad,D 
bounded and let J : UD → R be weakly lower-semicontinuous. Then there exists a solution z̄ to 
(4.1) and equivalently to (1.3). If either J is convex and ξ > 0 or J is strictly convex and ξ � 0, 
then z̄ is unique.

Proof.  The proof uses the so-called direct-method or the Weierstrass theorem [16, theorem 
3.2.1]. We notice that for J : Zad,D → R, we can construct a minimizing sequence {zn}n∈N 
(see [16, theorem 3.2.1] for a construction) such that

inf
z∈Zad,D

J (z) = lim
n→∞

J (zn).

If ξ > 0 with J � 0 or Zad,D ⊂ ZD is bounded, then {zn}n∈N is a bounded sequence in ZD 
which is a Hilbert space. Due to the reflexivity of ZD, we have that (up to a subsequence if 
necessary) zn ⇀ z̄ (weak convergence) in ZD as n → ∞. Since Zad,D is closed and convex, 
hence is weakly closed, we have that z̄ ∈ Zad,D.

Since S : Zad,D → UD is linear and continuous, we have that it is weakly continuous. This 
implies that Szn ⇀ Sz̄ in UD as n → ∞. We have to show that (Sz̄, z̄) fulfills the state equa-
tion according to definition 3.3. In particular we need to study the identity

∫

Ω

un(−∆)sv dx = −
∫

RN\Ω
znNsv dx, ∀ v ∈ V ,� (4.2)

as n → ∞, where un := Szn. Since un ⇀ Sz̄ =: ū in UD as n → ∞ and zn ⇀ z̄ in ZD as n → ∞, 
we can immediately take the limit in (4.2) to obtain that
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∫

Ω

ū(−∆)sv dx = −
∫

RN\Ω
z̄Nsv dx, ∀ v ∈ V .

Thus (ū, z̄) ∈ UD × Zad,D fulfills the state equation in the sense of definition 3.3.

It then remains to show that z̄ is the minimizer of (4.1). This is a consequence of  
the fact that J  is weakly lower semicontinuous. Indeed, J  is the sum of two weakly  
lower semicontinuous functions (‖ · ‖2

ZD
 is continuous and convex therefore weakly lower 

semicontinuous).

Finally, if ξ > 0 and J is convex, then J  is strictly convex (sum of a strictly convex and 
convex functions). On the other hand, if J is strictly convex, then J  is strictly convex. In either 
case we have that J  is strictly convex and thus the uniqueness of z̄ follows.� □ 

We next derive the first order necessary optimality conditions for (4.1). We begin by iden-
tifying the structure of the adjoint operator S*.

Lemma 4.2.  For the state equation (1.3b) the adjoint operator S∗ : UD → ZD is given by

S∗w = −Nsp ∈ ZD,

where w ∈ UD and p ∈ Ws,2
0 (Ω) is the weak solution to the problem

{
(−∆)sp = w in Ω,
p = 0 in RN \ Ω.� (4.3)

Proof.  According to the definition of S*, we have that for every w ∈ UD and z ∈ ZD,

(w, Sz)L2(Ω) = (S∗w, z)L2(RN\Ω).

Next, testing the adjoint equation (4.3) with Sz and using the fact that Sz is a very-weak solu-
tion of (3.1) with f   =  0, we arrive at

(w, Sz)L2(Ω) = (Sz, (−∆)sp)L2(Ω) = −(z,Nsp)L2(RN\Ω) = (z, S∗w)L2(RN\Ω).

This yields the asserted result.� □ 

For the remainder of this section we will assume that ξ > 0.

Theorem 4.3.  Let the assumptions of theorem 4.1 hold. Let Z  be an open set in ZD such that 
Zad,D ⊂ Z. Let u �→ J(u) : UD → R be continuously Fréchet differentiable with J′(u) ∈ UD. 
If z̄ is a minimizer of (4.1) over Zad,D, then the first order necessary optimality conditions are 
given by

(−Nsp̄ + ξz̄, z − z̄)L2(RN\Ω) � 0, ∀z ∈ Zad,D,� (4.4)

where p̄ ∈ Ws,2
0 (Ω) solves the adjoint equation
{
(−∆)sp̄ = J′(ū) in Ω,
p̄ = 0 in RN \ Ω.� (4.5)

Equivalently we can write (4.4) as
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z̄ = PZad,D

(
1
ξ
Nsp̄

)
,� (4.6)

where PZad,D is the projection onto the set Zad,D. If J is convex, then (4.4) is a sufficient condition.

Proof.  The proof is a straightforward application of the differentiability properties of J and 
the chain rule in conjunction with lemma 4.2. Indeed, for a given direction h ∈ Zad,D, the di-
rectional derivative of J  is given by

J ′(z̄)h =(J′(Sz̄), Sh)L2(Ω) + ξ(z̄, h)L2(RN\Ω)

=(S∗J′(Sz̄), h)L2(Ω) + ξ(z̄, h)L2(RN\Ω),

where in the first step we have used that J′(Sz̄) ∈ L(L2(Ω),R) = L2(Ω) and in the second step we 
have used that S is linear and bounded, therefore S* is well-defined. Then using lemma 4.2 we arrive 
at the asserted result. From lemma 2.1 we recall that Nsp̄ ∈ L2(RN \ Ω). Therefore the equivalence 
between (4.4) and (4.6) follows by using [16, theorem 3.3.5]. The proof is finished.� □ 

Remark 4.4 (Regularity for the optimization variables).  We recall a rather surprising 
result for the adjoint equation (4.3). The standard maximal elliptic regularity that is known to hold 
for the classical Laplacian on smooth open sets does not hold in the case of the fractional Lapla-
cian i.e. p  does not always belong to W2s,2(Ω). Notice that w ∈ L2(Ω) and p = [(−∆)s

D]
−1w. 

