
Noname manuscript No.
(will be inserted by the editor)

How Effective are Existing Java API Specifications for Finding

Bugs during Runtime Verification?

Owolabi Legunsen1
· Nader Al Awar2

·

Xinyue Xu1
· Wajih Ul Hassan1

·

Grigore Roşu1
· Darko Marinov1

Received: date / Accepted: date

Abstract Runtime verification can be used to find bugs early, during software development,

by monitoring test executions against formal specifications (specs). The quality of runtime

verification depends on the quality of the specs. While previous research has produced many

specs for the Java API, manually or through automatic mining, there has been no large-scale

study of their bug-finding effectiveness.

We present the first in-depth study of the bug-finding effectiveness of previously pro-

posed specs. We used JavaMOP to monitor 182 manually written and 17 automatically

mined specs against more than 18K manually written and 2.1M automatically generated

test methods in 200 open-source projects. The average runtime overhead was under 4.3×.

We inspected 652 violations of manually written specs and (randomly sampled) 200 viola-

tions of automatically mined specs. We reported 95 bugs, out of which developers already

fixed or accepted 76. However, most violations, 82.81% of 652 and 97.89% of 200, were

false alarms.

Based on our empirical results, we conclude that (1) runtime verification technology has

matured enough to incur tolerable runtime overhead during testing, and (2) the existing API

specifications can find many bugs that developers are willing to fix; however, (3) the false

Owolabi Legunsen

legunse2@illinois.edu

Nader Al Awar

nma85@mail.aub.edu

Xinyue Xu

silviaxxy@gmail.com

Wajih Ul Hassan

whassan3@illinois.edu

Grigore Roşu

grosu@illinois.edu

Darko Marinov

marinov@illinois.edu

1University of Illinois at Urbana-Champaign, Urbana, IL, USA
2American University of Beirut, Lebanon

2 Legunsen et al.

alarm rates are worrisome and suggest that substantial effort needs to be spent on engineer-

ing better specs and properly evaluating their effectiveness. We repeated our experiments

on a different set of 18 projects and inspected all resulting 742 violations. The results are

similar, and our conclusions are the same.

Keywords runtime verification, monitoring-oriented programming, specification quality,

software testing, empirical study

1 Introduction

In runtime verification, the execution of a software system is dynamically checked against

formal specifications (specs for short) (Bodden et al., 2007a, 2008; Chen and Roşu, 2003;

Dwyer et al., 2010; Hussein et al., 2012; Luo et al., 2014; Meredith and Roşu, 2013; Mered-

ith et al., 2008). At a high level, the program being monitored is instrumented to capture, as

events, method calls and field updates that are related to the specs being checked. Then, at

runtime, the instrumented program creates listener objects, commonly referred to as moni-

tors, which check that the events conform to the specs and report violations when some spec

is violated. In this paper, a “spec” refers to a behavioral specification, defined by Robillard et

al. (Robillard et al., 2013) as “a way to use an API as asserted by the developer or analyst,

and which encodes information about the behavior of a program when an API is used”. A

spec violation indicates that some API is used in a way that is not consistent with its usage

guideline, but such violation may or may not be a real bug in the code.

The potential for using runtime verification during software testing was previously rec-

ognized (Jin et al., 2012a; Karaorman and Freeman, 2004; Lee et al., 2012; Luo et al.,

2014), but combining testing with runtime verification of multi-object parametric specs,

required by object-oriented API specs, only recently became practically feasible, thanks

to research and development progress on (i) making parametric spec runtime verification

more efficient (Bodden et al., 2008; Forejt et al., 2012; Jin et al., 2011; Luo et al., 2014;

Navabpour et al., 2011; Wu et al., 2013), (ii) being able to monitor many specs simulta-

neously (Arnold et al., 2008; Purandare et al., 2013), and (iii) better-engineered runtime

verification tools (Bodden, 2011; Jin et al., 2012a). We recently proposed to combine run-

time verification with regression testing, where test executions are monitored against formal

specs of API usage to find bugs during software evolution (Legunsen et al., 2015).

The quality of specs has generally been taken for granted in the runtime verification

research community, where the major research direction over the last decade has been to

improve the efficiency and scalability of runtime verification algorithms, techniques, and

tools. The specs used in previous research were manually written (Allan et al., 2005; Bod-

den et al., 2007a; Jin et al., 2011; Luo et al., 2014) or automatically mined (Beckman and

Nori, 2011; Chen et al., 2015; Dallmeier et al., 2010; Gabel and Su, 2010; Krka et al., 2014;

Lee et al., 2011; Lemieux, 2015; Lemieux et al., 2015; Nguyen and Khoo, 2011; Nguyen

et al., 2014; Pradel, 2009; Pradel and Gross, 2009, 2012; Pradel et al., 2010, 2012; Reger

et al., 2013; Sun et al., 2015; Wu et al., 2011; Zhong et al., 2009). These specs were mon-

itored to measure their runtime overhead. However, for finding bugs by combining runtime

verification with software testing, the effectiveness of these specs becomes critical.

In this paper, we present the first in-depth investigation of the effectiveness of existing

specs for finding bugs when runtime verification is combined with software testing. We

consider a spec effective for bug finding if it can catch true bugs but does not generate

too many false alarms. To be effective for bug finding, a spec must encode not only API-

usage correctness conditions, but also capture mistakes that developers commonly make. We

How Effective are Existing Java API Specifications for Finding Bugs? 3

consider specs of the standard Java API because such specs can potentially find bugs in many

projects across various domains, require no domain knowledge, and the runtime verification

tool that we evaluate, JavaMOP (Formal Systems Laboratory, 2014; Jin et al., 2012a; Luo

et al., 2014), works for Java. We evaluate 199 existing manually written and automatically

mined specs. Specifically, we use 182 manually written specs that were formalized directly

from the Java API documentation (Lee et al., 2012) and used in previous studies on the

efficiency and scalability of runtime verification (Legunsen et al., 2015; Luo et al., 2014;

Purandare et al., 2013). We also use 17 specs that were mined automatically from large

traces (Pradel and Gross, 2009) and were used in spec mining studies (Pradel and Gross,

2012; Pradel et al., 2012).

Our work differs from previous evaluations of specs in the runtime verification and spec

mining literature in three major ways. First, previous runtime verification studies mostly fo-

cused on the efficiency of monitoring, but in this paper, we focus on the effectiveness ques-

tion: “How good are the specs for finding bugs?” Second, most previous evaluations were

conducted on the DaCapo benchmarks (Blackburn et al., 2006) (with at most 14 projects) or

with a smaller number of open-source projects; in contrast, we use open-source projects—

200 in our main experiment, plus another 18 projects in our validation study. Our results thus

provide fresh insights to researchers in both runtime verification and spec mining commu-

nities, because our evaluation is based on a substantially larger set of more diverse projects.

We believe that evaluating specs on (current) open-source projects instead of (old) bench-

marks can be more representative for assessing the effectiveness of specs from developers’

point of view and should be strongly considered in future evaluations of specs. Third, in

many previous studies, researchers assumed that any spec violations were bugs, or decided

themselves what was a bug or not, but we submit bug reports and fixes (i.e., pull requests)

to let the original developers be the judges of the bugs that we discovered from manually

inspecting spec violations.

In our main experiment, we monitored 182 manually written and 17 automatically mined

specs while running 18065 manually written and 2135081 automatically generated test

methods in 200 open-source projects. We manually inspected a subset of the spec viola-

tions, and sent pull requests for violations that we believed to be bugs. On the positive, the

average runtime overhead of monitoring was under 4.3×, and developers already fixed 76

of 95 bugs that we reported. On the negative, we found a large rate of false alarms among

the inspected violations. We inspected 652 of 5263 violations of manually written specs. All

the violations of manually written specs that we did not inspect were from 21 specs which,

as discussed more in Section 5.2.1, we found from manual inspection of the specs to be

broken, not able to find TrueBugs, or to always generate false alarms. We also inspected

a sample of 200 from 1141 violations of automatically mined specs. We observed overall

false alarm rates of 82.81% and 97.89%, respectively among the inspected violations of

manually written and automatically mined specs. Further, only a small fraction of the specs

led to the discovery of bugs—11 of 182 manually written and 3 of 17 automatically mined

specs—and even among these, the average false alarm rates were high, 45.51% and 96.69%,

respectively. We reported several issues about the existing specs, and JavaMOP maintainers

already corrected some. However, in many cases, the specs appear completely ineffective

and should not be used at all. Among the 200 projects in our main experiment, only 99 had

at least one violation that we inspected. Of the 99, only 30 had less than 100% false alarm

rate; all 333 violations that we inspected in the remaining 69 projects were not TrueBugs.

Inspecting spec violations and submitting pull requests to developers took an estimated

1,200 hours in our main experiment and was challenging for three reasons. First, under-

standing the root cause of a violation is non-trivial. Although JavaMOP reports the line

4 Legunsen et al.

number for each violation, reasoning about a change that could correct the violation often

requires deeper understanding of the code (and we were not developers on any of the 200

open-source projects); moreover, some of the violations were in third-party libraries, so we

needed to comprehend parts of those libraries as well. Second, it is challenging to decide

what constitutes an actual bug that should be submitted to the developers. At one extreme,

we could only submit violations that can lead to program crashes. At the other extreme,

we could simply submit every violation to the developers and see what they say, but this

could unnecessarily burden the developers (who may then blacklist us or start to “desk-

reject” our pull requests if they feel those are mostly useless to them). Even between these

two extremes, it is debatable how to classify so-called “code smells” (Gabel and Su, 2010;

Nguyen and Khoo, 2011; Pradel et al., 2012) which may indicate API misunderstanding by

developers but are harmless in the current version of the code, e.g., calling close() on an

OutputStream instance for which close() is a no op. Third, preparing a pull request in

a way that developers would find useful requires substantial effort (another reason to not

even attempt to submit every violation), and sometimes involved multiple internal iterations

before submission. For these reasons, we chose to report to the developers those cases where

at least one of the authors believed (and could convince the others) that a violation indicated

some problem in the current version of the code.

Three years after we conducted our main experiment and reported the results (Legunsen

et al., 2016b), we conducted a validation study to see whether the results of our main experi-

ments hold even more broadly. We followed the same procedure as in our main experiments

to monitor 161 manually written specs while running 1698 developer written test classes

in 18 open-source projects. The 18 projects in our validation study are larger (in terms of

lines of code), have longer running tests, have better code coverage, are widely used and

are relatively more actively maintained than the 200 projects in our main experiment. The

161 specs that we used in our validation study are those that remain after removing the 21

specs that we previously reported to be broken (Legunsen et al., 2016b). We did not use

automatically mined specs or automatically generated test methods in our validation study

because they did not help find too many additional bugs in our main experiment.

