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Summary

The properties of penalized sample covariance matrices depend on the choice of the penalty
function. In this paper, we introduce a class of nonsmooth penalty functions for the sample covari-
ance matrix and demonstrate how their use results in a grouping of the estimated eigenvalues.
We refer to the proposed method as lassoing eigenvalues, or the elasso.

Some key words: Cross-validation; Geodesic convexity; Marchenko–Pastur distribution; Penalization; Principal
component; Spiked covariance matrix.

1. Introduction and motivation

Eigenvalues play a central role in many multivariate statistical methods. In working with
the sample principal component roots, i.e., the eigenvalues of the sample covariance matrix, it
has long been recognized that the larger roots tend to be overestimated and the smaller roots
tend to be underestimated. Consequently, numerous methods have been proposed for shrinking
eigenvalues together, including bias-correction (Anderson, 1965), decision-theoretic (Stein, 1975;
Haff, 1991), Bayesian (Haff, 1980; Yang & Berger, 1994) and marginal-likelihood (Muirhead,
1982) approaches.

The aim of this paper is to study penalization methods for shrinking eigenvalues towards each
other based on nonsmooth penalties. The rationale for using a nonsmooth penalty function is that
the resulting penalization method not only can shrink the eigenvalues towards each other, but
also can partition the eigenvalues into subgroups of equal values, i.e., the eigenvalues are lassoed
together.

Partitioning the principal component roots into distinct groups can be viewed as a type of model
selection method, with each of the 2q−1 possible partitions representing a different model. Here q
denotes the dimension of the data. Models for which the p smallest eigenvalues, p < q, are taken
to be equal are commonly referred to as sub-spherical models, factor models or reduced-rank
covariance models (Anderson, 2003; Davis et al., 2014). A more general case in which subsets of
eigenvalues can be equal is the well-studied spiked covariance model (Johnstone, 2001; Baik &
Silverstein, 2006; Paul, 2007; Mestre, 2008; Bai & Yao, 2012). In general, taking subsets of the
eigenvalues to be equal can yield covariance models with considerably fewer parameters than in
the unrestricted covariance case. An obvious example is the case in which all the eigenvalues are
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398 D. E. Tyler AND M. Yi

taken to be equal, which corresponds to the covariance being proportional to the identity matrix.
In this case, the q(q + 1)/2 distinct elements of a covariance matrix of order q are reduced to one
parameter.

Rather than consider all possible 2q−1 partitions of the eigenvalues, our proposed penalized
method reduces the set of models to q hierarchical models, with the first model being the case in
which all eigenvalues are distinct, and the last model being the case in which all eigenvalues are
equal. In the fixed-q setting, we show that the correct partition will almost surely be one of these
q hierarchical models as the sample size n goes to infinity. In the setting where q/n → c, we
show that the model consistency property holds for spiked covariance models having r distinct
roots, where r is fixed, and with the remaining q − r roots being equal.

2. Penalized likelihood estimates of the covariance matrix

2.1. Preliminaries

Let X = {x1, . . . , xn} be a q-dimensional sample of size n, with x̄ representing its sample
mean and Sn = n−1 ∑n

i=1(xi − x̄)(xi − x̄)T its sample covariance matrix. When Sn is nonsingular,
which occurs with probability 1 for n > q under random sampling from a continuous multivariate
distribution, (x̄, Sn) uniquely minimizes

l(μ, �; X ) = n log{det(�)} +
n∑

i=1

(xi − μ)T�−1(xi − μ) (1)

over all μ ∈ R
q and � > 0, i.e., the class of positive-definite symmetric matrices of order q. The

function l(μ, �; X ) corresponds, up to an additive constant, to two times the negative loglikeli-
hood function under random sampling from a multivariate normal distribution. For singular Sn,
which always occurs for n � q, the function l(μ, �; X ) is not bounded from below.

Even when n > q, the sample covariance matrix is not very stable for small or even moderate
values of n. Consequently, penalized sample covariance matrices have been introduced (Huang
et al., 2006; Warton, 2008). Since penalizing the covariance matrix does not affect the estimate
for μ, we consider the loss function

l(�; Sn) = n−1l(x̄, �; X ) = tr(�−1Sn) + log{det(�)}, (2)

which is uniquely minimized over � > 0 at Sn when Sn > 0. A penalized sample covariance
matrix, say �̂η, is then defined as a minimizer over � > 0 of the penalized loss function

L(�; Sn, η) = l(�; Sn) + η �(�). (3)

Here �(�), defined on � > 0, denotes a nonnegative penalty function, and η � 0 is a tuning
constant. Since l(�; Sn) is strictly convex in �−1, so is L(�; Sn, η) when the penalty function
is convex in �−1. In this case the minimizer is uniquely defined when Sn > 0, with �̂η being a
continuous function of η.

When using the penalized approach, shrinking eigenvalues towards each other without penal-
izing the scale of the covariance matrix implies the use of a scale-invariant penalty, such that
�(�) = �(γ�) for � > 0 and γ > 0. The only scale-invariant penalty which is convex in �−1

is a constant penalty. For penalties that are not convex in �−1, the uniqueness of a solution to (3)
is not immediate, nor do convex optimization methods necessarily apply.
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Lassoing eigenvalues 399

2.2. Geodesically convex penalties

A perhaps lesser known property of the negative loglikelihood function (2) is that it is strictly
geodesically convex for any Sn |= 0. This follows from a special case of Theorem 1 in Zhang et al.
(2013). The concept of geodesic convexity, or g-convexity for short, is based on viewing the set
of symmetric positive-definite matrices of order q as a Riemannian manifold with the geodesic
path from �0 > 0 to �1 > 0 given by �t = �

1/2
0 {�−1/2

0 �1�
−1/2
0 }t �

1/2
0 for 0 � t � 1; see

Bhatia (2009) or Wiesel & Zhang (2015) for more details. A function f (�) is then said to be
g-convex if and only if f (�t) � (1 − t)f (�0) + tf (�1) for 0 < t < 1, and it is strictly g-convex
if strict inequality holds for �0 |= �1. Unlike convexity in �−1, a function which is g-convex in
� is also g-convex in �−1.

Consequently, if one uses a g-convex penalty, then the penalized loss function L(�; Sn, η) is
strictly g-convex. For g-convex penalties, it has been shown that when Sn > 0, L(�; Sn, η) has a
unique minimizer �̂η > 0 which is a continuous function of η � 0. The above result also holds
for singular Sn, provided some additional conditions are placed on the penalty function; for more
details see Tyler & Yi (2019, Lemmas 2.2 and 2.3).