More precisely assume that Ω is a smooth bounded open set. If 0 < s < 1
2 , then by [34, form

ula (7.4)] we have that D((−∆)s
D) = W2s,2

0 (Ω) and hence, p ∈ W2s,2(Ω) in that case. But if 
1
2 � s < 1, an example has been given in [43, remark 7.2] where D((−∆)s

D) �⊂ W2s,2(Ω), thus 
in that case p  does not always belong to W2s,2(Ω). It has been shown in [18, 19] that only a 
local maximal elliptic regularity can be achieved. As a result, the best known result for Nsp is 
as given in lemma 2.1. Since PZad,D is a contraction (Lipschitz) we can conclude that z̄ has the 
same regularity as Nsp̄, i.e. they are in L2(RN \ Ω) globally and in Ws,2

loc(RN \ Ω) locally. As it 
is well-known, in case of the classical Laplacian, one can use a boot-strap argument to improve 
the regularity of Sz̄ = ū globally. However this is not the case for the fractional exterior value 
problems. We also notice that always for the case 1

2 < s < 1, Grubb [33, section 2] (see also 
[34]) has introduced some fractional order Sobolev spaces where a maximal elliptic regularity 
is obtained on these spaces. Of course these fractional order Sobolev spaces do not coincide 
with W2s,2(Ω). She has also proved some maximal elliptic regularity on some certain spaces of 
Hölder continuous functions. We recall that our operator (−∆)s

D is different from the spectral 
Dirichlet fractional Laplacian (the fractional powers of the Laplace operator with the Dirichlet 
boundary condition). For the latter operator, Grubb [35] has shown that a maximal elliptic regu-
larity can be achieved in some classical fractional order Sobolev spaces.

5.  Fractional Robin exterior control problem

In this section we study the fractional Robin exterior control problem (1.4b). We begin by set-
ting the functional analytic framework. We let

ZR := L2(RN \ Ω,µ), UR := Ws,2
Ω,κ.
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Notice that dµ = κdx. In addition we assume that κ ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω) and κ > 0 
a.e. in RN \ Ω. In view of proposition 3.9 the following (solution-map) control-to-state map

S : ZR → UR, z �→ u,

is well-defined. Moreover S is linear and continuous (by (3.19)). Since UR ↪→ L2(Ω) with the 
embedding being continuous we can instead define

S : ZR → L2(Ω).

We can then write the so-called reduced fractional Robin exterior control problem as follows:

min
z∈Zad,R

J (z) := J(Sz) +
ξ

2
‖z‖2

L2(RN\Ω,µ),� (5.1)

where ξ � 0. Here also, the precise conditions on J will be given in the statements of the 
results. We have the following well-posedness result.

Theorem 5.1.  Let Zad,R be a closed and convex subset of ZR. Let ξ > 0 with J � 0 or 
Zad,R ⊂ ZR bounded. Moreover, let J : L2(Ω) → R be weakly lower-semicontinuous. Then 
there exists a solution z̄ to (5.1) and equivalently to (1.4). If either J is convex and ξ > 0 or J 
is strictly convex and ξ � 0 then z̄ is unique.

Proof.  We proceed as in the proof of theorem 4.1. Let {zn}n∈N ⊂ Zad,R  be a minimizing 
sequence such that

inf
z∈Zad,R

J (z) = lim
n→∞

J (zn).

If ξ > 0 with J � 0 or Zad,R ⊂ ZR is bounded, then after a subsequence, if necessary, we have 
that zn ⇀ z̄ in L2(RN \ Ω,µ) as n → ∞. Now since Zad,R is a convex and closed subset of ZR, 
it follows that z̄ ∈ Zad,R.

Next we show that the pair (Sz̄, z̄) satisfies the state equation. Notice that un := Szn is 

the weak solution of (1.4b) with exterior value zn. Thus, by definition, un ∈ Ws,2
Ω,κ and the 

identity

E(un, v) =
∫

RN\Ω
znv dµ,� (5.2)

holds for every v ∈ Ws,2
Ω,κ where we recall that E is given in (3.18). We also notice that the map-

ping S is also bounded from ZR into Ws,2
Ω,κ (by (3.19)). This shows that the sequence {un}n∈N 

is bounded in Ws,2
Ω,κ. Thus, after a subsequence, if necessary, we have that Szn = un ⇀ Sz̄ = ū 

in Ws,2
Ω,κ as n → ∞. This implies that

lim
n→∞

(
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))
|x − y|N+2s dxdy +

∫

RN\Ω
unv dµ

)

=
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(ū(x)− ū(y))(v(x)− v(y))
|x − y|N+2s dxdy +

∫

RN\Ω
ūv dµ,

for every v ∈ Ws,2
Ω,κ. Since zn ⇀ z̄ in L2(RN \ Ω,µ) as n → ∞, it follows that
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lim
n→∞

∫

RN\Ω
znv dµ =

∫

RN\Ω
z̄v dµ,

for every v ∈ Ws,2
Ω,κ. Therefore we can pass to the limit in (5.2) as n → ∞ to obtain that

E(ū, v) =
∫

RN\Ω
z̄v dx, ∀ v ∈ Ws,2

Ω,κ.

Thus, (Sz̄, z̄) = (ū, z̄) satisfies the state equation (1.4b). The rest of the steps are similar to the 
proof of theorem 4.1 and we omit them for brevity.� □ 

As in the case of the fractional Dirichlet exterior control problem (4.1) we identify next the 
adjoint of the control-to-state map S.

Lemma 5.2.  For the state equation (1.4b) the adjoint operator S∗ : L2(Ω) → ZR is given by

(S∗w, z)ZR =

∫

RN\Ω
pz dµ ∀z ∈ ZR,

where w ∈ L2(Ω) and p ∈ Ws,2
Ω,κ is the weak solution to

{
(−∆)sp = w in Ω,
Nsp + κp = 0 in RN \ Ω.� (5.3)

Proof.  Let w ∈ L2(Ω) and z ∈ ZR. Then Sz ∈ Ws,2
Ω,κ ↪→ L2(Ω) with the embedding being 

continuous. Then we can write

(w, Sz)L2(Ω) = (S∗w, z)ZR .

