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Abstract

Complex molecular biological processes such as transcription and translation, signal trans-

duction, post-translational modification cascades, and metabolic pathways can be

described in principle by biochemical reactions that explicitly take into account the sophisti-

cated network of chemical interactions regulating cell life. The ability to deduce the possible

qualitative behaviors of such networks from a set of reactions is a central objective and an

ongoing challenge in the field of systems biology. Unfortunately, the construction of com-

plete mathematical models is often hindered by a pervasive problem: despite the wealth of

qualitative graphical knowledge about network interactions, the form of the governing non-

linearities and/or the values of kinetic constants are hard to uncover experimentally. The

kinetics can also change with environmental variations. This work addresses the following

question: given a set of reactions and without assuming a particular form for the kinetics,

what can we say about the asymptotic behavior of the network? Specifically, it introduces a

class of networks that are “structurally (mono) attractive” meaning that they are incapable of

exhibiting multiple steady states, oscillation, or chaos by virtue of their reaction graphs.

These networks are characterized by the existence of a universal energy-like function called

a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear sys-

tems is introduced, which form the extremals of a linear convex cone. The problem is then

reduced to that of finding a common Lyapunov function for this set of extremals. Based on

this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction

Networks (LEARN), is provided that constructs such functions or rules out their existence.

An extensive study of biochemical networks demonstrates that LEARN offers a new unified

framework. Basic motifs, three-body binding, and genetic networks are studied first. The

work then focuses on cellular signalling networks including various post-translational modifi-

cation cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading,

and ERK signalling. The Ribosome Flow Model is also studied.
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Author summary

A theoretical and computational framework is developed for the identification of bio-

chemical networks that are “structurally attractive”. This means that they only allow global

point attractors and they cannot exhibit any other asymptotic behavior such as multi-sta-

bility, oscillations, or chaos for any choice of the kinetics. They are characterized by the

existence of energy-like functions. A computational package is made available for usage

by a wider community. Many relevant networks in molecular biology satisfy the assump-

tions, and some are analyzed for the first time.

This is a PLOS Computational Biology Methods paper.

Introduction

Many biological systems are known for the ability to operate precisely and consistently subject

to potentially large disruptions and uncertainties [1–5]. Examples are homeostasis, understood

as the maintenance of a desired steady state (perhaps associated to an observable phenotype)

against the variability of in-vivo concentrations of biochemical species, or a consistent dynam-

ical behavior in the face of environmental variations which change the speed of reactions.

The vaguely defined term “robustness” is often used to refer to this consistency of behavior

under perturbations. The present work deals with such notions of “biological robustness”, as

well with a “robustness of analysis” notion in which conclusions can be drawn despite inaccu-

rate mathematical models.

Models of core processes in cells are typically biochemical reaction networks. This includes

binding and unbinding, production and decay of proteins, regulation of transcription and

translation, metabolic pathways, and signal transduction [6]. However, in contrast to engi-

neered chemical systems, biology poses particular challenges. On the one hand, the reactants

and the products in such interactions are frequently known, and hence the species-reaction
graph is available. On the other hand, the exact form and parameters (i.e., kinetics) that deter-

mine the speed of transformation of reactants into products are often unknown. This lack of

information is a barrier to the construction of complete mathematical models of biochemical

dynamics. Even if the kinetics are exactly known at a specific point in time, they are influenced

by environmental factors and hence they can change. Hence, the ability to draw conclusions

regarding the qualitative behavior of such networks without knowledge of their kinetics is

highly relevant, and has been advocated under the banner of “complex biology without param-

eters” [4]. But is such a goal realistic? It is known that the long-term qualitative behavior of a

nonlinear system can be critically dependent on parameters, a phenomenon known as bifurca-

tion. This fundamental difficulty led to statements such as Glass and Kauffman’s 1973 asser-

tion that “it has proved impossible to develop general techniques which may be applied to find

the asymptotic behavior of complex chemical systems” [7].

Notwithstanding such difficulties, many classes of reaction networks are observed to have a

“well-behaved” qualitative long-term dynamical behavior for wide ranges of parameters and

various types of nonlinearities. This means specifically in our context that such networks do

not have the potential for exhibiting complex steady-state phenotypes such as multiple-steady

states (e.g., toggle switches), oscillations (e.g., repressilator), or chaos. Their typical behavior is
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that the concentrations eventually settle into a unique steady state (called an attractor) for any

initial condition (with fixed total substrate, gene and enzyme concentrations). Hence, we call

them structurally attractive. The relevant biological phenotype for such networks is the unique

attractor, which is mathematically represented by the concentrations of the biochemical spe-

cies at steady state. Discerning such networks is not generally trivial. For instance, within the

class of post-translational modification (PTM) cycles, some cascades are “structurally attrac-

tive” but others can exhibit oscillations and multistability [8]. Fig 1 illustrates the typical behav-

ior of an attractive network vs a multistable network for two PTM cycles that have been

proposed as models for double phosphorylation. We will study PTM cycles in detail later in

the paper.

In the terminology of dynamical and control system theories, the defining feature of an

attractive network is that it can only exhibit global point attractors (i.e., unique globally asymp-

totically stable steady states). The classical way to certify stability is by exhibiting an appropri-

ate energy-like function, commonly referred to as a Lyapunov function [9, 10]. Existence of

such a function provides many guarantees on qualitative behavior, including notably the fact

that its sub-level sets act as trapping sets for trajectories [11]. Furthermore, they allow the

development of a systematic study of model uncertainties and response to disturbances [9, 10].

However, it is notoriously difficult to find such functions for nonlinear systems due to the lack

of general constructive techniques.

The search of Lyapunov functions for nonlinear reaction networks can be traced back to

Boltzmann’s H-Theorem [12], which applies only to the restrictive subclass of detailed-bal-

anced networks. Wei [13] in 1962 postulated that all chemical systems should satisfy an

“axiom of convergence” and there shall exist a suitable Lyapunov function. Perhaps the most

striking success in this line of thought was the development of the Horn-Jackson-Feinberg

(HJF) theory of complex-balanced networks [14–17] in the early 1970s, which relies on using

the sum of all the chemical pseudo-energies stored in species as a Lyapunov function. When

Fig 1. Distinct qualitative behaviors for two models of a double PTM. This is illustrated by the time series plots for the double phosphorylated

substrate with randomized initial conditions for fixed total substrate and enzyme concentrations. (a) the processive mechanism exhibits a unique global

attractor, (b) a distributive mechanism exhibits multistability for some parameters. See networks (11), (12) and the accompanying discussion. The

parameters are given in S1 Text-§6.

https://doi.org/10.1371/journal.pcbi.1007681.g001
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specific graphical conditions are satisfied, complex-balancing is guaranteed for all kinetic con-

stants. Global stability can be proven in certain cases [18, 19]. Despite the elegance and theo-

retical appeal of the method, the assumptions needed for its applicability are restrictive, and

are not widely satisfied in biological models. For example, many basic motifs (e.g., transcrip-

tion/translation and enzymatic reactions) are not complex balanced. Furthermore, HJF theory

assumes, although with some exceptions, that the reaction kinetics are Mass-Action. It has

been argued that this assumption “is not based on fundamental laws” and is merely “good phe-

nomenology” [20]. These laws are usually justified by the intuitive image of colliding mole-

cules. However, this is often not the right level of analysis for biological modeling, where

alternative kinetics such as Michaelis-Menten and Hill kinetics are used in situations involving

multiple time scales [21].

Beside complex-balanced networks, a few additional classes of attractive networks have

been identified. These include mono-molecular networks, which can be handled within the

framework of compartmental systems using a Lyapunov function [22, 23]. More recently,

global convergence has been shown for another class of networks via the concept of monoto-

nicity without supplying a Lyapunov function [24] where sufficient graphical conditions have

been given.

In previous work [25–27], two of the authors proposed a direct approach to the problem,

introducing the class of piecewise linear-in-rates functions, which act as Lyapunov functions

regardless of the specific form of the reaction nonlinearities or kinetic constants. They guaran-

tee the uniqueness of steady states and global stability under mild additional conditions.

In this work, the results from [25–27] are generalized in several directions, theoretically,

computationally, and in terms of biological applications. First, we propose a general character-

ization of “structurally attractive” networks. We require the existence of a universal rate-

dependent function, which we call a Robust Lyapunov Function (RLF), that is a Lyapunov

function for any choice of the kinetics. We proceed to propose a computational framework for

finding such functions. To this end, the dynamics of the network are embedded in a linear

convex cone. The extremals of this cone are a set of rank-one matrices that derive from the

stoichiometry of the network. If a common Lyapunov function exists for the extremals, then it

can be used to construct an RLF and the network is certified to be attractive. In the special case

that kinetics are mono- or bimolecular, the RLF is piecewise linear or piecewise quadratic on

species, respectively.

Computationally, we complement previous reaction network toolboxes [28, 29] and we

provide a Lyapunov-Enabled Analysis of Reaction Networks (LEARN) toolbox to implement

the results on any given network by searching for an RLF and checking the appropriate condi-

tions via four main methods: a graphical algorithm, a linear program, an iterative procedure,

and a semi-definite program. Additionally, LEARN checks for conditions that rule out the exis-

tence of an RLF.

We then proceed to carry out an extensive discussion of biochemical networks to show the

applicability of our results. Foundational studies in systems biology [6] have revealed that bio-

chemical networks have many common “motifs”. We show that our results form a basis for

the understanding of the behavior of a large class of networks of various degrees of complexity.

They may be applied to study basic motifs such as binding/unbinding, three-body binding,

transcription and translation networks, and enzymatic reactions. Most cellular signalling

involves PTMs as building blocks, and their malfunction is frequent in diseases such as cancer

and Alzheimer [30, 31]. Hence, we study in detail PTMs cascades, ERK signalling, and phos-

photransfer and phosphorelay networks. In addition, we study important biological networks

such as T-cell kinetic proofreading, and the Ribosome Flow Model. We show that our Lyapu-

nov functions can be used to construct safety sets and perform dynamic flux analysis. Many of
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the networks studied are not amenable to the previously-mentioned analysis techniques, HJF

theory in particular. A comparison with other methods in included in the Discussion (see

Table 1). In particular, our results include the class of monomolecular networks treated in [22,

23], and it applies all the biochemical networks studied in [32], [24], [33]. A preliminary ver-

sion of a subset of these results were presented in conferences [34], [35].

Theoretically, our results connect with a corpus of previous literature. We show that the

RLFs can be formulated in different coordinates, and how this relates to the ones proposed in

[34], [36]. Also, the approach makes contact with the notions of structural injectivity [37–40],

structural persistence [41], and uncertain linear systems [42–44].

Overview and comparison

The paper has been written for a diverse readership, and has been structured accordingly.

Readers who are interested in the general concepts, the biological applications, and the soft-

ware package only need to consult the Introduction, the Results, and LEARN’s accompanying

manual (SI §7). Users can apply the results by supplying the list of reactions encoded as a stoi-

chiometry matrix as an input to LEARN’s main subroutine for a report of results. Readers who

are also interested in the technical mathematical details can consult the Methods section.

Since LEARN guarantees that a certain mechanism cannot admit multistability, oscillation,

or chaos, it can be used to distinguish competing biochemical reaction networks at the model-

ing step. We give an example of this when discussing processive vs distributive post-transla-

tional cycles.

LEARN can be compared to other results in the literature as shown in Table 1.

Terminology and motivational example

A list of reactions can be abstracted mathematically into the framework of Chemical Reaction

Networks (CRNs). A CRN consists of a set of speciesS ¼ fX1; ::;Xng and a set of reactions

R ¼ fR1; :::;Rng. (see Methods for an elaborate discussion) Fig 2a) gives an example of a reac-

tion network for a core signaling motif which is the standard post-translational modification

(PTM) cycle [48, 49]. The relative gain or loss of molecules of each species in a reaction is

encoded in a matrix G 2 Rn�n
called the stoichiometry matrix. It is given in Fig 2b for the PTM

cycle. CRNs admit graphical representations naturally. A CRN can be modeled as a graph with

two sets of nodes: reactions and species. Mathematically, it is a bipartite weighted directed

graph, called the species-reaction graph (or a Petri-net [50]). The graph corresponding to the

Table 1. Comparison with other methods in the literature. The row that corresponds to “admissible kinetics” asks about the functional form of the reaction rates for

which the method is applicable. “Global attractor” asks whether the method is able to provide guarantees for the global convergence to an attractor. “Uniqueness with i/o

perturbations” asks whether the method can guarantee uniqueness of steady states with respect to arbitrary addition of inflows and outflows to the network (i.e., “homoge-

neous CFSTR” in the terminology of [45]). Rows that correspond to “PTM cycle” and “Kinetic proofreading” ask whether the method can tackle the networks (9) and (15),

respectively. We have picked these two networks as non-trivial examples that are pertinent to systems biology. The question of a global attractor for HJF-type networks is

marked by an asterisk (�) since a proof has been proposed in a preprint [46] but is not formally published yet. (See [47] also).

