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Abstract

Very recently Warma (2019 SIAM J. Control Optim. to appear) has shown that
for nonlocal PDEs associated with the fractional Laplacian, the classical notion
of controllability from the boundary does not make sense and therefore it must
be replaced by a control that is localized outside the open set where the PDE
is solved. Having learned from the above mentioned result, in this paper we
introduce a new class of source identification and optimal control problems
where the source/control is located outside the observation domain where the
PDE is satisfied. The classical diffusion models lack this flexibility as they
assume that the source/control is located either inside or on the boundary. This
is essentially due to the locality property of the underlying operators. We use
the nonlocality of the fractional operator to create a framework that now allows
placing a source/control outside the observation domain. We consider the
Dirichlet, Robin and Neumann source identification or optimal control problems.
These problems require dealing with the nonlocal normal derivative (that we
shall call interaction operator). We create a functional analytic framework and
show well-posedness and derive the first order optimality conditions for these
problems. We introduce a new approach to approximate, with convergence rate,
the Dirichlet problem with nonzero exterior condition. The numerical examples
confirm our theoretical findings and illustrate the practicality of our approach.

Keywords: fractional Laplacian, interaction operator, weak and very-weak
solutions, Dirichlet control problem, Robin control problem, external control
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1. Introduction and motivation

In many real life applications a source or a control is placed outside (disjoint from) the obser-
vation domain 2 where the PDE is satisfied. Some examples of inverse and optimal control
problems where this situation may arise are: (i) acoustic testing, when the loudspeakers are
placed far from the aerospace structures [38]; (ii) magnetotellurics (MT), which is a technique
to infer earth’s subsurface electrical conductivity from surface measurements [48, 55]; (iii)
magnetic drug targeting (MDT), where drugs with ferromagnetic particles in suspension are
injected into the body and the external magnetic field is then used to steer the drug to relevant
areas, for example, solid tumors [7, 8, 41]; (iv) electroencephalography (EEG) is used to
record electrical activities in brain [42, 56], in case one accounts for the neurons disjoint from
the brain, one will obtain an external source problem.

This is different from the traditional approaches where the source/control is placed either
inside the domain 2 or on the boundary 02 of €. This is not surprising since in many cases
we do not have a direct access to 9€2. See for instance, the setup in figure 1. In such applica-
tions the existing models can be ineffective due to their strict requirements. Indeed think of the
source identification problem for the most basic Poisson equation:

—Au=f inQ, u=z ondf, (1.1)

where the source is either f (force or load) or z (boundary control) see [6, 39, 47]. In (1.1)
there is no provision to place the source in QCRY \ €, i.e. a domain that is disjoint from 2,
see figure 1 for two examples of €2 and Q. The issue is that the operator A has ‘lesser reach’,
in other words, it is a local operator. On the other hand the fractional Laplacian (—A)® with
0 < s < 1 (that we shall define below) is a nonlocal operator. This difference in behavior can
be easily seen in our numerical examples in section 7.2 where we observe that we cannot see
the external source as s approaches 1.

Recently, nonlocal diffusion operators such as the fractional Laplacian (—A)* have emerged
as an excellent alternative to model diffusion. Under a probabilistic framework this operator
can be derived as the limit of the so-called long jump random walk [49]. Recall that A is the
limit of the classical random walk or the Brownian motion. More applications of these models
appear in (but not limited to) image denoising and phase field modeling [4, 10]; fractional dif-
fusion maps (data analysis) [5]; magnetotellurics (geophysics) [55].

Coming back to the question of source/control placement, we next state the exterior value
problem corresponding to (—A)*. Find u in an appropriate function space satisfying

(~AYu=f inQ, u=z onRV\Q. (1.2)

As in the case of (1.1), besides f being the source/control in €2, we can also place the source/
control z in the exterior domain RY \ 2. However, the action of z in (1.2) is significantly dif-
ferent from (1.1). Indeed, the source/control in (1.1) is placed on the boundary 0f2, but the
source/control z in (1.2) is placed in RY \ Q which is what we wanted to achieve in figure 1.
For completeness, we refer to [12] for the optimal control problem, with f being the source/
control and [11, 13] for another inverse problem to identify the coefficients in the fractional
p-Laplacian.

The purpose of this paper is to introduce and study a new class of the Dirichlet, Robin
and Neumann source identification problems or the optimal control problems. We shall use
these terms interchangeably but we will make a distinction in our numerical experiments.
We emphasize that yet another class of identification where the unknown is the fractional
exponent s for the spectral fractional Laplacian (which is different from the operator under
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Figure 1. Let a diffusion process occurs inside a domain Q which is the sphere in
Case. (A) (left) and the letter M in Case. (B) (right). We are interested in the source
identification or controlling this diffusion process by placing the source/control in a
set 2 which is disjoint from 2. Case (A): €2 is the triangular pipe. Case (B): Q) is the
structure on the top of the letter M.

consideration) was recently considered in [46]. We refer to [10] for the case when s is a func-
tion of x € (1.

Now we describe our problems.

Let 2 C RY, N > 1, be a bounded open set with boundary 9. Let (Zp, Up) and (Zg, Ug),
where the subscripts D and R indicate Dirichlet and Robin, be Banach spaces. The goal of this
paper is to consider the following two external control or source identification problems. The
source/control in our case is denoted by z. Our objective function consists of two parts and
we shall denote by J the part that depends on the state u. The precise assumptions on J will be
given in section 4.

e Fractional Dirichlet exterior control problem: Given £ > 0 a constant penalty param-
eter, we consider the minimization problem:

. £
Jw) + 2|23, |
2y 110+ 3 11z, (1.3a)

subject to the fractional Dirichlet exterior value problem: find u € Up solving

(=A)Y'u =0 in Q, b
u =z in RV\Q, (1.35)

and the control constraints
Z € Zaap; (1.3¢)

with Z,sp C Zp being a closed and convex subset.
e Fractional Robin exterior control problem: Given £ > 0 a constant penalty parameter,
we consider the minimization problem:

1) + S1elB, (1.4a)

min
(u,z) € (Ur,Zg)

subject to the fractional Robin exterior value problem: find u € Ug solving

{(—A)‘Yu =0 in Q,
(1.4b)

N+ ku=rz  in RV\Q,
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and the control constraints

< E Zad,R7 (1.40)

with Z,sr C Zg being a closed and convex subset. In (1.4b), Nu is the nonlocal normal
derivative of u that will be defined in section 2, x € L'(RY \ Q) N L (RY \ Q) and is
non-negative. We notice that the latter assumption is not a restriction since otherwise we
can replace  throughout by |x|.

The precise conditions on €2 and the Banach spaces involved will be given in the subsequent
sections. Notice that both exterior value problems (1.3b) and (1.4b) are ill-posed if the condi-
tions are enforced on 0f). The main difficulties in (1.3) and (1.4) stem from the following facts.

o Nonlocal diffusion operator. The fractional Laplacian (—A)® is a nonlocal operator.
This can be easily seen from its definition.

e Nonlocal normal derivative. The first order optimality conditions for (1.3), the very-
weak solution to the Dirichlet problem (1.3b) and the Robin exterior value problem (1.45)
require to study Nu which is the so-called nonlocal-normal derivative of «. Thus we not
only have the nonlocal operator (—A)* in the domain but also in the exterior R \ ,
i.e. a double nonlocality. An approximation of Nu, especially numerically, is extremely
challenging.

e Exterior conditions in RY \ 2 and not boundary conditions on d2. The conditions in
(1.3b) and (1.4b) need to be specified in RV \ Q instead on O as otherwise the problems
(1.3) and (1.4) are ill-posed as we have already mentioned above.

e Very-weak solutions of nonlocal exterior value problems. A typical choice for Zp is
L*(RN \ ). As a result, the Dirichlet exterior value problem (1.3b) can only have very-
weak solutions (see [14, 15, 17] for the case s = 1). To the best of our knowledge this is
the first work that considers the notion of very-weak solutions for nonlocal (fractional)
exterior value problems associated with the fractional Laplace operator.

e Regularity of the optimization variables. The standard shift-theorem which holds for
local operators such as A does not always hold for nonlocal operators such as (—A)* (see
for example [34]).

In view of all these aforementioned challenges it is clear that the standard techniques which
are now well established for local problems do not directly extend to the nonlocal problems
investigated in the present paper.

The purpose of this paper is to discuss our approach to deal with these nontrivial issues. We
emphasize that to the best of our knowledge this is the first work that considers the optimal
control problems (source identification problems) (1.3) and (1.4b) where the control/source
is applied from the outside. Let us also mention that this notion of controllability of PDEs
from the exterior has been introduced by Warma in [53] for the nonlocal heat equation associ-
ated with the fractional Laplacian and in [40] for the wave type equation with the fractional
Laplace operator to study their controllability properties. The case of the strong damping wave
equation is included in [54] where some controllability results have been obtained. In case of
problems with the spectral fractional Laplacian the boundary control has been established in
[9]. For completeness, we also mention some interesting works on fractional Calder6n type
inverse problems [31, 37, 44]. Notice that fractional operators further provide flexibility to
approximate arbitrary functions [25, 28, 34, 36].