Next we test (5.3) with Sz to arrive at

(w, Sz)L2(Ω) =
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(u(x)− u(y))( p(x)− p(y))
|x − y|N+2s dxdy +

∫

RN\Ω
up dµ

=

∫

RN\Ω
zp dµ = (S∗w, z)ZR ,

where we have used the fact that u solves the state equation according to definition 3.8. The 
proof is finished.� □ 

For the remainder of this section we will assume that ξ > 0. The proof of the next result is 
similar to the proof of theorem 4.3 and is omitted for brevity.

Theorem 5.3.  Let the assumptions of theorem 5.1 hold. Let Z  be an open set in ZR such 
that Zad,R ⊂ Z . Let u �→ J(u) : L2(Ω) → R be continuously Fréchet differentiable with 
J′(u) ∈ L2(Ω). If z̄ is a minimizer of (5.1) over Zad,R, then the first necessary optimality condi-
tions are given by

∫

RN\Ω
(p̄ + ξz̄)(z − z̄) dµ � 0, z ∈ Zad,R,� (5.4)

where p̄ ∈ Ws,2
Ω,κ solves the adjoint equation
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{
(−∆)sp̄ = J′(ū) in Ω,
Nsp̄ + κp̄ = 0 in RN \ Ω.� (5.5)

Equivalently we can write (5.4) as

z̄ = PZad,R

(
− p̄
ξ

)
,� (5.6)

where PZad,R  is the projection onto the set Zad,R. If J is convex, then (5.4) is a sufficient  
condition.

Remark 5.4 (Regularity of the optimization variables).  As pointed out in remark 4.4 
(Dirichlet case) the regularity for the integral fractional Laplacian is a delicate issue. In fact 
for the Robin problem, in RN \ Ω we can only guarantee that p̄ ∈ L2(RN \ Ω,µ). We further 
emphasize that the regularity for the fractional Robin problem is still open. Therefore due to 
the lack of such regularity results, we cannot use the classical boot-strap argument to further 
improve the regularity of the control z̄.

6.  Approximation of Dirichlet exterior value and control problems

We recall that the Dirichlet exterior value problem (1.2) in our case is only understood in the 
very-weak sense (see theorem 3.5). Moreover a numerical approximation of solutions to this 
problem will require a direct approximation of the interaction operator Ns which is challeng-
ing. Similar situations arise in the first order optimality conditions for the Dirichlet control 
problem (4.4).

The purpose of this section is to not only introduce a new approach to approximate weak 
and very-weak solutions to the nonhomogeneous Dirichlet exterior value problem (recall that 
if z is regular enough then a very-weak solution is a weak solution, and every weak solution is 
a very-weak solution, see theorem 3.5) but also to consider a regularized fractional Dirichlet 
exterior control problem. We begin by stating the regularized Dirichlet exterior value problem. 

Let n ∈ N. Find un ∈ Ws,2
Ω,κ solving the elliptic problem

{
(−∆)sun = 0 in Ω,
Nsun + nκun = nκz in RN \ Ω.� (6.1)

Notice that the fractional regularized Dirichlet exterior problem (6.1) is nothing but the frac-
tional Robin exterior value problem (1.4b). We proceed by showing that the solution un to 
(6.1) converges to a function u, as n → ∞, that solves the state equation (1.2) in the very weak 
sense (3.3). This is our new method to solve the non-homogeneous Dirichlet exterior value 
problem. Recall that the weak formulation of (6.1) does not require access to Ns (see defini-
tion (3.8)) and it is straightforward to implement.

In this section we are interested in solutions un to (6.1) that belong to Ws,2
Ω,κ ∩ L2(RN \ Ω) 

which is endowed with the norm

‖u‖Ws,2
Ω,κ∩L2(RN\Ω) :=

(
‖u‖2

Ws,2
Ω,κ

+ ‖u‖2
L2(RN\Ω)

) 1
2

.� (6.2)

In addition, in our application we shall take κ such that its support supp[κ] ⊂ RN \ Ω has a 
positive Lebesgue measure. For this reason we shall assume the following.
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Assumption 6.1.  We assume that κ ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω) and satisfies κ > 0 al-
most everywhere in K := supp[κ] ⊂ RN \ Ω, where the Lebesgue measure |K| > 0.

It follows from assumption 6.1 that 
∫
RN\Ω κ dx > 0.

To show the existence of weak solutions to the system (6.1) that belong to Ws,2
Ω,κ ∩ L2(RN \ Ω), 

we need some preparation.

Lemma 6.2.  Assume that assumption 6.1 holds. Then

‖u‖W :=

(∫ ∫

R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s dxdy +
∫

RN\Ω
|u|2 dx

) 1
2

� (6.3)

defines an equivalent norm on Ws,2
Ω,κ ∩ L2(RN \ Ω).

Proof.  Firstly, it is readily seen that there is a constant C  >  0 such that

‖u‖W � C‖u‖Ws,2
Ω,κ∩L2(RN\Ω) for all u ∈ Ws,2

Ω,κ ∩ L2(RN \ Ω).� (6.4)

Secondly, we claim that there is a constant C  >  0 such that

‖u‖Ws,2
Ω,κ∩L2(RN\Ω) � C‖u‖W for all u ∈ Ws,2

Ω,κ ∩ L2(RN \ Ω).� (6.5)

It is clear that
∫

RN\Ω
|u|2 dµ � ‖κ‖L∞(RN\Ω)

∫

RN\Ω
|u|2 dx.� (6.6)

It suffices to show that there is a constant C  >  0 such that for every u ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω),

∫

Ω

|u|2 dx � C

(∫ ∫

R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y|N+2s dxdy +
∫

RN\Ω
|u|2 dx

)
.

