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Abstract

In this work we consider a generalized bilevel optimization framework for solv-

ing inverse problems. We introduce fractional Laplacian as a regularizer to

improve the reconstruction quality, and compare it with the total variation reg-

ularization. We emphasize that the key advantage of using fractional Laplacian

as a regularizer is that it leads to a linear operator, as opposed to the total varia-

tion regularization which results in a nonlinear degenerate operator. Inspired

by residual neural networks, to learn the optimal strength of regularization

and the exponent of fractional Laplacian, we develop a dedicated bilevel opti-

mization neural network with a variable depth for a general regularized inverse

problem. We illustrate how to incorporate various regularizer choices into our

proposed network.As an example, we consider tomographic reconstruction as a

model problem and show an improvement in reconstruction quality, especially

for limited data, via fractional Laplacian regularization. We successfully learn

the regularization strength and the fractional exponent via our proposed bilevel

optimization neural network. We observe that the fractional Laplacian regular-

ization outperforms total variation regularization. This is specially encouraging,

and important, in the case of limited and noisy data.

Keywords: bilevel optimization neural network, fractional Laplacian regular-

ization, deep residual learning, imaging science, tomographic reconstruction,

inverse problems
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1. Introduction

Inverse problems appear in numerous scienti�c domains, such as medicine, geophysics, astron-

omy, computer vision, and imaging etc. However, they are typically ill-posed, due to the limited

data and imperfection of experiments, and require some form of regularization [1–5]. Two

key challenges are associated with solving a regularized inverse problem. The �rst is the

choice of regularization. Among the most popular choices, the total variation regularization

[6, 7] is of edge-preserving nature. However, its non-differentiability makes its usage numer-

ically challenging. Another choice is the Tikhonov regularization [8], which has a smoothing

property. Each choice, however, comes with its own challenges such as nonlinearity, non-

smoothness, over-smoothing etc. The second associated challenge is to choose the strength

of the regularization, usually dictated by the parameter µ, for which there is no consensus.
Recently, deep learning approaches such as convolution neural networks (CNN) and resid-

ual neural networks (RNN) have shown remarkable potential in image classi�cation and recon-

struction where, often, the goal is to learn the whole regularizer [9–11]. These approaches,

however, may not be robust in general [12, 13]. Firstly, learning problems are usually noncon-

vex, and the local minima may be sensitive to the initialization of parameters and the choice

of optimization method. Secondly, these approaches often do not incorporate the domain-

speci�c knowledge of the system (e.g., the known solution features) directly into the net-

work, for instance. In addition, they often lack a mathematical justi�cation [14–18]. The main

contributions of this paper are two-folds:

(a) Extend the fractional Laplacian introduced in [19] as a regularizer to the general setting

of a linear inverse problem.

(b) Instead of learning the entire regularizer, we consider a bilevel optimization scheme to

learn the strength of the regularization and the fractional exponent based on the prior

knowledge of the system. More speci�cally, we set up a bilevel optimization neural net-

work (BONNet). In this network, the upper level objective measures an expectation of the

reconstruction error over the training data while the lower level problem measures the

regularized data mis�t.

There are several existing attempts to take advantage of machine learning to improve the

solution quality. The most common way is to explore neural network as a post-processing step

to re�ne the solution obtained by base-line methods (e.g., iterative method or �ltered back

projection [20]), see also [21, 22].

Our approach is closely related to the methodology introduced in [9]. In fact, ours can be

thought as a special case in the case of total variation regularization, where the authors con-

sider a variational model for reconstruction of MRI data. The authors focus on a generalized

total variation model (�elds of experts model) and also learn the underlying parameters. For

completeness we also refer to [23] for a discussion on bilevel optimization. We emphasize that

the main novelty in our paper is the use of fractional Laplacian [19, 24, 25] as a regularizer

and learning the fractional exponent with an application to tomographic reconstruction. The

fractional Laplacian introduces nonlocality and tunable regularity. Another type of parameter

search strategy has been proposed in [26] where the authors consider Tikhonov-based regular-

izations, and propose a machine learning based strategy to learn the strength of regularization.

Their scheme is based on the generalized singular value decomposition (GSVD), or its approx-

imation, of the forward operator and the regularization operator pair. However, computing

GSVD can be computationally challenging [27]. Our approach differs from the existing works

as we propose to use the fractional Laplacian as a regularizer, which is cheaper to evaluate,

and allows us to enforce the prior knowledge of the sample features, including smoothness and
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sparsity. The fractional Laplacian has been successfully applied in image denoising [19, 28],

geophysics [29], diffusion maps [30], biology [31], novel exterior optimal control [32, 33],

etc. We also emphasize that our proposed framework is �exible, for it can easily incorporate

inequality constraints (on the optimization variables), which can be solved by a large number

of existing solvers, and directly generalizes to other types of regularizations such as the p-

Laplacian [34, 35]. Therefore, our proposed framework brings machine learning closer to the

traditional optimization. Notice that the machine learning algorithms are still in their infancy

when it comes to handling constraints, see, for instance [36], and the references therein.

The numerical examples presented in this paper are strongly motivated by tomographic

reconstruction, see sub section 2.3. Further realistic application of interest to us is the MRI

reconstruction, considered in [9]. It is also of interest to implement our approach in open source

Python packages such as TensorFlow and PyTorch. These would be considered as a part of

future work.

The rest of the paper is organized as follows. In section 2, we introduce the mathematical

formulation of the standard linear inverse problemwith regularizers. In particular, we consider

the fractional Laplacian as a regularizer for inverse problems. We show a comparison of frac-

tional Laplacian and total variation as regularizers for a tomographic reconstruction problem.

Section 3 is devoted to our proposed algorithmic framework, i.e., the bilevel optimization neu-

ral network (BONNet) to learn the optimal regularization strength, as well as the order of the

fractional Laplacian. In section 4, we provide further numerical experiments illustrating the

application of BONNet to the tomographic reconstruction problem.