The results from our validation study, especially in terms of false alarms, were quite

similar to those in our main experiment. The average runtime overhead in our validation

study was greater, at 7.4×, even though we monitored 21 fewer specs simultaneously dur-

ing each test execution. 85.95% of violations that we inspected were false alarms (compared

to 82.81% in our main experiment). Only 11 of 161 specs helped find a bug (same absolute

number as in our main experiment). Among the specs that helped find a bug, the false alarm

rate was 41.8%, compared to 45.51% in our main experiment. We have followed the same

procedure as in our main experiment to manually inspect and classify all 742 spec viola-

tions that we found in our validation study. We report on our ongoing process of reporting

violations in our validation study that we believe to be true bugs to the developers.

The results from our study show that the effort spent by the runtime verification com-

munity over the last decade on improving the performance of simultaneous monitoring of

parametric specs is paying off. Indeed, the technology has matured enough to incur poten-

tially acceptable runtime overhead when monitoring test executions in open-source projects

against dozens of specs. Also, the existing API specs from prior runtime verification and

spec mining research can find many bugs that developers are willing to fix. However, the

false alarm rates are worrisome and suggest that there is a need for the research community

to fundamentally re-think spec finding and “spec engineering” approaches, towards making

runtime verification a more effective early-stage, bug-finding aid that developers can use.

This paper makes the following contributions:

How Effective are Existing Java API Specifications for Finding Bugs? 5

1 C o l l e c t i o n s _ S y n c h r o n i z e d C o l l e c t i o n (C o l l e c t i o n c , I t e r a t o r i) {

2 C o l l e c t i o n c ;

3 c r e a t i o n event s ync a f t e r () re turning (C o l l e c t i o n c) :

4 c a l l (∗ C o l l e c t i o n s . s y n c h r o n i z e d C o l l e c t i o n (C o l l e c t i o n)) | | . . . /∗more c a l l s ∗ /) {

t h i s . c = c ; }

5 event syncMk a f t e r (C o l l e c t i o n c) re turning (I t e r a t o r i) :

6 c a l l (∗ C o l l e c t i o n + . i t e r a t o r ()) && t a r g e t (c) && c o n d i t i o n (Thread . ho lds L ock (c))

{}

7 event asyncMk a f t e r (C o l l e c t i o n c) re turning (I t e r a t o r i) :

8 c a l l (∗ C o l l e c t i o n + . i t e r a t o r ()) && t a r g e t (c) && c o n d i t i o n (! Thread . ho lds L ock (c))

{}

9 event a c c e s s before (I t e r a t o r i) :

10 c a l l (∗ I t e r a t o r . ∗ (. .)) && t a r g e t (i) && c o n d i t i o n (! Thread . ho lds L ock (t h i s . c)) {}

11 ere : (s ync asyncMk) | (s ync syncMk a c c e s s)

12 @match { RVMLogging . o u t . p r i n t l n (L eve l . CRITICAL , __DEFAULT_MESSAGE) ; . . . /∗ more

p r i n t i n g ∗ / }

13 }

Fig. 1: Example spec, Collections_SynchronizedCollection (CSC), with its events and

property

⋆ Large-Scale Evaluation. We present the first large-scale evaluation of runtime verifica-

tion during software testing, with 199 specs and 218 open-source projects. The results

show that runtime verification has potentially acceptable overhead during testing and can

find important bugs that developers are willing to fix, but the specs are largely ineffective

and generate way too many false alarms.

⋆ Analysis of Effectiveness. We analyze reasons for bug-finding ineffectiveness of existing

specs. In particular, we analyze the high rates of false alarms along different dimensions of

program and spec characteristics, and discuss developers’ feedback on our pull requests.

⋆ Recommendations and Data. We provide a set of recommendations that can help the

research community engineer more effective specs and better evaluate these specs. The

data from our main experiment is publicly available (Legunsen et al., 2016c), and we plan

to release the data from our validation study.

2 Background

We briefly describe runtime verification of specs in JavaMOP (Chen and Roşu, 2003; Formal

Systems Laboratory, 2014; Jin et al., 2012a; Luo et al., 2014; Meredith et al., 2008). The

spec, Collection_SynchronizedCollection (CSC), shown in Figure 1, is one of the

manually written specs in our study. CSC was earlier proposed by Bodden et al. (2007b)

(they called it ASyncIteration) to check for cases where a synchronized Collection’s

Iterator is accessed from some non-synchronized code. Figure 1 shows the three parts

of a JavaMOP spec: lines 3–10 define the events that are relevant at runtime, line 11 is the

formal property to monitor over the events, and line 12 shows user-defined handler code

that JavaMOP invokes when the monitored program reaches a certain state, i.e., when the

spec is violated.

Each spec is parameterized by the types of objects whose instances may generate the

events. Specifically, CSC is parameterized (line 1) by Collection c and Iterator i,

which means that one monitor object will be created at runtime for every pair of related

c and i. The creation keyword indicates that a monitor will be created after the sync

event occurs (i.e., when one of the synchronized* methods on line 4 is invoked on a

6 Legunsen et al.

1 im = C o l l e c t i o n s . s y n c h r o n i z e d L i s t (. . .) ;

2 + s ynchronized (im) {

3 f o r (I InvokedM ethod i im : im) {

4 ITestNGMethod tm = i im . ge tT es tM e thod () ;

5 . . . }

6 + }

Fig. 2: Buggy code in TestNG

1 Specification Collections_SynchronizedCollection has been violated on line org.testng.reporters.
SuiteHTMLReporter.generateMethodsChronologically(SuiteHTMLReporter.java:365). Documentation for
this property can be found at https://runtimeverification.com/monitor/annotated-java/__
properties/html/java/util/Collections_SynchronizedCollection.html

2 A synchronized collection was accessed in a thread−unsafe manner.

Fig. 3: A sample violation

Collection). The monitor subsequently listens for the events syncMk (line 5), asyncMk

(line 7), and access (line 9). The syncMk events occur after iterator() is invoked on

a Collection instance, c, to create an Iterator, i, and the thread did synchronize on c

(lines 5–6). The asyncMk events occur after iterator() is invoked on c, but the thread did

not synchronize on c (lines 7–8). Finally, the access events occur before any invocation of

Iterator methods on i from any thread that did not synchronize on c (lines 9–10).

If the monitored program ever reaches a state where the extended regular expression

(ere) property on line 11 is matched, then the handler code on line 12 is invoked. The ere

matches when non-synchronized code creates an Iterator from a synchronized Collection

(sync asyncMk) or when accessing a synchronized Collection’s Iterator from non-

synchronized code (sync syncMk access). In our experiments, we used the default han-

dler in JavaMOP: print a violation containing the spec name, the program line number where

the spec violation occurred, a URL for the spec, and an explanation.

As an example, consider the buggy code in Figure 2, which is simplified from one of

the six bugs that we found in TestNG, a widely used unit-testing framework. The lines

not starting with “+” (1 and 3–5) represent part of the original code that iterates over the

synchronized Collection im. Note that the for loop is not synchronized on im, leading

to a violation of the CSC spec. The violation that JavaMOP reports is shown in Figure 3;

our inspection starting from this reported line of code led us to find the bug. The developers

accepted our pull request that added the synchronization code, in the lines starting with “+”

(2 and 6).

3 Experimental Setup

In this section we describe how we conducted our experiments. Specifically, we describe the

open-source projects used in our main experiment, the manually written and automatically

mined specs that were monitored while running tests in the projects, and how we automati-

cally generated tests using Randoop (Pacheco and Ernst, 2007, 2016; Pacheco et al., 2007).

We also explain our procedure for running JavaMOP on the projects and for inspecting the

resulting violations. Additional details are provided for the setup of the validation study in

Section 4.5

How Effective are Existing Java API Specifications for Finding Bugs? 7

Table 1: Statistics of 200 projects used in our study
PID Project SHA LOC ManTests AutoTests

P1 Altoros.YCSB bfcfe23a 7290 1 –

P2 LogBlock.LogBlock-2 40548aad 875 1 –

P3 edanuff.CassandraCompositeType 6d09cceb 1234 1 5427

P4 jriecken.gae-java-mini-profiler 80f3a59e 908 8 92058

P5 mqtt f4384253 11478 18 –

P6 plista.kornakapi 178061c3 3088 2 21594

P7 threerings.playn c969160c 38388 139 –

P8 tbuktu.ntru 8126929e 7715 70 –

P9 OpenGamma.ElSql db6c6d07 2581 160 11034

P10 sematext.ActionGenerator 10f4a3e6 1864 7 –

P11 vivin.GenericTree 15c59c99 677 49 7787

P12 hoverruan.weiboclient4j 6ca0c73f 8748 34 1229

P13 joda-time cc35fb2e 85000 4157 12123

P14 IvanTrendafilov.Confucius 2c302878 1203 84 23196

P15 mikebrock.jboss-websockets fd03a4ef 1736 1 6668

P16 b3log.b3log-latke afb48c40 24399 76 –

P17 Thomas-S-B.visualee 410a80f0 3574 76 8164

P18 asterisk-java b07617fe 39498 220 33632

P19 Cue.lucene-interval-fields 8f8bff6d 736 9 13162

P20 JSqlParser 001d665d 10517 341 14837

P21 Ovea.jetty-session-redis afb2b25b 6358 7 15414

P22 bcel 24014e5e 35827 87 –

P23 zookeeper-utils a2b80474 455 4 633

P24 bucchi.OAuth2.0ProviderForJava db5e1d06 2654 47 –

P25 htrace c32ec0b1 2521 11 –

P26 ptgoetz.storm-jms d152d72f 1085 2 –

P27 UrbanCode.terraform d67ac40c 12108 4 3069

P28 pignlproc 1a609980 2296 19 53693

P29 jmxtrans.embedded-jmxtrans 4f1ce2cc 5806 56 –

P30 apache.gora bb09d891 24185 56 –

F69 69 projects with 100% FAR various 349029 3834 561031

N101 101 projects without violations various 520472 8484 1250330

SUM 1214305 18065 2135081

AVG 6071.52 90.33 17500.66

MIN 24 1 1

MAX 93260 4157 219404

3.1 Experimental Subjects

We selected the projects for our main experiment from GitHub, starting from a list of the

most popular Java projects. From these, we selected 200 projects that (i) used Maven (for

ease of automation), (ii) had at least one test (so we can monitor test runs), (iii) had all

tests pass without monitoring, and (iv) had all tests pass when monitoring with JavaMOP.

Requirements (iii) and (iv) are important to have a fair measurement of runtime overhead

of JavaMOP—if tests were to fail between the two runs, with and without monitoring, they

may fail at different points in the execution, leading to rather different time measurements.

For example, in a multi-module Maven project, a failing test in one module may completely

prevent running of the tests in other modules. Furthermore, tests could fail due to prob-

lems in the project or due to integration of JavaMOP. For example, we observed some

failures of time-sensitive tests that have some timeouts resulting from the time or mem-

ory overhead of JavaMOP. We also observed test failures that happened because JavaMOP

instrumentation interacted unexpectedly with some other instrumentation frameworks, e.g.,

test-mocking frameworks. We already reported some of these issues to the JavaMOP project

on GitHub (Legunsen et al., 2016c).