� (6.7)

We prove (6.7) by contradiction. Assume to the contrary that for every n ∈ N, there exists a 

sequence {un}n∈N ⊂ Ws,2
Ω,κ ∩ L2(RN \ Ω) such that

∫

Ω

|un|2 dx > n

(∫ ∫

R2N\(RN\Ω)2

|un(x)− un(y)|2

|x − y|N+2s dxdy +
∫

RN\Ω
|un|2 dx

)
.

� (6.8)

By possibly dividing (6.8) by ‖un‖2
L2(Ω) we may assume that ‖un‖2

L2(Ω) = 1 for every n ∈ N. 
Hence, by (6.8), there is a constant C  >  0 (independent of n) such that for every n ∈ N,

∫ ∫

R2N\(RN\Ω)2

|un(x)− un(y)|2

|x − y|N+2s dxdy +
∫

RN\Ω
|un|2 dx � C.� (6.9)

Since κ ∈ L∞(RN \ Ω), (6.9) and (6.6) imply that for every n ∈ N,
∫

RN\Ω
|un|2 dµ � C.� (6.10)
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Now (6.9) and (6.10) together with ‖un‖2
L2(Ω) = 1 imply that {un}n∈N is a bounded sequence 

in the space Ws,2
Ω,κ ∩ L2(RN \ Ω). Therefore, after passing to a subsequence, if necessary, we 

may assume that un converges weakly to some u ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω) and strongly to u in 

L2(Ω), as n → ∞ (as the embedding Ws,2
Ω,κ ↪→ L2(Ω) is compact by remark 3.7(c)). It follows 

from (6.8) and the fact that ‖un‖2
L2(Ω) = 1 that

lim
n→∞

∫ ∫

R2N\(RN\Ω)2

|un(x)− un(y)|2

|x − y|N+2s dxdy = 0 and lim
n→∞

∫

RN\Ω
|un|2 dx = 0.

These identities imply that un|RN\Ω converges strongly to zero in L2(RN \ Ω) as n → ∞, and 
after passing to a subsequence, if necessary, we have that

lim
n→∞

|un(x)− un(y)| = 0 for a.e. (x, y) ∈ R2N \ (RN \ Ω)2,� (6.11)

and

un → 0 a.e. in RN \ Ω as n → ∞.� (6.12)

More precisely, (6.11) implies that


limn→∞ |un(x)− un(y)| = 0 for a.e. (x, y) ∈ Ω× Ω,
limn→∞ |un(x)− un(y)| = 0 for a.e. (x, y) ∈ Ω× (RN \ Ω),
limn→∞ |un(x)− un(y)| = 0 for a.e. (x, y) ∈ (RN \ Ω)× Ω.

� (6.13)

Using (6.13), we get that un converges a.e. to some constant function c in RN  as n → ∞. From 
(6.12) and the uniqueness of the limit, we have that c  =  0 a.e. in RN . Since (after passing to a 
subsequence, if necessary) un converges a.e. to u in Ω as n → ∞, the uniqueness of the limit 

also implies that c  =  u  =  0 a.e. on Ω. On the other hand, ‖u‖2
L2(Ω) = limn→∞ ‖un‖2

L2(Ω) = 1, 
and this is a contradiction. Hence, (6.8) is not possible and we have shown (6.7). Finally the 
lemma follows from (6.4) and (6.5). The proof is finished.� □ 

The following theorem is the main result of this section.

Theorem 6.3 (Approximation of solutions to the Dirichlet problem).  Assume that 
assumption 6.1 holds. Then the following assertions hold.

	(a)	�Let z ∈ Ws,2(RN \ Ω) and un ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω) be the weak solution of (6.1). Let 

u ∈ Ws,2(RN) be the weak solution to the state equation (1.3b). Then there is a constant 
C  >  0 (independent of n) such that

‖u − un‖L2(RN) �
C
n
‖u‖Ws,2(RN).� (6.14)

		 In particular un converges strongly to u in L2(RN) as n → ∞.
	(b)	�Let z ∈ L2(RN \ Ω) and un ∈ Ws,2

Ω,κ ∩ L2(RN \ Ω) be the weak solution of (6.1). Then 
there exist a subsequence that we still denote by {un}n∈N and a function ũ ∈ L2(RN) such 
that un ⇀ ũ in L2(RN) as n → ∞, and ũ satisfies

∫

Ω

ũ(−∆)sv dx = −
∫

RN\Ω
ũNsv dx,� (6.15)

		 for all v ∈ V .
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Remark 6.4 (Convergence to a very-weak solution).  Notice that Part (a) of theorem 
6.3 implies strong convergence to a weak solution (with rate). On the other hand, Part (b) ‘al-
most’ implies weak convergence to a very-weak solution (we still do not know if ũ|RN\Ω = z). 
We emphasize that such an approximation of very-weak solutions using the Robin problem, to 
the best of our knowledge, is open even for the classical case s  =  1 when the boundary func-
tion just belongs to L2(∂Ω).

Proof of theorem 6.3. 

	 (a)	�Let z ∈ Ws,2(RN \ Ω). Firstly, recall that under our assumption 
Ws,2(RN \ Ω) ↪→ L2(RN \ Ω) ↪→ L2(RN \ Ω,µ). Secondly, consider the system (6.1). A 

weak solution is a function un ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω) such that the identity

CN,s

2

∫ ∫

R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))
|x − y|N+2s dxdy

+ n
∫

RN\Ω
unv dµ = n

∫

RN\Ω
zv dµ,

�

(6.16)

		 holds for every v ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω). Proceeding as in the proof of proposition 3.9 

we can easily deduce that for every n ∈ N, there is a unique un ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω) 

satisfying (6.16).

		 For v, w ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω) we let

En(v, w) :=
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(v(x)− v(y))(w(x)− w(y))
|x − y|N+2s dxdy + n

∫

RN\Ω
vw dµ.

		 We notice that proceeding as in the proof of lemma 6.2 we can deduce that there is a 
constant C  >  0 such that

CN,s

2

∫ ∫

R2N\(RN\Ω)2

|un(x)− un(y)|2

|x − y|N+2s dxdy + n
∫

RN\Ω
|un|2 dx � CEn(un, un).