Compartmental [22, 23] HJF [14], [16] Injectivity [37], [38] Monotone [24] LEARN

Admissible Kinetics General Mass-Action General General General

Lyapunov Function yes yes no no yes

Global Attractor checkable (manually) some cases� no checkable (manually) checkable (software)

Uniqueness w. i/o perturbations yes no [45] yes unknown yes

Software Package no yes [28] yes [29] no yes

PTM cycle no (not monomolecular) no yes yes yes (+cascades)

Kinetic Proofreading no (not monomolecular) yes yes no yes

https://doi.org/10.1371/journal.pcbi.1007681.t001
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PTM cycle is given in Fig 2c). The stoichiometry matrix Γ becomes the incidence matrix of the

graph [51].

As we are interested in studying the long-term dynamical behavior, a concentration

xi � 0, i = 1, .., n is assigned to each species. Hence, the concentration vector at time t is

x(t) = [x1(t), . . ., xn(t)]T. A reaction rate (or flux) Rj(x), j = 1, .., ν is assigned to each reaction.

The reaction rate vector is R(x) = [R1(x), . . ., Rν(x)]T. The time-evolution of the concentra-

tion vector is given by the standard ordinary differential equation (ODE) given as [52]:

_x ¼ GRðxÞ; xð0Þ ¼ x� : ð1Þ

Biochemical networks usually contain conserved quantities (i.e., moieties) such as the total

amount of enzymes, substrates, ribosomes, RNA polymerase, etc. For each conserved quantity,

there exists a nonnegative vector d such that dTΓ = 0, and d is called a conservation law. If

every species is supported in at least one conservation law the network is said to be conserva-
tive. For example, the PTM cycle in Fig 2 is conservative with three conservation laws c1 + c2 +

x + y = [X]total, e + c1 = [E]total, and f + c2 = [F]total, which are the total amounts of the substrate

and the two enzymes, respectively, and they stay constant throughout the reaction. Hence,

claims of global stability and uniqueness of steady states are relative to the conserved quanti-

ties. A set of concentrations that shares the same conserved quantities is called a stoichiometric
class.

For the PTM cycle, the ODE is given in Fig 2b). We do not assume that the reaction rates

have a specific functional form such as Mass-Action. We only assume that the rates are

Fig 2. Illustration of a post-translational modification reaction network. (a) The list of reactions with six species. A

kinase E interacts with a substrate S to form a complex C1 which transforms into a phosphorylated substrate Y.

Similarly, a phosphatase F dephosphorylates Y back to S via an intermediate complex C2. (b) The ODE equation

description of the time-evolution of the concentration of the species. (c) The graphical representation of the network as

a Petri-net. A circle represents a species and a rectangle represents a reaction, (d) The Jacobian matrix of the reaction

rate vector. This is the only information we assume to be known about R(x).

https://doi.org/10.1371/journal.pcbi.1007681.g002

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 6 / 37

https://doi.org/10.1371/journal.pcbi.1007681.g002
https://doi.org/10.1371/journal.pcbi.1007681


monotone, meaning that as the concentration of reactants increases, the rate of the reaction

increases (see Methods). This can be interpreted as enforcing a specific sign pattern on the par-

tial derivatives of R. This means that all the entries of the Jacobian matrix of R (i.e., @R/@x), are

either zero or non-negative. For the PTM cycle, Fig 2d) illustrates our assumptions on the

reaction rates encoded in terms of the Jacobian matrix. Such reactions include all common

reaction rates such as Mass-Action, Michaelis-Menten, Hill, etc.

Despite its application relevance, establishing the long-term behavior of the PTM cycle in

Fig 2 was an open problem till the 2000s. HJF’s theory cannot be used for deciding stability

since the PTM cycle is a non-zero deficiency network. In 2008, this problem was tackled via

monotonicity techniques [24, 32], but no Lyapunov function has been provided. As a motiva-

tion, we study the same cycle using our proposed method. An intuitive way to approach its

analysis is to consider the central loop in Fig 2, and then study the sum of absolute rate differ-

ences along it. This can be loosely motivated by considering the reactions rates as potentials

and the concentration of species as charges, and noting that the difference of “potentials”

causes the concentration of species to change via the flow of a “current”. Hence, we define the

ith current as the rate of change of the concentration of the ith species. Thus, we consider the

weighted sum of currents
P

iwij _xij as a candidate Lyapunov function. It can also be written as

follows:

VðxÞ ¼ jR1ðxÞ � R2ðxÞj þ jR2ðxÞ � R3ðxÞj þ jR3ðxÞ � R4ðxÞj þ jR4ðxÞ � R1ðxÞj; ð2Þ

which is a piecewise linear-in-rates function. In order to verify whether this is indeed a Lyapu-

nov function, we can analyze it region-wise to check that it decreases along trajectories. Con-

sider for instance the region W ¼ fR1ðxÞ � R2ðxÞ � R3ðxÞ � R4ðxÞg. The candidate V
simplifies to the difference of “potentials” across the substrate S:

1

2
VðxÞ ¼ R1ðxÞ � R4ðxÞ ð3Þ

To evaluate _V , we need the signs of the “currents” _s; _e; _c2. In our example, we can use the

inequalities defining W so that the signs can be read from the graph as follows: _s; _e < 0 and

_c2 > 0. By noting that these signs are matched to the coefficients of R(x) in (3), and since @R/

@x is nonnegative, we can write the following inequality in W:

1

2
_V ðxÞ ¼

@R1

@e
�_e þ

@R1

@s
�_s �

@R4

@c2

_c2

þ

� 0;

where the sign of the rate of change of each concentration is indicated above it.

Therefore, sgn _V can be determined conclusively without knowing the kinetics. In fact, this

can be repeated for all regions to conclude that V is non-increasing along all possible trajecto-

ries of (1). (See the Results section for further analysis).

The lesson that can be drawn from this example is that a robust analysis of reaction net-

works can be carried out by considering candidate Lyapunov functions of the form ~V ðRðxÞÞ

that vanish exactly on the steady state set, i.e. the set {x|ΓR(x) = 0}. This approach does not

require the computation of the actual steady state.

Robust Lyapunov functions

The motivating example has shown that we can have a Lyapunov function ~V ðRðxÞÞ that

decreases along trajectories for any monotone kinetics R. Hence for a given network ðS ;RÞ

we will be looking for a function ~V : Rn ! R�0 that vanishes only on the set of steady

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks
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states, i.e

~V ðrÞ ¼ 0 if and only if rG ¼ 0:

Furthermore, VðxÞ ¼ ~V ðRðxÞÞ needs to be nonincreasing along the trajectories of (1), i.e it

must satisfy:

_~V ðRðxÞÞ≔ ð@ ~V=@RÞð@R=@xÞGRðxÞ � 0; for all x and for all R admissible: ð4Þ

If such a function exists then we call it a Robust Lyapunov Function (RLF), and the network

is called structurally attractive. Mathematically, the RLF needs only to be locally Lipschitz and

the derivative is defined in the sense of Dini’s (see Methods).

Example (cont’d). For the PTM cycle (Fig 2) the function ~V is

~V ðrÞ ¼ jr1 � r2j þ jr2 � r3j þ jr3 � r4j þ jr4 � r1j.

Results

Characterization of RLFs

The above definition of an RLF does not offer a constructive way for finding one or for check-

ing a candidate. Our first result is to give a characterization of RLF in terms of a set of rank-

one linear systems, each of which corresponds to a reaction-reactant pair. The set of all such

pairs is P≔ fðj; iÞjXi participates in the reactionRjg. Let s be total number of such pairs.

Then, Q‘≔ ej‘
gT

i‘
2 Rn�n; ðj‘; i‘Þ 2 P, ℓ = 1, .., s where {γ1, .., γn} are the rows of Γ and {e1, .., eν}

are columns of the ν × ν identity matrix.

The matrices Q1, .., Qs will serve as system matrices for s linear systems and also as extre-

mals of a linear convex cone. We show (see Methods) that (@R/@x)Γ 2 cone(Q1, .., Qs) = {∑ℓ ρℓ

Qℓ|ρℓ � 0}. We will be looking for a function ~V that acts as a common Lyapunov function for

these linear systems and satisfies frj ~V ðrÞ ¼ 0g ¼ \s
‘¼1

kerQ‘ (see Methods).

Example (cont’d). For the PTM cycle (Fig 2), the extremals are

� 1 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

2

6
6
4

3

7
7
5;

� 1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2

6
6
4

3

7
7
5;

0 0 0 0

1 � 1 0 0

0 0 0 0

0 0 0 0

2

6
6
4

3

7
7
5;

0 0 0 0

0 0 0 0

0 1 � 1 0

0 0 0 0

2

6
6
4

3

7
7
5;

0 0 0 0

0 0 0 0

0 0 � 1 1

0 0 0 0

2

6
6
4

3

7
7
5;

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 � 1

2

6
6
4

3

7
7
5

8
>><

>>:

9
>>=

>>;

:

We are ready to state the main result of this section. (See Methods).

Theorem 1. Given ðS ;RÞ. Let (1) be the associated ODE. A function ~V : �Rn
þ

! �Rþ is a
common Lyapunov function for the set of linear systems f _r ¼ Q1r; :::; _r ¼ Qsrg if and only if ~V
is an RLF for the reaction network ðS ;RÞ.

The search for RLFs

The characterization provided in Theorem 1 can be used for devising computational algo-

rithms that search for an RLF. In Methods, we present several algorithms for constructing

piecewise linear (PWL) or piecewise quadratic RLFs. In order to simplify the presentation, we

will be only looking for convex piecewise linear RLFs in our study of biochemical networks.

This means looking for vectors c1; :::; cm 2 Rn (for some positive integer m) such that ~V is an

RLF where:

VðxÞ ¼ ~V ðRðxÞÞ ¼ max
k¼0;::;m

cT
k RðxÞ: ð5Þ
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and c0 ≔ [0, .., 0]T. If the network has a positive steady state flux (i.e., there exists positive r
such that Γr = 0) then it can be shown that ~V can be written as V(x) = kCR(x)k1, where

k[x1, .., xn]Tk1 ≔maxi|xi| is the 1-norm and C ¼ ½cT
1
; ::; cT

m�
T
. Two special cases are of interest

to us:

Sum-of-currents (SoC) RLFs. These are functions of the form:

~V ðRðxÞÞ ¼
Xn

i¼1

xij _xij ¼ kdiagðxÞGRðxÞk1; ð6Þ

where x ¼ ½x1; ::; xn� 2 Rn
�0

is a positive vector and k[z1, .., zn]Tk1 ≔ ∑i|zi| is the 1-norm. The

function considered in [22] is a special case with ξ = 1. The vector ξ can be found by linear pro-

gramming using a special case of Theorem 2 (see Methods). Note that the function (2) dis-

cussed in the motivating example has the form (6) above.

Max-Min RLFs. These are functions of the form:

~V ðRðxÞÞ ¼ maxRðxÞ � minRðxÞ; ð7Þ

where R consists of reaction rates or the difference between forward and backward rates of a

reaction. Unlike SoC RLFs which keep track of the reaction rate differences across each spe-

cies, the Max-Min RLF keeps track of the maximal reaction rate difference across the whole
network at each time. We provide a full graphical characterization of the class of networks that

admit Max-Min RLFs (which we call M-networks). (see Methods, Theorem 4).

Alternative forms. In Methods, we give conditions on a function V̂ such that V̂ ðx � xeÞ

(where xe is a steady state) is a Lyapunov function for any admissible R. We call V̂ a concentra-

tion-dependent RLF. We show that ~V ðrÞ ¼ k BGr k1 is an RLF iff V̂ ðzÞ ¼ k Bz k1 is a con-

centration-dependent RLF (see Methods, Theorem 11). These PWL functions relate to the

ones proposed in [34, 36]. Note, however, that V̂ ðx � xeÞ is a Lyapunov function only in the

stoichiometric class that contains xe.