We mention that we can also deal with the fractional Neumann exterior control problem.
That is, given & > 0 a constant penalty parameter,
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. §in
J(u) + 2 ,
o n (u) 3 IzllZ,

subject to the fractional Neumann exterior value problem: find u € Uy solving

(=AYu4+u =0 inQ,
Nou — 2 inRV\Q (1.5

and the control constraints
2 € Zuyn-

The term u is added in (1.4b) just to ensure the uniqueness of solutions. The proofs follow
similarly as the two cases we consider in the present paper with very minor changes. Since the
paper is already long, we shall not give any details on this case.

Below we mention the novelties of the present paper.

(i) Weak and very-weak solutions. For the first time, we introduce and study the notion
of very-weak solutions to the Dirichlet exterior value problem (1.3b) which is suitable
for optimal control problems. We also study weak solutions of the Robin exterior value
problem (1.4b).

(ii) Approximation of the Dirichlet weak and very-weak solutions by the Robin weak
solutions. We approximate the weak and very-weak solutions of the nonhomogeneous
Dirichlet exterior value problem by using a suitable Robin exterior value problem. This
allows us to circumvent approximating the nonlocal normal derivative and it is one of
the key contribution of this paper. Recall that for the very-weak solution of the Dirichlet
problem we need to evaluate the nonlocal normal derivative of the test functions (see
definition 3.3) and for the Dirichlet control problem we need to evaluate the nonlocal
normal derivative of the adjoint variable (see theorem 4.3). This is a new approach to
impose non-zero exterior conditions for the fractional Dirichlet exterior value problem.
We refer to an alternative approach [3] where the authors use the Lagrange multipliers to
impose nonzero Dirichlet exterior conditions.

(iii) We study both Dirichlet and Robin exterior control problems.

(iv) We approximate (with rate) the Dirichlet exterior control problem by a suitable Robin
exterior control problem.

The rest of the paper is organized as follows. We begin with section 2 where we introduce the
relevant notations and the function spaces needed. The material in this section is well-known.
Our main work starts from section 3 where we study first the weak and very-weak solutions
for the Dirichlet exterior value problem in section 3.1. This is followed by the well-posedness
of the Robin exterior value problem in section 3.2. The Dirichlet exterior control problem
is considered in section 4 and Robin in section 5. We show how to approximate the weak
solutions to the Dirichlet problem and the solutions to the Dirichlet exterior control problem
in section 6. Section 7.1 is devoted to the experimental rate of convergence to approximate
the Dirichlet exterior value problem using the Robin problem. In section 7.2 we consider a
source identification problem in the classical sense, however our source is located outside the
observation domain where the PDE is satisfied. Section 7.3 is devoted to two optimal control
problems.

Remark 1.1 (Practical aspects). From a practical point of view, having the source/con-
trol over the entire RY \ €2 can be very expensive. But this can be easily fixed by appropriately
describing Z,,. Indeed in case of figure 1 we can set the support of functions in Z,; to be in €.
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2. Notations and preliminaries

Unless otherwise stated, @ C RY (N > 1) is a bounded open set and 0 < s < 1. We let

WH2(Q) = {ueL2 //x |N+23 dxdy<oo},

and we endow it with the norm defined by

1
| 2

In order to study (1.3b) we also need to define

WA () == {ue WARY) : u=0in RV\ Q}.

Ju(x) — u(y)? 5
= ([ [ e o)

defines an equivalent norm on W3 (Q2).
We shall use W—*2(R") and W~*2(Q) to denote the dual spaces of W*(R") and W*(1),
respectively, and (-, -) to denote their duality pairing whenever it is clear from the context.
We also define the local fractional order Sobolev space

Then

[

Wie(RY\ Q) := {u € PR\ Q) : up e WR"\Q), Vo e DRY\Q)}.

2.1
To introduce the fractional Laplace operator, we set
LNy . . N |u(x)]
L;(RY) := {u : RY — R measurable, /RN 0 Ve dx < oo .
For u € L!(RV) and € > 0, we let
u(x) — u(y) N
(~A)ut) = . | &y, xe R,
e s e [yx[>e) ¥ — [V
where the normalized constant Cy is given by
szZsI‘\ 2s+N
Cnys = # 2.2

m20(1 —s)

and T is the usual Euler Gamma function (see, e.g. [20, 22-24, 26, 51, 52]). The fractional
Laplacian (—A)* is defined for u € L!(R") by the formula

s u(x) — u(y) : s
(—A) M(X) = CN,S P.V. /RN mdy E%(—A)Eu(x), X € RN,
(2.3)

provided that the limit exists. It has been shown in [21, proposition 2.2] that for u € D(2),
we have

lim u(—A)udx = / |Vul*dx = —/ ulAu dx = —/ uAu dx,
sT1— N RN RN Q
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that is where the constant Cy plays a crucial role.
Next, for u € W**(RV) we define the nonlocal normal derivative N as:

:= Cy /| ‘NHS dy, xeRV\ Q. (2.4)

We shall call N the interaction operator. Notice that the term ‘interaction’ has also been used
by Du et al in [29]. Clearly N is a nonlocal operator and it is well defined on W*?(R") as we
discuss next.

Lemma 2.1.  The interaction operator Ny maps continuously W*2(RV) into Wi2(RN \ Q).
As a result, if u € WS2(RN), then Nju € L*(RN \ Q).

Proof. We refer to [32, lemma 3.2] for the proof of the first part. The second part is a direct
consequence of (2.1). O

Despite the fact that N is defined on RN \ €, it is still known as the ‘normal’ derivative.
This is due to its similarity with the classical normal derivative as we discuss next.

Proposition 2.2. Let Q C RY be a bounded open set with a Lipschitz continuous bound-
ary. Then the following assertions hold.

(a) The divergence theorem for (—A)*. Letu € C3(RYN), i.e. C? functions on RN that vanish
at +o0. Then

/ (=AYudx=— Niu dx.
Q

RV\Q

(b) The integration by parts formula for (—A)*. Let uc W**(RY) be such that
(—A)*u € L2(Q). Then for every v € W*2(RY) we have that

s gy — CNis (u(x) — u(y))(v(x) - v(y))
/QU(_A) wdv= 2 //RZN\(RN\Q)z x — y[NF2s ey

— / oNu dx,
RV\

where R2V\ (RV\ Q)2 := (2 x Q) U (2 x (RVM\ Q)) U ((R¥\ Q) x Q).
(c) The limit as s T 1~ Let u,v € C3(RY). Then

(2.5)

lim oNu dx = Ua— do.
sT1— RVN\Q ov

Remark 2.3. Comparing the properties (a)—(c) in proposition 2.2 with the classical prop-
erties of the standard Laplacian A we can immediately infer that N plays the same role for
(—A)* that the classical normal derivative does for A. For this reason, we call N the nonlocal
normal derivative.

Proof of proposition 2.2. The proofs of Parts (a) and (c) are contained in [27, lemma 3.2]
and [27, proposition 5.1], respectively. The proof of Part (b) for smooth functions can be found
in [27, lemma 3.3]. The version given here is obtained by using a density argument (see [53,
proposition 3.7]). O
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3. The state equations

Before analyzing the optimal control problems (1.3) and (1.4) for a given function z, we shall
focus on the Dirichlet (1.3b) and Robin (1.4b) exterior value problems. We shall assume that
Q is a bounded domain with a Lipschitz continuous boundary.

3.1. The Dirichlet problem for the fractional Laplacian

We begin by rewriting the system (1.35) in a more general form. That is,

{(-A)su: £ inQ

u=z in RV \ Q. (3.1

Here is our notion of weak solution.

Definition 3.1 (Weak solution to the Dirichlet problem). Let f < W=52(Q),
z€ WH2(RY \ Q) and 7 € W*?(RY) be such that Z|gv\ = z. A function u € W*(R") is said
to be a weak solution to (3.1) if u —Z € Wy*(Q) and

Cn.s (u(x) — u(y))(v(x) = v(y))
Jo o

2 e —y|Vt®

dxdy = (f,0),

for every v € W32 ().

Firstly, we notice that since (2 is assumed to have a Lipschitz continuous boundary, we
have that, for z € W*?(RY \ Q), there exists 7 € W**(R") such that Z|gv o = z. Secondly,
the existence and uniqueness of a weak solution u to (3.1) and the continuous dependence of
u on the data f and z have been considered in [34] (see also [32, 50]). More precisely we have
the following result.