The Kullback–Liebler penalty �KL(�) = tr(�−1)+ log{det(�)}−q, corresponding to twice
the Kullback–Liebler distance between � and Iq under the multivariate normal, is g-convex as
well as convex in �−1. A g-convex penalty which is not convex in �−1 is the Riemannian penalty
�R(�) = ‖log �‖2

F, which corresponds to the squared Riemannian distance between � and the
identity matrix Iq. Here the norm ‖ · ‖F refers to the Frobenius norm.

Although scale-invariant penalties cannot be convex in�−1, they can be g-convex. In particular,
given any g-convex penalty �(�), a scale-invariant penalty can be constructed by applying the
penalty to the shape matrix V (�) = �/ det(�)1/q. The new penalty �s(�) ≡ �{V (�)} is
scale invariant and also g-convex (Tyler & Yi, 2019, Lemma 4.1.i). The scale-invariant version
of the Kullback–Liebler penalty is �s,KL(�) = tr(�−1) det(�)1/q − q, which is a measure
of the distance between the geometric and harmonic means of the eigenvalues of �, while the
Riemannian shape penalty is �s,R(�) = ‖log � − q−1(log det �) Iq‖2

F. Another example of
a scale-invariant g-convex penalty is the condition number of �, i.e., the ratio of its largest
eigenvalue to the smallest one.

2.3. Orthogonally invariant penalties

When considering penalties that have the effect of shrinking eigenvalues towards each other,
it is natural to focus on those that are scale invariant and attain their minimum at any � ∝ Iq, as
well as penalties that depend on � only through its eigenvalues. This last property is equivalent to
using an orthogonally invariant penalty function, i.e., one such that �(�) = �(Q�QT) for any
Q ∈ O(q), the group of orthogonal matrices of order q. Hereafter, the ordered eigenvalues of �

will be denoted by λ1 � · · · � λq > 0 and the ordered eigenvalues of Sn by d1 � · · · � dq � 0.
Also, using the spectral value decomposition, one can express Sn as PnDnPT

n with Pn ∈ O(q) and
Dn = diag{d1, . . . , dq}.

In general, establishing that a function is g-convex can be challenging. However, for orthog-
onally invariant functions, it has recently been shown that g-convexity can be characterized as
follows (Tyler & Yi, 2019, Theorem 3.1).

Lemma 1. The function �(�) is orthogonally invariant if and only if for some symmetric, i.e.,
permutation-invariant, function π : R

q → R one has �(�) = π{log(λ1), . . . , log(λq)}, where
λ1 � · · · � λq > 0 are the ordered eigenvalues of �. Furthermore, �(�) is (strictly) g-convex
if and only if the function π(y) is (strictly) convex.
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400 D. E. Tyler AND M. Yi

In addition, when using a g-convex orthogonally invariant penalty, the optimization prob-
lem (3) reduces to a convex optimization problem on the eigenvalues (Tyler & Yi, 2019;
Theorem 5.1). Specifically, the minimum of L(�; Sn, η) is attained at �̂η = Pn�̂n,ηPT

n, where
�̂n,η = diag{λ̂1, . . . , λ̂q}, with the diagonal terms corresponding to the minimizer over λ1 �
· · · � λq > 0 of the function

L(λ; d, η) =
q∑

j=1

{dj/λj + log(λj)} + η π{log(λ1), . . . , log(λq)}. (4)

For Sn |= 0 and a g-convex penalty, the function L(λ; d, η) is strictly convex in y = log λ ∈ R
q

for any η � 0. This follows from Lemma 1 since exp(−x) is strictly convex and d1 > 0. Hence,
if (4) admits a local minimum, then it corresponds to the unique global minimum. A minimum
exists if and only if L(λ; d, η) → ∞ whenever ‖log λ‖ → ∞, which holds if dq > 0, i.e., for
Sn > 0. Furthermore, since eigenvalues are continuous functions of their matrix argument, it
follows that the solution �̂n,η is a continuous function of η.

3. Nonsmooth penalty functions

The choice of the penalty term �(�) and tuning constant η determines the way in and extent
to which the eigenvalues are shrunk towards each other. In this paper, we study the following
class of nonsmooth penalty functions:

�(�; a) =
q∑

j=1

aj log(λj), a1 � · · · � aq,
q∑

j=1

ai = 0. (5)

These not only shrink the roots together, but also generate equality for various subsets of eigen-
values for a large enough tuning constant. The penalties in (5), although continuous, are not
differentiable in general since ordered eigenvalues are not differentiable functions at points of
multiple roots.

The motivation for (5) came from first considering the special case of
∑

j<k |log (λj)−log(λk)|,
which corresponds to choosing a1 = q − 1, a2 = q − 3, . . . , aq = −(q − 1). The absolute value
signs in the penalty term are not necessary, of course, since λj � λk for j < k , but are included
to help relate the penalty to the l1 penalty used in the regression lasso method. Other members
of this class of penalty functions are discussed in § 4.

The function �(�; a) is scale invariant and orthogonally invariant as well as g-convex. The
last property follows from applying the following lemma, proved in the Appendix, in conjunction
with Lemma 1.

Lemma 2. For a1 � · · · � aq, the function π(y; a) = ∑q
j=1 ajy(j) is convex and symmetric,

where y(1) � · · · � y(q) are the ordered values of y ∈ R
q. Furthermore, if

∑q
j=1 ai = 0, then

π(y; a) � 0 with equality if and only if y1 = · · · = yq.

Observe that �(�; a) = π(log λ; a). If we had simply defined π(y; a) = ∑q
j=1 aiyj, then

although this is a convex function and in particular linear, it is not symmetric and so would not
satisfy the conditions of Lemma 1. If the coefficients a1 � · · · � aq do not sum to zero, then
�(�; a) would still be orthogonally invariant and g-convex, but would not be scale invariant.
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Lassoing eigenvalues 401

Hereafter, unless stated otherwise, we focus on the case of Sn > 0. The case where Sn is
singular is discussed in Remark 1. From the discussion in § 2.3, the problem of minimizing
L(�; Sn, η) over � > 0 when using the penalty �(�; a) reduces to the problem of minimizing

L(λ; d, η) =
q∑

j=1

{dj/λj + (1 + η aj) log(λj)} (6)

subject to λ1 � · · · � λq > 0. To solve this optimization problem, first suppose that the solution
satisfies λ̂1 > · · · > λ̂q > 0, i.e., the minimum occurs at a point where all the eigenvalues are
distinct and nonzero. In this case, owing to strict convexity, the solution corresponds to the unique
critical point of (6), which is λ̂j = dj/(1 + ηaj) (j = 1, . . . q). If this solution does not satisfy
λ̂1 > · · · > λ̂q > 0, which will eventually be the case as η increases, then the true minimizer
must contain at least one multiple root.