Properties of RLFs. In [27], some properties of networks admitting PWL RLFs have been

established and they can serve as necessary condition tests. In Methods, we provide two addi-

tional properties, namely testing robust non-degeneracy and the absence of critical siphons.

These conditions are implemented in LEARN.

The class of structurally attractive biochemical networks

The existence of an RLF implies that the qualitative long-term behavior of a network is highly

constrained. Hence, an important issue is whether this theory is sufficiently relevant to biomo-

lecular applications. We will show in the remainder of the Results section that this class of net-

works constitutes a rich and relevant class. It includes basic motifs, modules, and larger

networks and cascades in molecular biology. For most of these networks, the HJF Lyapunov

function [14] does not apply. And if it applies, it is only valid with Mass-Action kinetics (or a

generalization [18]) and it does not confer the same powerful conclusions offered by our the-

ory. Many of the networks discussed in the remainder of this paper are qualitatively analyzed

for the first time and most of them had no Lyapunov functions known for them. For all the

subsequent networks the following statement holds: if a positive steady state exists, then it is

unique and globally asymptotically stable relative to its stoichiometric class.

Binding/Unbinding reactions

In this subsection, several biochemical networks are presented. They are fairly simple and all

of them can be analyzed using HJF theory in the case of Mass-Action kinetics. However, they
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are presented here to show that the properties that our theory requires are obeyed by the basic

biochemical motifs, which establishes its applicability and generality. Furthermore, we offer an

intuitive window to the meaning of RLFs and how our graphical conditions apply.

Simple binding reaction. Fig 3a represents a simple reversible binding reaction:

X þ E Ð
R1

R� 1

XE;

which can represent an enzyme binding to a substrate. The corresponding RLF can be found

easily using Theorem 4 and is given by:

VðxÞ ¼ jR1ðxÞ � R� 1ðxÞj:

Both the Max-Min and the SoC RLFs coincide in this case.

Simple binding with enzyme inflow-outflow. Fig 3b represents the following binding

reaction with enzyme inflow-outflow:

X þ E Ð
R1

R� 1

XE; 0 Ð
R2

R� 2

E;

By considering the irreversible subnetwork 0 ! E, 0 ! X, X + E ! XE, XE ! 0, a Max-

Min RLF can be found using Theorem 4 and is given by (7) where

R ¼ fR1 � R� 1;R2 � R� 2; 0g: ð8Þ

Cooperative binding reaction. The following reactions (depicted in Fig 3c) represent the

situation where n enzyme molecules E need to bind to each other to react to X:

nE Ð
R1

R� 1

En;En þ X Ð
R2

R� 2

XEn

The case n = 2 is called dimerization. The corresponding RLF can be found using Theorem

4 and R is given by (8). The irreversible subnetwork for which Theorem 4 was applied is

0 ! E, 0 ! X, nE ! En, En + X ! XEn, XEn ! 0.

Fig 3. Basic biochemical examples. (a) Simple binding. (b) Simple binding with enzyme inflow-outflow. (c)

Cooperative binding. (d) Competitive binding.

https://doi.org/10.1371/journal.pcbi.1007681.g003
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Competitive binding reaction. The following reactions (depicted in Fig 3d) describe the

situation when two molecules E1, E2 compete to bind with X:

E1 þ X Ð
R1

R� 1

XE1; X þ E2 Ð
R2

R� 2

XE2

The corresponding RLF can be found using Theorem 4 andR is given by (8). The irrevers-

ible subnetwork for which Theorem 4 was applied is 0 ! E1, E1 + X ! XE1 ! XE1 ! 0,

0 ! XE2 ! X + E2, E2 ! 0.

Three-body binding

We have applied our techniques to the dynamics of simple binding which can be analyzed eas-

ily using various known ways. However, it is often the case that two compounds X, Y cannot

bind unless a bridging molecule E allows them to bind, forming a ternary complex. This is

known as three-body binding [53] and it is ubiquitous in biology. Examples include T-cell

receptors interaction with bacterial toxins [54], coagulation [55], and multi-enzyme supramo-

lecular assembly [56]. The same reaction network also models the binding of two different

transcription factors into a promoter with a double binding site. Despite its simplicity, the

steady-state analysis of the equilibria has been subject of great interest [53]. Stability cannot be

decided via HJF theory, and it has not been studied before to our knowledge.

The network can be depicted in Fig 4, and is given by eight reactions as follows:

X þ E Ð
R1

R� 1

XE; Y þ E Ð
R2

R� 2

EY

EY þ X Ð
R3

R� 3

XEY; Y þ XE Ð
R4

R� 4

XEY;

The network is an M-network and the corresponding irreversible subnetwork has the reac-

tions {R1, R−2, R−3, R4}. Hence we apply Theorem 4 to have an RLF of the form (7) where

Fig 4. Three-body binding. Gray-colored species are intermediates.

https://doi.org/10.1371/journal.pcbi.1007681.g004
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R ¼ fR1 � R� 1;R� 2 � R2;R� 3 � R3;R4 � R� 4g. It can be concluded that there exists a unique

steady state in each stoichiometric class and it is globally asymptotically stable.

Transcription and translation networks

Transcription and translation are the first two essential steps in the central dogma of molecular

biology, and hence they are of utmost importance in the analysis of gene regulatory networks.

Transcription network. Fig 5a) shows the transcription network which describes the pro-

duction of mRNA from DNA using the RNA polymerase [57]:

RNAP þ DNA Ð
R1

R� 1

RD � !
R2 RNAP þ DNA þ mRNA; mRNA � !

R3
0:

This model explicitly accounts for the concentration of RNA polymerase and hence it

extends to situations in which RNA polymerase is not abundant.

Applying Theorem 4, the RLF (7) can be used with R ¼ fR1 � R� 1;R2;R3g. Alternatively,

Theorem 2 can be used, and the Lyapunov function found can be written as:

VðxÞ ¼k diagð½1; 1; 1; 3�
T
Þ _xk1, where the species are ordered as RNAP, DNA, RD, mRNA.

Note this network has deficiency one, hence no information regarding stability can be

inferred from HJF theory. Furthermore, the procedure proposed in [36] has been reported not

to work for the network above.

Translation network with a leak. Fig 5b) shows the translation network which describes

the production of a protein from mRNA via ribosomes [57]. The leaking of the Ribosome-

mRNA complex into the pool of ribosomes is also modeled. In order to make the model more

general, we also explicitly account for the concentrations of ribosomes. This is relevant to situ-

ations in which ribosomes are not highly abundant which can occur naturally [58, 59] or in

synthetic circuits [60]. The network can be written as

Rib þ mRNA Ð
R1

R� 1

mRNA : Ribo� !
R2 mRNA þ P þ Ribo

mRNA : Ribo� !
R4 Rib; P� !

R4
0:

Note that the flux corresponding to reaction R4 vanishes at steady state which implies

that the species mRNA:Ribo vanishes at any steady state. Note also that the dynamics of other

species are independent of the dynamics of P. Hence, the network can be considered as a

Fig 5. Transcription and translation. Gray-colored species are intermediates. (a) Transcription. (b) Translation with

a leak.

https://doi.org/10.1371/journal.pcbi.1007681.g005
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cascade of

Rib þ mRNA Ð mRNA : Ribo ! mRNA þ Ribo; mRNA : Ribo ! Rib

and 0 ! P ! 0. Applying Theorem 3 to the first network we get the following Lyapunov func-

tion:

~V ðRðxÞÞ ¼ maxfR4ðxÞ;R1ðxÞ � R2ðxÞ � R3ðxÞ � R4ðxÞ; � R1ðxÞ þ R2ðxÞ þ R3ðxÞg:

Note that ~V is neither SoC nor Max-Min. The second network can be analyzed using this

Lyapunov function: V2(x) = |R3(x) − R4(x)|. Overall stability is established for the cascade

using standard techniques [61].

Basic enzymatic networks

Basic activation motif. Fig 6a) represents the basic enzymatic reaction where an enzyme

E binds to a substrate S to produce S+ as follows [48]:

S þ E Ð
R1

R� 1

ES � !
R2 E þ Sþ:

Theorem 3 can be used. The resulting Lyapunov function is:V(x) = max{|R1 − R−1|, R2}.

Although this network has deficiency zero, it is not weakly reversible. This implies that the steady

states belong to the boundary, and HJF theory does not offer any information regarding stability.

Enzymatic activation cycle. In order to close the cycle of the activation motif, Fig 6c)

depicts the activation of a protein P by an enzyme E, and then the activated protein decays

back to its inactive state. The list of reactions is given as [62]:

S þ E Ð
R1

R� 1

SE � !
R2 E þ Sþ; Sþ� !

R3 S:

Theorem 2 gives the following SoC RLF:

VðxÞ ¼ jR1 � R� 1ðxÞ � R2ðxÞj þ jR2ðxÞ � R3ðxÞj þ jR1ðxÞ � R� 1ðxÞ � R3ðxÞj;

and both Theorems 3 and 4 give RLFs also.

This network has deficiency one; the deficiency one algorithm [17] excludes the existence

of multiple steady states with Mass-Action kinetics. No information regarding stability can be

Fig 6. Basic enzymatic reactions. Gray colored species are intermediates. (a) Basic enzymatic motif. (b) Enzymatic

cycle. (c) Full PTM cycle.

https://doi.org/10.1371/journal.pcbi.1007681.g006
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inferred in that context from HJF theory. Furthermore, the decay reaction R3 usually models

fast dephosphorylation which has a Michaelis-Menten kinetics, which is not allowed in [17].

The full PTM cycle. A simplified version of the enzymatic futile cycle has already been

used as a motivating example in Fig 2. It differs from the preceding network by explicitly

modeling the dephosphorylation step. The following describes the complete model [48, 49]:

S þ E Ð
R1

R� 1

SE � !
R2 Sþ þ E; Sþ þ F Ð

R3

R� 3

SþF � !
R4 S þ F: ð9Þ

For instance, S represents the base substrate, E is called a kinase which adds a phosphate

group to S to produce S+. This process is called phosphorylation. The dephosphorylation reac-

tion is achieved by a phosphatase F that removes the phosphate group from S+ to produce S.

Theorem 4 can be used to find the RLF (7) where R ¼ fR1 � R� 1;R3 � R� 3;R2;R4g.

Alternatively, Theorems 3 yields the SoC RLF:

VðxÞ ¼ jR1ðxÞ � R� 1ðxÞ � R2ðxÞj þ jR2ðxÞ � R4ðxÞj

þ jR3ðxÞ � R� 3ðxÞ � R4ðxÞj þ jR1ðxÞ � R� 1ðxÞ � R4j:
ð10Þ

Both SoC and Max-Min RLFs have an intuitive meaning in terms of the reaction graphs of

the networks. The first is the difference between the fastest and the slowest reactions, and the

second is the sum of currents (rates of change of concentrations). Since the deficiency of the

network is one, stability cannot be inferred from HJF theory.

Energy-constrained PTM cycle. Basic Motif. Madhani [63] presents this biochemical

example of adding a phosphate group to a protein using a kinase. ATP is not assumed to be

abundant and its dynamics are explicitly modeled. The reaction network is depicted in black

in Fig 7a), which can be written as:

K þ ATP Ð
R1

R� 1

AK; P þ AK Ð
R2

R� 2

PAK

A� K Ð
R5

R� 5

K þ ADP;PAK� !
R3 PþA� K� !

R4 Pþ þ A� K;

where K is the kinase, ATP is the adenosine triphosphate, ADP is the Adenosine diphosphate,

and P+ is the phosphorylated protein. Reactions R3, R4 are not supported in the kernel of the

Fig 7. Energy-constrained PTM cycles. (a) Phosphorylation is modeled only. The black-colored component is the

basic motif proposed in [63] (b) A full phosphorylation-dephosphorylation cycle with energy expenditures modeled.

The gray species are intermediates.

https://doi.org/10.1371/journal.pcbi.1007681.g007
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stoichiometry matrix, which implies that the species PAK, P+ A− K vanish at any steady state

point.

Applying Theorem 3, one can get the following RLF function:

VðxÞ ¼ maxfjR1ðxÞ � R� 1ðxÞj; jR2ðxÞ � R� 2ðxÞj;R3ðxÞ;R4ðxÞ; jR5ðxÞ � R� 5ðxÞjg:

Energy constrained PTM cycle. In order to have a full cycle, the model can include the

following two reactions: A� � !
R6 A; Pþ� !