8 Legunsen et al.

Table 1 lists some basic statistics about the 200 projects used in our main experiment.

PID either starts with “P” to provide the short ID of a project in which we found some real

bug(s), or summarizes multiple projects with similar characteristics—“F69” summarizes 69

projects in which all inspected violations were false alarms, and “N101” summarizes 101

projects in which no violations were generated for the specs that we inspected. Project is

the project name, SHA is the project revision we used, LOC is the number of Java lines in

the project, ManTests is the number of manually written test methods, and AutoTests is the

number of automatically generated test methods. “–” marks that we did not have Randoop

test methods, which happened for 49 projects with multiple Maven modules, 16 projects

where generated tests did not compile, and 13 projects where Randoop did not generate

any test method within the time limit. For F69 and N101, ManTests and AutoTests show

the sums for all respective projects. The rows SUM, AVG, MIN, and MAX are the sum,

average, minimum, and maximum across all projects in each column, respectively.

3.2 Specs Used in this Study

All Java API specs that we used in our study were obtained from the literature, 182 manually

written specs (Lee et al., 2012; Luo et al., 2014) and 17 automatically mined specs (Pradel,

2015; Pradel et al., 2012). We next describe our rationale and procedure for selecting each

set of specs.

3.2.1 Manually Written Specs

We used 182 manually written JavaMOP specs (Legunsen et al., 2015; Luo et al., 2014),

which are publicly available (Formal Systems Laboratory, 2016). The specs were originally

written by Lee et al. (Lee et al., 2012), who read Javadoc comments in four widely-used

packages (java.lang, java.net, java.io, and java.util), then annotated and formal-

ized sentences describing “must”, “should” or “it is better to” conditions. The specs are

formalized using finite-state machines (FSM), extended regular expressions (ERE), linear

temporal logic (LTL), and context-free grammars (CFG). JavaMOP can monitor specs writ-

ten in any formalism for which a suitable logic plugin exists.

To illustrate manual formalization of specs, consider again the CSC spec (Formal Sys-

tems Laboratory, 2015a) from Section 2. It was formalized as an ERE from text in Colle

ctions.synchronizedCollection() method’s Javadoc: “It is imperative that the user

manually synchronize on the returned collection when iterating over it ... Failure to follow

this advice may result in non-deterministic behavior” (Oracle, 2015d). Section 2 explained

CSC in detail, line-by-line. As mentioned there, this spec had been also used earlier (Bod-

den et al., 2007b). By analyzing Javadoc comments, Lee et al. (Lee et al., 2012) ended up

with some of the same specs that others had formalized before. Monitoring CSC in our ex-

periments using JavaMOP revealed bugs in several widely used projects, including TestNG,

ActiveMQ, and XStream. However, our experiments also revealed a number of issues and

opportunities for improving the manually written specs, discussed in Section 5.2.

3.2.2 Automatically Mined Specs

To compare the effectiveness of manually written specs and automatically mined specs, we

monitored 17 of the 223 specs automatically mined by Pradel et al. (Pradel, 2009, 2015;

How Effective are Existing Java API Specifications for Finding Bugs? 9

Table 2: Mini-Survey. Ref: references; Subjects: kind of subjects; OSS: open-source

projects; Sel-Classes: selected classes; #Sub: number of subjects; FAR[%]: false alarm

rate reported; #Bugs: number of bugs found; Rep?: bugs reported to developers?
Ref Subjects #Sub FAR[%] #Bugs Rep?

Pradel et al. (2010) DaCapo+OSS 12 n/a n/a n/a

Reger et al. (2013) n/a n/a n/a n/a n/a

Krka et al. (2014) n/a 8 n/a n/a n/a

Nguyen and Khoo (2011) DaCapo 7 43.00 20 no

Dallmeier et al. (2010) OSS+JDK 7 n/a n/a n/a

Zhong et al. (2009) OSS 5 73.90 100 yes

Wu et al. (2011) OSS 8 n/a 1 no

Pradel and Gross (2012) DaCapo 10 0.00 54 no

Lemieux (2015); Lemieux et al. (2015) Sel-Classes 3 n/a n/a n/a

Wasylkowski and Zeller (2009) OSS 6 58.00 9 yes

Chen et al. (2015) OSS 4 n/a n/a n/a

Nguyen et al. (2014) OSS 3559 n/a n/a n/a

Gabel and Su (2010) DaCapo 11 70.00 11 no

Beckman and Nori (2011) DaCapo 1 n/a n/a n/a

Le Goues and Weimer (2009) OSS 7 5.00 265 no

Pradel et al. (2012) DaCapo 12 49.00 26 no

Sun et al. (2015) Sel-Classes 15 n/a n/a n/a

Pradel and Gross, 2009; Pradel et al., 2012). We searched for mined specs for Java by con-

ducting a mini-survey of the spec mining literature in which we also investigated how spec

mining was previously evaluated.

Paper Search: We searched for spec mining papers on DBLP (Ley, 2015) using this query:

specification|propert|contract|invariant|precondition mining|monitor|

enforce|infer|mine venue:ICSE|venue:ASE|venue:RV|venue:PLDI|venue:POP

L|venue:ISSTA|venue:ieee_trans_software_eng_tse_|venue:sigsoft_fse|ve

nue:autom_softw_eng_ase_|venue:esec_sigsoft_fse|venue:tacas|venue:ics

m|venue:icsme|venue:sas|venue:sac|venue:paste|venue:icfem|venue:issre

|venue:compsac|venue:formats|venue:sttt|venue:ecoop|venue:fase|venue:

oopsla_companion|venue:kdd|venue:vmcai|venue:seke|venue:cav|venue:oop

sla|venue:electr_notes_theor_comput_sci_entcs_

We obtained 163 potentially related papers, of which we considered only the 100 papers

published in 2009–2015.

Paper Filtering: We split these 100 papers in half, and two of the authors read abstracts

from each half independently to find relevant papers that mined Java API specs that we

could use. We omitted related papers, e.g., a survey by Robillard et al. (2013), which did not

report finding new specs. The result was 26 papers that we then read in more detail to answer

these questions: (i) in what formalism are the mined specs (and can they be monitored with

JavaMOP)? (ii) how many specs did they mine? (iii) did they find any bugs? (iv) do they

report false alarms from evaluating the bug-finding effectiveness of the specs? (v) what is

the reported false alarm rate, if any?

Email to Authors: After filtering, we settled on 17 papers and emailed authors who are

not at our institution to ask for their mined specs. We received responses from authors of

7 papers, with 5 providing their specs. Of these 5, the specs from Pradel et al. Pradel et al.

(2012) had the largest number that we could easily use—their specs were provided in the

DOT format, which was straightforward to automatically translate to finite-state machines

in the JavaMOP syntax.

10 Legunsen et al.

Prior Evaluations: Table 2 lists the 17 papers whose authors we emailed. Although 7 papers

report finding bugs while evaluating mined specs, only 2 papers report confirming the bugs

with the developers. Further, evaluations were mostly performed on DaCapo, the benchmark

initially curated to evaluate performance and not bug-finding effectiveness, and on a small

number of open-source projects, with the exception of Nguyen et al. (2014) who used thou-

sands of projects but only to apply statistical techniques to mine specs from all these projects

and not to evaluate their bug-finding effectiveness. Finally, among the 7 papers that reported

false alarm rates, the rates varied widely, from 0.0% to 73.9%. Our experiments are therefore

complementary to those in the papers we that surveyed on spec mining. In fact, we find even

higher false alarms rates. As was the case for the manually written specs, our experiments

also revealed issues and opportunities for improvement in the automatically mined specs, as

discussed in Section 5.

3.3 Runtime Verification with JavaMOP

Using JavaMOP to monitor test runs is quite simple: integrate JavaMOP in the project and in-

voke mvn test. JavaMOP integration in Maven-based projects is described online (Formal

Systems Laboratory, 2015b). First, the JavaMOP compiler generates a Java agent (Oracle,

2015a) from the specs to be monitored, enabling dynamic instrumentation of code running

in the Java Virtual Machine. Next, the Maven build configuration file, pom.xml, is modi-

fied to make the Maven Surefire plugin (which runs the tests) aware of the JavaMOP agent.

Subsequent invocations of mvn test attach the JavaMOP agent to the test-running process

for monitoring the runs against all the specs simultaneously. We fully automated JavaMOP

agent creation, changing pom.xml, monitoring each project, and post-processing results.

This allowed us to scale our experiments to 218 projects and 199 specs.

In each set of experiments, we ran the tests in each project twice. First, we ran without

integrating JavaMOP to measure the base test-running time and as a check that the tests in

the project pass by themselves. We then integrated JavaMOP and reran the tests to measure

test-running time with monitoring and to record violations. To compute overhead of moni-

toring without printing violations to the standard output, we configured JavaMOP to log all

output to a file. We excluded from monitoring standard Java libraries (that are less likely

to have bugs) and some third-party libraries, such as Maven Surefire (to reduce overhead;

Surefire is used to run tests in all Maven projects) and test-mocking frameworks (which we

found to have unexpected interactions with JavaMOP, as mentioned in Section 3.1). In our

main experiment we ran JavaMOP to monitor the execution of manually written tests on a

64-bit computer with 8 cores of Intel R© CoreTM i7-3770K CPU @ 3.50GHz processor and

32GB of RAM running Ubuntu 14.04.4 LTS and Java 7 or 8 (as required by the project).

3.4 Automatically Generating Tests

To evaluate whether the type of tests impacts the bug-finding effectiveness of the specs,

we used Randoop (Pacheco and Ernst, 2007, 2016; Pacheco et al., 2007) to automatically

generate additional tests in our main experiment. We generated tests and monitored them

on a CoreTM i7-4700MQ 2.40GHz Quad-Core processor PC with 8GB of RAM, running

Ubuntu 15.04, Java 7 or 8 (as required by the project), and Randoop heap usage limited to

4GB. We ran Randoop on all 151 single-module Maven projects (out of total 200 single- and

multi-module projects), which were easier to automate than multi-module Maven projects.

How Effective are Existing Java API Specifications for Finding Bugs? 11

We limited test-generation time to 1 minutes and 5 minutes. After generating tests, we had

a separate run to monitor the generated tests (using JavaMOP) against the same set of man-

ually written specs. The number of new violations, i.e., those which were not already re-

ported while monitoring manually written tests, showed little difference between the tests

automatically generated in 1 minutes and 5 minutes. Therefore, we decided to use the tests

generated in 5 minutes and did not increase the time limit for Randoop any further. Other

researchers who used Randoop also found tests generated in different intervals to behave

similarly (Pacheco et al., 2008; Shamshiri et al., 2015; Tan et al., 2012).