More generally, suppose that the minimum of (6) is achieved at a point where there are r
different eigenvalues of �, say λ(1) > · · · > λ(r) > 0 with respective multiplicities m1, . . . , mr ,
so that m1 + · · · + mr = q. Let G = {G(1), . . . , G(r)} denote the corresponding partition of
{1, . . . , q}, i.e., G(k) = (m0 + · · · + mk−1 + 1, . . . , m1 + · · · + mk) with m0 = 0. Given the
assumed multiplicities, the objective function (6) becomes

LG(λ(1), . . . λ(r); d̃, η) =
r∑

k=1

{d̃k/λ(k) + (1 + η ãk) log(λ(k))}, (7)

where d̃k = {∑j∈G(k) dj}/mk and ãk = {∑j∈G(k) aj}/mk . If G is the correct partition, then (6)
achieves its minimum at the unique critical point of LG . This is given by

λ̂(k)(G) = d̃k/{1 + η ãk} (k = 1, . . . , r). (8)

Conditions on η are needed, though, for this solution to satisfy the proper ordering.

Lemma 3. For r > 1, the solution (8) satisfies the constraint λ̂(1)(G) > · · · > λ̂(r)(G) > 0 if
and only if η < η(G) = inf {η̃k(G) : k = 1, . . . r − 1}, where

η̃k(G) = d̃k − d̃k+1

ãk d̃k+1 − ãk+1d̃k

if ãk d̃k+1 > ãk+1d̃k and η̃k = ∞ otherwise. For r = 1, the solution λ̂(1)(G) = d̄ is valid for any
η < ∞.

The condition η < η(G) is a necessary but not sufficient condition for G to be the correct
partition. It is possible for more than one partition to satisfy η < η(G); in particular, this condition
is always satisfied when r = 1. It remains, then, to find the correct partition G. For a given η, the
minimizer of L(λ; d, η) must correspond to the minimizer of LG(λ(1), . . . , λ(r); d̃, η) for some G
such that η < η(G).

It is not necessary to check all 2q−1 partitions of {1, . . . , q} to find the unique minimizer
of L(λ; d, η). Rather, the unique minimizer can be found by considering only the following q
hierarchical partitions. Let Gq = {{1}, . . . , {q}}. For η < η(Gq), it readily follows that Gq is the
minimizing partition. Next, define Gq−1 to be the partition formed by joining the two eigenvalues
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Fig. 1. An example of the elasso using Marchenko–Pastur weights.

that become equal at η = η(Gq). Continue in this fashion to produce the sequence of partitions
Gq, . . . , G1, with G1 = {{1, . . . , q}}. Specifically, given Gr = {Gr(1), . . . , Gr(r)}, define

Gr−1 = {Gr(1), . . . , Gr(k
∗
r − 1), Gr(k

∗
r ) ∪ Gr(k

∗
r + 1), Gr(k

∗
r + 2), . . . , Gr(r)}, (9)

where k∗
r = arg inf {k | η̃k(Gr), k = 1, . . . , r − 1}. Using this notation, we characterize the

minimizer of L(λ; d, η) in the following theorem.

Theorem 1. Suppose d1 > · · · > dq > 0 and that k∗
r defined in (9) is unique for each

r = 2, . . . , q. Then 0 < η(Gq) < · · · < η(G1) ≡ ∞. Furthermore, for η(Gr+1) � η < η(Gr)

with η(Gq+1) ≡ 0, L(λ; d, η) � L(λ̂; d, η) where λ̂j = λ̂(k)(Gr) for j ∈ Gr(k). Consequently,
the unique minimizer of L(�; Sn; η) when �(�) = �(�; a) is �̂η = Pn�̂n,ηPT

n where �̂n,η =
diag{λ̂1, . . . , λ̂q}. Moreover, �̂η is continuous in η.

Remark 1. The conditions in Theorem 1 hold with probability 1 when sampling from a contin-
uous distribution. The conditions that d1 > · · · > dq > 0 and that k∗

r be unique are not necessary,
but are included so that the values of η(Gr) will all be distinct. An extension of this theorem,
which includes the population version of the elasso and the n � q case, is given in the Appendix.
When Sn is singular, we have existence and uniqueness of �̂η for large enough η.

When using �(�; a), we refer to the penalized method of estimating the covariance matrix as
the elasso. The elasso has a number of properties similar to the lasso for regression. The estimated
precision matrix �̂−1

η is a piecewise-linear function of η, with the q knots or kinks in the function
occurring at 0 = η(q) < · · · < η(1) < ∞, where η(r) = η(Gr+1). Hence, only the knots and the
values of λ̂1, . . . , λ̂q at the knots, together with Pn, need to be known to reconstruct the value
of �̂η for all values of η. The locations of the knots η(k) are easy to compute, and unlike with
the regression lasso, the value of λ̂ at a knot has a simple closed form; in particular it is a linear
function of the sample eigenvalues. The knots of the elasso yield a hierarchical set of q models,
Gq 
 · · · 
 G1, where Ga 
 Gb means that the sets in Gb can be formed by taking unions of sets
in Ga. In general, for η(r) � η < η(r−1), where η(0) ≡ ∞, the grouping of the eigenvalues of �̂η

consists of the r groups indicated by the partition Gr .
To illustrate the elasso, a pedagogical example is given in Fig. 1, which shows a simulated

sample of size n = 1000 from a 100-dimensional multivariate normal distribution, for which the
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Lassoing eigenvalues 403

covariance matrix has 40 eigenvalues equal to 20, 30 eigenvalues equal to 10, and 30 eigenvalues
equal to 2. The choice of the weights a1, . . . , aq used in the example is based on the Marchenko–
Pastur law. These weights are discussed in § 5; see (11). The points displayed in Fig. 1 correspond
to the knots at which two eigenvalue groups are joined. Any eigenvalues that are joined at a given
knot remain joined for all η greater than that knot, thus producing the eigenvalue tree and paths
seen in the figure. The eigenvalue tree gives 100 possible models or groupings of the eigenvalues.
In this simulation, the correct grouping of the roots, i.e., with the multiplicities 40, 30 and 30,
occurs at the third-from-last knot.

4. Choice of weights and path consistency

When using the elasso, values for the weights a1, . . . , aq and the tuning constant η need to
be chosen. The choice of weights depends partly on the application of interest. Consider the
log-condition-number penalty log(λ1/λq), which corresponds to a1 = 1, a2 = · · · = aq−1 = 0
and aq = −1. This penalty lassoes only a group of the largest eigenvalues together and/or
a group of the smallest eigenvalues together for any fixed η, as illustrated in Fig. 2(a). The
condition number has been considered by other authors in the context of constrained likelihood
problems (e.g., Wiesel, 2012; Won et al., 2013) but has not previously been studied as a penalty
term.