R7 P, where ADP is converted to ATP by other cellu-

lar processes and is modeled as a single step, and P+ decays to its original state P spontaneously

or chemically [64]. The reaction network is depicted in Fig 7a).

The full network is an M network, and it has the RLF (7) with

R ¼ fR1 � R� 1;R2 � R� 2;R3;R4;R5 � R� 5;R6;R7g.

The network is not complex-balanced and HJF theory is not applicable. The dynamics of

this network have not been analyzed before per our knowledge.

Full energy-constrained PTM cycle. The dephosphorylation step can be modeled fully

and is depicted in Fig 7b). This is the energy-constrained analog of Fig 6c). The network is also

an M-network and it admits an RLF of the form (7). The list of reactions have not been

included for the sake of brevity.

Post-translational modification cycle cascades

The post-translation modification (PTM) cycle (e.g, phosphorylation-dephosphorylation cycle

[48, 49]) has been analyzed in the previous section. This kind of cycle appears frequently in

biochemical networks, and can be interconnected in several ways; we discuss some here. For

recent reviews see [65, 66].

A multisite PTM with distinct enzymes. It is known that a single protein can have up to

different 100 different PTM sites [65] and it can undergo different PTM cycles such as phos-

phorylation, acetylation and methylation [67, 68]. Each of these cycles has its own enzymes.

Hence, we consider a cascade of n PTM cycles as shown in Fig 8a) where n is any integer

greater than zero. For instance, the associated reaction network for the case n = 2 is given as:

X0 þ E0 ⇋
k1

k� 1

E0X0� !
k2 X1 þ E0; X1 þ F0 ⇋

k3

k� 3

F0X1� !
k4 X0 þ F0;

X1 þ E1 ⇋
k5

k� 5

E1X1� !
k6 X2 þ E1; X2 þ F1 ⇋

k7

k� 7

F1X2� !
k8 X1 þ F1:

The network is not an M-network and hence Theorem 4 is not applicable. However, using

Theorem 2 it can be shown that a SoC RLF for the n cascade exists and can be represented as

VðxÞ ¼kdiagðxÞ _xk1 with ξ = [2, 2, . . .., 2, 1, 1, . . ., 1]T with the ordering given as X0, . . ., Xn,

E0, E1, . . ., Fn−1 Xn.

HJF theory will not apply since this network has deficiency n. Also, monotonicity-based

results [24] do not apply, since the network is not cooperative in reaction coordinates. In fact,

the long-term behavior of this cascade has not been studied before to our knowledge. It follows

that for any n the network has a unique globally asymptotic stable steady state in any stoichio-

metric class (i.e., with respect to fixed total amounts for the enzymes and the substrate).

Multiple PTM cycle with a processive mechanism. Proteins can undergo different

PTMs, but they also can undergo a multisite PTM. For instance, a phosphate group can be

added to multiple sites on the protein [69]. Multisite phosphorylation can be processive [70]

or distributive [71]. Fig 8b) depicts a multiple-site futile cycle with a processive mechanism.
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Fig 8. Cascades of PTM cycles. (a) A multisite PTM with distinct enzymes. (b) A multiple PTM with a processive

mechanism. (c) The “all-encompassing” processive PTM mechanism. (d) Double PTM Cycle with a distributive

mechanism.

https://doi.org/10.1371/journal.pcbi.1007681.g008
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The reaction network can be written as [33]

X0 þ E Ð EX1 Ð EX2 Ð . . . Ð EXn ! Xn þ E;

Xn þ F Ð FXn Ð . . . Ð FX2 Ð FX1 ! X0 þ F;
ð11Þ

It can be noticed that for every n, the network satisfies the graphical conditions of Theorem

4. Therefore, an RLF is (7) where R ¼ fRk � R� k; k ¼ 1; ::; ng, and R−k(x) :� 0 if Rk is

irreversible.

Energy-constrained processive cycle. The ATP and ADP expenditure can be accounted

for in the processive cycle similar to the model presented in Fig 7b). The new network will

remain an M-network and Theorem 4 can be applied. Details are omitted for brevity.

A generalized processive cycle. An “all-encompassing” processive cycle has been studied

in [8] which allows multiple enzymes and is depicted in Fig 8c. It takes the following form:

X1 þ E1 Ð ðX1E1Þ1
Ð ðX1E1Þ2

Ð . . . Ð ðX1E1Þm1
! X2 þ E1;

X2 þ E2 Ð ðX2E2Þ1
Ð ðX2E2Þ2

Ð . . . Ð ðX2E2Þm2
! X3 þ E2;

..

.

Xn þ En Ð ðXnEnÞ
1

Ð ðXnEnÞ
2

Ð . . . Ð ðXnEnÞmn
! X1 þ En;

This network is also an M network and it satisfies the results of Theorem 4. Hence, the Lya-

punov function (7) can be used.

Both networks above have been studied in [8, 33] by establishing monotonicity in reaction

coordinates. Such techniques require checking persistence a priori and do not provide Lyapu-

nov functions. Furthermore, our results have the advantage of providing an “all-encompass-

ing” general framework that includes many of these individually studied networks in addition

to new ones.

Distinguishing between processive and distributive mechanisms. Fig 8d) depicts a dou-

ble futile cycle with a distributive mechanism [71, 72], which is described by the following set

of reactions:

X0 þ E ⇋
k1

k� 1

EX0� !
k2 X1 þ E; X1 þ F ⇋

k3

k� 3

FX1� !
k4 X0 þ F;

X1 þ E ⇋
k5

k� 5

EX1� !
k6 X2 þ E; X2 þ F ⇋

k7

k� 7

FX2� !
k8 X1 þ F;

ð12Þ

It can be verified that the network violates the P0 necessary condition (for the minor corre-

sponding to X0, X1, X2, E, FX1, EX1). Hence, a PWL RLF does not exist [27]. Indeed, the above

network is known to admit multi-stability for some parameter choices as shown in Fig 1.

Hence, our results can be used to compare between distributive and processive mechanisms

as viable models for the first stage in the MAPK cascade. Since the latter has been observed

experimentally to accommodate multiple non-degenerate steady states, the processive mecha-

nism cannot be a model. (Similar observations have been made in [72–74].) Fig 1 depicts sam-

ple trajectories for the processive and distributive cycle with Mass-Action kinetics.

Phosphotransfer and phosphorelay networks

Phosphotransfer is a covalent modification in which a histidine kinase gives the phosphate

group to a response regulator and it is the core motif in a two-component signaling systems

[75]. Phosphotransfer cascades are called phosphorelays [76, 77].
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Phosphotransfer motif. An example is the envZ/ompR signaling system for regulating

osmolarity in bacteria such as E. Coli [78]. The core motif can be described by the following

set of reactions [79]:

Zþ þ X Ð
R1

R� 1

C Ð
R2

R� 2

Xþ þ Z;

where the “+” superscript refers to a phosphorylated substrate. For instance, Z+ is the phos-

phorylated EnvZ protein, while X is the ompR protein.

The proteins Z, X+ can also be phosphorylated and dephosphorylated by other reactions.

Fig 9a) presents a network where those other reactions are modeled as a single step:

Z� !
R3 Zþ; Xþ� !

R4 X; ð13Þ

where R3 (which phosphorylates Z) can be monotonically dependent on external signals such

as osmolarity in the envZ/OmpR network.

It can be noticed that Theorem 4 is applicable and (7) is an RLF with

R1 ¼ fR1 � R� 1;R2ðxÞ � R� 2;R3;R4g.

Phosphotransfer with enzymes. A more elaborate model can take into account the phos-

phorylation/dephosphorylation of proteins Z, X+ in terms of other enzymes. Hence, reactions

(13) can be replaced by the following:

Z þ F Ð
R3

R� 3

FZ� !
R4 Zþ þ F; Xþ þ E Ð

R5

R� 5

EXþ� !
R6 X þ E; ð14Þ

as depicted in Fig 9b. Similarly, (7) is an RLF with

R ¼ fR1 � R� 1;R2 � R� 2;R3 � R� 3;R4;R5 � R� 5;R6g.

A phosphorelay. A phosphorelay is a cascade of several phosphotransfers. It appears ubiq-

uitously in many organisms. For example, the KinA-Spo0F-Spo0B-Spo0A cascade in Bacillus

subtilis [80] and the Sln1p-Ypd1p-Ssk1p cascade in yeast [81].

Fig 9c depicts the cascade which is given by:

X1 ! Xþ
1
; Xþ

n ! Xn;

Xþ
1

þ X2 Ð C1 Ð Xþ
2

þ X1

..

.

Xþ
n� 1

þ Xn Ð Cn Ð Xþ
n þ Xn� 1;

where the first kinase is phosphorylated by some constant external signal, and Xþ
n is the

response regulator.

The network is still an M-network and conditions of Theorem 4 apply by mere inspection

of the graph. Hence a function of the form (7) is a Lyapunov function. Enzymatic activation/

deactivation of X1;Xþ
n , respectively, can also be added (analogously to Fig 9b) and the result

will continue to hold. Note that the same applies to the more general model presented in [82]

also. We omitted the details for brevity.

Note that none of the phosphotransfer networks is complex-balanced and hence HJF theory

is not applicable.

T-cell kinetic proofreading network

In 1974, Hopfield [83] proposed the kinetic proofreading model in protein synthesis and DNA

replication. Subsequently, McKeithan [84] proposed a network containing a ligand, which is a
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peptide-major histocompatibility complex M, binding to a T-cell receptor; the receptor-ligand

complex undergoes several reactions to reach the final complex CN. The chain of reactions

enhances the recognition and hence it is called a kinetic proofreading process. Fig 10a) depicts

the reaction network, which is given by the following set of reactions:

M þ L Ð C0 ! C1 ! ::: ! CN

C1 ! M þ L;C2 ! M þ L; :::;CN ! M þ L
ð15Þ

Applying Theorem 2, it can be shown that for any N � 1, the network admits a SoC RLF

of the form VNðxÞ ¼ kdiagð½1; 1; 2; 2; ::; 2�
T
Þ _x k1, where the species are ordered as T, L, C0,

Fig 9. Phosphotransfer and phosphorelay networks. (a) Phosphotransfer network. (b) Phosphotransfer with

phosphorylation/dephosphorylation. (c) A phosphorelay network.

https://doi.org/10.1371/journal.pcbi.1007681.g009
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C1, . . ., CN. Note that this network does not meet the graphical requirements of Theorem 4

since it is not an M network. The monotone-systems approach proposed in [24] is not applica-

ble here since the system is not cooperative in reaction coordinates.

Nevertheless, this is one of the few networks, considered so far, which is complex-balanced.

The work [18] showed that this network is weakly reversible and that it has zero-deficiency;

therefore any positive steady state is unique relative to the interior and is locally asymptotically

stable. In order to infer global stability, it was necessary to compute the steady states explicitly

to preclude a boundary steady state stoichiometrically compatible with a positive steady state.

In comparison, our approach is more powerful, since the former approach is limited to gener-

alized Mass-Action kinetics, and cannot infer global stability directly.

ERK signaling pathway with RKIP regulation

Fig 10b depicts the network describing the effect of the so called Raf Kinase Inhibitor Protein

(RKIP) on the Extracellular Regulated Kinase (ERK) signaling pathway as per the model given

in [85]. It can be described using the network:

Kþ þ M Ð
R1

R� 1

KþM� !
R2 K þ M

E þ P Ð
R3

R� 3

EP� !
R4 Eþ þ P

K þ R Ð
R5

R� 5

KR

KR þ Eþ
Ð
R6

R� 6

KREþ� !
R7 R þ E þ Kþ;

where K is the RKIP, E is the ERK Kinase, P is the RKIP phosphatase, and M is the phos-

phorylated MAPK/ERK Kinase, and the plus superscript means that the molecule is

phosphorylated.

The network is an M-network and the requirements of Theorem 4 are satisfied. Hence, (7)

is an RLF with R ¼ fRk � R� k; k ¼ 1; ::; ng, and R−k(x) :� 0 if Rk is irreversible. Note that this

network is of deficiency one, hence stability cannot be inferred by HJF theory. Nevertheless,

monotonicity-based analysis can be applied [24] which utilizes cooperativity in reaction coor-

dinates. Refer to the Discussion for a detailed comparison to monotonicity techniques.