3.5 Inspecting Violations

We describe our procedure for selecting and inspecting violations that JavaMOP reported

while monitoring test runs. We refer to the source-code line number at which JavaMOP

reports a spec violation as the violation site. JavaMOP reports a violation every time a spec

is violated at runtime, so it can report many violations of the same spec at the same site

(e.g., if the site is in a loop or invoked from multiple tests). We refer to all violations that

are reported by JavaMOP during test execution as dynamic violations (DV) and we refer to

unique violations—those that happen in the same project, for the same spec, and at the same

site—as static violations (SV).

In our main experiment, we manually inspected some static violations from both manu-

ally written and automatically generated specs. For manually written specs, we inspected all

violations from 42 specs and ignored all violations from 21 specs. For automatically mined

specs, we sampled to inspect 200 out of 1141 violations of the 17 automatically mined specs

that we monitored. To sample 200 violations, we used stratified sampling (Cochran, 1977):

we divided all violations into strata based on the spec, and from each stratum randomly

selected a number of violations, in proportion to the ratio of the stratum’s size to the to-

tal number of violations. We excluded 21 manually written specs from inspection and did

not monitor 206 automatically mined specs because of issues with these specs, discussed in

Section 5.2.

Our inspection goal was to find as many bugs as possible while increasing the chance

that developers accept the resulting pull requests. Therefore, multiple authors inspected most

violations. For manually written tests and manually written specs, two reviewers first inde-

pendently inspected each violation and classified it as one of:

TrueBug: A potential bug to be confirmed by reporting to the developers or by checking if

it was already fixed;

FalseAlarm: The violation does not indicate a bug in the code but effectively a bug/impre-

cision in the spec, or a code smell; or

HardToInspect: The violation is hard to classify as a TrueBug or a FalseAlarm, because

source code is missing or is particularly hard to reason about.

Next, the independent reviewers met to discuss and agree on the classifications they had

independently assigned and to resolve cases in which one reviewer had classified a violation

as a TrueBug but the other had given another classification. Cases where they still could

not agree were classified as TrueBug if any one of the reviewers had classified as a True-

Bug. A third reviewer then met with the two initial reviewers to confirm all violations that

were classified as TrueBugs. HardToInspect cases were assigned to a third reviewer who

inspected them, classified them as FalseAlarm or TrueBug and passed the results back to the

original two reviewers for confirmation. We did not resolve a few of the HardToInspect vio-

lations, but rather chose to focus on writing and submitting pull requests for the TrueBugs.

12 Legunsen et al.

For automatically mined specs, we followed a similar procedure: two reviewers inspected

each violation reported from monitoring automatically mined specs while running manually

written tests. For automatically generated tests, only one reviewer inspected each violation

because we had built enough experience from inspecting the violations from manually writ-

ten tests.

For each violation that we classified as a TrueBug, we submitted a bug report and/or

a fix (pull request) to the developers of the respective project to check whether they agree

that a code change can be beneficial. As discussed in Section 1, inspecting violations and

submitting pull requests to developers is challenging. For inspections alone, each of the two

initial reviewers spent between 4 minutes and 54 minutes per violation. Summing up all

the time to meet for resolving disagreements, to prepare pull requests, to iterate over them

internally, to communicate with developers, and to record and process the status of each

pull request, we estimate that it took over 1,200 hours just for this process of inspecting and

creating pull requests. Section 5 discusses in detail the inspection results and other results

from our experiments.

We carefully prepared pull requests, trying to obtain an “upper bound” on the effective-

ness of the specs. That is, some violations that we classified as TrueBugs may have been

ignored by developers running a tool on their own or in the absence of our carefully pre-

pared pull requests. We did not simply submit bug reports indicating the violation of a spec

in a code base; we were concerned that developers may not understand the spec or care to

change the code. Instead, we submitted pull requests that included a proposed code change.

4 Results

Our goal is to evaluate the bug-finding effectiveness of existing specs when monitoring test

runs in open-source projects. We answer these research questions (RQs):

RQ1 What is the runtime overhead of monitoring?

RQ2 How many bugs are found from violations?

RQ3 What are the false alarm rates among violations?

RQ4 How do false alarm rates vary by different program and spec characteristics?

RQ5 How repeatable are RQ1 to RQ4 results on a different set of projects?

RQ1 to RQ4 are about the results of our main experiment, while RQ5 is about the results

of our validation study. We added RQ4 to start addressing questions that we commonly

received while presenting RQ1 to RQ3 for our main experiment. Audiences often wanted to

know whether there were program or spec characteristics that influenced false alarm rates.

4.1 RQ1: Runtime Overhead of Monitoring

Table 3 shows the runtime overhead (Overhead[%]) from monitoring all 182 specs (All 182

Specs) and 42 (Selected 42 Specs) manually written specs. We measured overhead only

for manually written (and not automatically generated) tests, because they pass in all 200

projects (while some automatically generated tests fail, making it hard to reliably measure

overhead). Runtime overhead is computed as (mop−base)/base∗100%, where mop is the

time to run tests with monitoring, and base is time to run the tests without monitoring. As

in previous JavaMOP studies, we observed some negative runtime overheads, e.g., in P5.

These can be due to noise in the time measurements or due to the instrumentation changing

How Effective are Existing Java API Specifications for Finding Bugs? 13

Table 3: Dynamic (DV) and static (SV) violations, and overhead (Overhead[%]) for

182 and 42 manually written Specs. ManTests: manually written tests; AutoTests: au-

tomatically generated tests; PID, SUM, AVG, MIN, MAX, “–”: same headers as in

Table 1

PID

ManTests AutoTests

All 182 Specs Selected 42 Specs All 182 Specs Selected 42 Specs

DV SV Overhead[%] DV SV Overhead[%] DV SV DV SV

P1 144 23 558.01 13 4 187.93 – – – –

P2 4 4 157.08 1 1 50.96 – – – –

P3 22 4 214.28 20 2 110.72 11 1 0 0

P4 12 8 381.82 0 0 157.72 20 1 20 1

P5 58212 72 6.85 412 2 -28.37 – – – –

P6 172 9 349.50 24 2 155.36 43 31 0 0

P7 19 11 469.43 1 1 201.39 – – – –

P8 45 15 75.30 27 7 27.88 0 0 0 0

P9 6706 36 1983.61 384 9 239.98 58313 4 0 0

P10 1036 25 309.79 961 3 128.17 – – – –

P11 1045 40 357.91 26 5 128.86 9 3 7 1

P12 6512 35 579.83 0 0 248.97 945 66 558 16

P13 856 220 665.28 236 95 245.26 0 0 0 0

P14 79 5 208.81 74 1 123.09 75258 9 75242 9

P15 0 0 8.80 0 0 2.30 289 5 287 3

P16 3514 85 149.07 167 13 72.25 – – – –

P17 58 24 242.24 37 13 126.38 18 1 18 1

P18 261 47 189.34 2 1 104.53 6797 28 6717 6

P19 903 92 643.10 746 5 284.76 12522 5 12520 3

P20 28473 21 205.76 27977 1 105.98 1493 3 1493 3

P21 517 52 805.23 21 4 324.51 3935 29 7241 4

P22 251125 11 655.35 181430 4 338.72 0 0 0 0

P23 1305 44 164.34 1038 16 67.46 0 0 0 0

P24 787 57 637.20 88 5 228.58 – – – –

P25 227 84 147.16 31 10 69.88 – – – –

P26 239 55 120.15 7 5 51.50 – – – –

P27 10 4 180.33 0 0 84.23 7941 58 1322 8

P28 3868 88 38.99 414 13 14.57 173 5 0 0

P29 3127 110 88.72 29 13 4.30 0 0 0 0

P30 13166 188 1308.77 467 29 616.59 – – – –

F69 737644 2977 31744.19 85120 269 13297.49 2468500 574 96111 64

N101 907063 817 22381.38 0 0 8106.04 2052 81 0 0

SUM 2027151 5263 66027.60 299753 533 25877.95 2638319 904 201536 119

AVG 10135.75 26.32 330.14 1498.77 2.67 129.39 17472.31 5.99 1651.93 0.98

MIN 0 0 -7.44 0 0 -28.37 0 0 0 0

MAX 693388 275 3289.99 181430 95 1036.57 1585833 83 75242 16

the garbage-collection behavior of the instrumented program, causing it to run faster (Jin

et al., 2011, 2012b; Meredith et al., 2008).

The average runtime overhead was 129.39% when monitoring only the 42 inspected

specs and 330.14% when monitoring all 182 manually written specs. Therefore, the over-

head of simultaneously monitoring all specs is under 4.3× on average. We believe this run-

time overhead may be acceptable during testing (not in production), considering the number

of bugs we found and the fact that the tests in these projects run relatively fast—the average

additional time incurred by JavaMOP was 4.08s for 42 specs and 12.48s for 182 specs.

Times are not shown in Table 3. Also, the fact that the overhead significantly varies with the

number of monitored specs suggests that incremental monitoring (Legunsen et al., 2015)

during software evolution, where only specs that are related to code changes are monitored

in newer versions, may not only be desirable but actually critical as more and more effective

specs will be made available. The relatively small increases in total test-running time with

JavaMOP reflects the tremendous progress made in the research community over the last

decade to make runtime verification more efficient. However, as discussed further in sec-

tions 4.3 and 4.4, our experiments also showed that the false alarm rate when monitoring

these specs is still too high. For runtime verification to become more useful at finding bugs

14 Legunsen et al.

during software development, the research community needs to start paying more attention

to finding more effective specs to monitor.

Table 3 also shows the number of dynamic (DV) and static (SV) violations from mon-

itoring 182 and 42 manually written specs on both manually written tests (ManTests) for

all 200 projects and automatically generated tests (AutoTests) for 122 projects (of the 200

projects, 151 were single-module Maven projects, but the tests generated by Randoop did not

compile in 16 projects, and Randoop did not generate any test in 5 minutes for 13 projects).

Even when the number of dynamic violations, DV, is relatively high, the overhead remains

reasonable. Further, although the average overhead is 4.3× (with all 182 specs) and 2.3×

(with 42 specs), several projects have much higher overheads, e.g., P9 and P30, and the

maximum overhead was 33x.

4.2 RQ2: Bugs Found

We found a total of 114 SV (static violations) that were TrueBugs, 110 for manually written

specs and 4 for automatically mined specs. Recall that we map dynamic to static violations

based on the project being monitored, the spec being violated, and the violation site. When

multiple projects use the same library (even if not necessarily the exact same version), then

multiple static violations can actually map to the same bug. Our 114 TrueBugs map to 97

unique bugs. Because most projects evolved since we started our main experiments (with

then latest revisions of the projects), 2 unique bugs that we found were already fixed in the

current latest revisions. For the remaining 95 bugs, we submitted pull requests (as described

in Section 3.5), with 76 already accepted and only 3 rejected; the remaining 16 pull requests

are still pending.