Proposition 3.2. Let f € W=52(Q) and z € W*2(RN \ Q). Then there exists a unique
weak solution u to (3.1) in the sense of definition 3.1. In addition there is a constant C > 0
such that

[l [ w2 vy < C (|lf||w—s,z(§) + ||Z||WSvZ(RN\Q)) : (3.2)

Even though such a result is typically sufficient in most situations, nevertheless it is not
directly useful in the current context of optimal control problem (1.3) since we are interested
in taking the space Zp = L*(R" \ Q). Thus we need existence of solutions (in some sense) to
the fractional Dirichlet problem (3.1) when z € L?(RY \ 2). In order to tackle this situation
we introduce our notion of very-weak solution for (3.1).

Definition 3.3 (Very-weak solution to the Dirichlet problem). Let z € L*(RV \ Q)
and f € W=*2(Q). A function u € L*>(RV) is said to be a very-weak solution to (3.1) if the
identity

/Q W(-AYode=(f,0)— [ Nwdx, (33)

RM\Q

holds for every v € V := {v € Wi*(Q) : (=A)'v € L>(Q)}.
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Remark 3.4. We mention the following facts.

(a) We have shown in proposition 3.2 that if z € WS?(RY \ ), then the Dirichlet problem
(3.1) has a unique weak solution u € W*2(RN). In [30], letting
2

V(Q)::{U:RN%R,UELZ(Q)and /Q/RNW(X)_U()])

e <o

the authors have shown that if z € V(Q)and f € V(2)*, then the Dirichlet problem (3.1)
has a unique weak solution u € V(€2). Notice that W*2(RY) — V() — W*2(Q). The
difference between the two notions is only the space where the exterior data and the
solutions belong.

(b) For the very-weak solution, we have just assumed that z € L>(RY \ Q) (no additional
regularity) and this has not been studied in [30] or elsewhere.

Next we prove the existence and uniqueness of a very-weak solution to (3.1).
Theorem 3.5. Let f € W2(Q) and z € L*(RN \ Q). Then there exists a unique very-
weak solution u to (3.1) according to definition 3.1 that fulfills

||”HL2(Q) <C (Hf”WﬂuZ(ﬁ) + HZHLZ(RN\Q)) > (3.4)

for a constant C > 0. In addition, if z € W*(RN \ Q), then the following assertions hold.

(a) Every weak solution of (3.1) is also a very-weak solution.

(b) Every very-weak solution of (3.1) that belongs to W*2(RY) is also a weak solution.
Proof. In order to show the existence of a very-weak solution we shall apply the BabuSka—
Lax—Milgram theorem.

Firstly, let (—A)3, be the realization of (—A)* in L?*() with the zero Dirichlet exterior
condition u = 0 in RV \ Q. More precisely,

D((—A),) =V and (=A)u = (—A)*u in Q.

Then a norm on V is given by [|v]|y = [|(=A)0||12(q) Which follows from the fact that the
operator (—A)$, is invertible (since by [45] (—A)3, has a compact resolvent and its first ei-
genvalue is strictly positive). Secondly, let F be the bilinear form defined on L?(£2) x V by

Flu,0) = /Q u(—A) dr.

Then F is clearly bounded on L*(Q2) x V. More precisely there is a constant C > 0 such that
[F(u,0)] < lull 2oy 1(=A)0ll20) < Cllullzoyollv, ¥ (u,0) € L2(Q) x V.

Thirdly, we show the inf-sup conditions. From the definition of V, we have that

vE WA Q) and (~A)v e [}(Q) <= veV.

Letting u := ||(,(_A);’v

2 .
=&l € L*(Q), we obtain that
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s [(=A)po, (=A)p0) 2 (0|
sup |(u, (=A)p0) ()| = DA . D7)
W€LA (), lull 2y =1 [(=A)p0lli2(0)

2 [[(=2)pll@) = lollv.
Next we choose v € V as the unique weak solution of the Dirichlet problem

u
—AWSyo=——7#+1in1Q,
= Lo

for some 0 # u € L*(12). Then we readily obtain that

(14, ) 20|
sup  [(1, (—A)0) (| > — el

= |lull2(0) > O,
veV,lofly=1 ull 20 @

for all 0 # u € L*(Q). Finally, we have to show that the right-hand-side in (3.3) defines a
linear continuous functional on V. Indeed, applying the Holder inequality in conjunction with
lemma 2.1 we obtain that there is a constant C > 0 such that

/ N,u dx
R¥\Q

where in the last step we have used the fact that ||Z)HW3,2 @ = llvllws2y) for v € Wy (Q).
Moreover

< lzll 2oy INsl 2@vo) < C”ZHLZ(RN\Q)”Ungz(ﬁ)’

(3.5)

|(f U>| < Hf”wﬂwz(ﬁ)”U”Wg»z(ﬁ)-

In view of the last two estimates, the right-hand-side in (3.3) defines a linear continuous func-
tional on V. Therefore all the requirements of the Babuska—Lax—Milgram theorem hold. Thus,
there exists a unique u € L*(Q) satisfying (3.3). Let u = z in R¥ \ Q. Then u € L*>(R") and
satisfies (3.3). We have shown the existence and uniqueness of a very-weak solution.

Next we show the estimate (3.4). Let u € L*(RY) be a very-weak solution. Let v € V be a
weak solution of (—A)}v = u in Q. Taking this v as a test function in (3.3) and using (3.5),
we get that there is a constant C > 0 such that

el oy <y ol
<C (Wl -2y + el ) Nollgzc
<C (Wl + ez ) I(=2)50 )20

<C (|VHW*:'2(§) + ||Z||L2(1RN\Q)> llull 2 ()

w2@) T 12llz@ne) IVl @)

We have shown (3.4) and this completes the proof of the first part.
Next we prove the last two assertions of the theorem. Assume that z € W*(RN \ Q).

(a) Let u € WS2(RY) — L?(R") be a weak solution of (3.1). It follows from the definition
that u = zin RV \ Q and

10
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Cns ¥) —
= /RN /RN <|ZI$(+2) o0) dxdy = (f,v), (3.6)

for every v € V. Since v = 0 in RV \ ), we have that

) (@) —v(y))
‘/]RN AN |x — |N+2v dxdy
= u(x) — u(y))(o(x) — o(y))
B //RZN\(RN\Q)z |x — y|NV+2s dxdy.

Using (3.6) and (3.7), the integration by parts formula (2.5) together with the fact that
u=zin RV \ Q, we get that

Chs ) (@(x) —v(y))
/RN /]RN Ix —y|NtE dedy
= (f.0)

:/u(—A)Svdx—&—/ uNio dx
Q

RV\Q

(3.7)

= / u(—A)Yvdx+ NG dx.
Q RN\Q

Thus u is a very-weak solution of (3.1).

(b) Finally let u be a very-weak solution of (3.1) and assume that u € W*2(R). Since u = z
in RV \ €, we have that z € W*2(RY \ Q) and if 7 € W**(R") satisfies Z|gv\ = 2, then
clearly (u —Z) € Wy*(Q). Since u is a very-weak solution of (3.1), then by definition, for
every v € V = D((—A)j,), we have

/Q u(~AYode=(f.0) — [ zNwdu (3.8)

RV\Q

Since u € W**(RV) and v = 0 in RV \ €, then using (2.5) again we get that

Cnys ¥) —
L LA e
~ Cnys (u(x) — u))(v(x) —ov(y))
B 2 //]RZN\(RN\Q)z |x _ y|N+2s d‘Xdy

:/u(—A)Svdx—F/ ulN;v dx
Q

R¥\ Q2

_ / u(~Ayodi+ [ Npdx. (3.9)
Q

RV\Q

It follows from (3.8) and (3.9) that for every v € V, we have

Covs ) (@) = v()) _
/RN /R |x — |V dxdy = (f,0). (3.10)

1
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Since V is dense in W§*(Q), we have that (3.10) remains true for every v € Wy*(Q). We
have shown that u is a weak solution of (3.1) and the proof is finished. O

3.2. The Robin problem for the fractional Laplacian

In order to study the Robin problem (1.4b) we consider the Sobolev space introduced in [27].
For g € L'(RN \ ) fixed, we let

2 . .
Wg‘g = {u : RY — R measurable, [lu| w2, < oo},
where
1
u(x) —u(y)l® :
2 1= Tu|?, BAY) = BT dd ) 3.11
[|u Wi, <|”||L2(Q) + 1 lgl* “HL (RV\2) +//?N\(RN\Q)2 oc — y[Vr2s y ( )

Let 11 be the measure on RY \ 2 given by diu = |g|dx. With this setting, the norm in (3.11) can
be rewritten as

1
2 2 |u(x) —u(y)? :
Ullys2 = | ||u + ||u I +// ——————dxdy | .
el (n o + Wil = | [ o e
(3.12)
If g = 0, we shall let ngo = Wéiz. The following result has been proved in [27, proposition
3.1].

Proposition 3.6. Letrg € L'(RN \ Q). Then Wézg is a Hilbert space.

Throughout the remainder of the article, for g € L'(R" \ ), we shall denote by (ngg)*
the dual of ngg.