Fig 10. Other signalling networks. (a) McKeithan’s T-Cell kinetic proofreading network. (b) ERK signaling Pathway

With RKIP Regulation.

https://doi.org/10.1371/journal.pcbi.1007681.g010
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The ribosome flow model

Finally, we show that our techniques’ applications in molecular biology are not limited to clas-

sical biochemical networks. A translation elongation process involves ribosomes travelling

down an mRNA, readings codons and translating amino-acid chains via recruited tRNAs. A

conventional stochastic model is the Totally Asymmetric Simple Exclusion Process [86]. A

coarse-grained mean-field approximation that resulted in a deterministic continuous-time

flow model was introduced by [87], and its dynamics have been studied further [87, 88].

Fig 11 illustrates the model. An mRNA consists of codons that are grouped into n sites,

each site i has an associated occupancy level xi(t) 2 [0, 1] which can be interpreted as the prob-

ability that the site is occupied at time t. The ribosomes’ inflow to the first site is λ0, which is

known as the initiation rate, λi is the elongation rate from site i to site i + 1, and λn is the pro-

duction rate. All rates are assumed to be positive. The ODE is written as follows:

_x1 ¼ l0ð1 � x1Þ � l1x1ð1 � x2Þ

_x2 ¼ l1x1ð1 � x2Þ � l2x2ð1 � x3Þ

..

.

_xn ¼ ln� 1xn� 1ð1 � xnÞ � lnxn:

The dynamics of the system above have been analyzed and shown to be monotone in [88].

In what follows, we provide an alternative approach that provides a Lyapunov function and

establishes more powerful properties. Let yi ≔ 1 − xi, i = 1, .., n. Then, we can define a reaction

network with species Xi, Yi, i = 1, .., n as follows:

Y1 � !
R1 X1; Xn� !

Rnþ1 Yn;

X1 þ Y2 � !
R2 Y1 þ X2; . . . ;Xn1

þ Yn� !
Rn Yn� 1 þ Xn:

The network has 2n species, n + 1 reactions, and n conservation laws. It is depicted in Fig

11(b). The ODE system above describes the time-evolution of the reaction network with Mass-

Action kinetics.

The graphical conditions of Theorem 4 are satisfied. Hence, (7) is an RLF for any n with

R ¼ fR1;R2; :::;Rnþ1g. Since the network is conservative it follows that there exists a unique

globally asymptotically stable steady state. Note that this results holds with general monotone

kinetics.

Fig 11. The ribosome flow model. (a) Schematic representation. λ0 is the initiation rate, λi is the elongation rate from

site i to site i + 1, and λn is the production rate. The state variable xi 2 [0, 1] is the occupancy level of the site i. (b)

Reaction network representation. Xi corresponds to the occupancy level, while Yi corresponds to the vacancy level.

https://doi.org/10.1371/journal.pcbi.1007681.g011
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Quantitative analysis via RLFs

In this subsection we show that our RLFs can provide valuable quantitative information

regarding the behavior of the network beyond mere qualitative long-term behavior

information.

Safety sets. Since our techniques are based on the construction of RLFs, we can compute

safety sets which are the level sets of a Lyapunov function. If a system starts in a safety set it

cannot leave it at any future time. Substituting Mass-Action kinetics, the safety set for a Lyapu-

nov function ~V ðRðxÞÞ consists of piecewise polynomial surfaces and it is not necessarily con-

vex. The safety set provided by an RLF surrounds all the steady states, i.e is not restricted to

stoichiometric classes. In comparison, a concentration-dependent RLF provides a convex

polyhedral safety set in a specific stoichiometric class. In order to illustrate this, consider the

full PTM cycle with Mass-Action kinetics and let all the kinetic constants be 1. There are three

conserved quantities, which we assume are set to [E]T = [F]T = [S]T = 10AU. Hence, the

dynamics of the ODE evolve in a subset of three dimensional cube [0, 10]3. A level set of the

RLF in (10) can be calculated restricted to the stoichiometric compatibility class and is

depicted in the Fig 12a. The concentration-dependent RLF can be constructed via Theorem

11. Plotting the level set requires computing the steady state which can be calculated by solving

the algebraic equations to be: (xe, ee, fe) � (1.216990, 6.216990, 6.216990). The level set is

Fig 12. Safety sets computed via RLFs. (a),(b), Safety sets for the PTM cycle (Fig 6c). (a) The safety set corresponding

to the rate-dependent RLF for the PTM cycle. It is the α-level set of V where α has been chosen such that the

concentration of S does not exceed 2.5. (b) The safety set corresponding to the concentration-dependent RLF. The

safety set has been chosen similarly to satisfy the same condition. (c),(d), Sub-levels sets for the safety sets

corresponding to the rate-dependent RLF (7) for the double processive PTM cycle (Fig 8b). (c) The sublevel set (with

[X2] = 0) of the α-level set of V where α has been chosen such that the concentration of E does not exceed 2.5 on the

sublevel set. (d) Another sublevel set of the same set in (c) with [X2] = 0.5AU.

https://doi.org/10.1371/journal.pcbi.1007681.g012
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plotted in Fig 12b. Both safety sets corresponding to the two Lyapunov functions are chosen so

that S = 2.5 lies on the boundary of the set. In other words, the substrate concentration is

guaranteed not to exceed 2.5 if the system is initialized in the set. It can be clearly seen that the

two sets are distinct, and they give different guarantees. Their intersection gives a tighter safety

set.

Another example is a double processive PTM (Fig 8b) which has four dimensional stoichio-

metric classes. Hence, the 4D safety sets cannot be plotted, but their sublevel sets can still be

visualized. Fig 12c and 12d shows sublevel sets for different concentrations for the double

phosphorylated species X2 with total kinase, phosphatase and substrate concentrations fixed to

10AU each. Fig 12c) shows the safety set with the concentration of the free kinase E not

exceeding 2.5 and with [X2] = 0. However, the sublevel set changes drastically if the concentra-

tion of X2 is 0.5AU as shown in Fig 12d.

Flux analysis for the McKeithan network. Since the RLF are written in terms of rates

(also called fluxes), our functions can be used in the context of flux analysis. Such techniques

usually operate at steady state and do not take dynamics into consideration [89]. We provide

an illustrative example to show how our RLF can be used. Let N = 2 for the network above.

Usually, the network is initialized with zero concentration of the intermediate complexes.

Hence, the initial concentrations of M, L are [M]T, [L]T. Therefore, the Lyapunov function

provides the following safety set ~V ðrÞ � ~V ðr1; 0; ::; 0Þ, where r1 is the flux which is a function

of [M]T, [L]T. For each [M]T, [L]T, we want to find an upper bound that c2 cannot exceed for

all time. Let R6 be the last reaction (i.e., C2 ! M + L), and let R1 be the first reaction, i.e M + L
! C0. Hence, we look for solving the following convex optimization problem for a given

r�
1

� 0:

Maximize r6

subject to r � 0

k Cr k1 � Vðr�
1
; 0; ::; 0Þ;

r1 � r�
1
:

The last inequality is included since the network is conservative and R6(m, ℓ) � R6([M]T,

[L]T) holds due to the monotonicity of R.

The optimization problem above does not require knowledge of the kinetics as it is defined

for fluxes. For the T-cell network, the solution of the problem is r�
6

¼ 3r�
1
. This means that the

flux r6 is guaranteed to be less than 3r�
1

for all time. Converting these bounds to concentrations

requires usage of the kinetics. Let R1(m, ℓ) = k1mℓ, and let R6ðc2Þ ¼
ac2

1þbc2
(Michaelis-Menten

kinetics). Solving for c2, we can plot an upper bound on total amount of k1[M]T[L]T versus the

maximum allowed concentration c2. If R6 is Mass-Action then the relationship will be linear.

Both curves are plotted in Fig 13.

Discussion

We have presented a comprehensive theoretical framework and provided computational tools

for the identification of a class of “structurally attractive” networks. It has been demonstrated

that this class is ubiquitous in systems biology. Networks in this class have universal energy-

like functions called Robust Lyapunov Functions and, under additional mild conditions, can

only admit unique globally stable steady states. Their Jacobians are well behaved and they can-

not exhibit chaos, oscillations or multistability. The latter cannot be admitted even under

inflow/outflow perturbations. Hence, LEARN can be used to rule out these networks as viable
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models for mechanisms that display such behaviors experimentally. Thus, our work supple-

ments other mathematical methods used to invalidate models, as for example those in [90] and

[91].

Our class of networks is distinct from the one identified by the HJF theory [14, 17] and it

has wider applications to biology as we have shown. Furthermore, our results include all net-

works that have been studied via compartmental system techniques [22, 23] and via monoto-

nicity techniques [8, 24, 33]. In fact, showing that the latter class of network always admits an

RLF is a subject of a forthcoming paper. Refer to Table 1 for a comparison with techniques in

the literature. In addition to wider applicability, our analysis has the advantage of showing per-

sistence automatically, rather than needing to check it a priori as in [24]. Also, it has the advan-

tage of having an explicit expression for the Lyapunov function which can be used for a deeper

study of the dynamics such as the construction of safety sets and flux analysis as discussed

before. In addition, Lyapunov functions have been extensively used to study the effect of inter-

connections, uncertainties, disturbances, and delays [9, 10].

Our study of biochemical networks is not meant to be exhaustive, since we only focused on

common motifs and cascades. We provide a computational package to help the wider commu-

nity apply our techniques to study new networks.

We have presented the RLFs with two representations: rate- and concentration-dependent,

and we have provided a toy example for dynamic flux analysis via a rate-dependent RLF. We

look forward to these results being developed further to complement standard flux analysis

techniques.

Fig 13. Flux analysis for McKeithan’s T-cell kinetic proofreading network. The plot depicts an upper bound on the

input flux versus the maximum allowed concentration of the end product with Michaelis-Menten kinetics R6(c2) = c2/

(0.1c2 + 1) and Mass-Action kinetics R6(c2) = c2.

https://doi.org/10.1371/journal.pcbi.1007681.g013
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For a given network, we have presented sufficient conditions for the existence of an RLF,

and several necessary conditions. However, there are important networks that lie in the gap

between the necessary and sufficient conditions. A relevant example is a ligand (L) binding a

receptor (R), and initiating a PTM cycle for a substrate (S). The reaction network is:

R þ L Ð RL; S þ RL Ð C ! Sþ þ RL; Sþ ! S;

It satisfies all necessary conditions but its global stability is still open.

Future work includes the development of more general techniques to identify classes of net-

works that can be multi-stable but cannot admit oscillations or chaos. Furthermore, networks

that admit RLFs have other strong properties in terms of contraction and stabilization [92],

which will be studied in forthcoming papers.

Methods

Reaction networks

We follow the standard notation and terminology on reaction networks [17, 18, 52, 93].

A Chemical Reaction Network (CRN) consists of species and reactions. A species is what

participates or is produced in a chemical interaction. In the context of biochemical networks a

species can be a gene’s promoter configuration, a substrate, an intermediate complex, an

enzyme, etc. We denote the set of species byS ¼ fX1; ::;Xng. A reaction is the transformation

of reactants into products. Examples include binding/unbinding, decay, complex formation,

etc. We denote the set of reactions byR ¼ fR1; :::;Rng. Reactions have two distinct elements:

the stoichiometry and the kinetics.
Stoichiometry. The relative number of molecules of reactants and products between the

sides of each reaction is the stoichiometry. Hence, each reaction is customarily written as fol-

lows:

Rj :
Xn

i¼1

aijXi !
Xn

i¼1

bijXi; j ¼ 1; ::; n; ð16Þ

where αij, βij are nonnegative integers called stoichiometry coefficients. The expression on the

left-hand side is called the reactant complex, while the one on the right-hand side is called the

product complex. If a transformation is allowed to occur also in the opposite direction, the

reaction is said to be reversible and its reverse is listed as a separate reaction. For convenience,

the reverse reaction of Rj is denoted as R−j. The reactant or the product complex can be empty,

though not simultaneously. An empty complex is denoted by 0. This is used to model external

inflows and outflows.

An autocatalytic reaction is one which has a species appearing on both sides of the reaction

simultaneously (e.g., D ! D + M). A network is called non-autocatalytic if it has no autocata-

lytic reactions.

The stoichiometry of a network can be summarized by arranging the coefficients in an aug-

mented matrix n × 2ν as: ~G ¼ ½AjB�, where [A]ij = αij, [B]ij = βij. The two submatrices A, B can

be subtracted to yield an n × ν matrix G ¼ ½gT
1
::gT

n �
T

called the stoichiometry matrix, which is

defined as Γ = B − A, or element-wise as: [Γ]ij = βij − αij.