Table 4: Bug Reports. Submitted/Accepted/Rejected: bug reports submitted/accept-

ed/rejected, Pending: awaiting developer response, AFixed: fixed in more recent ver-

sion, VB: non-unique bugs, UB: unique bugs.
Status VB UB

Total Bugs Found 114 97

Submitted 111 95

Accepted 88 76

Pending 19 16

AFixed 3 2

Rejected 4 3

Table 4 summarizes the status of the bug reports that we submitted to the developers of

the open-source projects. Counting only unique bug reports (UB), 78 of them were either

accepted by the developers (76 bugs) or were already fixed by the developers in a more

recent version of the code, before we submitted a bug report (2 bugs). In Table 4, VB is the

number of bugs found by a direct count of static violations that we classified as TrueBug.

However, because some violations occur in third-party libraries shared by multiple subjects,

we also report UB, which is the number of unique bugs that we found. We discuss some

bugs that were accepted and some that were rejected in Section 5.

How Effective are Existing Java API Specifications for Finding Bugs? 15

Table 5: Per-project inspection summary for 42 manually written specs. SV: static vi-

olations; HTI: hard to inspect; TB: true bugs; FA: false alarms; FAR[%]: false alarm

rate
PID SV HTI TB FA FAR[%]

P1 4 0 4 0 0.00

P2 1 0 1 0 0.00

P3 2 0 2 0 0.00

P4 1 0 1 0 0.00

P5 2 0 2 0 0.00

P6 2 0 2 0 0.00

P7 1 0 1 0 0.00

P8 7 0 6 1 14.29

P9 9 0 6 3 33.33

P10 3 0 2 1 33.33

P11 6 0 3 3 50.00

P12 16 0 7 9 56.25

P13 95 0 40 55 57.89

P14 10 0 4 6 60.00

P15 3 0 1 2 66.67

P16 13 0 4 9 69.23

P17 14 0 4 10 71.43

P18 7 0 2 5 71.43

P19 8 0 2 6 75.00

P20 4 0 1 3 75.00

P21 8 0 2 6 75.00

P22 4 0 1 3 75.00

P23 16 0 4 12 75.00

P24 5 0 1 4 80.00

P25 10 0 2 8 80.00

P26 5 0 1 4 80.00

P27 8 0 1 7 87.50

P28 13 1 1 11 91.67

P29 13 0 1 12 92.31

P30 29 1 1 27 96.43

F69 333 10 0 323 100.00

TOTAL 652 12 110 530 82.81

4.3 RQ3: False Alarm Rates

A key metric to evaluate the effectiveness of specs is the false alarm rate (FAR), i.e., the ratio

FA/(TB+FA), where FA and TB are the number of FalseAlarms and TrueBugs among the in-

spected violations. For manually written specs, we inspected a total of 652 violations—533

from manually written tests and 119 from automatically generated tests. Table 5 shows, for

each project in which we inspected violations, the project ID (PID), the number of inspected

static violations (SV), the number of violations in each classification (HTI, TB, and FA),

and the false alarm rate (FAR[%]). All 69 projects in F69 have 100% FAR (no TrueBugs)

and had slightly more violations than all those with TrueBugs. 19 of 30 projects with some

TrueBug had greater than 50% FAR. The SUM row shows the overall FAR: for manually

written specs, it is 82.81% (110 TrueBugs and 530 FalseAlarms). For automatically mined

specs, we inspected 200 violations. We elide the breakdown per project, but the overall FAR

for automatically mined specs is 97.89% (4 TrueBugs and 186 FalseAlarms).

In Table 5, 40 of the 110 TrueBugs, i.e. 36.4%, were in project P13—joda-time, a

very mature and widely used project. Without P13, the average overall FAR in our main

experiment would have been even higher. Therefore, we checked to see if there were any

16 Legunsen et al.

Table 6: Per-spec inspection summary. Column headers are same as in Table 5
Spec SV HTI TB FA FAR[%]

URLDecoder_DecodeUTF8 1 0 1 0 0.00

Collections_SynchronizedColl... 22 0 19 3 13.64

Collections_SynchronizedMap 5 0 4 1 20.00

Byte_BadParsingArgs 3 0 2 1 33.33

Long_BadParsingArgs 22 0 14 8 36.36

InetSocketAddress_Port 2 0 1 1 50.00

ByteArrayOutputStream_Flu... 123 0 55 68 55.28

StringTokenizer_HasMoreEle... 11 0 4 7 63.64

Math_ContendedRandom 14 0 5 9 64.29

Short_BadParsingArgs 3 0 1 2 66.67

Iterator_HasNext 157 3 4 150 97.40

31 Specs with 100% FAR 289 9 0 280 100.00

TOTAL 652 12 110 530 82.81

special characteristics that made P13 have so many TrueBugs (note that 57.89% of viola-

tions in P13 were FalseAlarms). As far as we can see, there are no special characteristics

that make P13 have so many TrueBugs. 37 of the 40 TrueBug that we found in P13 were

violations of the OutputStream-related spec, ByteArrayOutputStream_FlushBefore

Retrieve (BAOS). BAOS is the spec whose violations helped us find the most number of

TrueBugs in both the main experiments and in the validation study (118 TrueBugs in total).

P13 had many unit tests—33, to be specific (Emopers, 2015)—in multiple classes that used

similar logic to create and write data to OutputStream objects in a manner that violated

BAOS. We counted each static violation of BAOS in P13 as a separate TrueBug since they

occurred at different program locations. If the OutputStream-manipulating code had been

refactored by extracting a single method that all 33 unit tests invoke, we would have found

only 4 TrueBugs in P13. However, our experimental methodology is to perform runtime

verification on open-source projects as they existed, same as what developers working with

that version of code would see. All the pull requests that we submitted for the 33 violations

in P13 were accepted by the developers, and we discuss the accepted pull requests of P13 in

more detail in Section 5.1.1.

Table 6 shows the FAR values for the 42 manually written specs that we inspected (we

did not inspect violations of 21 specs, as explained in Section 5.2.1). First, note that only 11

specs (i.e., 26.19% of 42 inspected specs and 6.04% of all 182 specs) helped find a True-

Bug and could have provided some value to the developers of some project(s). Second, 119

specs were never violated, so they only increased the runtime overhead (if their monitors

were created). These specs may get violated if monitored on other projects. We leave as fu-

ture work to manually inspect the specs that were not violated. Third, all but one of the specs

that we inspected caused at least one FalseAlarm, and the only spec without false alarms,

URLDecoder_DecodeUTF8, was violated only once. Interestingly, the spec that was vio-

lated the most and is the least effective among bug-finding specs, Iterator_HasNext with

97.40% FAR, is the de facto pedagogical example spec in research papers on spec mining

and runtime verification. Section 5.2.2 discusses why specs generate so many FalseAlarms.

For automatically mined specs that we monitored, only 3 (i.e., 17.65% of the 17) led to

at least one TrueBug in the 200 inspected violations—FSM162, FSM33, and FSM3731 , with

FARs of 87.50%, 90.00% and 98.06%, respectively. FSM373 is very similar to the manually

written Iterator_HasNext spec and has similar FAR as well. Based on the very high FARs

among violations of both manually written and automatically mined specs, we conclude that

1 These specs are publicly available (Pradel, 2015).

How Effective are Existing Java API Specifications for Finding Bugs? 17

the existing specs are rather ineffective for finding bugs, because they raise too many false

alarms. In Section 5, we discuss the bugs that we found, developer responses to these bugs

and some opportunities for improvement that we found among the monitored specs, in order

to give a qualitative view of the false alarm rates.

4.4 RQ4: False Alarm Rates by Program and Spec Characteristics

One question that we often received while presenting the results of RQ1 to RQ3 is whether

there are certain characteristics of programs and/or specs which make runtime verification

more (or less) prone to high FAR. There are pragmatic reasons why it is important to answer

this question. Assuming there is a correlation between high FAR and some characteristics.

Then, e.g., developers whose projects have those characteristics may choose to not do run-

time verification, or they may choose to use only a subset of specs that that have a higher

chance to find bugs for their projects.

To begin answering this question, we further analyzed the high FAR along several di-

mensions, to identify whether there are program and/or spec characteristics for which it may

be lower. For now, we use simple program and spec characteristics that are easy to measure

or readily available. Different sets of simple program features were shown to be effective

for prediction in other software engineering tasks, e.g., predictive mutation testing (Mao

et al., 2019; Zhang et al., 2016, 2018). Specifically, we analyzed whether FAR was lower by

violation location (i.e., project code vs. third-party libraries), Maven structure (i.e, single-

module vs. multi-module Maven projects), test type (i.e., manually written vs. automatically

generated tests), or spec type (i.e., manually written or automatically mined specs). We also

computed the correlation between FAR and code coverage, and between FAR and project

size. Finally we checked the FAR across severity levels of manually written specs, which

were assigned by the authors of the specs. When formalizing the specs, Lee et al. (2012)

assigned a severity level of suggestion to a spec if its violations are expected to mostly in-

dicate bad programming practice, not necessarily bugs. A severity level of warning means

that a spec is expected to sometimes generate false alarms, but its violations can also be

indicative of TrueBugs. Finally, a severity level of error means that violations are expected

to mostly be indicative of bugs. We leave as future work to come up with other features

that may help predict whether violations of a spec in a program are more likely to be false

alarms.

FAR along different Dimensions of Program Structure: Table 7 (top part —Manually

written specs) shows the FAR breakdown by violation location, Maven structure, test type,

and spec type, for manually written specs. Violations in third-party libraries (Libraries) had

86.55% FAR, while violations in the project code (Project code) had 80.82% FAR. Viola-

tions in single-module (Single-module) vs. multi-module Maven projects (Multi-module)

had 81.87% vs. 86.23% FAR, and violations for manually written tests (ManTests) vs. auto-

matically generated tests (AutoTests) had 82.51% vs. 84.21% FAR. Along all dimensions,

FAR for manually written specs ranged from 80.82% to 86.55%. The similar FARs across

all these dimensions suggests that the FARs are mostly due to inherent (in)effectiveness of

the specs and less due to these code-related factors. An interesting finding is that violations

in libraries are somewhat more likely to be false alarms, as one would expect that libraries

are indeed better tested and have fewer bugs than the project code.