� (6.17)

		 Next, let u ∈ Ws,2(RN) be the weak solution of (3.1) and v ∈ Ws,2
Ω,κ ∩ L2(RN \ Ω). Using 

the integration by parts formula (2.5) we get that

En(u − un, v) =
∫

Ω

v(−∆)s(u − un) dx +
∫

RN\Ω
vNs(u − un) dx

+ n
∫

RN\Ω
v (u − un) dµ

=

∫

Ω

v(−∆)s(u − un) dx +
∫

RN\Ω
vNsu dx

−
∫

RN\Ω
v (Nsun + nκ(un − z)) dx

=

∫

RN\Ω
vNsu dx.

�

(6.18)
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		 Taking v = u − un as a test function in (6.18) and using (6.17), we get that there is a 
constant C  >  0 (independent of n) such that

n‖u − un‖2
L2(RN\Ω) � En(u − un, u − un) =

∫

RN\Ω
(u − un)Nsu dx

� ‖u − un‖L2(RN\Ω)‖Nsu‖L2(RN\Ω)

� C‖u − un‖L2(RN\Ω)‖u‖Ws,2(RN).

We have shown that there is a constant C  >  0 (independent of n) such that

‖u − un‖L2(RN\Ω) �
C
n
‖u‖Ws,2(RN).� (6.19)

		 Next, observe that

‖u − un‖L2(Ω) = sup
η∈L2(Ω)

∣∣∫
Ω
(u − un)η dx

∣∣
‖η‖L2(Ω)

.� (6.20)

		 For any η ∈ L2(Ω), let w ∈ Ws,2
0 (Ω) be the weak solution of the Dirichlet problem

(−∆)sw = η in Ω, w = 0 in RN \ Ω.� (6.21)

		 It follows from proposition 3.2 that there is a constant C  >  0 such that

‖w‖Ws,2(RN) � C‖η‖L2(Ω).� (6.22)

Since w ∈ Ws,2
0 (Ω), then using (6.18) we get that

∫

Ω

(u − un)(−∆)sw dx

=
CN,s

2

∫ ∫

R2N\(RN\Ω)2

((u − un)(x)− (u − un)(y))(w(x)− w(y))
|x − y|N+2s dxdy

−
∫

RN\Ω
(u − un)Nsw dx

=En(u − un, w)−
∫

RN\Ω
(u − un)Nsw dx

=

∫

RN\Ω
wNsu dx −

∫

RN\Ω
(u − un)Nsw dx

=−
∫

RN\Ω
(u − un)Nsw dx.

		 It follows from the preceding identity, (6.19) and (6.22) that there is a constant C  >  0 
such that

∣∣∣∣
∫

Ω

(u − un)(−∆)sw dx
∣∣∣∣ =

∣∣∣∣∣
∫

RN\Ω
(u − un)Nsw dx

∣∣∣∣∣
�‖u − un‖L2(RN\Ω)‖Nsw‖L2(RN\Ω)

�
C
n
‖u‖Ws,2(RN)‖w‖Ws,2(RN)

�
C
n
‖u‖Ws,2(RN)‖η‖L2(Ω).

�

(6.23)
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		 Using (6.20) and (6.23) we get that

‖u − un‖L2(Ω) �
C
n
‖u‖Ws,2(RN).� (6.24)

		 Now the estimate (6.14) follows from (6.19) and (6.24). Observe that it follows from 
(6.14) that un → u in L2(RN) as n → ∞ and this completes the proof of Part (a).

	(b)	�Now let z ∈ L2(RN \ Ω) ↪→ L2(RN \ Ω,µ). Notice that {un}n∈N satisfies (6.16). 
Proceeding as in the proof of lemma 6.2 we can deduce that there is a constant C  >  0 
(independent of n) such that

n‖un‖2
L2(RN\Ω) � CEn(un, un) � nC‖κ‖L∞(RN\Ω)‖z‖L2(RN\Ω)‖un‖L2(RN\Ω),

		 and this implies that

‖un‖L2(RN\Ω) � C‖z‖L2(RN\Ω).� (6.25)

		 Now we proceed as in the proof of (6.24). As in (6.20) we have that

‖un‖L2(Ω) = sup
η∈L2(Ω)

∣∣∫
Ω

unη dx
∣∣

‖η‖L2(Ω)

.� (6.26)

		 Let η ∈ L2(Ω) and w ∈ Ws,2
0 (Ω) the weak solution of (6.21). Since w ∈ Ws,2

0 (Ω), then 
using (6.18) we have that

∫

Ω

un(−∆)sw dx

=
CN,s

2

∫ ∫

R2N\(RN\Ω)2

(un(x)− un(y))(w(x)− w(y))
|x − y|N+2s dxdy −

∫

RN\Ω
unNsw dx

=−
∫

RN\Ω
unNsw dx.

It follows from the preceding identity, (6.25) and (6.22) that there is a constant C  >  0 such that

∣∣∣∣
∫

Ω

un(−∆)sw dx
∣∣∣∣ =

∣∣∣∣∣
∫

RN\Ω
unNsw dx

∣∣∣∣∣ � ‖un‖L2(RN\Ω)‖Nsw‖L2(RN\Ω)

�C‖z‖L2(RN\Ω)‖w‖Ws,2(RN).

� (6.27)

		 Using (6.25), (6.27) and (6.22) we get that there is a constant C  >  0 (independent of n) 
such that

‖un‖L2(Ω) � C‖z‖L2(RN\Ω).� (6.28)

		 Combining (6.25) and (6.28) we get that

‖un‖L2(RN) � C‖z‖L2(RN\Ω).� (6.29)

		 Hence, the sequence {un}n∈N is bounded in L2(RN). Thus, after a subsequence, if neces-
sary, we have that un converges weakly to some ũ in L2(RN) as n → ∞.