Kinetics. The relations that determine the velocity of transformation of reactants into

products are known as kinetics. We assume an isothermal well-stirred reaction medium. In

order to study kinetics, a nonnegative number xi is associated to each species Xi to denote its

concentration. Assume that the chemical reaction Rj takes place continuously in time. A reac-
tion rate or velocity function Rj : �Rn

þ
! �Rþ is assigned to each reaction. The widely-used
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Mass-Action kinetics have the following expression: RjðxÞ ¼ kj

Qn
i¼1

xaij
i , where kj, j = 1, .., ν are

positive numbers known as the kinetic constants. Many other kinetic forms are used in biology

such as Michaelis-Menten, Hill kinetics, etc.

We do not assume particular kinetics. We only assume that the reaction rate functions

Rj(x), j = 1, ..ν satisfy the following minimal assumptions:

AK1. each reaction varies smoothly with respects to its reactants, i.e Rj(x) is continuously

differentiable;

AK2. each reaction needs all its reactants to occur, i.e., if αij > 0, then xi = 0 implies

Rj(x) = 0;

AK3. each reaction rate is monotone with respect to its reactants, i.e @Rj/@xi(x) � 0 if αij > 0

and @Rj/@xi(x) � 0 if αij = 0;

AK4. The inequality in AK3 holds strictly for all positive concentrations, i.e when x 2 Rn
þ

.

Reaction rate functions satisfying AK1-AK4 are called admissible. For given stoichiometric

matrices A, B, the set of admissible reactions is denoted byK A.

Dynamics. The dynamics have been already given in (1). The set C x�
≔ ðfx� g þ ImðGÞÞ \

�Rn
þ

is forward invariant for any initial condition x�, and it is called the stoichiometric compatibil-
ity class associated with x�. For a conservative network all stoichiometric classes are compact

convex polyhedral sets.

We sometimes will use the following assumption which is necessary for the existence of pos-
itive steady states.

AS1. There exists v 2 ker Γ such that v � 0.

RLFs and the decomposition of the dynamics

We have provided an informal definition of the notion of RLF in the introduction. The

inequality in Eq (4) must hold for all R 2 KA. As observed before, AK1-AK4 imply a zero-sign

pattern on @R/@x (see Fig 2d for an illustration). This motivates defining the class of matrices

with the specific sign pattern as follows:

KA ¼ fr 2 Rn�n
�0

jrji ¼ 0 for all ðj; iÞ =2 Pg;

where P is the set of reaction-reactant pairs defined before.

Definition 1. Given a network ðS ;RÞ. A locally Lipschitz function ~V : Rn ! R�0 is said to
be an RLF if it satisfies the following:

1. ~V ðrÞ ¼ 0 iff r 2 ker Γ.

2. D ~V :¼ ð@ ~V=@rÞrGr � 0 for all r 2 KA and all r for which @ ~V=@rðrÞ exists.

At points of non-differentiability, the time-derivative of VðxÞ ¼ ~V ðRðxÞÞ is defined in

the sense of Dini (see S1 Text §1.1 for a review of Lyapunov theory and generalized

derivatives).

We will show how the rank-one matrices Q1, .., QS (defined in the Results section) can be

used to embed the dynamics of the nonlinear network in a cone of linear systems. Although

the Lyapunov function ~V ðRðxÞÞ is a function in the concentration x, it is defined as a composi-

tion V ¼ ~V � R. Therefore, we study the ODE in reaction coordinates. Let x(t) be a trajectory
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that satisfies (1) and let r(t)≔ R(x(t)). Hence,

_rðtÞ ¼
@R
@x

ðxðtÞÞGrðtÞ ¼ rðtÞGrðtÞ; ð17Þ

where rðtÞ≔ @R
@x ðxðtÞÞ 2 KA.

The basic idea is to consider ρ(t) as an unknown time-varying matrix. Since its zero-sign

pattern is known, we can decompose ρ(t) in the following way:

rðtÞ ¼
X

ðj;iÞ2P

rjiðtÞEji; ð18Þ

where [ρ(t)]ji = ρji(t)> 0, and [Eji]j0i0 = 1 if (j0, i0) = (j, i) and zero otherwise. The matrices

{Eji|(i, j) such that αij = 0} form the canonical basis of the matrix space KA.

Substituting (18) in (17) we can embed the dynamics of the network (17) in the conic com-

binations of a finite set of extremal linear systems as follows:

_r ¼
X

i;j:aij>0

rjiðtÞEjiGr ¼
Xs

‘

r‘ðtÞQ‘r: ð19Þ

where Qℓ, ℓ = 1, .., s have been defined before Theorem 1. This also implies that the Jacobian of

(17) can be written at any interior point as: ð@R=@xÞG ¼
Ps

‘¼1
r‘Q‘. Hence, the Jacobian

belongs to cone generated by the extremals Q1, .., Qs. Note that (19) can be interpreted as rep-

resenting a linear parameter-varying system which has s nonnegative time-varying parameters

{ρ1(t), .., ρs(t)}. The linear systems are given by rank-one extremals Q1, .., Qs. The proof of The-

orem 1 is completed in S1 Text §1.2.

Computational construction of RLFs

The results presented in [26, 27] have been derived via a direct analysis of the associated reac-

tion networks. The framework introduced above enables interpreting these results in a more

general framework and allows generalizing them. Hence we revisit the algorithms introduced

for the existence and construction of PWL RLFs, and implement them in the LEARN
MATLAB package. Furthermore, we also introduce piecewise quadratic RLFs based on the

new framework introduced in this paper.

Piecewise linear RLFs. Consider a CRN (1) with a G 2 Rn�r
and a given partitioning

matrix H 2 Rp�r such that ker H = ker Γ. A PWL RLF is piecewise linear-in-rates, i.e., it has

the form: VðxÞ ¼ ~V ðRðxÞÞ, where ~V : Rn ! R is a continuous PWL function. Assuming AS1,

the piecewise linear function is given as

~V ðrÞ ¼ jcT
k rj; r 2 �Wk; k ¼ 1; ::;m=2; ð20Þ

where the regions Wk ¼ fr 2 Rn : SkHr � 0g; k ¼ 1; ::;m form a proper conic partition of

Rn, while fSkg
m
k¼1

are signature matrices (diagonal matrices with ±1 on the diagonal) with the

property Sk = −Sm+1−k, k = 1, .., m/2. The coefficient vectors of each linear component can be

collected in a matrix C ¼ ½c1; ::; cm
2
�
T

2 Rm
2

�r
. If the function ~V is convex, then we have the fol-

lowing simplified representation of V:

VðxÞ ¼ max
k¼1;::;m=2

jcT
k RðxÞj ¼k CRðxÞ k1:
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Verifying a candidate RLF. Checking if a given PWL function is an RLF can be posed as

a linear program. It is discussed in S1 Text §2.1 and is coded into LEARN.

Construction via linear programming. Based on Theorem 1, we present a simpler linear

program than the one presented in [27]. The proof is presented in S1 Text §2.2.

Theorem 2. Given a network ðS ;RÞ that satisfies AS1 and a partitioning matrix H 2 Rp�r
.

Let {vi} be a basis for ker Γ. Consider the linear program:

Find ck; xk; zk 2 Rn;L‘
¼ ½l

‘

1

T
:::l

‘

m=2

T
�
T

2 Rm�m

k ¼ 1; ::; m
2

; ‘ ¼ 1; ::; s; j ¼ k þ 1; ::;m

subject to cT
k ¼ x

T
kSkH;

CQ‘ ¼ � L
‘H; l‘kSk � 0;

ðck � cjÞ
Tvi ¼ 0; i ¼ 1; ::; dim ð kerGÞ

xk � 0; 1Txk > 0;L
‘

� 0;

Then there exists a PWL RLF with partitioning matrix H if and only if there exists a feasible
solution to the above linear program that satisfies ker C = ker Γ.

Remark 1. The linear program above does not enforce convexity on ~V . Nevertheless, LEARN
allows the user to search amongst convex ~V ’s only. See S1 Text §2.3.

In LEARN there is a default choice for the matrix H, and it also allows for a manual input by

the user. The default choice is H = Γ which gives the following Lyapunov function (where the

SoC RLF introduced in (6) is a special case):

VðxÞ ¼k diagðxkÞ _xk1; RðxÞ 2 Wk;

The user can add rows to H. Usually rows of the form {γi ± γj|i, j = 1, .., n}, where γ1, .., γn

are the rows of Γ, are good candidates.

Networks without positive steady states. If AS1 is not satisfied, then a linear program

can be designed for constructing RLFs over a given partition. This is discussed in S1 Text §2.4.

An iteration for the construction of convex PWL RLFs. Assuming both AS1 and allow-

ing non-autocatalytic networks only, a computationally-light iterative algorithm for construct-

ing a convex Lyapunov function was presented in [26, 27]. Here we generalize the algorithm

by dropping these two assumptions. The objective is to find a matrix C ¼ ½cT
1
; ::::; cT

m�
T

such

that ~V ðrÞ ¼ max k¼0;::;mcT
k r is a Lyapunov function, where c0 ≔ 0.

We state the algorithm below. We use the notation supp(ck) = {Rj|ckj 6¼ 0}, which is the set

of all those reactions that appear in cT
k r, and let IðRjÞ ¼ fXijaij > 0g which is the set of reac-

tants for reaction Rj. We have the following result, which is proved in S1 Text §2.5.

Theorem 3. Given a network ðS ;RÞ. Let G ¼ ½gT
1
; :::; gT

n �
T

2 Rn�n be its stoichiometry
matrix. If the following algorithm terminates successfully, then ~V is an RLF.
Parameters: N as the upper maximum number of iterations.
Initialization: Set flag = 0, C = Γ, c0 ≔ 0, k ≔ 1, m ≔ n.
while k < N and flag = 0 do
for Rj 2 supp(ck) do
for Xi 2 IðRjÞ do

c� :¼ ck þ sgnðckjÞgi;
if c� 6¼ cℓ for ℓ = 0, .., k then
set C ≔ [CT, c�T]T;
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end
end

end
k ≔ k + 1;
m ≔ number of rows of C;
if m < k then
set flag ≔ 1;

end
end
if flag = 1 then
Success. ~VðrÞ ¼ maxk¼0;::;mcT

k r is the desired function
else
The algorithm did not converge within the prescribed upper maximum

number of iterations.
end

The algorithm above is computationally very light compared to the linear program with a large

H. Furthermore, if the network satisfies AS1 then the RLF can be written as ~V ðrÞ ¼ k Cr k1.

Graphical criteria for the construction of Max-Min RLFs. Compared to computational

conditions, it is highly desirable to have graphical conditions and some have been provided in

[26, 27]. We reformulate those conditions to be more friendly for computational implementa-

tion in LEARN. Those conditions enable the identification of attractive networks by mere

inspection of the reaction graph for a particular class of networks.

We introduce some notations. Let ðS ;RÞ be a given non-autocatalytic network that satis-

fies AS1. Consider the decompositionR ¼ Rr [Ri into the subsets of reactions that are

reversible and irreversible, respectively. Furthermore, we can decomposeRr ¼ Rþ

r [R�

r into

the forward and backward reactions, respectively. Let ðS ;Ri [Rþ

r Þ be the corresponding

irreversible subnetwork and let~be its stoichiometry matrix. Since the designation of a forward

and reverse reaction is arbitrary, we need a decomposition such that ~G has a one-dimensional

nullspace. If such a decomposition exists, then we call the original network ðS ;RÞ an M-net-
work. Our graphical condition applies to this class of networks, and it can be stated as follows.

Theorem 4. Let ðS ;RÞ be an M-network, and let ðS ;Rþ

r [RiÞ be the subnetwork defined
above, where the reactions are enumerated asRþ

r ¼ fR1; :::;Rn1
g,Ri ¼ fRn1þ1; :::;R~ng. If the

irreversible subnetwork satisfies the following properties:

1. each species participates in exactly one reaction, and

2. each reaction Rj 2 Rþ

r satisfies the following statement: If a species Xi is a product of Rj, then
Xi is not a product of another reaction,

then

~V ðRðxÞÞ ¼ maxRðxÞ � minRðxÞ; ð21Þ

where R ¼ 1

w1
ðR1 � R� 1Þ; :::;

1

wn1
ðRn1

� R� n1
Þ

n o
[ 1

wn1þ1
Rn1þ1; :::;

1

w~n
R~n

n o
, is a convex PWL

RLF, where w = [w1, . . ., w|ν1
|]T belongs to the null space of ~G.