2. Regularization in inverse problems

The regression model for data mis�t in inverse problems is given by

min
u
J(u) :=

1

2
‖Ku− f ‖2

L2(Ω)
, (1)

where f : Ω 7→ R is a given function andΩ ⊂ R
nwith n > 1 is a boundeddomain.HereK is the

forward map, which we assume is a bounded linear operator on L2(Ω) where the latter denotes

the square integrable functions. Moreover, u is the sample feature that we want to recover, or

reconstruct. The ill-posed nature of (1) makes it almost necessary to consider regularization in

the wake of often noise-�lled data; owing to the imperfections in the data gathering process.

Therefore, we consider a regularized regression model to improve the solution quality. In a

more general sense, let Ω ⊂ R
n with n > 1 be a bounded Lipschitz domain with boundary

∂Ω, f : Ω→ R be an L2(Ω) function (given datum), K : L2(Ω)→ L2(Ω) be a bounded linear

operator, and X be a Banach space. Then a standard regularized variational model is given by

min
u∈Xad⊆X

J(u) :=
1

2
‖Ku− f ‖2

L2(Ω)
+R(u,µ), (2)

where Xad is a closed, convex, nonempty admissible set which is contained in the solution

space X, and u is the solution that we want to reconstruct or recover. Some examples of the

operator K for inverse problems in imaging science are the identity operator (image denoising

problem) [6], convolution operator (image deblurring problem) [37, 38], and the Fourier or

wavelet transforms [39]. Therefore, in (2), the �rst term prevents the forward simulation from

departing ‘too far’ away from f, thus it helps maintain the �delity to f. In the absence of the

second term (R(u,µ)), (2) may be ill-posed [40]. The regularizer R(u,µ) incorporates prior
knowledge of the sample (like smoothness, sparsity, etc), where µ balances the data mis�t and
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the penalty enforced by the regularizer. Various choices of R(u,µ) have been proposed in the

literature. In this work, we focus on the tomographic reconstruction problem, regularized with

the fractional Laplacian, and compare it against the total variation regularization.

2.1. Total variation regularization

The penalty term for total variation (TV) regularization is given by

R(u,µ) = λTV(u), (3)

where µ = λ is a scalar. Here, TV(u) denotes the total variation semi-norm on Ω and X =

BV(Ω) ∩ L2(Ω), where BV(Ω) denotes the set of functions of bounded variations [41]. For-

mally speaking, TV(u) :=
∫

Ω|∇u| and as a result the corresponding Euler–Lagrange equation
for (2) is: �nd u ∈ Xad ⊂ X such that

〈

− div

( ∇u
|∇u|

)

+ K∗(Ku− f ), û− u

〉

X′,X
> 0, ∀ û ∈ Xad (4)

i.e., a nonlinear and possibly degenerate (due to 1/|∇u|) variational equation which is chal-

lenging to solve. We remark that X′ is the dual of X and K∗ is the adjoint of K. Designing

solvers for 4 is still an active area of research [42]. The success of TV(u) can be attributed to

the fact that it prefers to �t shorter curves over the longer ones, thus avoids �tting noise and

enforces sparsity. Additionally, it enforces much weaker regularity than the H1-regularization,

i.e., when R(u,µ) = λ
2

∫

Ω
|∇u|2, with µ = λ, and as a result it is possible to capture desirable

sharp transitions in the reconstruction [6].

2.2. Fractional Laplacian regularization

The fractional Laplacian as a regularization for (2) is given by,

R(u,µ) =
1

2
‖
√
λ(−∆)

s
2 u‖2

L2(Ω)
, (5)

where µ = (λ, s) is a vector. Moreover, with 0 < s < 1, and (−∆)s denoting the fractional

power of the classical Laplacian de�ned, for instance, in a spectral sense [19, 25]. We remark

that such a regularization enforces a reduced smoothness than H1-regularization. The extent

of the smoothness is dictated by the fractional power ‘s’. The key advantage of using this

regularization is that the resulting Euler–Lagrange equation for (5) is: �nd u ∈ Xad

〈λ (−∆)su+ K∗(Ku− f ), û− u〉 > 0, ∀ û ∈ Xad (6)

i.e., a variational equation with a linear operator. Such a problem has a unique solution in

the fractional order Sobolev space X = Hs(Ω) [43]. This regularization has been applied suc-

cessfully in image denoising [19] (with K = I, but with u ∈ X, instead of Xad, as a result (6)

becomes an equality).

2.3. Tomographic reconstruction

Tomographic reconstruction is a noninvasive imaging technique with the goal of recovering

the internal characteristic of a 3D object using a penetrating wave. It has shown revolu-

tionary impact on various �elds including physics, chemistry, biology, and astronomy. In a

tomographic scan, a beam of light (e.g., x-ray) is projected onto the object to generate a 2D

representation of the internal information along the beam path. By rotating the object, a series
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Figure 1. Geometric sketch of x-ray tomography (middle) which maps the sample (left)
from the (x, y) space to the sinogram (right) on the (τ , θ) space.

of such 2D projections are collected from different angles of view, collectively known as a

sinogram (measurement data f ), which can then be used to recover the internal characteristics

(e.g., the attenuation coef�cient) of the object [44] (see �gure 1). However, the limited data,

due to the discrete nature of the physical experiment and dosage limits, makes the reconstruc-

tion problem ill-posed, i.e., many local minima exist for the objective function which is used

to describe the discrepancy between the forward model and the measurement data. For illus-

tration purpose, we con�ne ourselves to reconstruct 2D objects. The mathematical foundation

of tomography is the Radon transform [45], for which K is de�ned as,

Ku(τ , θ) :=

∫ ∞

−∞

∫ ∞

−∞
u(x, y)δ(τ − x cos θ − y sin θ) dx dy, (7)

where u :R2 7→ R is compactly supported on a bounded domain Ω ⊂ R
2 and δ is the Dirac

mass, τ ∈ [0,∞) and θ ∈ [0, 2π) de�ne the line of the beam path in a restricted domain. In

practice, we cannot recover the object at all points in space. Instead, we discretize Ω as N× N

uniform pixels. Given Nθ number of angles and Nτ number of discrete beamlets, our goal is

to recover the piecewise constant approximation (on each pixel) u ∈ R
N2
. Correspondingly,

the discrete form of operator K is the matrix K = (ki, j)
NθNτ ,N

2

i, j=1 where the entries ki,j denote the

contribution of jth pixel of u to the ith component of the generated data.