Using (6.16) we get that for every v ∈ V := {v ∈ Ws,2
0 (Ω) : (−∆)sv ∈ L2(Ω)},
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CN,s

2

∫ ∫

R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))
|x − y|N+2s dxdy = 0.� (6.30)

Using the integration by parts formula (2.5) we can deduce that

CN,s

2

∫ ∫

R2N\(RN\Ω)2

(un(x)− un(y))(v(x)− v(y))
|x − y|N+2s dxdy

=

∫

Ω

un(−∆)sv dx +
∫

RN\Ω
unNsv dx,

� (6.31)

for every v ∈ V . Combining (6.30) and (6.31) we get that the identity
∫

Ω

un(−∆)sv dx +
∫

RN\Ω
unNsv dx = 0,� (6.32)

holds for every v ∈ V . Passing to the limit in (6.32) as n → ∞, we obtain that
∫

Ω

ũ(−∆)sv dx +
∫

RN\Ω
ũNsv dx = 0,

for every v ∈ V . We have shown (6.15) and the proof is finished.� □ 

Toward this end, for ξ � 0 we introduce the regularized fractional Dirichlet control 
problem:

min
u∈UR,z∈ZR

J(u) +
ξ

2
‖z‖2

L2(RN\Ω),� (6.33a)

subject to the regularized exterior value problem (Robin problem): find un ∈ UR solving
{
(−∆)su = 0 in Ω

Nsu + nκu = nκz in RN \ Ω,� (6.33b)

and the control constraints

z ∈ Zad,R.� (6.33c)

Here ZR := L2(RN \ Ω), Zad,R is a closed and convex subset of ZR and UR := Ws,2
Ω,κ ∩ L2(RN \ Ω). 

We again remark that (6.33) is nothing but the fractional Robin exterior control problem.

Theorem 6.5 (Approximation of the Dirichlet control problem).  The regularized 

control problem (6.33) admits a minimizer (zn, u(zn)) ∈ Zad,R × (Ws,2
Ω,κ ∩ L2(RN \ Ω)). Let 

ZR = Ws,2(RN \ Ω) and Zad,R ⊂ ZR be bounded. Then for any sequence {n�}∞�=1 with n� → ∞, 
there exists a subsequence still denoted by {n�}∞�=1 such that zn� ⇀ z̃ in Ws,2(RN \ Ω), u(zn�) → ũ 
in L2(RN) as n� → ∞ and (z̃, ũ) solves the Dirichlet control problem (1.3) with Zad,D replaced 
by Zad,R.

Proof.  Since the regularized control problem (6.33) is nothing but the Robin control prob-
lem therefore the existence of minimizers follows by directly using theorem 5.1. Following the 
proof of theorem 5.1 and using the fact that Zad,R is a bounded subset of the reflexive Banach 
space Ws,2(RN \ Ω), after a subsequence, if necessary, we have that zn� ⇀ z̃ in Ws,2(RN \ Ω) 
as n� → ∞. Now since Zad,R is closed and convex, then it is weakly closed. Thus z̃ ∈ Zad,R.
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Following the proof of theorem 6.3(a) we can deduce that there exists a subsequence {un�} 
such that un� → ũ in L2(RN) as n� → ∞ and ũ ∈ Ws,2(RN). Combining this convergence with 
the aforementioned convergence of zn� we can conclude that (z̃, ũ) ∈ Zad,R × Ws,2(RN) solves 
the Dirichlet exterior value problem (1.3b).

It then remains to show that (z̃, ũ) is a minimizer of (1.3). Let (z′, u′) be any minimizer of 
(1.3). Let us consider the regularized state equation (6.33b) but with boundary datum z′ . We 
denote the solution of the resulting state equation by u′

n�. By using the same limiting argu-
ment as above we can select a subsequence such that u′

n� → u′  in L2(RN) as n� → ∞. Letting 

j(z, u) := J(u) + ξ
2‖z‖2

L2(RN\Ω), it then follows that

j(z′, u′) � j(z̃, ũ) � lim inf
n�→∞

j(zn� , un�) � lim inf
n�→∞

j(z′, u′n�) = j(z′, u′),

where the second inequality is due to the weak-lower semicontinuity of J. The third inequality 
is due to the fact that {(zn� , un�)} is a sequence of minimizers for (6.33). The proof is finished.
� □ 

We conclude this section by writing the stationarity system corresponding to (6.33): find 
(z, u, p) ∈ Zad,R × (Ws,2

Ω,κ ∩ L2(RN \ Ω))× (Ws,2
Ω,κ ∩ L2(RN \ Ω)) such that




E(u, v) =
∫
RN\Ω nκzv dx,

E(w, p) =
∫
Ω

J′(u)w dx,∫
RN\Ω(nκp + ξz)(̃z − z) dx � 0,

� (6.34)

for all (̃z, v, w) ∈ Zad,R × (Ws,2
Ω,κ ∩ L2(RN \ Ω))× (Ws,2

Ω,κ ∩ L2(RN \ Ω)).

7.  Numerical approximations

The purpose of this section is to introduce numerical approximations of the problems we have 
considered so far. We emphasize that the fractional PDEs are intrinsically expensive, since the 
underlying coefficient matrices require approximation of integrals with singular kernels and 
the resulting coefficient matrices are dense. In addition, the fractional control problems can be 
prohibitively expensive since they not only require solving the nonlocal state equation but also 
the nonlocal adjoint equation and in case of Dirichlet control problem one needs to approxi-
mate the nonlocal normal derivative for the adjoint variable to evaluate the control variable 
(4.6). The presented approach is a first of its kind to numerically solve the fractional Robin 
problem and to approximate the Dirichlet problem by the Robin problem. Further details on 
the numerical analysis of the underlying PDEs, the control problem and solvers for the frac-
tional PDEs will be part of a forthcoming research paper.

The rest of the section is organized as follows: in section 7.1 we begin with a finite element 
approximation of the Robin problem (6.1) which is the same as the regularized Dirichlet problem. 
We approximate the Dirichlet problem using the Robin problem. In section 7.2 we introduce an 
external source identification problem where we clearly see the difference between the nonlocal 
case and the classical case (s ∼ 1). Finally, section 7.3 is devoted to the optimal control problems.