Table 7 (bottom part—Automatically mined specs) shows the breakdown for automat-

ically mined specs. Compared to manually written specs, the FAR values are higher along

all dimensions. The overall FAR was 97.89% (186 of 190 non-HTI violations were false

18 Legunsen et al.

Table 7: Split of inspection results along various dimensions. Column headers are same

as in Table 5
Type of specs SV HTI TB FA FAR[%]

Manually written 652 12 110 530 82.81

Libraries 232 9 30 193 86.55

Project code 420 3 80 337 80.82

Single-module 513 11 91 411 81.87

Multi-module 139 1 19 119 86.23

ManTests 533 7 92 434 82.51

AutoTests 119 5 18 96 84.21

Automatically mined 200 10 4 186 97.89

Libraries 122 10 0 112 100.00

Project code 78 0 4 74 94.87

Single-module 148 9 3 136 97.84

Multi-module 52 1 1 50 98.04

alarms). Compared within different dimensions, the FAR values were similar, e.g., 100.00%

for violations in libraries vs. somewhat lower 94.87% for violations in the project code,

showing a consistent relationship with violations of manually written specs. The FAR for

violations in single-module Maven projects (97.84%) was about the same as that for multi-

module Maven projects (98.04%).

Correlation of FAR with Code Coverage: Figure 4 shows the correlation of FAR with code

coverage (Figures 4a—4e), and the correlation of FAR with code size (Figure 4f). Since we

are interested to see the relationship between coverage and FAR, attempted to measure cov-

erage only for the 99 projects in which there were violations. We ran JaCoCo (The JaCoCo

Team, 2018) to collect coverage from these 99 projects, but could only obtain coverage in-

formation for 83 of them. For the other 16, either JaCoCo did not run “out of the box” (8

projects) or the projects could no longer be built (8 projects). Figure 4f plots the correlation

for all 99 projects in which we inspected some violation, since measuring code size does

not require any special project configuration. The captions of Figures 4a to 4f contain, in

parentheses, the Pearson’s r coefficients which indicate the strength of the correlation. The

results show that FAR is slightly positively correlated with statement coverage (Figure 4a),

line coverage (Figure 4b), branch coverage (Figure 4c), method coverage (Figure 4d) and

class coverage (Figure 4e). This makes sense intuitively and suggests that the better a project

is tested, the more likely it is that spec violations will be false alarms. On the other hand,

we observe a negative correlation of FAR with code size (Figure 4f); violations in larger

projects are less likely to be false alarms. This negative correlation of FAR and code size

remains (but is weaker) even when the outlier in Figure 4f is removed, showing that larger

(and likely more mature) projects may benefit more from runtime verification during testing,

in terms of finding more bugs.

Table 8: False Alarm Ratios by Severity Level of Specs
Severity No. of Specs SV FAR[%]

Error 24 184 90.98

Warning 15 343 76.84

Suggestion 3 127 88.09

FAR by Spec Severity Level: Finally, Table 8 shows the FAR by severity level of the 42

specs whose violations we manually inspected. There, Severity is the severity level assigned

How Effective are Existing Java API Specifications for Finding Bugs? 19

0 20 40 60 80 100

Statement Coverage [%]

0

25

50

75

100

F
al
se

A
la
rm

R
at
io

[%
]

(a) Correlation of Statement Coverage vs. FAR

(Pearson’s r: 0.13)

0 20 40 60 80 100

Line Coverage [%]

0

25

50

75

100

F
al
se

A
la
rm

R
at
io

[%
]

(b) Correlation of Line Coverage vs. FAR

(Pearson’s r: 0.12)

0 20 40 60 80 100

Branch Coverage [%]

0

25

50

75

100

F
al
se

A
la
rm

R
at
io

[%
]

(c) Correlation of Branch Coverage vs. FAR

(Pearson’s r: 0.14)

0 20 40 60 80 100

Method Coverage [%]

0

25

50

75

100

F
al
se

A
la
rm

R
at
io

[%
]

(d) Correlation of Method Coverage vs. FAR

(Pearson’s r: 0.09)

0 20 40 60 80 100

Class Coverage [%]

0

25

50

75

100

F
al
se

A
la
rm

R
at
io

[%
]

(e) Correlation of Class Coverage vs. FAR

(Pearson’s r: 0.15)

0 20000 40000 60000 80000

Lines of Code

0

25

50

75

100

F
al
se

A
la
rm

R
at
io

[%
]

(f) Correlation of Project Size vs. FAR (Pearson’s

r: -0.15)

Fig. 4: Correlation of FAR with Coverage and Code Size in our main experiment

by Lee et al. (2012), No. of Specs is the number of specs per severity level, SV is the number

of violations that we inspected in each severity level, and FAR[%] is the false alarm rate per

severity level. Recall that Lee et al. (2012) manually assigned severity levels to specs in the

following way (each manually-written spec is formalized from the English language in the

Javadoc). If the violation (or matching) of a spec is very likely indicative of runtime error

or failure, then that spec is assigned the highest severity level of error. If a spec violation

sometimes, but not always, indicates an error, then that spec is assigned the second severity

level of warning. A spec is assigned the lowest severity level suggestion if it is a bad

programming practice that cannot lead to an error or failure during execution.

An example spec with error severity level is Collections_SynchronizedCollec

tion, formalized from language described in Section 3.2.1. Note the word, “imperative”,

indicates that each departure from the Javadoc recommendation is an error. An example

spec that is assigned a warning is URLDecoder_DecodeUTF8, which is violated if a non-

UTF-8 encoding is used to decode a URL string. The warning severity level arises from the

20 Legunsen et al.

sentence in the Javadoc from which URLDecoder_DecodeUTF8 was formalized: “...UTF-

8 should be used. Not doing so may introduce incompatibilites” Oracle (2015c). In other

words, if a non-UTF-8 encoding is used, it may or may not introduce incompatibilites. Fi-

nally, an example of spec with severity level suggestion is Math_ContendedRandom. It is

formalized based on the following language in the Javadoc of Math.random() method: “if

many threads need to generate pseudorandom numbers at a great rate, it may reduce con-

tention for each thread to have its own pseudorandom-number generator” Oracle (2015b).

In this case, Math.random() is guaranteed to be properly synchronized so no error or fail-

ure can arise from violating this spec. However, it is a bad programming practice that can

lead to sub-optimal runtime performance. Therefore, Lee et al. (2012) assigned severity

level suggestion. Observe from Table 6 that all three specs whose severity levels we used

as examples helped us find at least one TrueBug. Therefore, it is reasonable to examine the

FAR across these severity levels more broadly.

There are several interesting findings about severity levels and FAR from Table 8. First,

specs with a severity level of error have the highest FAR. One can view these in two

ways: either that these specs are rather ineffective since the Java runtime should capture

most errors and developers would notice them more often, or that the specs are error

severity level are so critical that even the bugs they find can be crucial so it is worth to

inspect the violations. The second finding from Table 8 is that majority of the violations

that we inspected are from specs with warning severity level, but these also have the lowest

FAR among the severity levels. This is somewhat surprising because violations from specs

at warning severity level are expected to have higher FAR than those with error severity

level. The third finding is that even specs with suggestion severity level can find bugs

(they did not have 100% FAR), so one may still want to monitor them. Finally, as far as

we know, we are the first to analyze the false alarms from these specs by severity level,

and Table 8 shows that “field testing” specs like we do may be better for assigning severity

level than simply relying on the imprecise language of the API documentation. For example,

specs with low FAR across many projects and inspected violations may be considered more

important and assigned error severity level.

Conclusion on FAR Analysis: Along all dimensions of program structure, program char-

acteristics, and spec severity level that we investigated, FAR was too high. We did not find

some dimension along which the FAR was low.

4.5 RQ5: Validation Study

We carried out a validation study to see if the conclusions from our main experiment regard-

ing overhead and false alarm rates hold on a different set of Java projects.

Project and Spec Selection: In our validation study, we used 18 projects with different

characteristics than the 200 projects in our main experiment. We monitored 161 manually

written specs while executing the tests in these 18 projects; these are the specs that remain

after removing the 21 that we report as being broken in Section 5.2.1 from the full set of

182. We did not use automatically mined specs and automatically generated tests which did

not yield many additional bugs in our main experiment. Table 9 shows statistics about the 18

projects in our replication study. The 18 projects in our validation study are single-module

Maven Java projects from our previous work on optimizing regression testing (Legunsen

et al., 2016a, 2017), and were selected because, compared with the 200 projects in our

main experiments, they (1) have longer average test running times without JavaMOP (43.9

seconds vs. 5.1 seconds), (2) have more test classes on average (94.3 vs. 7.4), (3) have

How Effective are Existing Java API Specifications for Finding Bugs? 21

Table 9: Statistics of projects used in our replication study
PID Project SHA LOC ManTests DV Overhead[%]

R1 apache-sling-event 139dab1d 12015 11 83 186.24

R2 commons-dbcp c9bec5ce 31154 26 58 96.64

R3 commons-math cbae75b9 174446 469 3448 674.29

R4 addthis.stream-lib aa58062a 8641 24 3370 1606.68

R5 HikariCP 4bb67f76 11983 31 5109 710.87

R6 imglib.imglib2 4d782e21 49320 68 601 260.06

R7 commons-codec 208d3dba 20198 53 192675 361.72

R8 commons-io 06033035 30283 97 1049083 465.13

R9 OpenTripPlanner 12cb13bd 84446 126 107399 3493.50

R10 square.javapoet 59ba4332 8595 16 619 510.82

R11 commons-lang fc409b57 77359 143 360 266.48

R12 commons-pool 3e9d9bb4 14029 17 16 24.52

R13 jackson-databind 277031a3 113946 379 644 945.40

R14 commons-imaging 2e8379b5 38655 67 49073 484.95

R15 commons-dbutils 82bb44fe 6885 22 1 324.66

R16 commons-email e3b0d447 6772 14 49 213.02

R17 commons-fileupload 774ef160 4707 12 24350 384.46

R18 jackson-core 75f9a04e 44253 123 12724 469.32

AVG 40982.61 94.33 80536.77 637.70

SUM 737687 1698 1449662 11478.76

MIN 4707 11 1 24.52

MAX 174446 469 1049083 3493.50

slightly higher code coverage (statement coverage: 58% vs. 51%), (4) are relatively more

mature (11 of them are Apache Software Foundation projects) (5) contain more code (40.9

vs 6.1 KLOC), and (6) are more are actively maintained (several of the 200 projects in our

main experiments are now dormant). All of these characteristics hold despite the fact that we

had to remove very few tests from some of the validation study projects in order to bypass

errors due to JavaMOP instrumentation.

Setup: We followed the same procedure as in our main experiment for using JavaMOP to

monitor the test executions in the 18 projects in our validation study. We manually inspected

all 742 spec violations that JavaMOP generated—which is a larger number than the 652

violations of manually written specs in our main experiment. During manual inspection, we

again followed the same procedure as in the main experiment, whereby multiple reviewers

inspected each violation and then double-checked to reach an agreement. Thus we have

some confidence about the classification of true bugs and false alarms in our validation

study.

Evaluation: We answer again RQ1 (overhead of JavaMOP, Section 4.1), RQ2 (bugs found),

RQ3 (false alarm rates of JavaMOP, Section 4.3), and RQ4 (false alarm rates along different

dimensions, Section 4.4) again, but only for the 18 projects and 161 manually-written specs

in our validation study.