2.4. Comparison of fractional Laplacian with TV for tomographic reconstruction

To show the bene�t of fractional Laplacian,we compare its performanceagainst TV regularizer

on a model problem. For now, we use a well-known, but not necessarily ef�cient, criterion to

choose λ and a �xed fractional exponent ‘s’ for this preliminary comparison. The rigorous

computation of optimal (λ, s) will be part of a forthcoming discussion.

We choose our test problem as the tomographic reconstruction. First we synthetically gen-

erate the tomographic measurements of the sample u by taking its discrete Radon transform,

which gives us the data f. The sample u and its corresponding sinogram f are illustrated in

�gure 1. To get the noisy data, we add 0.1% Gaussian noise to f. More details on tomographic

reconstruction is provided in section 4. Next we show the reconstructions based on the two
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Figure 2. Tomographic reconstructions based on the total variation regularization (row
1) and fractional Laplacian (with s = 0.4, row 2) for data without noise (left) and with
0.1% noise (right). The fractional Laplacian outperforms the total variation regulariza-
tion in recovering �ner features as well as in retaining high intensity regions, specially
when the data is noisy and highly under-sampled.

regularizers, namely the fractional Laplacian (5) and the total variation (3), in �gure 2. The left

panel corresponds to reconstructions based on sinogram f without noise, and the right panel

corresponds to reconstructions based on noisy f. Rows 1 and 2 pertain to total variation and

fractional Laplacian regularization, respectively.

In the absence of noise, the reconstructions based on both regularizers are comparable.How-

ever, noiseless data does not depict a realistic situation [46]. In reality, the actual experimental

data is always noisy due to the imperfections in the data acquisition process. We note that for

noisy data, particularly for the fewer projection case with Nθ = 10 angles, fractional Lapla-

cian regularization gives better reconstructions than the total variation regularization. This can

be speci�cally seen in �gure 2 (right panel, row 2) where �ner features are better recovered

e.g. the small circle at the bottom. However, to fully explore the potential of regularization

technique, the well-known challenge is to �nd the appropriate regularization strength λ to

optimally balance the trade-off between data mis�t and prior knowledge enforcement. In the

case of fractional Laplacian regularization, the exponent ‘s’ only complicates the parameter

choice further.

For the reconstructions in �gure 2, given a wide range of values for λ ∈ [1× 10−18, 10], we

�x s = 0.4 (motivated by the �rst author’s prior experience in [19]), and solve the minimization

problem (2) using an inexact truncated-Newton method for bound-constrained problems [47].

The optimal value of λ is then chosen using a combination of L-curve criterion [48] and the

lowest ℓ2-norm of the reconstruction error compared to the ground of truth. When L-curve

criterion fails, we solely rely on the lowest ℓ2-norm. In our experience, this behavior is true for

both TV and fractional Laplacian. As a result, the optimal values of λ for these tests is found

to be in the range [1× 10−10, 1]. This procedure of �nding an optimal λ is labor-intensive,

and requires access to the true solution, which is not available in practice. We remark that,

to our experience, L-curve is ef�cient (not necessarily optimal) only in the case of strongly

convex regularization which is de�nitely not the case with fractional Laplacian when ‘s’ is

also considered as a regularizationparameter (non-convexwith respect to ‘s’). L-curve criterion

requires many different trial values of λ, along with a good guess of the interval to locate the

corner of the L-curve. This requires a lot of human-intervention and �ne-tuning. Furthermore,

the regularized solution obtained by the λ predicted by L-curve sometimes fails to converge to

the true solution [49].

6
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The next section addresses the issue of �nding the optimal regularization parameters by

proposing a deep bilevel optimization neural network.

3. Parameter learning via bilevel optimization neural network

Parameter search lies at the core of optimization. In particular, we seek parameters correspond-

ing to the strength of regularization,which is a persistent challenge in the scienti�c community.

To this end, we introduce a learning based approach as adverted in section 1. We �rst state a

generic bilevel optimization problem,

min
µ∈Mad

φ(µ)

min
u∈Xad

J(u,µ) :=
1

2
‖Ku− f ‖2

L2(Ω)
+R(u,µ), (8)

whereMad is a closed convex and nonempty admissible set for µ.
In section 3.1, motivated by [9], we present a machine-learning based approach to learn the

regularization strength for a generic choice of regularizer. One of the key novelty of this paper

is to use fractional Laplacian as the regularizer. Notice that the lower level problem (2) in (8)

can be solved using the existing techniques.

3.1. Bilevel optimization neural network (BONNet)

Recently, deep residual learning has received a tremendous amount of attention in machine

learning for its immense potential to overcome the challenges faced by the traditional deep

learning architectures, such as training complexity and vanishing gradients. These are resolved

by adding skip connections, which transfer information between the layers [50]. Deep residual

learning has enabled remarkable progress in imaging science [21, 50, 51], biomedical appli-

cations [9, 52, 53], satellite imagery, remote sensing [54–56], etc. In our work, we use the

potential of deep learning to learn the regularization parameter µ which, for instance, contains

the strength λ and the fractional exponent ‘s’. We propose a dedicated deep bilevel optimiza-

tion neural network to learn the regularization parameters. Our goal is to solve (8) for which

we seek our modeling inspiration from [9], and de�ne φ(µ) as the average mean squared error

over m distinct samples, i.e.,

φ(µ) :=
1

2m

m
∑

i=1

‖u(i)(µ)− u
(i)
true‖2L2(Ω)

,

where u(µ) solves the lower level problem in (8), and corresponds to the sample characteristic

that we wish to recover or reconstruct. Moreover, utrue, as the name suggests, is the known true

solution.

We emphasize a few novelties of this work: �rst, our proposed network works directly on

the data space, as opposed to the image space as a post-processing step as in [21, 22]. Second, it

generalizes to any bounded linear operatorK (the forwardmap;which de�nes the physics of the

underlying system) and anyR(u,µ) (the regularization term;which allows us to incorporate the

domain-speci�c knowledge of the solution). Third, we propose the use of fractional Laplacian

as a regularizer with tunable regularity/smoothness.We also show how to integrate this choice

of regularization into the BONNet architecture.We remark that fractional Laplacian introduces

nonlocality in BONNet, which is challenging from both analytical and computational point of

view.