To obtain more general groupings of the roots, the weights aj should all be different. As η

increases, the solutions behave in a manner similar to that displayed in Fig. 1, i.e., two groups
of roots come together at each knot until all the roots become equal. Also, as stated in the
following theorem, the elasso path is then strongly consistent for fixed q, i.e., the probability of
the path eventually containing the correct model tends to 1 as n → ∞. The proof is given in the
Supplementary Material.

Theorem 2. Let x1, . . . , xn be a random sample from x, a q-dimensional distribution with
mean μo and covariance matrix �o, where the multiplicities of the eigenvalues of �o correspond
to the partition Go. For the penalty �(�; a) defined by (5), if a1 > · · · > aq, then pr(Go ∈
{Gq, . . . , G1} for large enough n) = 1, where Gj (j = q, . . . , 1) is as defined in (9).

Hence, of the 2q−1 possible models for eigenvalue multiplicities, for large n there is a high
probability that the correct model is one of the q models in the path.

The extreme sample roots are known to be more heavily biased than the less extreme roots.
Consequently, the penalty originally used to motivate the elasso,

∑
j<k |log (λj)− log(λk)|, tends

not to sufficiently penalize the extreme roots for modest sample sizes, as can be seen in Fig. 2(b).
A more promising choice of weights can be motivated as follows. The two roots joined at the
first knot in the elasso are dj∗ and dj∗+1, where j∗ corresponds to the index for which the value
of κj = (dj − dj+1)/(ajdj+1 − aj+1dj) is minimized, but not negative, over j = 1, . . . , q − 1.
When � ∝ Iq, it would be desirable for the values of κj to be nearly equal. This would hold if
aj ≈ âj = (dj − d̄)/d̄, since then κj ≈ 1 for j = 1, . . . , q. Furthermore, the knot at which all
roots are made equal in the elasso is

η(1) = sup{η∗
k : k = 1, . . . q − 1}, η∗

k = d̄k − d̄

āk d̄
, (10)

with d̄k = ∑k
j=1 dj/k and āk = ∑k

j=1 aj/k . The partition into two groups before all roots are
made equal in the elasso is given by G2 = {(1, . . . , ko), (ko + 1, . . . , q)}, where ko is the value of
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Fig. 2. (a) An example of the elasso using the log-condition-number weights; (b) the penalty
∑

j<k |log (λj)− log(λk)|
for the data used in Fig. 1.

k that maximizes η∗
k in (10). When � ∝ Iq, it would also be desirable for the values of η∗

k to be
nearly equal. This again occurs when aj ≈ âj, which gives η∗

k ≈ 1 for k = 1, . . . , q − 1.
To obtain weights which satisfy aj ≈ âj when � ∝ Iq, one could use the mean or the median of

the distribution of âj, say under spherical normality. However, this distribution is not particularly
tractable, though it can be simulated for given q and n. As shown in the next section, for the
large-q, large-n setting, the Marchenko & Pastur (1967) law can be used to generate weights that
approximate âj whenever � ∝ Iq.

5. Marchenko–Pastur weights

The Marchenko–Pastur law arises in the following way. Suppose that x1, . . . , xn is a random
sample of x ∈ R

q, where x itself has q identical and independent components with unit variance
and finite fourth moments. Let Fq denote the empirical distribution of the eigenvalues d1 � · · · �
dq of the sample covariance matrix Sn, i.e., Fq(x) = #{di � x}/q. Under the setting n → ∞
and q/n → ν, Fq(x) → FMP(x; ν) almost surely, where FMP(x; ν) is the Marchenko–Pastur
distribution function with parameter ν. For ν ∈ (0, 1], the density of the Marchenko–Pastur
distribution is fMP(x; ν) = (2πxν)−1{(c+ − x)(x − c−)}1/2 with support c− � x � c+, where
c± = (1 ± √

ν)2.
We define the Marchenko–Pastur weights used in Fig. 1 by centring the decreasing quantiles

of the Marchenko–Pastur law:

aMP,j = ξj − ξ̄ , ξj = F−1
MP{(q − j + 0.5)/q; q/n}. (11)

For âj = (dj − d̄)/d̄ and under the asymptotic setting of the Marchenko–Pastur law,

max
j=1,...,q

∣∣âj − aMP, j
∣∣ → 0 (12)

almost surely. The above statements remain true if the unit variance in the Marchenko–Pastur law
is replaced by a constant variance σ 2. As conjectured earlier, this result allows us to show that all
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the roots are made equal in the elasso at approximately η = 1 when using the Marchenko–Pastur
weights. Consequently, if the tuning parameter is chosen so that η > 1, then one obtains the
estimate �̂η = d̄ Iq almost surely whenever the true model is � ∝ Iq.

Theorem 3. For n > q, suppose that x1, . . . , xn is a random sample from x ∈ R
q, where x

itself has q identical and independent components with variance σ 2 and finite fourth moments.
Consider the knots from the elasso based on the Marchenko–Pastur weights aMP, j . For any fixed
k � 2, as n → ∞ and q/n → ν ∈ (0, 1), the last knot η(1) → 1 almost surely.

Asymptotic results on the behaviour of the elasso using the Marchenko–Pastur weights when
the covariance matrix is not proportional to the identity can also be obtained. An extension of
the Marchenko–Pastur law to a spiked covariance model, as stated in Baik & Silverstein (2006,
Theorem 1.1), is the following. Suppose that x1, . . . , xn is a random sample from x = Az, with A
nonsingular and z ∈ R

q, having q identical and independent components with unit variance and
finite fourth moments. Also, suppose that the eigenvalues of the covariance matrix AAT of x are

λ1 � · · · � λr > λr+1 = · · · = λq−s = σ 2 > λq−s+1 � · · · � λq, (13)

where λr/σ
2 > 1 + √

ν and λq−s+1/σ
2 < 1 − √

ν. As n → ∞ and q/n → ν ∈ (0, 1), with r
and s held fixed, the Marchenko–Pastur law applies to the distribution of the standardized base
roots, i.e., to dj/σ

2 for j ∈ Sb = {r + 1, . . . , q − s}. Also, the spikes

dj → λo
j ≡ λj{1 + νσ 2/(λj − σ 2)} (14)

almost surely for j 
∈ Sb. These results allow us to establish the following generalization of
Theorem 3.

Theorem 4. For n > q, suppose that x1, . . . , xn is a random sample from x = Az ∈ R
q, where

z itself has q identical and independent components with unit variance and finite fourth moments.
Assume that the eigenvalues of AAT are given by (13).

(i) If all the nonbase roots have multiplicity 1, i.e., λ1 > · · · > λr and λq−s+1 > · · · > λq,
then for any fixed k � 2, the knot η(r+s+1) → 1 almost surely as n → ∞ with q/n → ν ∈ (0, 1).
Furthermore, Gr+s+2 = {{1}, . . . , {r}, {r + 1, . . . , q − s}, {q − s + 1}, . . . , {q}}.