Remark 3.7 'We mention the following facts.
(a) Recall that

RV (B \ Q) = (2 x Q) U (2 x (BY\ ) U((RY\ Q) x ),

|u(x) — u(y)|? // |u(x) — u(y
dxdy = dxd
//RW\(RN\Q)Z v — y|NF2 lx—y \N”S

)|2 / |u(x) — u(y)?
y + —————dxdy.
/ /RN\Q x — )’|N+2A o Jo  Jx—y[NTE
(.13)

so that

b)Ifge L'(RN\ Q)andu € ngg, then using the Holder inequality we get that

/ gu dx
RV\Q

1
2 2
1 1
</ |g|z||gzu|dx<</ |gdx) (/ |gu2dx>
RN RN RN

<||g||L1 (RM\Q) H“||L2(RN\Q M ||g||L1(RN\Q [l

52 .
W&'

(3.14)

12
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It follows from (3.14) that in particular, L'(RY \ €, p) — (Wg2,)*.
(¢) By definition (using also (3.13)), ngg — Wéf < W*2(Q), so that we have the following
continuous embeddings:

Wi, < Wk s L5 (Q). (3.15)
It follows from (3.15) that the embeddings ngg < L2(Q) and WS> < L*(Q) are com-
pact.

We consider a generalized version of the system (1.4b) with nonzero right-hand-side f.
That is, the problem:

{(—A)su =f in Q,

N+ ku=rz  inRV\ Q. (3.16)

Throughout the following sections, the measure p is defined with g replaced by . That is,
dp = kdx (recall that & is assumed to be non-negative). Here is our notion of weak solution.

Definition 3.8. Let z € L>(R¥\ Q,p)and f € (ngn)*. A function u € Wssfn is said to be
a weak solution of (3.16) if the identity

Cnys (u(x) — u(y))(v(x) — v(y))
2 //]RZN\(RN\Q)2 |x — y|N+2s dxdy + /RN\Q Kuv dx

== ,U 5, * 5, + KZO dx,
0w,y wg, /RN\Q ¢ (3.17)

holds for every v € Wgsfn.
We have the following existence result.
Proposition 3.9. Let k€ L'(RY \ Q) N L>® (RN \ Q). Then for every z € L* (RN \ Q, p)

and f € (ngﬁ)*, there exists a weak solution u € ngn of (3.16).

Proof. Let D(&) = ngm and £ : D(E) x D(€) — R be given by

o) o O (u(x) — u(3) (o) = 0()) »
Euv) = 2 //]RZN\(]RN\Q)Z jox — y|NF2s dxdy + /RN\Q ¢ dz; 8)

Then £ is a bilinear, symmetric, continuous and closed form on L?(2). Hence, for every
z€ LX(RVN\ Q,u) C (ngﬂ)* and f € (Wa?ﬁ)*, there is a function u € Wéi such that

Ew.0) =(£ 0wy w2, T &V )iz,

=(f,0) jws2 \x s v dx,
o0 wg e, + /RN\Q“Z

for every v € W‘é’i. That is, u satisfies (3.17). Thus u is a weak solution of (3.16). The proof
is finished. O

13
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Remark 3.10. Notice that similarly to the classical Neumann problem when s = 0, propo-
sition 3.9 only guarantees uniqueness of solutions to (1.4) up to a constant. In case we as-
sume  to be strictly positive, uniqueness can be guaranteed under assumption 6.1 below. In
that case we can also show that there is a constant C > 0 such that

ez, < € (Il + lellzmas ) - (3.19)

4. Fractional Dirichlet exterior control problem

We begin by introducing the appropriate function spaces needed to study (1.3). We let
Zp:=L*RY\Q), Up:=L*Q).

In view of theorem 3.5 the following (solution-map) control-to-state map
S:Zp —>Up, z— Sz=u,

is well-defined, linear and continuous. We also notice that for z € Zp, we have that
u = Sz € L*(RY). As a result we can write the reduced fractional Dirichlet exterior control
problem as follows:

min 7(2) = (59) + 513, @.1)

2€2ud.p

where £ > 0. The precise conditions on J depend on the result we would like to obtain. For
this reason they will be given in the statements of our results.
We then have the following well-posedness result for (4.1) and equivalently (1.3).

Theorem 4.1. Let Z,,p be a closed and convex subset of Zp. Let & > 0 with J > 0 or Z,up
bounded and let J : Up — R be weakly lower-semicontinuous. Then there exists a solution 7 to
(4.1) and equivalently to (1.3). If either J is convex and & > 0 or J is strictly convex and £ > 0,
then 7 is unique.

Proof. The proof uses the so-called direct-method or the Weierstrass theorem [16, theorem
3.2.1]. We notice that for J : Z,sp — R, we can construct a minimizing sequence {z,}neN
(see [16, theorem 3.2.1] for a construction) such that

350,76 = Iim I )

If £ >0 withJ >0 or Z,up C Zp is bounded, then {z,},cn is a bounded sequence in Zp
which is a Hilbert space. Due to the reflexivity of Zp, we have that (up to a subsequence if
necessary) z, — z (weak convergence) in Zp as n — oo. Since Z,4p is closed and convex,
hence is weakly closed, we have that Z € Z,4p.

Since S : Z,ap — Up is linear and continuous, we have that it is weakly continuous. This
implies that Sz, — Sz in Up as n — co. We have to show that (Sz,7) fulfills the state equa-
tion according to definition 3.3. In particular we need to study the identity

/ u,(—A)*v dx = —/ wNsodx, Voev, 4.2)
Q

RM\Q

asn — oo, where u,, := Sz,. Sinceu,, — Sz =: uinUpasn — ocand z, — ZinZpasn — o0,
we can immediately take the limit in (4.2) to obtain that

14
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/ﬁ(—A)Svdx:— Njodx, VYovev.
Q RV\Q

Thus (#,7) € Up X Zugp fulfills the state equation in the sense of definition 3.3.

It then remains to show that 7z is the minimizer of (4.1). This is a consequence of
the fact that J is weakly lower semicontinuous. Indeed, J is the sum of two weakly

lower semicontinuous functions (|| - ||%D is continuous and convex therefore weakly lower
semicontinuous).

Finally, if £ > 0 and J is convex, then J is strictly convex (sum of a strictly convex and
convex functions). On the other hand, if J is strictly convex, then J is strictly convex. In either
case we have that J is strictly convex and thus the uniqueness of z follows. O

We next derive the first order necessary optimality conditions for (4.1). We begin by iden-
tifying the structure of the adjoint operator S*.

Lemma 4.2. For the state equation (1.3b) the adjoint operator S* : Up — Zp is given by

S*W: —JINsP eZDs

where w € Up and p € Wy*(Q) is the weak solution to the problem

{(—A)sp =w inQ,

p =0 inRV\Q. @.3)

Proof. According to the definition of S*, we have that for every w € Up and z € Zp,

(W, S2)12(02) = ("W, 2) 2 (M) -
Next, testing the adjoint equation (4.3) with Sz and using the fact that Sz is a very-weak solu-
tion of (3.1) with f = 0, we arrive at

(W, 82)2(0) = (52, (=A)’P)r) = —(&Np) @) = (2.5W)p@Eno)-

This yields the asserted result. O

For the remainder of this section we will assume that & > 0.

Theorem 4.3. Let the assumptions of theorem 4.1 hold. Let Z be an open set in Zp, such that
Zaap C Z. Let u — J(u) : Up — R be continuously Fréchet differentiable with J'(u) € Up.
If 7 is a minimizer of (4.1) over Zuq p, then the first order necessary optimality conditions are
given by

(_-/V:vﬁ + 52’ Z— Z)LZ(RN\Q) >0, Vze Zad,D’ (44)
where p € Wy*(Q) solves the adjoint equation

{(—A)‘Vﬁ =J'(a) in Q,

=0 in RV \ Q. 5)

Equivalently we can write (4.4) as

15
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z= PZad,D (;MP) ’ (46)

where Py

p 18 the projection onto the set Z,q p. If J is convex, then (4.4) is a sufficient condition.