7



Inverse Problems 36 (2020) 064001 H Antil et al

We �rst de�ne the notion of a generalized regularizer and the projection map that we will

be using to de�ne the BONNet architecture.

• Generalized regularizer. Let u(µ) be the solution of the inner problem in (8) which

depends on µ. Notice that the inner problem in (8) is same as (2). Let T := T(µ, u(µ)) be
the action of some linear or nonlinear operator acting on u(µ), and σ := σ(T) be a function.
Then, we de�ne a generalized regularizer as,

R(u,µ) :=R(σ(T)) =
1

2
‖σ(T(µ, u(µ)))‖2

L2(Ω)
. (9)

Then, for m distinct samples, we can write our inner minimization problem (2) with a

generalized regularizer as an average over m samples, and µ ∈ Mad,

min
u∈Xad

J(u,µ) :=
1

2m

m
∑

i=1

[

‖Ku(i) − f (i)‖2
L2(Ω)

+ ‖σ‖2
L2(Ω)

]

. (10)

To solve this inverse problem, we will employ derivative based methods such as pro-

jected gradient descent. The directional derivative of J in a direction h in (10) w.r.t. u

in its variational form is; for each sample, i = 1, . . . ,m,

DJ(u(i),µ)[h] =
1

m

[

(K∗(Ku(i) − f (i)), h)L2(Ω)

+
((

∂u(i)T
)∗
(∂Tσ)σ, h

)

L2(Ω)

]

. (11)

• Solver: projected gradient descent method The choices of Xad and Mad are problem

dependent, for example, for tomographic reconstruction model, we let Xad := {u ∈
X|u > 0}. Moreover, we set Mad :=Λad for total variation and Mad :=Λad × Sad where

Λad := {λ ∈ R |λ > ǫ1 > 0} and Sad := {s ∈ R | 0 < ǫ2 6 s 6 1− ǫ2} for the fractional

Laplacian. See section 4.1.2 for more details on this application. In order to satisfy these

constraints, we use the projected gradient descent method with line search [57] to solve

our inner and outer minimization problems in (8). Then, the projected gradient descent

scheme for solving (10), for a �xed µ, n iterations (depth of the network), α as the line

search parameter (i.e. the learning rate), u0 as the initial guess, for the network layers

(optimization iteration) j = 1, . . . , n, is given by

u
(i)
j = PXad

(

u
(i)
j−1 − α∇

u
(i)
j−1

J(u
(i)
j−1,µ)

)

. (12)

where PXad(·) denotes the projection on the admissible set Xad, see section 4.1.2 for more

details on the tomographic reconstruction application. Note that, (12) is also known as the

forward propagation.We are using∇ to denote the gradient andD to denote the directional

derivative (cf (11)). Now substitute the gradient from (11) in (12) to arrive at,

u
(i)
j = PXad

(

u
(i)
j−1 −

α

m

[

K∗(Ku(i)j−1 − f (i))+ (∂
u
(i)
j−1

T)∗(∂Tσ)σ

])

. (13)

To compute the learning rate α, we use line search for projected gradient descent as

described in [57, p 91].

8
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Putting it all together, we now describe our proposed BONNet architecture. Suppose we

have m distinct samples, and n layers in our network. Let u(i)true and f
(i) be the known true solu-

tion and its corresponding experimental data for the ith sample, with i = 1, . . . ,m. Then, we
formulate our bilevel supervised learning problem as; for j = 1, . . . , n,

min
µ∈Mad

φ(µ) =
1

2m

m
∑

i=1

‖u(i)n (µ)− u
(i)
true‖2L2(Ω)

s.t. u
(i)
j = PXad

(

u
(i)
j−1 −

α

m
[K∗(Ku(i)j−1 − f (i))+ (∂

u
(i)
j−1

T)∗(∂Tσ)σ]

)

.

(14)

Remark 3.1 (Relation to existing neural networks). Notice the resemblance between the

inner level problem in (14) and a residual neural network [50, 58], see also for other related

works [59–61]. Indeed, after rewriting we obtain that

u
(i)
j = PXad

(

Lu(i)j−1 + b− α

m
(∂

u
(i)
j−1

T)∗(∂Tσ)σ

)

where L :=
(

I − α
m
K∗K

)

, b := α
m
K∗ f (i). The �rst two terms Lu(i)j−1 and b are available in a typ-

ical neural network. The last term − α
m
(∂

u
(i)
j−1

T)∗(∂Tσ), which is not always af�ne in u(i)j−1, can

be thought as an action of an activation function.We further emphasize that the projection PXad
is another ReLU type activation function.

To solve the outer level problem for µ ∈ Mad we again use the projected gradient descent

method, as described above, with learning rate β and q iterations,

µl+1 = PMad

(

µl − β∇µlφ(µl)
)

, l = 0, . . . , q− 1, (15)

where PMad
(·) is the projection onto the admissible set. It then remains to evaluate ∇µlφ(µl).

For the remainder of the discussion, we shall assume that u(i)n is suf�ciently smoothwith respect

to µ. After applying the chain rule, we obtain that

∇µlφ(µl) =
1

m

m
∑

i=1

∫

Ω

(u(i)n − u
(i)
true)

du(i)n
dµ

∣

∣

∣

∣

µ=µl

dΩ. (16)

As noted earlier, the most challenging part of this network is the computation of sensitivity

of u w.r.t. µ, because at each network layer, u depends on the previous iterate, as well as µ,

as can be seen in the lower level problem in (14). We evaluate du
(i)
n

dµ

∣

∣

∣

µ=µl
in (16) by implicit

differentiation. This results in an iterative system of equations that we need to solve. For each

sample index ‘i’, it is explicitly derived as follows, for j = 1, . . . , n

du j

dµ

∣

∣

∣

∣

µ=µl

=
∂u j
∂u j−1

· du j−1

dµ

∣

∣

∣

∣

µ=µl

+
∂u j
∂µ

· dµ
dµ

∣

∣

∣

∣

µ=µl

, (17)

where,

9
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∂u j
∂u j−1

= I − α

m

[

K∗K +
∂

∂u j−1

(

∂T

∂u j−1

)∗(
∂σ

∂T

)∗
σ+

(

∂T

∂u j−1

)∗
∂

∂u j−1

(

∂σ

∂T

)∗
σ

+

(

∂T

∂u j−1

)∗(
∂σ

∂T

)∗ (
∂σ

∂T
· ∂T

∂u j−1

)]