(ii) In general, suppose that the eigenvalues (13) consist of t + 1 distinct roots with various
multiplicities, and let Go denote the partition of {1, . . . , q} into the t + 1 subsets associated with
these multiplicities. Then there exists an integer m with t � m � r + s + 1 such that η(m) → 1
almost surely as n → ∞ with q/n → ν ∈ (0, 1). Furthermore, {r + 1, . . . , q − s} ∈ G(m+1), with
all other elements of Gm+1 being subsets of elements in Go.

Theorem 4 says that if the spiked roots are all unique, then one of the q hierarchical models in
the elasso path, specifically Gr+s+2 which forms at η(r+s+1) = η(Gr+s+2), is almost surely the
true model. When the spiked roots have multiplicities greater than 1, then the true model may
not be in the elasso path. Nevertheless, as stated in (ii), there almost surely exists a model in the
elasso path that separates the base roots from the spike roots, with two or more spike roots being
grouped together only if they correspond to the same spike. This is illustrated in Fig. 3(b), while
Fig. 3(a) illustrates Theorem 3.

Under the spiked covariance model, when using the elasso with the Marchenko–Pastur weights,
if one chooses the tuning parameter to be η = 1 + ε for small enough ε > 0, then the roots
associated with the base space are almost surely identified. The value of ε > 0 needed to
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Fig. 3. Examples of elassos using weights aMP for multivariate normal samples with q = 100 and n = 400; the
eigenvalues of the covariance matrix are (a) λ1 = · · · = λq = 1 and (b) λ1 = λ2 = 4, λ3 = 2, λ4 = · · · = λq−2 = 1

and λq−1 = λq = 0.25.

obtain these results depends on how much separation there is between the base root σ 2 and the
spikes. It is known that some separation between the base root and the spikes is needed in order
to distinguish the spike roots from the base root. In particular, the condition stated after (13),
namely λr/σ

2 > 1+√
ν and λq−s+1/σ

2 < 1−√
ν, is a necessary condition (Baik & Silverstein,

2006). The condition on the spikes needed to almost surely distinguish the spike roots from the
base root at η = 1 + ε is

λr/σ
2 > 1 + √

ν + o(ε), λq−s+1/σ
2 < 1 − √

ν − o(ε). (15)

The proofs of (15), (12), and Theorems 3 and 4 are given in the Supplementary Material.
Table 1 reports the results from a simulation study of the distribution of the last knot of the elasso

under spherical normal sampling when using the Marchenko–Pastur weights. The convergence
of the value of the last knot to 1 follows from the discussion above. Also, the asymptotic value as
n → ∞ with q fixed tends to provide a better approximation to the last knot at given q and n than
the asymptotic value under the setting n → ∞ with q/n → ν. To obtain the estimate �̂η = d̄ Iq
with high probability, whenever spherical normality holds, one could choose η to be, say, three
standard deviations above the mean of the distribution of the last knot. For q = 100 and n = 500,
this gives η ≈ 1.10. By Theorem 4, this would also result in a good chance of separating the
base root from the spikes in the spiked covariance model. However, such a choice may not be
appropriate outside the spiked covariance model, as in the example of Fig. 1. Consequently, in
the next section we consider tuning the elasso via the data-driven method of cross-validation.

6. Cross-validation and model selection

For penalized approaches, cross-validation can be applied to the unpenalized objective
function, i.e., (1) in this setting, which gives

cv(η; A) = nA log{det(�̂−A,η)} +
∑

xi∈A
(xi − x̄−A)T �̂−1

−A,η(xi − x̄−A),
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Table 1. Simulation under spherical normality for the last knot of the elasso when using
Marchenko–Pastur weights; the mean and standard deviation (in parentheses) of the distribution

of the last knot, based on 1000 simulations, are given over q and df = n − 1
q \ df q 2q 5q 10q 50q 100q 1000q

10 1.141 1.142 1.151 1.149 1.155 1.148 1.142
(0.135) (0.133) (0.132) (0.127) (0.125) (0.125) (0.124)

30 1.082 1.076 1.076 1.074 1.076 1.074 1.074
(0.073) (0.067) (0.059) (0.056) (0.053) (0.051) (0.0497)

50 1.057 1.055 1.056 1.057 1.056 1.054 1.054
(0.051) (0.044) (0.041) (0.038) (0.036) (0.036) (0.037)

100 1.038 1.036 1.034 1.034 1.033 1.035 1.034
(0.033) (0.031) (0.025) (0.023) (0.022) (0.022) (0.022)

300 1.019 1.018 1.017 1.017 1.016 1.017 1.016
(0.017) (0.014) (0.012) (0.012) (0.010) (0.011) (0.010)

500 1.013 1.012 1.012 1.012 1.012 1.012 1.012
(0.012) (0.010) (0.009) (0.008) (0.007) (0.007) (0.007)

1000 1.008 1.008 1.008 1.008 1.008 1.008 1.008
(0.007) (0.006) (0.005) (0.005) (0.004) (0.005) (0.005)

calculated for a range of η values (Stone, 1974; Huang et al., 2006). Here A denotes a subset
of the data, with x̄−A and �̂−A,η representing, respectively, the sample mean vector and the
penalized estimate of � not based on the data in A. K-fold cross-validation then seeks to minimize
K−1 ∑K

k=1 cv(η; Ak) over η � 0, where A1, . . . , AK is a random partition of the data into subsets
of equal size, plus or minus one.

Figure 4(a) shows the results of five-fold cross-validation for the data and weights used in
Fig. 1. The black curve in the middle represents the mean of the five values of cv(η; A), and the
blue curves correspond to ± one standard error of the mean of these five values. One hundred
evenly spaced values between 0 and 2.5 are used for η. The minimum value in the plot is 63 005,
which is obtained at η = 0.675. Given the partition used in the simulations, namely three distinct
roots with multiplicities 40, 30 and 30, it can be observed that the grouping of the eigenvalues in
Fig. 1 at η = 0.675 is too coarse.

In regression lasso, a relaxed lasso is often recommended (Meinshausen, 2007) in order to
obtain a simpler model. The analogy for the elasso would be to choose a larger value of η having
a cross-validation mean equal to the cross-validation plus one standard error at η = 0.675, which
in this case corresponds to η = 1.075. Again, this does not yield a refined enough partition. The
reason why cross-validation does not do well at selecting the correct partition of the roots is that
the correct partition does not arise until η = 1.95. At this point, although the partition is correct,
the roots are overly shrunk together and so the estimates of the eigenvalues result in a poor fit.