Proof. The proof is a straightforward application of the differentiability properties of J and
the chain rule in conjunction with lemma 4.2. Indeed, for a given direction i € Z,4 p, the di-
rectional derivative of J is given by

T (@2)h =(J'(52), Sh)12(0) + €2 1) 2 ri\0)
=($"J'(82), h) 2 () + £ M) v\

where in the first step we have used that J'(Sz) € £(L*(£2),R) = L?*(£2) and in the second step we
have used that S is linear and bounded, therefore S* is well-defined. Then using lemma 4.2 we arrive
at the asserted result. From lemma 2.1 we recall that N;p € L*(RN \ Q). Therefore the equivalence
between (4.4) and (4.6) follows by using [16, theorem 3.3.5]. The proof is finished. O

Remark 4.4 (Regularity for the optimization variables). We recall a rather surprising
result for the adjoint equation (4.3). The standard maximal elliptic regularity that is known to hold
for the classical Laplacian on smooth open sets does not hold in the case of the fractional Lapla-
cian i.e. p does not always belong to W?2(Q). Notice that w € L*(Q2) and p = [(—A)}] " 'w.
More precisely assume that €2 is a smooth bounded open set. If 0 < s < %, then by [34, form-
ula (7.4)] we have that D((—A)}) = W3**(Q) and hence, p € W?2(Q) in that case. But if
1 <'s < 1, an example has been given in [43, remark 7.2] where D((—A)3) ¢ W>2(€2), thus
in that case p does not always belong to W?*2(Q). It has been shown in [18, 19] that only a
local maximal elliptic regularity can be achieved. As a result, the best known result for N;p is
as given in lemma 2.1. Since P, , is a contraction (Lipschitz) we can conclude that 7 has the
same regularity as N;p, i.e. they are in L2(RN \ Q) globally and in W:2(RY \ Q) locally. As it

loc
is well-known, in case of the classical Laplacian, one can use a boot-strap argument to improve
the regularity of Sz = u globally. However this is not the case for the fractional exterior value
problems. We also notice that always for the case % < s < 1, Grubb [33, section 2] (see also
[34]) has introduced some fractional order Sobolev spaces where a maximal elliptic regularity
is obtained on these spaces. Of course these fractional order Sobolev spaces do not coincide
with W22(Q). She has also proved some maximal elliptic regularity on some certain spaces of
Holder continuous functions. We recall that our operator (—A)}, is different from the spectral
Dirichlet fractional Laplacian (the fractional powers of the Laplace operator with the Dirichlet
boundary condition). For the latter operator, Grubb [35] has shown that a maximal elliptic regu-
larity can be achieved in some classical fractional order Sobolev spaces.

5. Fractional Robin exterior control problem

In this section we study the fractional Robin exterior control problem (1.4b). We begin by set-
ting the functional analytic framework. We let

Zp =L RY\Qu), Up:=Wg,.

16
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Notice that dy = xdx. In addition we assume that k € L'(RV \ Q) N L>°(RY \ Q) and £ > 0
a.e. in R \ €. In view of proposition 3.9 the following (solution-map) control-to-state map

S:Zr - Ug, z+u,

is well-defined. Moreover S is linear and continuous (by (3.19)). Since Ug — LZ(Q) with the
embedding being continuous we can instead define

S:Zr — L*(Q).
We can then write the so-called reduced fractional Robin exterior control problem as follows:
: _7 §2
o J(2) == J(Sz) + EHZ”LZ(RN\Q,;L)’ .1

where £ > 0. Here also, the precise conditions on J will be given in the statements of the
results. We have the following well-posedness result.

Theorem 5.1. Let Z,;r be a closed and convex subset of Zg. Let £ > 0 with J > 0 or
Zuar C Zr bounded. Moreover, let J : L*(2) — R be weakly lower-semicontinuous. Then
there exists a solution 7 to (5.1) and equivalently to (1.4). If either J is convex and & > 0 or J
is strictly convex and & > 0 then Z is unique.

Proof. We proceed as in the proof of theorem 4.1. Let {z,},en C Zugr be a minimizing
sequence such that

inf J(z) = lim J(z)-

2€Zaa R

If§ >0 with J > 0 or Z,gr C Zg is bounded, then after a subsequence, if necessary, we have
that z, — 7z in L*(RN \ Q, i) as n — oo. Now since Z,, is a convex and closed subset of Zg,
it follows that 7 € Z,4z.

Next we show that the pair (SZ,7) satisfies the state equation. Notice that u, := Sz, is
the weak solution of (1.4b) with exterior value z,. Thus, by definition, u, € ngn and the
identity

g(unvv) = /]RN\Q va dp” (52)

holds forevery v € Wai{ where we recall that £ is given in (3.18). We also notice that the map-
ping S is also bounded from Zy into W;f,,C (by (3.19)). This shows that the sequence {u, }ren
is bounded in ngﬁ. Thus, after a subsequence, if necessary, we have that Sz, = u, — Sz =1u
in Wg;”, as n — oc. This implies that

. Cs (1 (x) — un () (v(x) — 0(y))
= ( 2 //11@“\(11@’\9)2 | — [N+ ey /RN\Q e du)

_ Cns (u(x) — u(y))(v(x) — v(y)) )
2 //]RZN\(RN\Q)z |x — y|¥+2s dxcb""/];\/\ﬂ v du,

for every v € Wg’,.. Since z, — Z in L*(RY \ Q, 1) as n — o0, it follows that
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lim 7o du = / zo dp,
=00 JRN\Q RM\Q
for every v € ngﬁ. Therefore we can pass to the limit in (5.2) as n — oo to obtain that

E(n,v) = / zZvdx, Vove W?fN.
RVM\Q ’

Thus, (Sz,7Z) = (&,7) satisfies the state equation (1.4b). The rest of the steps are similar to the
proof of theorem 4.1 and we omit them for brevity. O

As in the case of the fractional Dirichlet exterior control problem (4.1) we identify next the
adjoint of the control-to-state map S.

Lemma5.2. For the state equation (1.4b) the adjoint operator S* : L*(Q)) — Zg is given by

(S*W’ Z)ZR = / )24 d,U Vz € ZR,
RN\ Q

where w € L*(Q) and p € ngn is the weak solution to

{(—A)sp =w inQ,

Np+rp =0 in RN\ Q. (53)

Proof. Letw € L*(Q) and z € Zg. Then Sz € W, — L*(Q2) with the embedding being
continuous. Then we can write

(w,82)12(0) = (S, 2)7.

Next we test (5.3) with Sz to arrive at

Cy.s // (u(x) —u(y))(p(x) = p(»)) /
w,82)2(0) =—— dxdy + up d
( )L () 2 R2V\ (RV\(2)2 |X — y|N+2S RN\ Q K

:/ zp dp = (S*W,2)z,.
RN\

where we have used the fact that u solves the state equation according to definition 3.8. The
proof is finished. Ll

For the remainder of this section we will assume that £ > 0. The proof of the next result is
similar to the proof of theorem 4.3 and is omitted for brevity.

Theorem 5.3. Let the assumptions of theorem 5.1 hold. Let Z be an open set in Zg such
that Zusqr C 2. Let u J(u) : [*(Q) — R be continuously Fréchet differentiable with
J'(u) € L2(Q). If 7 is a minimizer of (5.1) over Zyq g, then the first necessary optimality condi-
tions are given by

RN\Q(P +&)(z—2)du >0, z€Zur, (5.4)

where p € W‘gfn solves the adjoint equation
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fCom=rm g, (55)

Np+kp=0 in R¥\ Q.

Equivalently we can write (5.4) as

2= Pr (—Z) , (5.6)

where Pz, is the projection onto the set Z,qg. If J is convex, then (5.4) is a sufficient
condition.

Remark 5.4 (Regularity of the optimization variables). As pointed out in remark 4.4
(Dirichlet case) the regularity for the integral fractional Laplacian is a delicate issue. In fact
for the Robin problem, in RY \ Q) we can only guarantee that p € L2(RY \ ©, ). We further
emphasize that the regularity for the fractional Robin problem is still open. Therefore due to
the lack of such regularity results, we cannot use the classical boot-strap argument to further
improve the regularity of the control Z.

6. Approximation of Dirichlet exterior value and control problems

We recall that the Dirichlet exterior value problem (1.2) in our case is only understood in the
very-weak sense (see theorem 3.5). Moreover a numerical approximation of solutions to this
problem will require a direct approximation of the interaction operator N; which is challeng-
ing. Similar situations arise in the first order optimality conditions for the Dirichlet control
problem (4.4).

The purpose of this section is to not only introduce a new approach to approximate weak
and very-weak solutions to the nonhomogeneous Dirichlet exterior value problem (recall that
if z is regular enough then a very-weak solution is a weak solution, and every weak solution is
a very-weak solution, see theorem 3.5) but also to consider a regularized fractional Dirichlet
exterior control problem. We begin by stating the regularized Dirichlet exterior value problem.

Letn € N. Find u, € Wg‘fn solving the elliptic problem

{(—A)“"un =0 in Q,

Niu, + nku, = nkz inRV \ Q. 6.1)

Notice that the fractional regularized Dirichlet exterior problem (6.1) is nothing but the frac-
tional Robin exterior value problem (1.45). We proceed by showing that the solution u, to
(6.1) converges to a function u, as n — oo, that solves the state equation (1.2) in the very weak
sense (3.3). This is our new method to solve the non-homogeneous Dirichlet exterior value
problem. Recall that the weak formulation of (6.1) does not require access to N (see defini-
tion (3.8)) and it is straightforward to implement.