7.1.  Approximation of a nonhomogeneous Dirichlet problem via a Robin problem

In view of theorem 6.3 we can approximate the Dirichlet problem with the help of the Robin 
(regularized Dirichlet) problem (6.1). Therefore we begin by introducing a discrete scheme 
for the Robin problem. Let Ω̃ be a bounded open set that contains Ω, the support of the control/
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source z and the support of κ. We consider a conforming simplicial triangulation of Ω and 
Ω̃ \ Ω such that the resulting partition remains admissible. We shall assume that the support 
of z and κ is contained in Ω̃ \ Ω. We let our finite element space Vh (on Ω̃) to be a set of con-
tinuous piecewise linear functions. Then the discrete (weak) version of (6.33b) with nonzero 
right-hand-side is given as follows: find uh ∈ Vh such that

CN,s

2

∫ ∫

R2N\(RN\Ω)2

(uh(x)− uh(y))(v(x)− v(y))
|x − y|N+2s dxdy +

∫

Ω̃\Ω
nκuhv dx

= 〈 f , v〉(Ws,2
Ω,κ∩L2(RN\Ω))�,Ws,2

Ω,κ∩L2(RN\Ω) +

∫

Ω̃\Ω
nκzv dx ∀v ∈ Vh.

�

(7.1)

We approximate the double integral over R2N \ (RN \ Ω)2 by using the approach from [1, 2]. The 
remaining integrals are computed using numerical quadrature which is accurate for polynomials 
of degree less than and equal to 4. All implementations are carried out in Matlab and the discrete 
system of equations corresponding to the state and adjoint equations are solved using direct solv-
ers. Note that iterative solvers for the fractional Robin problem are part of our future work.

We next consider an example that has been taken from [3]. Let Ω = B0(1/2) ⊂ R2 . Our 
goal is to find u solving

{
(−∆)su = 2 in Ω,

u(·) = 2−2s

Γ(1+s)2

(
1 − | · |2

)s
+

in RN \ Ω.

The exact solution in this case is given by

u(x) = u1(x) + u2(x) =
2−2s

Γ(1 + s)2

((
1 − |x|2

)s
+
+

(
1
4
− |x|2

)s

+

)
,

where u1 and u2 solve the problems
{
(−∆)su1 = 1 in Ω,

u1 = 2−2s

Γ(1+s)2

(
1 − | · |2

)s
+

in RN \ Ω,

{
(−∆)su2 = 1 in Ω,
u2 = 0 in RN \ Ω.

� (7.2)

We let Ω̃ = B0(3/2). We next approximate (7.2) using (7.1) and we set κ = 1 on its sup-
port. At first we fix s  =  0.5 and the Degrees of Freedom (DoFs) to be DoFs = 2920. For this 
configuration, we study the L2(Ω) error ‖u − uh‖L2(Ω) with respect to n in figure 2 (left). As 
expected, from theorem 6.3(a) we observe an approximation rate of 1/n.

Next for a fixed s  =  0.5, we check the stability of our scheme with respect to n as we refine 
the mesh. We have plotted the L2-error as we refine the mesh (equivalently increase DOFs) for 
n = 1 × 102, 1 × 103, 1 × 104, 1 × 105. We notice that the error remains stable with respect to 
n and we observe the following convergence rate with respect to the DoFs:

‖u − uh‖L2(Ω) ≈ (DoFs)−
1
2 .

In the right panel we have shown the L2-error for a fixed n = 1 × 105 but for various s  =  0.2, 
0.4, 0.6, 0.8. When 0 < s < 1

2  we have observed a rate of (DoFs)−
1
2 (s+ 1

2 ) and for 1
2 � s < 1 

we observe a convergence rate of (DoFs)−
1
2.

7.2.  External source identification problem

We next consider an inverse problem to identify a source that is located outside the observa-
tion domain Ω. The optimality system is as given in (6.34) where we have approximated the 
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Dirichlet problem by the Robin problem. We use the continuous piecewise linear finite ele-
ment discretization for all the optimization variables: state (u), control (z) and adjoint ( p). We 
choose our objective function as

j(u, z) = J(u) +
ξ

2
‖z‖2

L2(RN\Ω), with J(u) :=
1
2
‖u − ud‖2

L2(Ω),

and we let Zad,R := {z ∈ L2(RN \ Ω) : z � 0, a.e. in Ω̂} where Ω̂ is the support set of the 
control z that is contained in Ω̃ \ Ω. Moreover ud : L2(Ω) → R is the given data (observa-
tions). All the optimization problems below are solved using the projected-BFGS method with 
Armijo line search.

Our computational setup is shown in figure 3. The centered square region is Ω = [−0.4, 0.4]2 
and the region inside the outermost ring is Ω̃ = B0(3/2). The smaller square inside Ω̃ \ Ω is 
Ω̂ which is the support of the source/control. The right panel in figure 3 shows a finite element 
mesh with DoFs  =  6103.

We define ud as follows. For z  =  1, we first solve the state equation for ũ (first equation in 
(6.34)). We then add a normally distributed random noise with mean zero and standard devia-
tion 0.02 to ũ. We call the resulting expression as ud. Furthermore, we set κ = 1, and n  =  1e5.

Our goal is then to identify the source z̄h. In figure 4, we first show the behavior of opti-
mal z̄h for different values of the regularization parameter ξ = 1 × 10−1 (4), 1 × 10−2 (4), 
1 × 10−4 (4), 1 × 10−8 (2), 1 × 10−10 (2). The numbers in the bracket denote the total num-
ber of iterations that the BFGS has taken to achieve a stopping tolerance (for the projected 
gradient) of 1 × 10−7. Notice that the Armijo line search has remained inactive in these cases. 
As expected the larger is the value of ξ, the smaller is the magnitude of z̄h, and this behavior 
saturates at ξ = 1 × 10−8.