A proposed modification is demonstrated in Fig. 4(b). For each of the 100 partitions or models in
the original elasso path, five-fold cross-validation is applied to an elasso under the corresponding
model. The elasso for a given partition Gr = {G(1), . . . , G(r)}, as defined in (9), is obtained by
minimizing (7) over λ(1) > · · · > λ(r); details are given in the Supplementary Material. The graph
plots the minimum value of the cross-validation against the corresponding model knot. Here, the
smallest model cross-validation error occurs at the correct partitioning of the eigenvalues, i.e., at
the eigenvalue multiplicities of 40, 30 and 30.

When using an elasso for a given partition in the original elasso path, the resulting path is
identical to the original path once the given partition is reached. Hence, no partitions are obtained
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Fig. 4. Results of (a) five-fold cross-validation and (b) model cross-validation for the simulated data used in Fig. 1; each
knot corresponds to a different model.

which are not in the original path. Since the second stage is not concerned with model selection,
penalties other than an elasso penalty can be used in this stage. However, the results of the
simulation study reported in the next section do not seem to be heavily dependent on the choice
of estimator used in the second stage.

7. Simulations, a data example and discussion

7.1. A simulation study

The following estimators of the covariance matrix are compared in a simulation study: S, the
sample covariance matrix; LW, the estimator of Ledoit & Wolf (2004); F, an estimator proposed
by Friedman (1989); ECV, the elasso estimator with η determined by cross-validation; EMCV,
the elasso estimator obtained via model cross-validation; ER, the elasso estimator with the Rie-
mannian shape penalty used at the model stage; and EF, the elasso estimator with Friedman’s
estimator used at the model stage.

The Marchenko–Pastur weights are used in all of the elassos, and all cross-validations are five-
fold. Simulation results for other choices of weights in the elasso are reported in the Supplementary
Material. Both the Ledoit–Wolf and the Friedman covariance estimators are of the form (1 −
β)Sn + βd̄Iq. They differ in that for the estimator proposed by Friedman (1989) the value of β

is chosen by cross-validation, while for the estimator of Ledoit & Wolf (2004) it is determined
using a consistent estimate for its optimal value; see Ledoit & Wolf (2004) for details. Friedman’s
estimator for a partition G is defined to be (1−β)�̂G +βd̄Iq, where �̂G is the maximum likelihood
estimator under the partition G, i.e., �̂G is obtained by replacing the roots in Sn with the average
of the sample roots of their corresponding set in G. The Riemannian shape penalty was discussed
at the end of § 2.2.

Samples of size n = 100 from a multivariate normal distribution of dimension q = 30 were
simulated for the five different covariance models given below. To evaluate the estimators at a
given model, in addition to the two criteria used in Huang et al. (2006), namely the Kullback–
Liebler or entropy loss kl = tr(�−1�̂) − log det(�−1�̂) − q and the quadratic loss D2 =
tr{(�−1�̂ − Iq)

2}, we also consider the Riemannian loss R = ‖log (�−1/2 �̂�−1/2)‖F. Since
all the estimators considered are scale and orthogonally equivariant, and all the loss functions
depend only on the eigenvalues of �−1�̂, it follows that the results of the simulation still hold if
any particular � is replaced by λP�PT for λ > 0 and P ∈ O(q).
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Table 2. Simulation results for Models 1–5; reported are the means, with * indicating the
minimum, and standard deviations (in parentheses) calculated over 100 simulation runs

Loss Model S LW F ECV EMCV ER EF

kl Model 1 5.314 0.027 0.019 0.010* 0.020 0.060 0.063
(0.316) (0.032) (0.021) (0.013) (0.027) (0.055) (0.052)

Model 2 5.314 34.709 35.212 2.237 0.736 0.675 0.625*
(0.316) (2.434) (2.877) (0.659) (0.267) (0.191) (0.227)

Model 3 5.314 4.254 3.376 0.441 0.317* 0.325 0.326
(0.316) (0.268) (0.268) (0.100) (0.085) (0.102) (0.101)

Model 4 5.314 10.493 4.690 4.215 3.087* 3.660 3.741
(0.316) (0.734) (0.366) (0.373) (0.296) (0.296) (0.344)

Model 5 5.314 4.128 4.214 3.936 3.438* 3.964 4.014
(0.316) (0.298) (0.360) (0.407) (0.325) (0.373) (0.330)

D2 Model 1 9.369 0.054 0.039 0.020* 0.042 0.122 0.127
(0.763) (0.066) (0.042) (0.025) (0.061) (0.117) (0.114)

Model 2 9.369 1471.508 1514.158 14.706 2.825 1.610* 2.250
(0.763) (196.518) (235.344) (6.772) (1.455) (0.580) (1.138)

Model 3 9.369 8.938 10.366 0.514* 0.703 0.747 0.746
(0.763) (0.785) (1.125) (0.094) (0.222) (0.321) (0.316)

Model 4 9.369 39.767 12.983 9.050 5.687* 6.948 9.254
(0.763) (4.166) (1.420) (1.106) (0.649) (0.741) (1.069)

Model 5 9.369 11.584 11.954 8.114 6.642* 10.399 10.982
(0.763) (1.177) (1.420) (1.235) (0.905) (1.392) (1.303)

R Model 1 3.555 0.193 0.168 0.117* 0.165 0.305 0.323
(0.133) (0.129) (0.103) (0.083) (0.115) (0.167) (0.147)

Model 2 3.555 3.698 3.709 1.569 1.037 1.131 0.972*
(0.133) (0.047) (0.057) (0.168) (0.153) (0.151) (0.141)

Model 3 3.555 3.017 2.358 1.078 0.789* 0.794 0.794
(0.133) (0.122) (0.077) (0.145) (0.110) (0.114) (0.113)

Model 4 3.555 3.974 2.920 2.954 2.613* 2.856 2.684
(0.133) (0.099) (0.108) (0.129) (0.138) (0.136) (0.130)

Model 5 3.555 2.713 2.731 2.897 2.743 2.727 2.696*
(0.133) (0.090) (0.103) (0.135) (0.125) (0.114) (0.100)

S, the sample covariance matrix; LW, the estimator of Ledoit & Wolf (2004); F, an estimator proposed by Friedman
(1989); ECV, the elasso estimator with η· determined by cross-validation; EMCV, the elasso estimator obtained via
model cross-validation; ER, the elasso estimator with the Riemannian shape penalty used at the model stage; and EF,
the elasso estimator with Friedman’s estimator used at the model stage.

Model 1: � = Iq.
Model 2: �−1 = {γij}, where γii = 1 and γij = 0.6 if i |= j.