, (18)

and,

∂u j
∂µ

= −α

m

[(

∂

∂µ

(

∂T

∂u j−1

)∗)(

∂σ

∂T

)∗
σ+

(

∂T

∂u j−1

)∗(
∂

∂µ

(

∂σ

∂T

)∗)

· σ

+

(

∂T

∂u j−1

)∗(
∂σ

∂T

)∗
· ∂σ
∂T

∂T

∂µ

]

. (19)

Substituting (18) and (19) in (17) yields the sensitivity of u w.r.t. µ. Now that we have the key

architecture of the deep BONNet, we divide our network into a training phase and a testing

phase, as is common in a standard machine learning framework. During the training phase, we

solve the bilevel optimization problem (14) to learn the regularization parameters, and during

the testing phase we only solve the inner problem in (14) using the regularization parameters

learned from the training phase. The training phase can be carried out of�ine (i.e. in advance),

and testing phase can be carried out online (i.e. as the experimental data becomes available).

3.1.1. General framework of BONNet. We summarize the training and testing phases of our

deep BONNet architecture as follows:

• TrainingPhase (algorithm 1). In this phase, we pass inm training samples
{

u
(i)
true, f

(i)
}m

i=1

to learn the optimal µ which we denote by µ∗. The depth of the deep BONNet at the

training phase is ‘q sets of n layers’. This phase can be carried out of�ine.

• TestingPhase (algorithm 2). In this phase, we use the µ∗ learned from the training phase

and testing data
{

f
(i)
test

}mtest

i=1
in algorithm 2. The depth of the network at the testing phase is

ntest layers. This phase can be carried out online, once the experimental data ftest becomes

available.

Remark 3.2 (Fixed vs variable depth of BONNet). We remark that instead of specifying

the number of layers when solving (15) or (13), one could also, in addition, specify a stopping

criterion appropriate for the solver being used, which is what we have done in our numerical

examples. This is more in the spirit of solving an optimization problem which converges to a

solution. The bene�t of doing so is to prevent unnecessary computations, if the solver stopping

criterion is reached earlier. This implies that the layers of the deep BONNet, in this case, will

be variable. In our numerical experiments, we have used the stopping criterion for projected

gradient descent method as mentioned in [57, p 91] for both µ and u. Also note that for (13), the

number of layers in the testing phase (ntest) does not have to be equal to the number of layers in

the training phase (n). In fact, n << ntest prevents the network from over�tting of parameters

to the training data, and helps the model generalize to unseen data [62]. Furthermore, recon-

struction at the testing phase can be progressively improved for structural �delity, if needed,

by using a larger ntest (or a stricter stopping criterion). This allows for a trade-off between the

quality of reconstruction and computational time.

3.1.2. BONNet framework for fractional Laplacian and total variation regularization. In the

general framework of our proposed deep BONNet, for any bounded linear operator K, any

choice of regularizer can be incorporated, as long as it is cast into the generalized regularizer

10
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Algorithm 1. Training Phase of BONNet.

Input:
{

u
(i)
true, f

(i)
}m

i=1
, m training samples

Output: µ∗

1: Initialize u0,
du0
dµ and µ0

2: for for l = 0 to q− 1 do

3: for for j = 1 to n do

4: Compute u(i) and
du

(i)
n

dµ for all i = 1, . . . ,m:

u
(i)
j = PXad

(

u
(i)
j−1 −

α

m

[

K∗(Ku(i)j−1 − f (i))+ (∂
u
(i)
j−1

T)∗(∂Tσ)σ

])

.

{Compute α using line search as discussed in section 3.1}

du
(i)
j

dµ

∣

∣

∣

∣

∣

µ=µl

=
∂u(i)j

∂u(i)j−1

·
du

(i)
j−1

dµ

∣

∣

∣

∣

∣

µ=µl

+
∂u(i)j
∂µ

· dµ
dµ

∣

∣

∣

∣

∣

µ=µl
{See (18), (19) for explicit expressions}

5: end for

6: Compute the gradient of φ(µ):

∇µlφ(µl) =
1

m

m
∑

i=1

∫

Ω

(u(i)n − u
(i)
true)

du(i)n
dµ

∣

∣

∣

∣

µ=µl

dΩ,

7: Update µ:
µl+1 = PMad

(

µl − β∇µlφ(µl)
)

.
{Compute β using line search as discussed in section 3.1}

8: end for

framework (9). In section 2, we have proposed the use of fractional Laplacian as a regularizer,

and have compared it with total variation regularization. We now show how to incorporate

these regularizers into the deep BONNet, for a general K:

(a) FractionalLaplacian regularization.Recall the fractional Laplacian regularization from

(5),

R(u,µ) =
1

2
‖
√
λ(−∆)

s
2 u‖2

L2(Ω)
,

where µ = (λ, s) and s ∈ (0, 1). Then, to de�ne the corresponding generalized regular-

izer (9), let T(µ, u(µ)) :=
√
λ(−∆)

s
2 u, and the activation function σ(T) :=T. We omit the

superscript ‘i’ to improve readability. Then, after some simpli�cations, (14), (18), and (19)

become, for j = 1, . . . , n,

u j = PXad

(

u j−1 −
α

m

[

K∗(Ku j−1 − f )+ λ(−∆)su j−1

]

)

,

∂u j
∂u j−1

= I − α

m
K∗K − αλ

m
(−∆)s,

and

∂u j
∂λ

= −α

m
(−∆)su j−1, and

∂u j
∂s

= −αλ

m

∂

∂s
((−∆)su j−1) (20)

which together give us the sensitivity of u w.r.t. µ in (17). Notice that the second equation

in (20) requires the sensitivity of fractional Laplacian (−∆)s with respect to ‘s’. This is

11
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Algorithm 2. Testing Phase of BONNet.