Next, for a fixed ξ = 1 × 10−8, figure  5 shows the optimal z̄h for s = 0.1 (4), 0.6 (2), 
0.7 (2), 0.8 (2), 0.9 (2). The numbers in the bracket again denote the total number of itera-
tions that the BFGS has taken to achieve a stopping tolerance (for the projected gradient) of 
1 × 10−7. Notice that the Armijo line search has remained inactive in these cases. We notice 

100
10-3

10-2

10-1

100

101

103

10-2

103
10-3

10-2

10-1

Figure 2.  Left panel: Let s  =  0.5 and DoFs = 2920 be fixed. We let κ = 1 and consider 
the L2-error between the actual solution u to the Dirichlet problem and its approximation 
uh which solves the Robin problem. We have plotted the error with respect to n. The 
solid line denotes a reference line and the actual error. We observe a rate of 1/n which 
confirms our theoretical result (6.14). Middle panel: let s  =  0.5 be fixed. For each 
n = 1 × 102, 1 × 103, 1 × 104, 1 × 105 we have plotted the L2-error with respect to the 
degrees of freedom (DOFs) as we refine the mesh. Notice that the error is stable with 
respect to n. Moreover, the observed rate of convergence is (DoFs)−

1
2 and is independent 

of n. Right panel: Let n = 1 × 105 be fixed. We plot the L2-error with respect to the 

DOFs for various values of s. The observed convergence rate is (DoFs)−
1
2 (s+ 1

2 ) for 

0 < s < 1
2  and the observed rate is (DoFs)−

1
2 for 12 � s < 1.
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that for large s, z̄h ≡ 0. This is expected as larger the s is, the more close we are to the classical 
Poisson problem case and we know that we cannot impose the external condition in that case.

7.3.  Dirichlet control problem

We next consider two Dirichlet control problems. The setup is similar to section 7.2 except 
now we set ud ≡ 1.

Example 7.1.  The computational setup for the first example is shown in figure  6. Let 
Ω = B0(1/2) (the region insider the innermost ring) and the region inside the outermost ring 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.  Left: computational domain where the inner square is Ω, the region inside the 
outer circle is Ω̃ and the outer square inside Ω̃ \ Ω is Ω̂ which is the region where the 
source/control is supported. Right: a finite element mesh.

Figure 4.  External source identification problem. The panels show the 
behavior of z̄h with respect to the regularization parameter ξ: top row from 
left to right ξ = 1 × 10−1, 1 × 10−2, 1 × 10−4; bottom row from left to right: 
ξ = 1 × 10−8, 1 × 10−10. As it is expected, larger is ξ, smaller is the magnitude of z̄h, 
but this behavior saturates at ξ = 1 × 10−8.
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is Ω̃ = B0(3/2). The annulus inside Ω̃ \ Ω is Ω̂ which is the support of the control. The right 
panel in figure 6 shows a finite element mesh with DoFs  =  6069.

In figures 7 and 8 we have shown the optimization results for s  =  0.2 (14) and s  =  0.8 
(4), respectively. Here again, the numbers in the bracket denote the total number of itera-
tions that the BFGS has taken to achieve a stopping tolerance (for the projected gradient) 
of 1 × 10−7. Notice that the Armijo line search has remained inactive in these cases. The 
top row shows the desired state ud (left) and the optimal state ūh (right). The bottom row 
shows the optimal control z̄h  (left) and the optimal adjoint variable p̄h (right). We notice 

Figure 5.  The panels show the behavior of z̄h as we vary the exponent s. Top row 
from left to right: s  =  0.1, 0.6, 0.7. Bottom row from left to right: s  =  0.8, 0.9. For 
smaller values of s, the recovery of z̄h is quite remarkable. However, for larger values 
of s, z̄h ≡ 0 as expected, the behavior of ūh for large s is close to the classical Poisson 
problem which does not allow external sources.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.  Left: computational domain where the inner circle is Ω, the region inside the 
outer circle is Ω̃, and the annulus inside Ω̃ \ Ω is Ω̂ which is the region where the control 
is supported. Right: a finite element mesh.
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that in both cases we can approximate the desired state to a high accuracy but the approx
imation is slightly better for smaller s, especially close to the boundary. This is to be ex-
pected as for large values of s the regularity of the adjoint variable deteriorates significantly  
(see remark 4.4).

Example 7.2.  The computational setup for our final example is shown in figure 9. The M-
shape region is Ω and the region inside the outermost ring is Ω̃ = B0(0.6). The smaller region 
inside Ω̃ \ Ω is Ω̂ which is the support of the control. The right panel in figure 6 shows a finite 
element mesh with DoFs  =  4462.

In figure 10 we have shown the optimization results for s  =  0.8 (370). Again, the num-
ber in the bracket denotes the total number of iterations that the BFGS has taken to achieve 
a stopping tolerance (for the projected gradient) of 1 × 10−7. Notice for this example, dur-
ing most of the iterations, the Armijo line search has remained inactive but it got activated 
during a few number of iterations and has remained active for up to ten steps. The top row 
shows the desired state ud (left) and the optimal state ūh (right). The bottom row shows the 
optimal control z̄h  (left) and the optimal adjoint variable p̄h (right). Even though the con-
trol is applied in an extremely small region we can still match the desired state in certain 
parts of Ω.

Figure 7.  Example 1, s  =  0.2: top row: left—desired state ud; right—optimal state ūh. 
Bottom row: left—optimal control z̄h, right—optimal adjoint p̄h.
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Figure 8.  Example 1, s  =  0.8: top row: left—desired state ud; right—optimal state ūh. 
Bottom row: left—optimal control z̄h, right—optimal adjoint p̄h.
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0
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Figure 9.  Left: computational domain where the M-shaped region is Ω, the region 
inside the outer circle is Ω̃ and the region inside Ω̃ \ Ω is Ω̂ which is the region where 
control is supported. Right: a finite element mesh.
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