Piecewise quadratic-in-rates RLFs. The framework developed in this paper allows us to

go beyond PWL RLFs, and consider other classes of functions such piecewise quadratic-in-

rate functions of the form:

~V ðrÞ ¼ rTPkr þ 2cT
k r; r 2 Wk; ð22Þ

for some matrices Pk 2 Rn�n; ck 2 Rn, k = 1, .., m.
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Instead of linear programming, construction of PWQR RLFs is a copositive programming

problem. Although copositive programs are convex, solving them generally is shown to be NP-

hard [94]. Therefore, we use a common relaxation scheme based on the observation that the

class of copositive matrices encompasses the classes of positive semi-definite matrices, and

nonnegative matrices. The following theorem states the result and it is proven in S1 Text §3.1.

Theorem 5. Given a network ðS ;RÞ that satisfies AS1 and a partitioning matrix H 2 Rp�r
.

Let {vi} be the basis for the kernel of Γ Consider the following semi-definite program:

Find

Pk 2 Sr
; ck 2 Rn;A1

k;A
2
k;B

1
k‘;B

2
k‘ 2 Sp

; xk; zk 2 Rp;

lkj 2 Rr
; Zkj 2 R; k ¼ 1; ::; m

2
; ‘ ¼ 1; ::; s; j 2 N k

subject to

Pk cT
k

ck 0

" #

�
ðSkHÞ

T
ðA1

k þ A2
kÞðSkHÞ x

T
kSkH

ðx
T
kSkHÞ

T
0

" #

; ð23Þ

Q‘

TPk þ PkQ‘ þ ðSkHÞ
T
ðB1

k‘ þ B2
k‘ÞðSkHÞ cT

k Q‘ þ zkSkH

ðcT
k Q‘ þ zkSkHÞ

T
0

" #

� 0; ð24Þ

Pk � Pj ¼ lkjh
T
skj

þ hskj
l

T
kj; ck � cj ¼ Zkjhskj

; ð25Þ

Pk½v1; ::; vd� ¼ 0; cT
k ½v1; ::; vd� ¼ 0; ð26Þ

A1

k;B
1

k‘ � 0;A2

k;B
2

k‘ � 0; xk � 0; zkj � 0;

where d = dim(ker Γ) and N k is the set of neighbor of region Wk (see S1 Text §3.2). If the SDP is
feasible, then ~V as defined in (22) is an RLF for ðS ;RÞ if ker ~V ¼ kerG.

This class of networks for which PWQ RLFs exist is potentially larger than that of PWL

RLFs even when we set ck = 0, k = 1, .., m in (22) as the following proposition establishes. The

proof is given in S1 Text §X.

Proposition 6. Let a network ðS ;RÞ that satisfies AS1 be given. If there exists an RLF
~V ðrÞ ¼ ~cT

k r; r 2 Wk with a partition matrix H, then the SDP problem in Theorem 5 with fckg
m
k¼1

constrained to be zeros is feasible. In particular, Pk ¼ ~ck~cT
k ; k ¼ 1; ::;m is a feasible solution.

Properties of attractive networks

Robust non-degeneracy. It has been shown in [27] that the negative Jacobian of any net-

work admitting a PWL RLF is P0, which means that all principal minors are nonnegative. We

show that the reduced Jacobian (i.e., Jacobian with respect to a stoichiometric class) is non-

degenerate for all admissible kinetics if it is so at one interior point only. The proof is stated in

S1 Text §4.1.

Theorem 7. Assume that there exists a PWL RLF. If for some kinetics R 2 K A there exists a
point in the interior of a proper stoichiometric class such that the reduced Jacobian is non-singu-
lar at it, then the reduced Jacobian is non-singular in the interior ofRn

þ
for all admissible

kinetics.
In LEARN, robust non-degeneracy is checked with ρℓ = 1, ℓ = 1, . . ., s. It amounts to check-

ing the non-singularity of one matrix.
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Remark 2. Robust non-degeneracy, coupled with the existence of a PWL RLF, automatically
guarantees the uniqueness of positive steady states and their exponential stability (see S1 Text

§4.1.2,§4.1.3). Globally stability has been checked via a LaSalle algorithm in [27], which is auto-
matically satisfied for conservative M-networks. Alternatively, global stability follows automati-
cally for any positive steady state if the network is robustly nondegenerate [95]. Hence, Theorem
7 can be used to verify global stability when a PWL RLF exists. Note, however, that the test above
is with respect to the stoichiometric class only. In the case of degenerate reduced Jacobians, a stoi-
chiometric class can be partitioned further into kinetic compatibility classes [16]. The graphical
LaSalle’s algorithm applies to such cases also.

Absence of critical siphons. A siphon is any (minimal) set of species which has the fol-

lowing property: if those species start at zero concentration, then they stay so during the course

of the reaction [41]. Siphons are of two types: trivial and critical. A trivial siphon is a siphon

that contains the support of a conservation law. A critical siphon is a siphon which is not triv-

ial. Critical siphons can be found easily from the network graph. The absence of critical

siphons in a network has been shown to imply that it is structurally persistent (for conservative

networks or systems with bounded flows) [41]. Informally, a system is persistent if the follow-

ing holds: if all species are initialized at nonzero concentrations, none of them will become

asymptotically extinct. We show that the existence of critical siphons precludes the existence

of RLF under mild conditions which serves as an easy-to-check condition to preclude the exis-

tence of an RLF. Review of the concept of siphons and the proof the result is included in S1

Text §4.2.

Theorem 8. Given a network ðS ;RÞ that satisfies AS1. Assume it has a critical siphon
P � S . Let LðPÞ � R be the set of reactions for which the species in P are reactants. Then there
cannot exist a PWL RLF if any of the following holds:

1. lðPÞ ¼ R, i.e P is a critical deadlock.

2. ðS ;RÞ is a conservative M network.

3. ðS ;RÞ is conservative and has a positive non-degenerate steady state for some admissible
kinetics.

Remark 3. The tests established in Theorem 8 have been implemented in LEARN.

RLFs in other coordinates

In this subsection we study an alternative RLF and we link the results with the ones proposed

in [34, 36]. We will show that any RLF has an alternative form if it satisfies a mild condition.

In particular, all PWL RLFs have alternative forms. Assume that (1) has a steady state xe. Then,

we ask whether there exists a Lyapunov function of the form VðxÞ ¼ V̂ ðx � xeÞ. However,

note that this Lyapunov function decreases only in the stoichiometric class containing xe and

that computing its level sets requires knowing xe. We call V̂ a concentration-dependent RLF.

Similar to before, we will characterize the existence of an RLF of the form V̂ ðx � xeÞ for a net-

work ðS ;RÞ by the existence of a common Lyapunov function for a set of extremals of an

appropriate cone. In this subsection, we assume that there exists a positive r 2 Rn
þ

such that

Γr = 0.

We will adopt an alternative representation of the system dynamics. Consider a CRN as in

(1), and let xe be a steady state. Then, there exists x@ðxÞ 2 Rn
þ

such that (1) can written
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equivalently as:

_x ¼ G
@R
@x

ðx@Þðx � xeÞ; xð0Þ 2 C xe
ð27Þ

The existence of x@≔ xe + εx(x − xe) for some εx 2 [0, 1] follows by applying the Mean-

Value Theorem to R(x) along the segment joining xe and x.

Similar to the analysis for a rate-dependent RLFs, the Jacobian of (1) can be shown to

belong to the conic span of a set of rank-one matrices fGi1
eT

j1
; :::;Gis

eT
js
g where {Γ1, .., Γn} are

the columns of Γ. The pairs (iℓ, jℓ), ℓ = 1, .., s are the same pairs used before.

Let DT be a matrix with columns that are the basis vectors of ker ΓT. The following theorem

is proven in S1 Text §5.1.

Theorem 9. Given a network ðS ;RÞ. There exists a common Lyapunov function
V̂ : Rn

! �Rþ for the set of linear systems f _z ¼ ðGi1
eT

j1
Þz; :::; _z ¼ ðGis

eT
js
Þzg, on the invariant

subspace {z: DT z = 0} if and only if V̂ ðx � xeÞ is a concentration-dependent RLF for any xe.

Relationship between the RLFs in concentration and rates. We show next that if ~V is a

rate-dependent RLF that satisfies a relatively mild additional assumption, then then V̂ ðx � xeÞ

is a concentration-dependent RLF, where xe is a steady state point for (1). The following theo-

rem can be stated and is proved in S1 Text §5.2.

Theorem 10. Let ~V be an RLF for the network ðS ;RÞ. If there exists V̂ : Rn ! �Rþ such
that for all r 2 Rn:

~V ðrÞ ¼ V̂ ðGrÞ; ð28Þ

then V̂ is a concentration-dependent RLF for the same network.

PWL functions in concentrations. All PWL RLFs constructed before have the property

that there exists V̂ such that ~V ðrÞ ¼ V̂ ðGrÞ. Hence, there exists a concentration-dependent

PWL RLF for the same network. In particular, consider a PWL RLF defined with a partitioning

matrix H as in (20). By AS1 and the assumption that ker H = ker Γ, there exists G 2 Rp�n and

B 2 Rm
2

�n
such that H = GΓ and C = BΓ. Similar to fWg

m
k¼1

, we can define the regions:

Vk ¼ fzjSkGz � 0g; k ¼ 1; ::;m;

where it can be seen that Vk has nonempty interior iff Wk has nonempty interior.

Therefore, as the pair (C, H) specifies a PWL RLF, the pair (B, G) also specifies the function:

V̂ ðzÞ ¼ bT
k z; whenSkGz � 0;

where B ¼ b1; :::; bm
2

h iT
. If ~V is convex, then it can be written in the form: V1(x) = kCR(x)k1.

Similarly, the convexity of V̂ implies that V2(x) = kB(x − xe)k1, where the latter is the Lyapu-

nov function used in [36].

Theorem 10 shows how to go from a rate-dependent to a concentration-dependent RLF.

The following theorem shows that one can start with either PWL RLF to get the other. It is

proved in S1 Text §5.3.

Theorem 11. Given ðS ;RÞ. Then, if

1. (BΓ, GΓ) specifies a rate-dependent PWL RLF, then (B, G) specifies a concentration-depen-
dent PWL RLF.

2. (B, G) specifies a concentration-dependent PWL RLF, then (BΓ, GΓ) specifies a rate-depen-
dent PWL RLF.
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Remark 4. Since DT(x − xe) = 0 for x 2 C xe
, then if kB(x − xe)k1 is an RLF, then k(B + YDT)

(x − xe)k1 is also an RLF for an arbitrary matrix Y. Furthermore, since Theorem 11 has shown
that the concentration-based and the rate-based representations are equivalent, it is easier to
check and construct RLFs in the rate-based formulation and they hold the advantage of being
decreasing for all trajectories over all stoichiometry classes.

Computational package. Calculations were performed using MATLAB 10 via our soft-

ware package LEARN available at https://github.com/malirdwi/LEARN. Available subroutines

and example runs are included in S1 Text §7. The package cvx [96] has been used for solving

linear and semi-definite programs, and the package PetriBaR for enumerating siphons [97].

Supporting information

S1 Text. Supporting information file with mathematical proofs, generalization of the

results and additional information.

(PDF)
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60. Gyorgy A, Jiménez JI, Yazbek J, Huang HH, Chung H, Weiss R, et al. Isocost lines describe the cellular

economy of genetic circuits. Biophysical Journal. 2015; 109(3):639–646. https://doi.org/10.1016/j.bpj.

2015.06.034 PMID: 26244745

61. Sontag ED. A remark on the converging-input converging-state property. IEEE Transactions on Auto-

matic Control. 2003; 48(2):313–314. https://doi.org/10.1109/TAC.2002.808490

62. Ingalls BP. Mathematical Modeling in Systems Biology. MIT Press; 2013.

63. Madhani HD. From a to α: Yeast as a Model for Cellular Differentiation. CSHL Press; 2007.

64. Sørensen DM, Møller AB, Jakobsen MK, Jensen MK, Vangheluwe P, Buch-Pedersen MJ, et al. Ca2+

induces spontaneous dephosphorylation of a novel P5A-type ATPase. Journal of Biological Chemistry.