Input: µ∗,
{

f
(i)
test

}mtest

i=1
, mtest testing samples

Output: u

1: Initialize u0
2: for for j = 1 to ntest do

3: Compute u for all i = 1, . . . ,mtest:

u
(i)
j = PXad

(

u
(i)
j−1 −

α

m

[

K∗(Ku(i)j−1 − f
(i)
test)+ (∂

u
(i)
j−1

T)∗(∂Tσ)σ

])

.

{Compute α using line search as discussed in 3.1}

4: end for

a highly delicate object to handle. We shall reserve further details on this topic until the

next section.

(b) Total variation regularization. Recall the total variation regularization

R(u,µ) = λTVξ(u),

where µ = λ, and we are using the ‘regularized’ total variation semi-norm,

TVξ(u) =

∫

Ω

√

|∇u|2
ℓ2(Ω)

+ ξ2 ∂Ω. (21)

with 0 < ξ ≪ 1. We will omit the subscript ξ from TVξ for brevity. Then, to de�ne the

corresponding generalized regularizer (9), let T(µ, u(µ)) := 2|Ω|−1λTV(u), and the activa-
tion function σ(T) :=

√
T . Then, after some simpli�cations, (14), (18), and (19) become,

for j = 1, . . . , n,

u j = PXad



u j−1 −
α

m



K∗(Ku j−1 − f ) + λ



−div





∇u j−1
√

|∇u j−1|2ℓ2(Ω)
+ ξ2















 ,

∂u j
∂u j−1

= I − α

m
K∗K +

αλ

2m
div





∂

∂u j−1





∇u j−1
√

|∇u j−1|2ℓ2(Ω)
+ ξ2









= I − α

m
K∗K +

αλ

2m
div





∇
√

|∇u j−1|2ℓ2(Ω)
+ ξ2





+
αλ

2m
div



∇u j−1

∂

∂u j−1





1
√

|∇u j−1|2ℓ2(Ω)
+ ξ2







 , (22)

and

∂u j
∂λ

= − α

2m



−div





∇u j−1
√

|∇u j−1|2ℓ2(Ω)
+ ξ2









∗

,

which together give us the sensitivity of u w.r.t. µ in (17). Again, we have omitted the

superscript ‘i’ to improve readability.
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4. Numerical experiments of tomographic reconstruction

In this section, we present several numerical experiments where we apply our proposed BON-

Net to a tomographic reconstruction problem.We have introduced tomographic reconstruction

in section 2.3. We demonstrate the results of BONNet with two regularizers, namely, the total

variation and the proposed fractional Laplacian.

All the computations are carried out using MATLAB R2015b on a Laptop with Intel Core

i7-8550U Processor, with NVIDIA GeForce MX150 with 2 GB RAM. In view of remark 3.2,

we run the proposed algorithm until a desired tolerance (tol) is met. At the testing phase we

set tol = 1× 10−5 and at the training phase we set tol = 1× 10−3. Notice that the former is

stricter than latter to avoid over�tting.

For all the total variation experiments we set the regularization parameter ξ in (21) as ξ =

1× 10−5. In our numerical examples, we have noticed that the last term in (22) and the factor√
(·) in the second last term does not play a signi�cant role.

The remainder of the section is organized as follows. First in section 4.1 we discuss the

implementation details of fractional Laplacian and the admissible sets Xad and Mad. This is

followed by two experiments in section 4.2.

4.1. Preliminaries

Before we discuss the actual results, we state some preliminary material. As mentioned in the

paragraph following (7), we discretize Ω as N× N uniform pixels. Then given Nθ number of

angles and Nτ number of discrete beamlets, our goal is to recover u ∈ R
N2
. We also recall that

the discrete form of operator K is the matrix K = (ki, j)
NθNτ ,N

2

i, j=1 . All the integrals are computed

using uniform quadrature and the differential operators are discretized using �nite differences.

We shall discuss the approximation of fractional Laplacian next.

4.1.1. Numerical approximation of fractional Laplacian. In order to approximate the fractional

Laplacian, we �rst discretize the Laplacian (−∆) on a uniform stencil. We denote the resulting

discrete matrix by A. If the eigen-decomposition of A is

A = VDV−1,

where D = (di, j)
N2,N2

i, j=1 with di,j = 0 if i 6= j, and di,i = ζ i denotes the eigenvalues with columns

of V containing the corresponding eigenvectors. Then the fractional power of A is given by,

As = VG(s)V−1,

whereG(s) = (gi, j(s))
N2,N2

i, j=1 is the diagonal matrix with gi,j(s) = 0 if i 6= j and gi,i(s) = ζsi . From
(20) we also recall that we need to approximate the variation of As with respect to ‘s’. A

straightforward calculation gives

d

ds
As = VH(s)V−1

whereH(s) = (hi, j(s))
N2,N2

i, j=1 is the diagonal matrix with hi,j(s) = 0 if i 6= j and hi,i(s) = ζsi ln(ζi).
We remark that the scalability of numerical approximations of the fractional Laplacian can

be handled using the approaches described in [63] and the references therein.

4.1.2. Admissible sets and projection. For tomographic reconstruction we let Xad := {u ∈
X|u > 0}. Moreover, we set Mad :=Λad for total variation and Mad :=Λad × Sad where

13
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Λad := {λ ∈ R |λ > ǫ1 > 0} and Sad := {s ∈ R | 0 < ǫ2 6 s 6 1− ǫ2}. We let ǫ1 = ǫ2 =
10−15.

Furthermore, the projection in (13) onto the admissible set Xad is given by, for z ∈ X,

PXad(z) := max {0, z} =

{

z if z > 0,

0 if z < 0.
(23)

Formally, the ‘derivative’ of this map is given by

d

dt

(

PXad(z)
)

:=

{

dz

dt
if z > 0,

0 if z < 0.

For a rigorous de�nition of the generalized derivative of the max function, see [64]. Similar

projection formulas are applicable for projection onto the set Mad.