In this section we are interested in solutions u, to (6.1) that belong to ngﬂ NL*(RY\ Q)
which is endowed with the norm

1

2
Wi AL2(RV\Q) "= (HMH‘ZV?SE + ”u”iz(RN\Q)) . (6.2)

[

In addition, in our application we shall take & such that its support supp[x] C RV \ Q has a
positive Lebesgue measure. For this reason we shall assume the following.
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Assumption 6.1. We assume that & € L'(RY \ Q) N L>® (RN \ Q) and satisfies k > 0 al-
most everywhere in K := supp[r] C RN \ Q, where the Lebesgue measure |K| > 0.

It follows from assumption 6.1 that fRN\Q K dx > 0.
To show the existence of weak solutions to the system (6.1) thatbelong to Wy, 2 NL(RY\ Q),
we need some preparation.

Lemma 6.2. Assume that assumption 6.1 holds. Then

1
2

Ju(x) —u(y)?
lu|lw := (// |x— s dxdy—|—/ |u|? dx) (6.3)
R2V\ (RV\Q)? y RV\Q

defines an equivalent norm on ng,zﬁ NL2RN\ Q).

Proof. Firstly, it is readily seen that there is a constant C > 0 such that

lullw < Cllullyzz. gy forall ue Wik NI RY\ Q). 6.4)

Secondly, we claim that there is a constant C > 0 such that

llullwep 2y < Cllullw forall u € Wi, N LRV Q). (6.5)

It is clear that
/ |uf* dp < IIHIILw(RN\m/ |ul* dx. (6.6)
RV\Q RV\Q

It suffices to show that there is a constant C > 0 such that for every u € Wffm NL* RN\ Q),

/W // _z(ﬁ)'z dxdy+/ u dx | .
Q R2V\ (RV\ )2 |x— yNEE RV\Q

(6.7)

We prove (6.7) by contradiction. Assume to the contrary that for every n € N, there exists a
sequence {u, fneny C ngﬁ N L*(RN \ Q) such that

/|un|2dx>n // %dxdy—i—/ |y |* dx | .
R2V\ (RN\2)? lx =yl RN\Q

(6.8)

By possibly dividing (6.8) by [|u]|} ¢, We may assume that |[u,[|7, ) = 1 for every n € N.
Hence, by (6.8), there is a constant C > 0 (independent of n) such that for every n € N,

2
// linle) = ny)1 dxdy+/ Jua? dx < C. ©.9)
RV X = Y[V RY\Q

Since k € L (RN \ Q), (6.9) and (6.6) imply that for every n € N,

/ |u, > dpu < C. (6.10)
RV\Q
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Now (6.9) and (6.10) together with ||un||22(Q) = 1 imply that {u, },cn is a bounded sequence
in the space Wffﬁ N L2(RN \ Q). Therefore, after passing to a subsequence, if necessary, we
may assume that u, converges weakly to some u € WB,ZH N L*(RN \ Q) and strongly to u in
L?(£2), as n — oo (as the embedding W?fn — L*(Q) is compact by remark 3.7(c)). It follows
from (6.8) and the fact that [juy||7, o,y = 1 that

_ 2
lim // % drxdy =0 and lim > dx = 0.
n=oo [ Jpav\ vy X — y[NTE n—00 JRN\Q

These identities imply that u,|gv\ o converges strongly to zero in L2(RN\ Q) as n — oo, and
after passing to a subsequence, if necessary, we have that

lim |u,(x) — u,(y)| =0 forae. (x,y) € R?V\ (RV\ Q)% 6.11)
n—oo

and
u, — 0ae. in RV \ Qasn — oo. (6.12)

More precisely, (6.11) implies that

limy o0 [Un(x) —u,(y)| =0  forae. (x,y) € 2 xQ,
limy, o0 [tn(x) —u,(y)] =0 forae. (x,y) € Q x (RV\ Q), (6.13)
lim, s o0 |Un(x) —u,(y)| =0  forae. (x,y) € (R¥\ Q) x Q.

Using (6.13), we get that u, converges a.e. to some constant function ¢ in RY as n — oo. From
(6.12) and the uniqueness of the limit, we have that ¢ = 0 a.e. in R". Since (after passing to a
subsequence, if necessary) u, converges a.e. to u in ) as n — oo, the uniqueness of the limit
also implies that ¢ = u = 0 a.e. on 2. On the other hand, ||u|\iz(ﬂ) = lim, o0 ||un|\iz(ﬂ) =1,
and this is a contradiction. Hence, (6.8) is not possible and we have shown (6.7). Finally the
lemma follows from (6.4) and (6.5). The proof is finished. [l

The following theorem is the main result of this section.

Theorem 6.3 (Approximation of solutions to the Dirichlet problem). Assume that
assumption 6.1 holds. Then the following assertions hold.

(a) Let z € W2(RN\ Q) and u, € ngﬁ NL*(RN \ Q) be the weak solution of (6.1). Let
u € WS2(RN) be the weak solution to the state equation (1.3b). Then there is a constant
C > 0 (independent of n) such that

C
|l — unHLZ(RN) < ;Hu\ Ws2(RN)- (6.14)

In particular u, converges strongly to u in L*>(RY) as n — oo.

(b) Let z € L*(RV\ Q) and u, € W, N L* (RN \ Q) be the weak solution of (6.1). Then
there exist a subsequence that we still denote by {u, } nen and a function it € L*(RY) such
that u, — i in L>(RN) as n — oo, and it satisfies

/ i(—A)'v dx = 7/ N dx, (6.15)
Q RM\Q

forallveV.
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Remark 6.4 (Convergence to a very-weak solution). Notice that Part (a) of theorem
6.3 implies strong convergence to a weak solution (with rate). On the other hand, Part (b) ‘al-
most’ implies weak convergence to a very-weak solution (we still do not know if it|gv\ o = 2).
We emphasize that such an approximation of very-weak solutions using the Robin problem, to
the best of our knowledge, is open even for the classical case s = 1 when the boundary func-
tion just belongs to L2(952).

Proof of theorem 6.3.

(@) Let ze€ WS2(R¥\ Q). Firstly, recall that under our  assumption

En(

WS RN\ Q) — L2 (RN \ Q) — L*(RN \ Q, 1). Secondly, consider the system (6.1). A
weak solution is a function u, € ngﬁ N L2(RY \ Q) such that the identity

Cns (Un (%) = un () (0(x) — v(y))
2 //R2N\ RN\ Q)2 dxdy

e —yv+2

—I—n/ unvdu:n/ zo du,
RV\Q R\ (6.16)

holds for every v € W&ffﬁ N L2(RN \ Q). Proceeding as in the proof of proposition 3.9
we can easily deduce that for every n € N, there is a unique u, € ngn NL*(RV\ Q)
satisfying (6.16).

Forv,w € W;fn NL2(RN\ Q) we let

) 1= () o) W) g
R2V\ (RV\Q2)2 |x — y|NF2s Y RV\Q -

We notice that proceeding as in the proof of lemma 6.2 we can deduce that there is a
constant C > 0 such that

CNY// Ja(0) = Nf)' dxdern/ lu? dx < CEp (i, ).
R @EMQ2 X — YV RV\Q
6.17)

Next, let u € W*2(R") be the weak solution of (3.1) and v € g3, N L*(RY \ Q). Using
the integration by parts formula (2.5) we get that

E0(u— 1, 0) :/ (=AY (1 — wy) dx + / N (i — 1) dx
Q RV\Q
+ n/ v(u—u,) du
RV\Q
:/ v(—A)*(u — u,) dx +/ vNu dx
Q RV\Q

3/ 0 (Natty + (i — 2))
RN\Q

= oN;u dx.
/]RN\Q (6.18)
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Taking v = u — u,, as a test function in (6.18) and using (6.17), we get that there is a
constant C > 0 (independent of n) such that
nllu— un||iz(RN\Q) < E(u—upou —uy) = / (u — u,)Nu dx
RV\Q
< = tt[| 2 v\ 02) NSl 2 v )
< Cllu — tn |2 @\ 0) [l w2 vy

We have shown that there is a constant C > 0 (independent of n) such that
(o
||M - u,,||Lz(RN\Q) < Z”””W&?(RN)- (619)
Next, observe that

u— u,)n dx
[ = un||12(0) = sup M (6.20)
nerz@) |l
For any 7 € L*(), let w € W*(Q) be the weak solution of the Dirichlet problem
(=AYw=ninQ, w=0 inRV\ Q. 6.21)

It follows from proposition 3.2 that there is a constant C > 0 such that

[Wllws2@yy < Clinllz@)- 6.22)

Since w € Wy (Q), then using (6.18) we get that

/Q(u —up)(—A)'wdx
_Cns (1 — ) (x) — (e — ) () (W(x) — w(y))
- / /RZN\<RN\Q>2 el

2 e — [N

- / (u — uy)Nsw dx
RV\Q
=&, (u — uy, w) —/ (u — uy)Nyw dx
RV\Q
:/ wNu dx — (0 — up) Nyw dx
RV\Q RV\Q

=— / (u — uy)Nsw dx.
RV\Q

It follows from the preceding identity, (6.19) and (6.22) that there is a constant C > 0
such that

/ (1 — up) Nyw dx‘
RV\Q

<lu— ”n||L2(]RN\Q) ||MW||L2(RN\Q)

= w-arwa -

C
g; ||u||W§'2(RN) ||W||WS,Z(RN)

(6.23)

C
<;||M| ws2 &™) 11| 2(0) -
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Using (6.20) and (6.23) we get that

C
[t = tal|12(02) < ;H”| W2 (RN) - (6.24)

Now the estimate (6.14) follows from (6.19) and (6.24). Observe that it follows from
(6.14) that u,, — u in L*(R") as n — oo and this completes the proof of Part (a).