Runtime Overheads: The AVG row of the Overhead[%] column in Table 9 shows that the

average runtime overhead of the 18 projects in our validation study was 7.4×. This is higher

than the average overhead that we observed in our main experiment, even when running with

all 182 specs. We point out three interesting findings about the overhead of runtime verifi-

cation. First, the average overhead from our validation study confirms that the overheads of

runtime verification are high, and were not just a function of the relatively shorter-running

tests in the projects that we used for our main experiment. Second, while 7.4× may still be

tolerable in some testing scenarios (e.g., perform runtime verification overnight), it will be

important in the future to further reduce these overheads so that developers can use runtime

22 Legunsen et al.

verification more frequently, ideally as code is being written. Therefore, we have developed

the first set of evolution-aware runtime verification techniques that reduce the accumulated

overhead of runtime verification across multiple program versions (Legunsen et al., 2015;

Legunsen et al., 2019). Finally, as in the main experiment, we see that some projects have

much higher overheads than the average, e.g, R4 and R9.

Bugs Found: We recently submitted pull requests 75 of the 97 TrueBugs that we found dur-

ing our validation study to the developers of the respective projects. Among these submitted

pull requests, 13 have been accepted, 16 were rejected and the rest are pending. We are in

the process of submitting pull requests for the remaining 22 TrueBugs. We plan to make this

data public after we recieve more responses on more pending pull requests in our validation

study, like we did for our main experiment (Legunsen et al., 2016c). The 13 TrueBugs that

were accepted so far are from 5 different projects, while 15 of 16 rejected TrueBugs are

from the same project—imglib.imglib2, PID: R6. All the TrueBugs that were rejected in

R6 are from specs that monitor against fetching an element from an Iterator without first

checking whether the Iterator has more elements. Interestingly, at least two R6 develop-

ers looked into our pull requests for these rejected TrueBugs and agreed that the changes

in our pull requests were a good idea. However, they eventually rejected these pull requests

because they thought that our particular way of going about the fixes would complicate their

project’s code and design. One of the developers said, “Adding these tests to every place

where cursors are used bogs down the logic of the tests...we should be testing the cursor

iteration in its own test method, and then in other tests, we can assume the iteration works

properly” (Emopers, 2019). In keeping with the general methodology from our main exper-

iments where we let the developers decide what is a bug in their own code, we have marked

these as rejected pull requests. However, we still think that these are bugs, and that with

more discussion with the developers, it may be possible in the future to work with the R6

developers to make more localized changes that they can accept. For the pull requests that

were accepted so far, the developers either accepted them without comment or requested

more changes before acceptance.

False Alarm Rates: Tables 10 and 11 show the false alarm rates among all 18 projects

and all 32 specs that generated violations in our validation study. From Table 10, we see

that only two projects had FAR at most 50%, and also that four projects had 100% FAR,

including R18 in which the most static violations were generated. In sum, the FAR among

the projects in our replication study was high, and is similar to the FAR for projects in the

main experiment (Table 5). From Table 11, we see that most specs that generated violations

also had high FAR. All violations from five specs were classified as true bugs, and only one

spec with non-zero FAR had below 50%. From Tables 10 and 11 we can also see that 640

out of 735 non-HTI violations were false alarms, leading to an overall FAR of 86.3% which

is similarly as high as the 82.81% FAR that we found among inspected specs in our main

experiment. Lastly, three specs had relatively low FAR in both the main experiment and in

our validation study: ByteArrayOutputStream_FlushBeforeRetrieve, Collections

_SynchronizedCollection, and Collections_SynchronizedMap.

False Alarm Rates along different Dimensions: Table 12, Figure 5, and Table 13 show

the FAR in our validation study along different project dimensions, correlation of FAR with

coverage and code size, and FAR by severity levels of the specs. The dimensions that we

consider in Table 12 are fewer than in the main experiment, since all projects in our valida-

tion study are single-module Maven projects, and we consider only manually written specs

and tests. However, for the violations in the “Project code” row of Table 12, we further

analyze them based on whether the violation is in the code under test (“Code under test”

row) or in the test code (“Test code” row). This analysis of violations along the dimensions

How Effective are Existing Java API Specifications for Finding Bugs? 23

Table 10: Per-project inspection summary from our replication study. SV: static vio-

lations; HTI: hard to inspect; TB: true bugs; FA: false alarms; FAR[%]: false alarm

rate
PID SV HTI TB FA FAR[%]

R1 5 0 3 2 40.00

R2 4 0 2 2 50.00

R3 54 0 21 33 61.11

R4 19 0 6 13 68.42

R5 25 2 7 16 69.57

R6 75 0 17 58 77.33

R7 35 1 5 29 85.29

R8 90 0 12 78 86.67

R9 61 1 8 52 86.67

R10 9 1 1 7 87.50

R11 61 0 5 56 91.80

R12 13 0 1 12 92.31

R13 102 0 5 97 95.10

R14 52 0 2 50 96.15

R15 1 0 0 1 100.00

R16 8 2 0 6 100.00

R17 12 0 0 12 100.00

R18 116 0 0 116 100.00

SUM 742 7 95 640 –

Table 11: Per-spec inspection summary for our replication study. Column headers are

same as in Table 5
Spec SV HTI TB FA FAR[%]

Collection_HashCode 4 0 4 0 0.00

Collections_SynchronizedCollection 3 0 3 0 0.00

Collections_SynchronizedMap 1 0 1 0 0.00

Object_MonitorOwner 2 0 2 0 0.00

Serializable_NoArgConstructor 2 0 0 2 100.00

ByteArrayOutputStream_FlushBeforeRetrieve 94 1 63 30 32.26

StringTokenizer_HasMoreElements 6 0 1 5 83.33

ListIterator_hasNextPrevious 47 0 8 39 82.98

Iterator_HasNext 198 2 13 183 93.37

InputStream_ManipulateAfterClose 16 0 0 16 100.00

Reader_ManipulateAfterClose 8 0 0 8 100.00

24 Specs with 100% FAR 387 4 0 383 100.00

SUM 742 7 95 640 84.12

Table 12: False alarm ratios along different dimensions in our replication study
Dimension SV HTI TB FA FAR[%]

All specs 742 7 97 638 86.80

Libraries 49 4 8 37 82.22

Project code 693 3 87 603 87.39

Code under test 217 0 23 194 89.40

Test code 476 3 64 409 86.47

of code under test and test code is new, and was not in our earlier paper about the main

experiment (Legunsen et al., 2016b). The coverage plots in Figure 5 are only for 13 of the

18 projects; the other projects did not work with JaCoCo out of the box. As with the other

RQs, the results of our analysis of FAR along several dimensions in our replication study

was very similar to the results in the main experiment.

24 Legunsen et al.

Table 13: False Alarm Ratios by Severity Level of Specs in our replication study
Severity No. of Specs SV FAR[%]

error 20 105 80.00

warning 9 373 87.99

suggestion 2 256 100.00

From Table 12, violations in third-party library code tended to have lower FAR (82.22%)

than violations in the project’s code (86.19%). For the 693 violations in the project’s code,

476 were in the test code, which is more than twice as much as the violations in code under

test (217). We are the first to analyze the proportion of all spec violations that happen in the

code under test as well as in the test code. Interestingly, in our validation study, much fewer

violations happened in third-party library code than in the project’s code. Finally the FAR

was very high in all of the dimensions that we considered.

One observation from Table 12 is that more than half of the TrueBugs were in the

test code, and not in the code under test. Thus, it is reasonable to question whether it is

worthwhile to monitor the test code against the specs, and whether one can expect TrueBugs

that occur in test code to be fixed in practice. We answer both of these questions in the

affirmative, for three reasons. First, it is essential to monitor test code in order to perform

runtime verification during software testing. If one does not monitor test code, one can miss

to find bugs because violations that happen due to a sequence of events originating in the

test code but ending in the code under test will not be observed. Second, it is important for

test code to be of high quality, because, during software evolution, developers commonly

rely on the pass/or fail outcomes of tests to make decisions on how to proceed with their

development. Thus, if a runtime verification of test code can help find bugs in the test code,

then those should be fixed to improve the quality of the tests. A test did not previously fail

due to the bug exposed by the violation may fail in the future due to that violation and not

due to changes that developers make. Finally, we find empirically, that developers are quite

open to fixing violations in the test code. For example, we discussed in Section 4.3 that,

in our main experiments, developers of the widely-used joda-time accepted all 40 pull

requests that we submitted, even though 33 of them were in the test code.

Concerning coverage and code size, we found similar correlations with FAR between

our main experiment and the validation study. As can be seen in Figure 5, FAR is slightly

positively correlated with code coverage (Figures 5a—5e), and negatively correlated with

code size (Figure 5f); the negative correlation remains even when the outlier in Figure 5f

is removed. The major dissimilarity with the results of the main experiment is with class

coverage, which was much more weakly correlated with FAR than in the main experiment

(Pearson’s r of 0.15 in main experiment vs. -0.02 in the validation study).

FAR was high for all spec severity levels (Table 13). However, some of the trends are

different than in the main experiment. As expected by Lee et al. (2012), violations from

specs with error had the lowest FAR, and all violations from specs with severity level

suggestion were all false alarms. As in the main experiments, most violations were from

specs with severity level warning. Taken together with the results of analyzing FAR by

spec severity level in the main experiment, we still conclude that testing the specs may

still a better way to assign severity levels to the specs; even specs with severity level of

suggestion helped find bugs.

Validation Study Conclusions: Several of the results from our validation study confirm the

results from our main experiment: we still find that the runtime overhead of monitoring test

executions is high but potentially tolerable during testing, that runtime verification can find

many bugs during testing, and that false alarm rates are very high across many dimensions of

How Effective are Existing Java API Specifications for Finding Bugs? 25

50 60 70 80 90

Statement Coverage [%]

60

80

100

F
al
se

A
la
rm

R
at
io

[%
]

(a) Correlation of Statement Coverage vs. FAR

(Pearson’s r: 0.14)

50 60 70 80 90

Line Coverage [%]

60

80

100

F
al
se

A
la
rm

R
at
io

[%
]

(b) Correlation of Line Coverage vs. FAR

(Pearson’s r: 0.15)

60 70 80 90

Branch Coverage [%]

60

80

100

F
al
se

A
la
rm

R
at
io

[%
]

(c) Correlation of Branch Coverage vs. FAR

(Pearson’s r: 0.14)

50 60 70 80 90

Method Coverage [%]

60

80

100

F
al
se

A
la
rm

R
at
io

[%
]

(d) Correlation of Method Coverage vs. FAR

(Pearson’s r: 0.18)

85 90 95 100

Class Coverage [%]

60

80

100

F
al
se

A
la
rm

R
at
io

[%
]

(e) Correlation of Class Coverage vs. FAR

(Pearson’s r: -0.02)

0 50000 100000 150000

Lines of Code

40

60

80

100

F
al
se

A
la
rm

R
at
io

[%
]

(f) Correlation of Project Size vs. FAR (Pearson’s

r: -0.10)

Fig. 5: Correlation of FAR with Coverage and Code Size in our validation study

analysis. We found higher runtime overheads for the longer-running projects in our valida-

tion study, which suggests that there is still more work to be done in the research community

on making runtime verification even more efficient during testing.