2012; 287(34):28336–28348. https://doi.org/10.1074/jbc.M112.387191 PMID: 22730321

65. Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: nature’s escape

from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdisciplinary

Reviews: Systems Biology and Medicine. 2012; 4(6):565–583. https://doi.org/10.1002/wsbm.1185

PMID: 22899623

66. Conradi C, Shiu A. Dynamics of posttranslational modification systems: Recent progress and future

directions. Biophysical journal. 2018; 114(3):507–515. https://doi.org/10.1016/j.bpj.2017.11.3787

PMID: 29414696

67. Buuh ZY, Lyu Z, Wang RE. Interrogating the roles of post-translational modifications of non-histone pro-

teins: miniperspective. Journal of medicinal chemistry. 2017; 61(8):3239–3252. https://doi.org/10.1021/

acs.jmedchem.6b01817 PMID: 28505447

68. Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, et al. Integration of protein phosphorylation, acet-

ylation, and methylation data sets to outline lung cancer signaling networks. Science Signaling. 2018;

11(531). https://doi.org/10.1126/scisignal.aaq1087 PMID: 29789295

69. Gunawardena J. Multisite protein phosphorylation makes a good threshold but can be a poor switch.

Proceedings of the National Academy of Sciences. 2005; 102(41):14617–14622. https://doi.org/10.

1073/pnas.0507322102

70. Patwardhan P, Miller WT. Processive phosphorylation: mechanism and biological importance. Cellular

signalling. 2007; 19(11):2218–2226. https://doi.org/10.1016/j.cellsig.2007.06.006 PMID: 17644338

71. Ferrell JE, Bhatt RR. Mechanistic studies of the dual phosphorylation of mitogen-activated protein

kinase. Journal of Biological Chemistry. 1997; 272(30):19008–19016. https://doi.org/10.1074/jbc.272.

30.19008 PMID: 9228083

72. Conradi C, Saez-Rodriguez J, Gilles ED, Raisch J. Using chemical reaction network theory to discard a

kinetic mechanism hypothesis. IEE Proceedings-Systems Biology. 2005; 152(4):243–248. https://doi.

org/10.1049/ip-syb:20050045 PMID: 16986266

73. Gunawardena J. Distributivity and processivity in multisite phosphorylation can be distinguished

through steady-state invariants. Biophysical journal. 2007; 93(11):3828–3834. https://doi.org/10.1529/

biophysj.107.110866 PMID: 17704153

74. Wang L, Sontag ED. On the number of steady states in a multiple futile cycle. Journal of Mathematical

Biology. 2008; 57(1):29–52. https://doi.org/10.1007/s00285-007-0145-z PMID: 18008071

75. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annual review of bio-

chemistry. 2000; 69(1):183–215. https://doi.org/10.1146/annurev.biochem.69.1.183 PMID: 10966457

76. Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not neces-

sarily a road less traveled. Cell. 1996; 86(6):845–848. https://doi.org/10.1016/s0092-8674(00)80158-0

PMID: 8808618

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 36 / 37

https://doi.org/10.1074/jbc.270.16.9043
https://doi.org/10.1074/jbc.270.16.9043
http://www.ncbi.nlm.nih.gov/pubmed/7721817
https://doi.org/10.1002/cbic.201700425
https://doi.org/10.1002/cbic.201700425
http://www.ncbi.nlm.nih.gov/pubmed/28799209
https://doi.org/10.1006/jmbi.1993.1319
https://doi.org/10.1006/jmbi.1993.1319
http://www.ncbi.nlm.nih.gov/pubmed/7685825
https://doi.org/10.1111/febs.13258
http://www.ncbi.nlm.nih.gov/pubmed/25754869
https://doi.org/10.1016/j.bpj.2015.06.034
https://doi.org/10.1016/j.bpj.2015.06.034
http://www.ncbi.nlm.nih.gov/pubmed/26244745
https://doi.org/10.1109/TAC.2002.808490
https://doi.org/10.1074/jbc.M112.387191
http://www.ncbi.nlm.nih.gov/pubmed/22730321
https://doi.org/10.1002/wsbm.1185
http://www.ncbi.nlm.nih.gov/pubmed/22899623
https://doi.org/10.1016/j.bpj.2017.11.3787
http://www.ncbi.nlm.nih.gov/pubmed/29414696
https://doi.org/10.1021/acs.jmedchem.6b01817
https://doi.org/10.1021/acs.jmedchem.6b01817
http://www.ncbi.nlm.nih.gov/pubmed/28505447
https://doi.org/10.1126/scisignal.aaq1087
http://www.ncbi.nlm.nih.gov/pubmed/29789295
https://doi.org/10.1073/pnas.0507322102
https://doi.org/10.1073/pnas.0507322102
https://doi.org/10.1016/j.cellsig.2007.06.006
http://www.ncbi.nlm.nih.gov/pubmed/17644338
https://doi.org/10.1074/jbc.272.30.19008
https://doi.org/10.1074/jbc.272.30.19008
http://www.ncbi.nlm.nih.gov/pubmed/9228083
https://doi.org/10.1049/ip-syb:20050045
https://doi.org/10.1049/ip-syb:20050045
http://www.ncbi.nlm.nih.gov/pubmed/16986266
https://doi.org/10.1529/biophysj.107.110866
https://doi.org/10.1529/biophysj.107.110866
http://www.ncbi.nlm.nih.gov/pubmed/17704153
https://doi.org/10.1007/s00285-007-0145-z
http://www.ncbi.nlm.nih.gov/pubmed/18008071
https://doi.org/10.1146/annurev.biochem.69.1.183
http://www.ncbi.nlm.nih.gov/pubmed/10966457
https://doi.org/10.1016/s0092-8674(00)80158-0
http://www.ncbi.nlm.nih.gov/pubmed/8808618
https://doi.org/10.1371/journal.pcbi.1007681


77. Laub MT, Biondi EG, Skerker JM. Phosphotransfer profiling: systematic mapping of two-component sig-

nal transduction pathways and phosphorelays. Methods in enzymology. 2007; 423:531–548. https://

doi.org/10.1016/S0076-6879(07)23026-5 PMID: 17609150

78. Russo FD, Silhavy TJ. EnvZ controls the concentration of phosphorylated OmpR to mediate osmoregu-

lation of the porin genes. Journal of molecular biology. 1991; 222(3):567–580. https://doi.org/10.1016/

0022-2836(91)90497-t PMID: 1660927

79. Batchelor E, Goulian M. Robustness and the cycle of phosphorylation and dephosphorylation in a two-

component regulatory system. Proceedings of the National Academy of Sciences. 2003; 100(2):691–

696. https://doi.org/10.1073/pnas.0234782100

80. Hoch JA. Two-component and phosphorelay signal transduction. Current opinion in microbiology.

2000; 3(2):165–170. https://doi.org/10.1016/s1369-5274(00)00070-9 PMID: 10745001

81. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cas-

cade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 “two-component”

osmosensor. Cell. 1996; 86(6):865–875. https://doi.org/10.1016/s0092-8674(00)80162-2 PMID:

8808622

82. Knudsen M, Feliu E, Wiuf C. Exact analysis of intrinsic qualitative features of phosphorelays using

mathematical models. Journal of theoretical biology. 2012; 300:7–18. https://doi.org/10.1016/j.jtbi.

2012.01.007 PMID: 22266661

83. Hopfield JJ. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes

requiring high specificity. Proceedings of the National Academy of Sciences. 1974; 71(10):4135–4139.

https://doi.org/10.1073/pnas.71.10.4135

84. McKeithan TW. Kinetic proofreading in T-cell receptor signal transduction. Proceedings of the National

Academy of Sciences. 1995; 92(11):5042–5046. https://doi.org/10.1073/pnas.92.11.5042

85. Kwang-Hyun C, Sung-Young S, Hyun-Woo K, Wolkenhauer O, McFerran B, Kolch W. Mathematical

modeling of the influence of RKIP on the ERK signaling pathway. In: Priami C, editor. Computational

methods in systems biology. Springer; 2003. p. 127–141.

86. Heinrich R, Rapoport TA. Mathematical modelling of translation of mRNA in eucaryotes; steady states,

time-dependent processes and application to reticulocytest. Journal of theoretical biology. 1980; 86

(2):279–313. https://doi.org/10.1016/0022-5193(80)90008-9 PMID: 7442295

87. Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T. Genome-scale analysis of translation elongation

with a ribosome flow model. PLoS computational biology. 2011; 7(9):e1002127. https://doi.org/10.1371/

journal.pcbi.1002127 PMID: 21909250

88. Margaliot M, Tuller T. Stability analysis of the ribosome flow model. IEEE/ACM Transactions on Compu-

tational Biology and Bioinformatics. 2012; 9(5):1545–1552. https://doi.org/10.1109/TCBB.2012.88

PMID: 22732691

89. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nature biotechnology. 2010; 28(3):245.

https://doi.org/10.1038/nbt.1614 PMID: 20212490

90. Ascensao JA, Datta P, Hancioglu B, Sontag ED, Gennaro ML, Igoshin OA. Non-monotonic response

dynamics of glyoxylate shunt genes in Mycobacterium tuberculosis. PLoS Computational Biology.

2016; 12:e1004741.

91. Rahi SJ, Larsch J, Pecani K, Mansouri N, Katsov AY, Tsaneva-Atanasova K, et al. Oscillatory stimuli

differentiate adapting circuit topologies. Nature Methods. 2017; 14:1010–1016. https://doi.org/10.1038/

nmeth.4408 PMID: 28846089

92. Ali Al-Radhawi M. New Approach to the Stability and Control of Reaction Networks. PhD Dissertation,

Imperial College London; Dec 2015.

93. Angeli D. A tutorial on chemical reaction network dynamics. European Journal of Control. 2009; 15(3-

4):398–406. https://doi.org/10.3166/ejc.15.398-406

94. Dür M. Copositive programming–A survey. In: Diehl M, Glineur F, Jarelbring E, Michiels W, editors.

Recent advances in optimization and its applications in engineering. Springer; 2010. p. 3–20.

95. Blanchini F, Giordano G. Polyhedral Lyapunov functions structurally ensure global asymptotic stability

of dynamical networks iff the Jacobian is non-singular. Automatica. 2017; 86:183–191. https://doi.org/

10.1016/j.automatica.2017.08.022

96. Grant M, Boyd S. CVX: Matlab software for disciplined convex programming, version 2.1; 2014.

97. Liu S, Tong Y, Seatzu C, Giua A. PetriBaR: A MATLAB Toolbox for Petri Nets Implementing Basis

Reachability Approaches. IFAC-PapersOnLine. 2018; 51(7):316–322. https://doi.org/10.1016/j.ifacol.

2018.06.319

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 37 / 37

https://doi.org/10.1016/S0076-6879(07)23026-5
https://doi.org/10.1016/S0076-6879(07)23026-5
http://www.ncbi.nlm.nih.gov/pubmed/17609150
https://doi.org/10.1016/0022-2836(91)90497-t
https://doi.org/10.1016/0022-2836(91)90497-t
http://www.ncbi.nlm.nih.gov/pubmed/1660927
https://doi.org/10.1073/pnas.0234782100
https://doi.org/10.1016/s1369-5274(00)00070-9
http://www.ncbi.nlm.nih.gov/pubmed/10745001
https://doi.org/10.1016/s0092-8674(00)80162-2
http://www.ncbi.nlm.nih.gov/pubmed/8808622
https://doi.org/10.1016/j.jtbi.2012.01.007
https://doi.org/10.1016/j.jtbi.2012.01.007
http://www.ncbi.nlm.nih.gov/pubmed/22266661
https://doi.org/10.1073/pnas.71.10.4135
https://doi.org/10.1073/pnas.92.11.5042
https://doi.org/10.1016/0022-5193(80)90008-9
http://www.ncbi.nlm.nih.gov/pubmed/7442295
https://doi.org/10.1371/journal.pcbi.1002127
https://doi.org/10.1371/journal.pcbi.1002127
http://www.ncbi.nlm.nih.gov/pubmed/21909250
https://doi.org/10.1109/TCBB.2012.88
http://www.ncbi.nlm.nih.gov/pubmed/22732691
https://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
https://doi.org/10.1038/nmeth.4408
https://doi.org/10.1038/nmeth.4408
http://www.ncbi.nlm.nih.gov/pubmed/28846089
https://doi.org/10.3166/ejc.15.398-406
https://doi.org/10.1016/j.automatica.2017.08.022
https://doi.org/10.1016/j.automatica.2017.08.022
https://doi.org/10.1016/j.ifacol.2018.06.319
https://doi.org/10.1016/j.ifacol.2018.06.319
https://doi.org/10.1371/journal.pcbi.1007681