This model has eigenvalues λ1 = · · · = λ29 = 2.25 and λ30 = 0.05435.
Model 3: � = σ 2{(1 − ρ)I + ρ1q1T

q} with σ 2 = 0.5 and ρ = 0.7.
This model has eigenvalues λ1 = 10.65 and λ2 = · · · = λ30 = 0.15.

Model 4: � = diag{λ1, · · · , λ30}, with λ1 = · · · = λ5 = 20, λ6 = · · · = λ15 = 10 and
λ16 = · · · = λ30 = 1.

Model 5: � = {σij} with σii = 1 for i = 1, . . . , q and σij = ρ|i−j| for i |= j, where ρ = 0.7.
This covariance matrix arises from an ar(1) model and its eigenvalues are all distinct.

The simulations were repeated over 100 runs, and the means and standard deviations of the
simulated losses are reported in Table 2. In general, the elasso ECV and the two-stage elassos
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Fig. 5. The elasso results, plotted on a log-log scale, for the call centre data using
the Marchenko–Pastur weights. The first vertical line represents the values of η
obtained via cross-validation, and the second vertical line corresponds to the model

obtained via model cross-validation.

EMCV, ER and EF perform better than the other estimators, with the difference being particularly
pronounced for Models 2, 3 and 4. The two-stage elasso estimators tend to perform slightly worse
than the elasso estimator for Model 1. We suspect this is due to overfitting by the two-stage elasso
estimators. Despite this overfitting, the two-stage elassos tend to result in better estimators for
the other models.

7.2. Telephone call centre data

As an application example, we consider the call centre data previously analysed by Huang et al.
(2006), among others. On each weekday in 2002, except for holidays and six days during which
the data-collection equipment was out of operation, telephone calls were recorded from 7:00 a.m.
until midnight, yielding a sample of size 239. For each of these days, the responses correspond
to the number of calls received in consecutive 10-minute periods, resulting in a 102-dimensional
response vector N . Since the number of calls tends not to be normally distributed, each data point
is transformed by x = (N + 0.25)1/2, where the operation acts on each of the elements of x and
N . The sample x1, . . . , x239 is presumed to be a set of independent observations.

Huang et al. (2006) calculated penalized covariance estimates using a penalty defined on
a modified Cholesky decomposition of the covariance matrix and tuned via five-fold cross-
validation. Their calculations are based on a training set consisting of the first n = 205 data
points; therefore, to make our analysis comparable, we also consider only the first n = 205 data
points and use five-fold cross-validation. Figure 5 shows the results obtained from the elasso
when using the Marchenko–Pastur weights.

For the Marchenko–Pastur weights, the minimum five-fold cross-validation mean is 490.2,
with a standard error of 242.3, which is attained at η = 1.1, i.e., log(η) = 0.095. For the elasso,
the model at η = 1.1 corresponds to a spiked covariance model with the 19 largest eigenvalues
having multiplicity 1 and the smallest eigenvalue having multiplicity 83. The minimum of the
five-fold model cross-validation is 371.7, and the corresponding model is a spiked covariance
model with the nine largest eigenvalues having multiplicity 1 and the smallest eigenvalue having
multiplicity 93.
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By comparison, the cross-validation mean is 5436.3 for the sample covariance matrix and
1822.0 for the Ledoit–Wolf estimator. For estimators tuned via cross-validation, the minimum
cross-validation mean is 3168.3 for the penalized estimator proposed by Huang et al. (2006),
1457.8 for the elasso estimator based on the log-condition-number penalty, 608.1 for the Rie-
mannian shape penalized estimator, 519.2 for Freidman’s estimator, and 436.05 for the elasso
estimator based on the penalty

∑
j<k |log λj − log λk |.

7.3. Further discussion

The results of our simulations and analysis of a real dataset suggest that if one uses an
elasso penalty with cross-validation, the resulting elasso covariance estimator can yield sig-
nificant improvements in performance over other covariance estimators. Based on theoretical
arguments given in § 5, as well as the simulation study presented in the Supplementary Material,
we recommend choosing the Marchenko–Pastur weights for the elasso penalty. Furthermore, we
recommend using the two-stage model elasso estimators.

Analogous to the lasso in regression, an important feature of our proposed method is that
the elasso path gives a set of q hierarchical models for the multiplicities of the eigenvalues of
the covariance matrix. This can be helpful in gaining a basic understanding of the structure of
the covariance matrix, without explicitly assuming a parsimonious model for �. As previously
noted, the model G1, which corresponds to � = σ 2Iq, contains only one parameter, as opposed
to the q(q + 1)/2 parameters in an unrestricted �. In general, the number of parameters for the
covariance model associated with a partitioning of the eigenvalues into g � q groups can be
shown to be q(q + 1)/2 − m(m − 1)/2 − (q − g), where m � q − g + 1 represents the cardinality
of the largest group. In the high-dimensional scenario of m/q → τ as q → ∞, the proportional
reduction in parameters converges to τ 2 × 100%, which is 100% for a spiked covariance model.
Once a model for the multiplicities of the eigenvalues of the covariance matrix is obtained, one
can focus on the eigenspaces associated with the groups of eigenvalues rather than on individual
eigenvectors.
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Appendix

Proofs

Proof of Lemma 2. The functions πr(y) = ∑r
j=1 y(j) are convex for r = 1, . . . , q, with πq(y) = ∑q

j=1 yj

being linear. The function π(y; a) is symmetric and can be expressed as π(y; a) = ∑q
r=1 brπr(y) where
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br = ar − ar+1 � 0 for r = 1, . . . , q − 1 and bq = aq. Each of the summands brπr(y) is convex, and
hence π(y; a) is convex. When

∑q
r=1 ar = 0, the function π(y; a) is invariant under the transformation

yj → yj + c (j = 1, . . . , q). So to show that π(y; a) is nonnegative in this case, assume without loss of
generality that y(q) = 0. This implies πr(y) � 0 and so π(y; a) � {∑q−1

r=1 rbr}y(q) = 0, with equality if and
only if y1 = · · · = yq. �

Proof of Lemma 3. The inequality λ̂k(G) > λ̂k+1(G) holds if and only if d̃k −d̃k+1 > η(ãk d̃k+1−ãk+1d̃k),
which holds if and only if η < η̂k . Hence, the inequality holds for all k = 1, . . . , r − 1 if and only if
η < η(G). �

Proof of Theorem 1. By definition (9), λ̂k(Gr−1) = λ̂k(Gr) for k < k∗
r and λ̂k(Gr−1) = λ̂k+1(Gr) for

k > k∗
r . Also, it can be shown that λ̂k∗

r (Gr−1) = γ λ̂k∗
r (Gr) + (1 − γ )λ̂k∗

r +1(Gr) for some 0 < γ < 1.
Specifically, γ = mk∗

r (1 + ηãk∗
r )/{mk∗

r (1 + ηãk∗
r ) + mk∗

r +1(1 + ηãk∗
r +1)}, where ãk and mk are defined with

respect to the partition Gr . This implies that if λ̂1(Gr) > · · · > λ̂r(Gr), then λ̂1(Gr−1) > · · · > λ̂r−1(Gr−1).
By Lemma 3, the former holds if and only if η < η(Gr), and the latter holds if and only if η < η(Gr−1).
Thus η(Gr) < η(Gr−1), where the inequality is strict since it is assumed that k∗

r is well-defined.
If 0 � η < η(Gq), it readily follows that λ̂j = λ̂j(Gq). We use finite induction to complete the proof.