4.1.3. Major computational costs. In algorithm 1, two projected gradient descent schemes

are being used to solve the outer and the inner level optimization problems. For each outer

iteration, we solve the inner optimization problem, until convergence, using the projected gra-

dient descent scheme. The convergence rate for the projected gradient descent method is well-

known, see [57]. We elaborate on step 4 of the algorithm. The two expensive components to

compute u(i)j are: (i) evaluation ofK∗(Ku(i)j−1 − f (i)), which at the discrete level requires 2 matrix

vector multiplications and 1 subtraction; (ii) Evaluation of (∂
u
(i)
j−1

T)∗(∂Tσ)σ. Recall that for

fractional Laplacian regularization, T(µ, u(µ)) :=
√
λ(−∆)

s
2 u and σ(T) = T. Once A

s
2 (simi-

larly As) has been pre-computed (see section 4.1.1), the major computational cost associated

with evaluation of (∂
u
(i)
j−1

T)∗(∂Tσ)σ is one matrix vector multiplication Asu.

The remainder of the cost in step 4 is to evaluate the derivative of u
(i)
j with respect to µ. This

can be done in an iterative fashion as described in the algorithm.

4.2. Experiments

We begin by generating the synthetic data.We create 30 distinct 64× 64 samples (i.e.N = 64),

which are variations of the Shepp–Logan Phantom (see �gure 3 for two representative sam-

ples).We use a conventionof choosingNτ >
√
2N beamlets. This choice ensures themaximum

length of the 2D sample (i.e. its diagonal) is fully covered by the beamlets. Thus, for our exper-

iments, we used Nτ = 93. Then, for a given Nθ we simulate the corresponding sinogram f

based on standard discrete Radon transform [65]. Next we add 0.1% Gaussian noise to each

sinogram, respectively. This gives us our synthetic data, which we divide into m = 20 training

samples and mtest = 10 testing samples.

We remark that in tomography, the number of projection angles, Nθ, has a signi�cance,

since it determines the amount of x-ray the sample is exposed to. We emphasize that the most

challenging, yet common, cases in tomographic reconstruction are the ones with smaller Nθ,

due to the limits on x-ray exposure. We conduct numerical experiments for tomographic scans

obtained for various Nθ. For each choice, the selected number of angles are uniformly dis-

tributed in the range [0, 180]. Note that, for each choice of Nθ, a separate set of projection

data is generated (for a batch of 30 samples), on which the learning and reconstructions are

performed using our deep BONNet as discussed in algorithms 1 and 2.

We have undertaken two sets of experiments. In the �rst experiment, we �x s = 0.4 and

learn λ. In the second experiment, we learn µ = (λ, s).
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Figure 3. Representative samples of Phantom (utrue) used (left) to generate the synthetic
data (noisy sinogram f ) (right) for training (row 1) and testing (row 2).

4.2.1. Results of experiment I: learning λ, fixed s = 0.4. We now discuss the results of our

experiments. In �gure 4, we compare the reconstructions obtained from BONNet with the

true solution shown in �gure 3. The reconstructions are based on ‘no regularization’, total

variation regularization, and the fractional Laplacian regularization for data with 0.1% noise.

The columns correspond to the number of projections angles used. We remark again that

each choice of Nθ for a batch of training and testing data, corresponds to a distinct separate

problem that we solve, as the dimensionality of K depends on Nθ. The left panel corresponds

to the reconstruction of the training data at the nth iterate. Recall that at the training phase,

{(u(i)true, f (i)train)}m=20
i=1 are passed to the deep BONNet algorithm 1. The λ values mentioned under

each reconstruction are the corresponding optimal λ∗
none,λ

∗
TV, and λ∗

fracLap that we learn dur-

ing the training stage. Notice that λ∗
none = 0 corresponds to ‘no regularization’. The right

panel corresponds to the reconstructions at the ntestth layer of the testing phase. Recall that

{(λ∗, f (i)test)}mtest=10
i=1 are passed to the deep BONNet at this stage in algorithm 2.

From the reconstructions in �gure 4, we observe that for the tomographic reconstruction

problem, �rst of all, regularization is improving the quality of reconstructions. In the absence

of regularization, the high intensity regions are preserved, but we lose information from regions

of low intensity. On the other hand, TV and fractional Laplacian regularizations preserve the

sample characteristics in the lower intensity regions of the sample. Fractional Laplacian gives

reconstructionswhich are either better, or comparable to TV regularization. In addition, it does

better at smoothing out the noise, and also in regaining comparatively more information in
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Figure 4. Comparison of reconstructions based on various regularizers (rows) and var-
ious number of tomographic projection angles (columns) for data with 0.1% Gaussian
noise. The left and right panels correspond to the solution at the last layer for two of the
many distinct samples used during training and testing phases, respectively. The λ val-
ues mentioned are the optimal values obtained from the deep BONNet training, which
are then used for the reconstructions during the corresponding testing phase.

Figure 5. We compare themean-squared errors (MSE) for the solution, averaged over 20
training (respectively, 10 testing) samples [left(respectively, right)], against various num-
ber of projection angles for the tomographic reconstruction problem. The solid black,
blue and red lines corresponds to ‘no regularization’, total variation regularization, and
fractional Laplacian regularization, respectively. For each experiment, the λ∗ learned
fromBONNet at the training phase is mentioned, which is in turn used for the reconstruc-
tion during training (left) and testing (right) phases. Smaller values ofMSE correspond to
better results, and fractional Laplacian outperforms the others. Note that 0.1% Gaussian
noise was added to the data ‘f ’, and s = 0.4 for fractional Laplacian.

regions of low intensity, such as the dim circle on the lower side of the Phantom, e.g. for Nθ =

10. This is especially important when we have limited data to reconstruct from. We also recall

that the Euler–Lagrange equation corresponding to the fractional Laplacian regularization is

linear, and that of TV is nonlinear.
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Figure 6. We compare the peak signal-to-noise ratio (PSNR) for the solution, averaged
over 20 training (respectively, 10 testing) samples [left(respectively, right)], against var-
ious number of projection angles for the tomographic reconstruction problem. The solid
black, blue and red lines corresponds to ‘no regularization’, total variation regulariza-
tion, and fractional Laplacian regularization, respectively. For each experiment, the λ∗

learned from BONNet at the training phase is mentioned, which is in turn used for the
reconstruction during training (left) and testing (right) phases. Larger values of PSNR
correspond to better results, and fractional Laplacian outperforms the others. Note that
0.1% Gaussian noise was added to the data ‘f ’, and s = 0.4 for fractional Laplacian.