(b) Now let z€ L>(RV\ Q) < L>(RV\ ©, ). Notice that {u,}.en satisfies (6.16).
Proceeding as in the proof of lemma 6.2 we can deduce that there is a constant C > 0
(independent of n) such that

n”un“i?(RN\Q) < CE(un, ) < nCl|E|| oo @i\ |2l 2@\ @) 1t || 2 m¥\ )

and this implies that
lltnl| 2 @¥v02) < Clizll2@m0)- (6.25)
Now we proceed as in the proof of (6.24). As in (6.20) we have that

u,n dx
[tnl|2() = sup M
neL(Q) HUHLZ(Q)

Let n € L>(R2) and w € W)*(Q) the weak solution of (6.21). Since w € W*(Q), then
using (6.18) we have that

/ﬂun(—A)sw dx

:@// (un(x) — ua(y)) (w(x) — w(y)) dxd _/ Now d
2 R2V\ (RV\Q2)2 Jx — y|NF+2s Y RV\Q B

= / u, Nyw dx.
RV\Q

It follows from the preceding identity, (6.25) and (6.22) that there is a constant C > 0 such that

/ u, Now dx
RV\Q

<Cllzll 2@ lwl

(6.26)

< ot ll 2 @) INsW 2 @)

/Qu,,(—A)sw dx‘ _

(6.27)

Ws2(RN) -

Using (6.25), (6.27) and (6.22) we get that there is a constant C > 0 (independent of n)
such that

[unllz2(0) < Clizll2@n0)- (6.28)
Combining (6.25) and (6.28) we get that

llttnll 2wy < Cllzl|2@v\0)- (6.29)

Hence, the sequence {u, },cn is bounded in L2(RY). Thus, after a subsequence, if neces-
sary, we have that u, converges weakly to some i in L*(RY) as n — oo.

Using (6.16) we get that for every v € V := {v € W5*(Q) : (-=A)'v € L*(Q)},
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Cns (1) — () O) —00) |
2 //]RZN\(RN\Q)z |x _ y|N+2s dxdy = 0. (6.30)

Using the integration by parts formula (2.5) we can deduce that

Crs (1 (x) — un(y)) (0(x) — v(y))
2 //RZN\(RN\Q)Z dXdy

ey
6.31)

7/un(fA)Svdx+/ N d,
Q

RV\Q

for every v € V. Combining (6.30) and (6.31) we get that the identity

/ Uy (—A)0 dx + / u,Nyw dx = 0, (6.32)
Q

RV\Q

holds for every v € V. Passing to the limit in (6.32) as n — oo, we obtain that

/ a(—A)'v dx + / aN;v dx = 0,
)

RV\Q

for every v € V. We have shown (6.15) and the proof is finished. O

Toward this end, for £ > 0 we introduce the regularized fractional Dirichlet control
problem:

min J() + 5 <l (6.330)

ucUg,zEZ

subject to the regularized exterior value problem (Robin problem): find u,, € Ug solving
{(—A)Su =0 in Q

Nsu+nku  =nkz in RV\ Q, (6.33D)

and the control constraints
Z € Zaar- (6.33¢)

Here Zg := L*(RN \ Q),Z,qgisaclosedand convex subsetof Zgand Ug := Wg,, N L2(RY \ Q).
We again remark that (6.33) is nothing but the fractional Robin exterior control problem.

Theorem 6.5 (Approximation of the Dirichlet control problem). The regularized
control problem (6.33) admits a minimizer (Zn,u(zn)) € Zaar X (ngn NLARN\ Q)). Let
Zr = WSH(RN \ Q) and Zuqr C Zg be bounded. Then for any sequence {ng}3°  withng — oo,
there exists a subsequencesstill denoted by {n¢ } 3 \suchthat z,, — ZinW*(R¥ \ Q), u(z,,) — it
in L>(RN) as ny — oo and (%, it) solves the Dirichlet control problem (1.3) with Z,q p replaced
by Zad,R‘

Proof. Since the regularized control problem (6.33) is nothing but the Robin control prob-
lem therefore the existence of minimizers follows by directly using theorem 5.1. Following the
proof of theorem 5.1 and using the fact that Z,; z is a bounded subset of the reflexive Banach
space WS2(RN \ Q), after a subsequence, if necessary, we have that z,, — Z in W*2(RV \ Q)
as ny — o0o. Now since Z,,r is closed and convex, then it is weakly closed. Thus z € Z,;.
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Following the proof of theorem 6.3(a) we can deduce that there exists a subsequence {u,, }
such that u,, — &t in L*(RV) as n, — ooand it € W*2(RV). Combining this convergence with
the aforementioned convergence of z,, we can conclude that (Z, i) € Z,yz x W*2(RY) solves
the Dirichlet exterior value problem (1.30).

It then remains to show that (Z, i) is a minimizer of (1.3). Let (z/, ') be any minimizer of
(1.3). Let us consider the regularized state equation (6.33b) but with boundary datum z’. We
denote the solution of the resulting state equation by ;. By using the same limiting argu-
ment as above we can select a subsequence such that u),, — u’ in L*(R") as n; — oc. Letting

J(zu) == J(u) + §||z||%2(RN\Q), it then follows that

J(@ ') <jzw) < liminfj(z,,, u,,) <liminfj(e,u,,) = j(', '),
ng— o0 ng—>00
where the second inequality is due to the weak-lower semicontinuity of J. The third inequality
is due to the fact that {(z,,, us, ) } is a sequence of minimizers for (6.33). The proof is finished.

O

We conclude this section by writing the stationarity system corresponding to (6.33): find
(z.u.p) € Zaag x (W, N L2(RN\ Q) x (W%, NLA(RY \ )) such that

E(u,v) = fRN\Q nkzo dx,
E(W,p) = fQ J/(M)W dx, (634)
Jeq(nrp + €2)(Z —2) dx > 0,

for all (Z,0,w) € Zaar x (W2, NLA(RY\ Q)) x (W, N L2(RY\ Q).

7. Numerical approximations

The purpose of this section is to introduce numerical approximations of the problems we have
considered so far. We emphasize that the fractional PDEs are intrinsically expensive, since the
underlying coefficient matrices require approximation of integrals with singular kernels and
the resulting coefficient matrices are dense. In addition, the fractional control problems can be
prohibitively expensive since they not only require solving the nonlocal state equation but also
the nonlocal adjoint equation and in case of Dirichlet control problem one needs to approxi-
mate the nonlocal normal derivative for the adjoint variable to evaluate the control variable
(4.6). The presented approach is a first of its kind to numerically solve the fractional Robin
problem and to approximate the Dirichlet problem by the Robin problem. Further details on
the numerical analysis of the underlying PDEs, the control problem and solvers for the frac-
tional PDEs will be part of a forthcoming research paper.

The rest of the section is organized as follows: in section 7.1 we begin with a finite element
approximation of the Robin problem (6.1) which is the same as the regularized Dirichlet problem.
We approximate the Dirichlet problem using the Robin problem. In section 7.2 we introduce an
external source identification problem where we clearly see the difference between the nonlocal
case and the classical case (s ~ 1). Finally, section 7.3 is devoted to the optimal control problems.

71. Approximation of a nonhomogeneous Dirichlet problem via a Robin problem

In view of theorem 6.3 we can approximate the Dirichlet problem with the help of the Robin
(regularized Dirichlet) problem (6.1). Therefore we begin by introducing a discrete scheme
for the Robin problem. Let 2 be a bounded open set that contains €2, the support of the control/
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source z and the support of . We consider a conforming simplicial triangulation of €2 and
Q \ © such that the resulting partition remains admissible. We shall assume that the support
of z and & is contained in € \ Q. We let our finite element space V, (on £~2) to be a set of con-
tinuous piecewise linear functions. Then the discrete (weak) version of (6.33b) with nonzero
right-hand-side is given as follows: find u, € V), such that

Cyns (un(x) — un(y)) (v(x) — v(y))
//RzN\(RN\mZ dxdy+/ nkuv dx

2 |x — y[N+2s o0

= <f, v>(W;'Z%NﬂLz(RN\Q))*,WEZ’NP'LZ(RN\Q) + /ﬁ\Q nkzo dx Vo € V. (7.1)
We approximate the double integral over R?V \ (R" \ Q)2 by using the approach from [1, 2]. The
remaining integrals are computed using numerical quadrature which is accurate for polynomials
of degree less than and equal to 4. All implementations are carried out in Matlab and the discrete
system of equations corresponding to the state and adjoint equations are solved using direct solv-
ers. Note that iterative solvers for the fractional Robin problem are part of our future work.
We next consider an example that has been taken from [3]. Let = By(1/2) C R?. Our
goal is to find u solving

{(—A)Su =2 in Q,

—2s5 N .
u(~):ﬁ(lf\~|2)Jr in RV \ Q.