Suppose that for η(Gr+2) � η < η(Gr+1) we have λ̂j = λ̂k(Gr+1) for j ∈ Gr+1(k). It then follows from the
continuity of the solution in η that for η = η(Gr+1), the solution corresponds to λ̂j = λ̂k(Gr) for j ∈ Gr(k).
This solution also holds for any η(Gr+1) � η < η(Gr), because otherwise, if Gr were not the optimizing
partition for some η in the interval, there would be a discontinuity of the solution at that value of η. �

Extensions of Theorem 1

Although the conditions in Theorem 1 requiring that the eigenvalues of Sn be distinct and that k∗
r be

unique hold with probability 1 under random sampling from a continuous multivariate distribution with
n > q, they are not necessary. For the penalty �(�; a), consider the general problem of minimizing
L(�; S̃, η) over � > 0, where S̃ > 0 is a given matrix which may not satisfy the above conditions.
Theorem 1 then requires a slight modification, namely 0 � η(Gq) � · · · � η(G2) < η(G1) = ∞; that
is, the knots of the elasso are not necessarily unique. With this modification, the statement in Theorem 1
holds.

If the eigenvalues of S̃ form p < q distinct groups, then 0 = η(Gq) = · · · = η(Gp+1) < η(Gp). For
example, if S̃ ∝ I , then 0 = η(Gq) = · · · = η(G2) < η(G1) = ∞. In general, if k∗

r is not unique, but rather
the infimum in its definition, given after (9), is obtained at t � r − 1 points, then t knots occur at the same
point, i.e., η(Gr) = · · · = η(Gr−t+1).

The above results can be used to define a model elasso associated with a given partition of the eigenvalues,
say Go with corresponding multiplicities m1, . . . , mp such that m1 + · · ·+ mp = q. In other words, consider
minimizing L(�; Sn, η) over all � > 0 with the given multiplicities of the ordered eigenvalues. The solution
to this minimization problem is the same as the solution to the problem of minimizing L(�; S̃, η) over
� > 0, where S̃ is the maximum likelihood estimate of � under Go. Here, S̃ = PnD̃PT

n where D̃ is
a diagonal matrix with elements d̃k repeated mk times, for k = 1, . . . , p. The resulting solution is then
given by �̂η = Pn�̃ηPT

n where �̃η is a diagonal matrix with elements corresponding to the solution to (7)
when r = p. The multiplicities of the elements �̃η do not necessarily correspond to the multiplicities of
the elements of D̃ for large enough η, since different groups of roots are eventually joined together as η

increases.
When the values of k∗

r , for r � p, are unique, there are p distinct knots of the model elasso, namely
0 = η(q) = · · · = η(p) < η(p−1) < · · · < η(1) < ∞. If Go corresponds to the one of the partitions generated
by an unrestricted elasso, i.e., from Gq 
 · · · 
 G1, then the partitions generated by the restricted or model
elasso are Gp 
 · · · 
 G1; that is, the partitions Gp, . . . , G1 are the same for the unrestricted and restricted
elassos.
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The elasso when Sn is singular

Suppose that Sn has rank r < q; then the form of �̂η given in Theorem 1 still corresponds to the
unique minimizer of L(�; Sn, η) whenever η > −1/αr+1, where αk = ∑q

j=k aj/(q − k + 1) < 0. For
0 � η < −1/αr+1, though, a minimizer of L(�; Sn, η) does not exist.

To justify these statements, recall that the elements of �̂n,η = diag{λ̂1, . . . , λ̂q} correspond to the
minimum of (9) over λ1 � · · · � λq > 0, which in the non-full-rank case is equivalent to minimizing

L(λ; d, η) =
r∑

j=1

{dj/λj + (1 + η aj) log(λj)} +
q∑

j=r+1

(1 + η aj) log(λj). (A1)

The second sum can be rewritten as

(q − r)(1 + η αr+1) log(λr+1) +
q∑

j=r+1

(1 + η aj) log(ρj),

where ρj = λj/λr+1 � 1 for j = r + 1, . . . , q. For η < −1/αr+1 we have (1 + η αr+1) > 0, and so
(A1) → −∞ as λr+1 → 0 with λj for j = 1, . . . , r and ρj for j = r +1, . . . , q held fixed. Hence L(�; Sn, η)

does not have a minimum over � > 0 when η < −1/αr+1.
Now consider the case where η > −1/αr+1. To show that a minimizer of L(�; Sn, η) over � > 0 exists,

it is sufficient to show that (A1) is coercive, i.e., (A1) → ∞ as λq → 0 and/or λ1 → ∞. Consider the
alternative expression for the second summand in (A1),

(q − r)(1 + η αr+1) log(λr) +
q∑

j=r+1

(q − j + 1)(1 + η αj) log(βj), (A2)

where βj = λj/λj−1 � 1, j = 2, . . . , q. Since η > −1/αr+1 and αk � αk+1, it follows that (1 + η αj) <

0, j = r + 1, . . . , q. If λq → 0, then either βj → 0 for some j = r + 1, . . . , q or λr → 0. This implies
(A2) → ∞ as λq → 0 provided λr is bounded above. Also, the first sum in (A1) is bounded below since
it can be expressed as

r∑

j=1

{dj/λj + (1 + η ar) log(λj)} +
r∑

j=1

(aj − ar) log(λj),

with ar = ∑r
j=1 aj/r � 0, where each term in the first sum is bounded from below and, by Lemma 2, the

second sum is nonnegative. Therefore, (A1) → ∞ as λq → 0 provided λr is bounded above. If λq → 0
and λr → ∞, then we also have (A1) → ∞ since

r∑

j=1

(1 + η ar) log(λj) + (q − r)(1 + η αr+1) log(λr) � q log(λr) → ∞.

It remains to consider the case λ1 → ∞ with λq being bounded away from 0. In this case, since
∑r

j=1 dj/λj �
0, it is sufficient to show

∑q
j=1(1 + η aj) log(λj) = ∑q

j=1 log(λj) + η π(log λ; a) → ∞, which readily
follows since

∑q
j=1 log(λj) → ∞ and π(log λ; a) � 0.
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