We also observe that for any given regularizer choice, the optimal λ∗ obtained for Nθ = 10

is similar to the one obtained for a larger Nθ. Thus, to learn the regularization strength, even

limited tomographic scan data suf�ces, and the same λ∗ could be used for reconstruction at the
testing phase for any amount of available data, which can signi�cantly save the of�ine training

time.

For the experimental cases mentioned above, we measure the quality of reconstructions

using metrics such as the mean-squared error (MSE) �gure 5, peak signal-to-noise ratio

(PSNR) �gure 6, and structural similarity index (SSIM) �gure 7, averaged over all the samples.

For MSE, smaller values correspond to better results, and for PSNR and SSIM, larger values

are better. Notice that for each metric, fractional Laplacian regularization outperforms the total

variation regularization.

We remark that the λ values that we learn via deep BONNet are similar to those obtained

by using a combination of the lowest error norm and L-curve; however, the parameter search

via BONNet is automated. The reconstructions obtained via Projected Gradient Descent are

also similar to the ones obtained earlier �gure 2 using the inexact truncated-Newton method

for bound-constrained problem [47]. We emphasize that one may use a different solver during

the testing stage once λ∗ is obtained via BONNet training.

4.2.2. Results of experiment II: learning λ and fractional exponent ‘s’. We now train BON-

Net to learn both the fractional exponent ‘s’ of the fractional Laplacian and the strength λ.
We use the BONNet architecture using fractional Laplacian discussed in section 3.1.2 and use

the same training and testing data as described in the previous example. In table 1 we show

comparisons of MSE, SSIM and PSNR for Nθ = {10, 20} projection angles, respectively, for
the reconstructions of the testing data. We compare the results with the fractional Laplacian

case discussed in section 4.2.1. In the case of Nθ = 10, we obtain (λ∗
fracLap, s

∗) = (5.04417 ×
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Figure 7. We compare the peak structural similarity (SSIM) for the solution, averaged
over 20 training (respectively, 10 testing) samples (left(respectively, right)), against var-
ious number of projection angles for the tomographic reconstruction problem. The solid
black, blue and red lines corresponds to ‘no regularization’, total variation regulariza-
tion, and fractional Laplacian regularization, respectively. For each experiment, the λ∗

learned from BONNet at the training phase is mentioned, which is in turn used for
the reconstruction during training (left) and testing (right) phases. Larger values of
SSIM correspond to better results, and fractional Laplacian outperforms the others.
Note that 0.1% Gaussian noise was added to the data ‘f ’, and s = 0.4 for fractional
Laplacian.

Table 1. Comparison of average MSE, SSIM and PSNR for tomographic reconstruc-
tions obtained via BONNet using the fractional Laplacian regularization for two distinct
number of projection angles. In experiment I, we �x s = 0.4 and learn λ∗ via BON-
Net, and in experiment II we learn the (λ∗, s∗) pair. The results shown are for the testing
dataset. Notice that the search for µ∗ = (λ∗, s∗) in experiment II is now fully automated
and the results are better or comparable to experiment I.

Data Testing

Nθ 10 20

Type Experiment I Experiment II Experiment I Experiment II

(λ, s) (9.006 78× 10−6, (5.044 17× 10−6, (1.653 30× 10−5, (8.537 17× 10−6,

0.4) 0.5413) 0.4) 0.3799)

MSE 9.8099 9.7743 8.9872 8.6961

SSIM 0.7675 0.7738 0.7888 0.7950
PSNR 34.3513 34.3831 35.1123 35.3973

10−6, 0.5413) and in the case of Nθ = 20, we obtain (λ∗
fracLap, s

∗)= (8.53717× 10−6, 0.3799).

The reconstructions of u with (λ∗
fracLap, s

∗) are visually comparable to the case of fractional

Lapalcian in �gure 4 and therefore they have been omitted. We observe that all the error met-

rics returned by BONNet are either comparable, or slightly better, than the ones obtained by

BONNet for a �xed ‘s’, discussed in section 4.2.1. The advantage now is that we no longer

need to tune the parameters manually.
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5. Discussion

In this work, we consider a general regularized regression model for inverse problems. This

model can incorporate the underlying physics (de�ned by the operator K ), in addition to the

prior knowledge of the solution in the regularization term. However, to fully explore the poten-

tial of this generalized model, an optimal choice of the type of regularizer, as well as the

regularization strength, is inevitable.

We have used fractional Laplacian as a regularizer on tomographic reconstruction problems.

Previously, this has been used in image denoising. The key bene�t of using this regularization

is that the corresponding Euler–Lagrange equation is linear, as opposed to the nonlinear and

possibly degenerate Euler–Lagrange equation for the popular total variation regularization.

To address the challenge of �nding the optimal regularization strength, we introduce a

dedicated deep BONNet architecture to learn the regularization parameters for any choice of

regularizer. We show an analogy of the regularization function to the activation function in a

standard neural network, which provides a theoretical guidance in terms of choosing an opti-

mal activation function. In addition to the regularization strength λ, BONNet can also learn

the exponent ‘s’ for the fractional Laplacian regularization.

Next, we demonstrate the bene�t of our proposed deep BONNet on the tomographic

reconstruction problem. We �rst conduct experiments to learn only λ with a �xed ‘s’. We

have observed that fractional Laplacian regularization gives comparable or better reconstruc-

tions compared to the total variation regularization. Especially for the noisy and limited data

(Nθ = 10), fractional Laplacian regularization outperforms the total variation regularization.

In contrast to the standard machine learning architectures with �xed number of layers, our net-

work favors a variable number of layers (depth) which is dictated by the convergence to the

solution of the optimization problem. Thus, the number of layers in the network can be differ-

ent for different samples and different regularizers. We also demonstrate the capability of our

proposed BONNet in terms of learning the optimum (λ∗
fracLap, s

∗) pair for the fractional Lapla-
cian regularizer, and this indicates the �exibility of our proposed network to learn non-standard

parameters.
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