The exact solution in this case is given by
_ . 272S 1 o\ S 1 b s
“(x)—ul(x)+u2(x)—m (1= )+ 7~ K L)

where u; and u; solve the problems

(=A)uy =1 in €, {(—A)“uz =1 in Q,
—2s5 s . X
= F(21+s)2 (-1 |2)+ in R\ Q, u =0 in RV \ ?7 )

We let Q = By(3/2). We next approximate (7.2) using (7.1) and we set « = 1 on its sup-
port. At first we fix s = 0.5 and the Degrees of Freedom (DoFs) to be DoFs = 2920. For this
configuration, we study the L*() error [[u — us||;2(c) With respect to n in figure 2 (left). As
expected, from theorem 6.3(a) we observe an approximation rate of 1/n.

Next for a fixed s = 0.5, we check the stability of our scheme with respect to n as we refine
the mesh. We have plotted the L*-error as we refine the mesh (equivalently increase DOFs) for
n=1x10%1x 1031 x 10* 1 x 10°. We notice that the error remains stable with respect to
n and we observe the following convergence rate with respect to the DoFs:

lu = will 20 ~ (DoFs) .
In the right panel we have shown the L*-error for a fixed n = 1 x 10° but for various s = 0.2,
0.4, 0.6, 0.8. When 0 < 5 < 1 we have observed a rate of (DoFs)*%(”%) and for § <s <1

1

we observe a convergence rate of (DoFs) 2.

72. External source identification problem

We next consider an inverse problem to identify a source that is located outside the observa-
tion domain 2. The optimality system is as given in (6.34) where we have approximated the
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Figure 2. Left panel: Let s = 0.5 and DoFs = 2920 be fixed. We let x = 1 and consider
the L2-error between the actual solution u to the Dirichlet problem and its approximation
uy, which solves the Robin problem. We have plotted the error with respect to n. The
solid line denotes a reference line and the actual error. We observe a rate of 1/n which
confirms our theoretical result (6.14). Middle panel: let s = 0.5 be fixed. For each
n=1x10%1x 1031 x 10* 1 x 10° we have plotted the L2-error with respect to the
degrees of freedom (DOFs) as we refine the mesh. Notice that the error is stable with

respect to n. Moreover, the observed rate of convergence is (DoFs) ~2andis independent
of n. Right panel: Let n = 1 x 10° be fixed. We plot the L%-error with respect to the
DOFs for various values of s. The observed convergence rate is (DoFs)_%(”%) for
0 < s < § and the observed rate is (DoFs)~z forl <s< 1.

Dirichlet problem by the Robin problem. We use the continuous piecewise linear finite ele-
ment discretization for all the optimization variables: state (u), control (z) and adjoint ( p). We
choose our objective function as

. £ . 1
J(u,z) = J(u) + EHZH%}(RN\Q)’ with  J(u) := 5”“ — udll72 (0>

and we let Zygg :={z € LX(R¥\ Q) : >0, ae. in 1} where Q) is the support set of the
control z that is contained in €2\ €. Moreover u, : L*(Q2) — R is the given data (observa-
tions). All the optimization problems below are solved using the projected-BFGS method with
Armijo line search.

Our computational setup is shown in figure 3. The centered square regionis = [—0.4, 0.4]?
and the region inside the outermost ring is € = By(3/2). The smaller square inside €2 \ € is
Q which is the support of the source/control. The right panel in figure 3 shows a finite element
mesh with DoFs = 6103.

We define u, as follows. For z = 1, we first solve the state equation for # (first equation in
(6.34)). We then add a normally distributed random noise with mean zero and standard devia-
tion 0.02 to &z. We call the resulting expression as u,. Furthermore, we set £ = 1, and n = 1e5.

Our goal is then to identify the source z;,. In figure 4, we first show the behavior of opti-
mal z, for different values of the regularization parameter £ = 1 x 107! (4),1 x 1072 (4),
1 x 107 (4),1 x 1078 (2),1 x 10719 (2). The numbers in the bracket denote the total num-
ber of iterations that the BFGS has taken to achieve a stopping tolerance (for the projected
gradient) of 1 x 10~7. Notice that the Armijo line search has remained inactive in these cases.
As expected the larger is the value of &, the smaller is the magnitude of Z;, and this behavior
saturates at £ = 1 x 1078,

Next, for a fixed £ = 1 x 1073, figure 5 shows the optimal z, for s = 0.1 (4), 0.6 (2),
0.7 (2), 0.8 (2), 0.9 (2). The numbers in the bracket again denote the total number of itera-
tions that the BFGS has taken to achieve a stopping tolerance (for the projected gradient) of
1 x 107, Notice that the Armijo line search has remained inactive in these cases. We notice
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1.5

-1.5
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3. Left: computational domain where the inner square is €2, the region inside the
outer circle is 2 and the outer square inside Q2 \ © is  which is the region where the
source/control is supported. Right: a finite element mesh.

Figure 4. External source identification problem. The panels show the
behavior of z, with respect to the regularization parameter &: top row from
left to right £ =1x10"1,1 x 1072, 1 x 107%, bottom row from left to right:
E=1x1078,1x 1071% As it is expected, larger is &, smaller is the magnitude of Z,,
but this behavior saturates at € = 1 x 1075,

that for large s, z;, = 0. This is expected as larger the s is, the more close we are to the classical
Poisson problem case and we know that we cannot impose the external condition in that case.

73. Dirichlet control problem

We next consider two Dirichlet control problems. The setup is similar to section 7.2 except
now we set uy = 1.

Example 7.1. The computational setup for the first example is shown in figure 6. Let
Q = By(1/2) (the region insider the innermost ring) and the region inside the outermost ring
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Figure 5. The panels show the behavior of z, as we vary the exponent s. Top row
from left to right: s = 0.1, 0.6, 0.7. Bottom row from left to right: s = 0.8, 0.9. For
smaller values of s, the recovery of z,, is quite remarkable. However, for larger values
of s, z; = 0 as expected, the behavior of #, for large s is close to the classical Poisson
problem which does not allow external sources.

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 6. Left: computational domain where the inner circle is 2, the region inside the
outer circle is £2, and the annulus inside Q \ 2 is Q which is the region where the control
is supported. Right: a finite element mesh.

is Q = By(3/2). The annulus inside Q \ Q is Q which is the support of the control. The right
panel in figure 6 shows a finite element mesh with DoFs = 6069.

In figures 7 and 8 we have shown the optimization results for s = 0.2 (14) and s = 0.8
(4), respectively. Here again, the numbers in the bracket denote the total number of itera-
tions that the BFGS has taken to achieve a stopping tolerance (for the projected gradient)
of 1 x 10~7. Notice that the Armijo line search has remained inactive in these cases. The
top row shows the desired state u, (left) and the optimal state i, (right). The bottom row
shows the optimal control z;, (left) and the optimal adjoint variable p;, (right). We notice
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Figure 7. Example 1, s = 0.2: top row: left—desired state u,; right—optimal state .
Bottom row: left—optimal control Zj,, right—optimal adjoint pj,.

that in both cases we can approximate the desired state to a high accuracy but the approx-
imation is slightly better for smaller s, especially close to the boundary. This is to be ex-
pected as for large values of s the regularity of the adjoint variable deteriorates significantly
(see remark 4.4).

Example 7.2. The computational setup for our final example is shown in figure 9. The M-
shape region is Q and the region inside the outermost ring is Q= B(0.6). The smaller region
inside € \ Qis Q which is the support of the control. The right panel in figure 6 shows a finite
element mesh with DoFs = 4462.

In figure 10 we have shown the optimization results for s = 0.8 (370). Again, the num-
ber in the bracket denotes the total number of iterations that the BFGS has taken to achieve
a stopping tolerance (for the projected gradient) of 1 x 10~7. Notice for this example, dur-
ing most of the iterations, the Armijo line search has remained inactive but it got activated
during a few number of iterations and has remained active for up to ten steps. The top row
shows the desired state u, (left) and the optimal state u;, (right). The bottom row shows the
optimal control Z, (left) and the optimal adjoint variable p, (right). Even though the con-
trol is applied in an extremely small region we can still match the desired state in certain
parts of 2.
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Figure 10. Example 3, s = 0.8: top row: left—desired state u,; right—optimal state #,.
Bottom row: left—optimal control zj, right—optimal adjoint pj,.
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