5 Analysis of Results

We discuss some bugs we found during our main experiment, some issues with the specs

(and opportunities to improve them), and some developers’ responses to pull requests (bug

reports and fixes) that we submitted.

26 Legunsen et al.

5.1 Analysis of Bugs Found

We describe some of our pull requests that the developers accepted and all three pull requests

that the developers rejected so far.

5.1.1 Accepted Pull Requests

The project with the largest number of accepted pull requests in our main experiment was j

oda-time, “the de facto standard date and time library for Java prior to Java SE 8” (Joda,

2016). The joda-time developers accepted all our 40 pull requests, 37 of which based

on the violations of the manually written spec ByteArrayOutputStream_FlushBefo

reRetrieve (BAOS). BAOS was formalized from the Javadoc of the writeTo() method

of java.io.ByteArrayOutputStream, which states, “Writes the complete contents of

this byte array output stream to the specified output stream argument, as if by calling the

output stream’s write method... using out.write(buf,0,count).” Lee et al. (2012) argue

that “When an OutputStream (or its subclass) instance is built on top of an underlying

ByteArrayOutputStream instance, it should be flushed or closed before the contents of the

ByteArrayOutputStream instance is retrieved.” Essentially, BAOS catches cases where an

underlying ByteArrayOutputStream is not closed or flushed before retrieving the contents

of the enclosing stream. The fix included in our pull requests was simply to invoke flush()

before toByteArray(), toString(), or write*() on a ByteArrayOutputStream. In all

projects, 49 out of 55 BAOS pull requests that we submitted were accepted, 1 was rejected,

and the others are pending.

Another big set of bugs was found from the violations of CSC (discussed in sections 2

and 3.2.1) and a closely related spec, Collections_SynchronizedMap which is defined

only for java.util.Map. These specs are violated if the Iterator of a synchronized

Collection is accessed from code that is not synchronized. Our fix was to put the call-

ing code in a synchronized block. Our pull requests for these specs were mostly accepted,

or were already fixed between the start of our experiments and when we wanted to report

them in widely used applications— TestNG, XStream, and Spring-Beans. We also have a

pending pull request in ActiveMQ.

All the 18 bugs that we found while monitoring automatically generated tests were

related to missing checks for invalid input. 17 were of the form Type_BadParsingArg

s, where Type is Long, Short, or Byte. These specs check that calls to the respective

Type.parseType(String s, int r) methods do not have s empty or null. 12 pull re-

quests were accepted, 1 has been rejected, and 4 are pending. The remaining (and still pend-

ing) invalid-input-related pull request was for a violation of InetSocketAddress_Port

spec which checks that the int port number used to create new java.net.InetSocketA

ddress objects is between 0 and 65535, inclusive. Part of the Java API text from which j

ava.net.InetSocketAddress was formalized states, “A port number of zero will let the

system pick up an ephemeral port in a bind operation”.

Finally, we found 4 bugs from monitoring the specs that Pradel et al. (2012) mined

automatically. Of these, 3 were duplicates of bugs found from monitoring manually writ-

ten specs, so we did not report them again. The additional bug (with pending pull re-

quest) was a violation of FSM33 (Figure 6), where removeFirst() was invoked on a

java.util.LinkedList object without first checking that it was not empty.

H
o
w

E
ff

ec
ti

v
e

ar
e

E
x
is

ti
n
g

Ja
v
a

A
P

I
S

p
ec

ifi
ca

ti
o
n
s

fo
r

F
in

d
in

g
B

u
g
s?

2
7

LinkedList.size() LinkedList.size()

LinkedList.<init>()

LinkedList.addLast(java.lang.Object)

LinkedList.size()

LinkedList.add(java.lang.Object)

LinkedList.remove(java.lang.Object)

LinkedList.size()

LinkedList.removeFirst()

LinkedList.size()

LinkedList.remove(java.lang.Object)

LinkedList.size()

F
ig

.
6
:

A
u

to
m

a
ti

ca
ll

y
m

in
ed

sp
ec

fr
o
m

P
ra

d
el

a
n

d
G

ro
ss

(2
0
0
9
)

th
a
t

fo
u

n
d

a
b

u
g

28 Legunsen et al.

1 p u b l i c vo id t e s t W r i t e T o S y s t e m O u t L i k eS t r e am () {

2 ByteArrayOutpu tS t r eam b y t e s = new ByteArrayOutpu tS t rea m () ;

3 new J s o n A p p e n d a b l e W r i t e r (new P r i n t S t r e a m (b y t e s)) . o b j e c t () . . . done () ;

4 a s s e r t E q u a l s (" . . . " , new S t r i n g (b y t e s . t o B y t e A r r a y () , . . .)) ;

5 }

6

7 c l a s s J s o n A p p e n d a b l e W r i t e r . . . {

8 p u b l i c vo id done () throws J s o n W r i t e r E x c e p t i o n {

9 super . d o n e I n t e r n a l () ;

10 i f (a p p e n d a b l e i n s t a n c e o f F l u s h a b l e) {

11 t r y {

12 ((F l u s h a b l e) a p p e n d a b l e) . f l u s h () ;

13 } catch (IOE xcep t ion e) {

14 throw new J s o n W r i t e r E x c e p t i o n (e) ;

15 }

16 }

17 }

18 }

Fig. 7: Code for rejected bug in threerings.playn

5.1.2 Rejected Pull Requests

Three of our pull requests were rejected, mostly because we had limited domain knowledge.

In XStream, we submitted a pull request for a Collections_SynchronizedMap viola-

tion, but the developer rejected it, tagged it as wontfix, and responded: “...there’s no need

to synchronize it... As explicitly stated in the documentation, XStream is not thread-safe dur-

ing setup... There are a lot of places in the code base, where this applies. XStream is only

thread-safe while you actually run the (un-)marshalling. Especially for XStream annota-

tions you should preprocess the classes. If you process the annotations on-the-fly, you may

no longer process XML concurrently. Again, this is documented behavior.” In JSqlParser,

we reported a missing check for the validity of s in Long.parseLong(String s, int

i), and the developer responded: “...The parser itself ensures that only long values are

passed to LongValue. So do you have a problematic SQL, that produces a NumberForma-

tException?” Indeed, the violation was from monitoring an automatically generated test,

but since the violation is in a public class, it could lead to unhandled exceptions in appli-

cations that depend on JSqlParser but which do not thoroughly sanitize their own input

SQL queries; we plan to revisit this in the future. In threerings.playn, we submitted a

fix for a BAOS violation, and the developer responded: “JsonAppendableWriter automat-

ically flushes the target stream when done() is called, as is documented in the Javadoc

for done. So an additional flush is unnecessary.” Indeed, BAOS did not detect the flush be-

cause the spec is buggy. The violation occurred in a method which is shown in Figure 7

(lines 1–5). JavaMOP finds a violation because toByteArray() was invoked on line 4 for

the ByteArrayOutputStream object, bytes (declared on line 2), without any interven-

ing invocation of flush(). However, done() (lines 8–17) flushes the bytes stream. On

line 12 bytes is cast casts a java.io.OutputStream to java.io.Flushable before in-

voking flush(). However, BAOS was written to only track calls of flush() on java.io

.OutputStream and its subtypes, whereas Flushable is a supertype of OutputStream.

JavaMOP, therefore, correctly finds a violation of the spec, but the spec is incorrect. We

submitted a bug report for BAOS to the JavaMOP repository and confirmed that it did not

affect any other BAOS-related pull request that we sent. It is interesting that BAOS helped find

many bugs, but it still misses some conditions and causes false alarms—some of the 55.28%

How Effective are Existing Java API Specifications for Finding Bugs? 29

of inspected 123 violations of BAOS that we inspected were false alarms. We discuss other

issues that we found with the specs in Section 5.2.

5.2 Issues with Monitored Specs

We next discuss the reasons why we did not monitor some specs or inspect some violations,

and give examples to show why the specs reported a lot of false alarms.

5.2.1 Ignored Specs

Manually Written Specs: In our main experiment, we inspected all (652) static viola-

tions (SV) from 42 manually written specs. 21 other manually written specs had violations,

but we did not inspect them: (i) 8 *StaticFactory specs may, at best, find performance

bugs not functional bugs (459 SV); (ii) 2 *_Obsolete specs get violated for every call to

Dictionary() or Enumeration(), and were written as “suggestion” specs that should not

lead to bugs (518 SV); (iii) 4 *_StandardConstructors specs were marked as potentially

reporting false alarms (430 SV); (iv) 2 Enum_* specs were buggy and get violated on ev-

ery invocation of Enum methods (874 SV); (v) 1 Serializable_UID spec gets violated

when a Serializable class does not declare a serialVersionUID, which can be triv-

ially checked statically (2348 SV); and (vi) 4 more specs (StringBuffer_SingleThread

Usage, File_DeleteTempFile, ObjectInput_Close and ObjectOutput_Close) were

ignored because they did not report violation sites (93 SV). We reported 16 of these spec

issues, together with 7 bugs that we found in other specs—a total of 23 bug reports—to the

JavaMOP repository, and the process of improving the specs is ongoing.

Automatically Mined Specs: Although we originally obtained 223 mined specs from Pradel

et al., we monitored only 17, because a brief manual inspection of specs found that 206 had

one or more of the following issues: (i) the spec (FSM) was very large, sometimes having

tens of transitions and/or states, making it hard to understand and to inspect its violations;

(ii) the spec relates only methods in the javax.swing.* or java.awt.* libraries that are

not widely used in our projects; only 7 of 200 projects in our main experiment mention

these packages; (iii) the spec imposes unnecessary temporal order on methods of multiple

unrelated object types; and (iv) the spec imposes unnecessary temporal order on unrelated

methods of the same object type. We did not report or attempt to improve the automatically

mined specs. In fact, Pradel et al. (2012) acknowledge that some of these specs are of low

quality and develop a system that to prune some violations of mined specs. However, it

would be better to additionally evaluate the spec mining techniques on larger, more diverse

projects and confirm detected (potential) bugs with developers. A major challenge is how to

automatically mitigate the statistical nature of mining techniques, which makes them tend

to overfit the projects from which they are mined (Thummalapenta and Xie, 2009).

5.2.2 Analysis of False Alarms

The monitored specs reported many false alarms mainly because the specs (i) did not en-

code all necessary correctness conditions, or encoded wrong conditions, and thus need to

be improved; or (ii) captured harmless misuse of APIs which would rarely or never lead to

actual bugs. In Section 5.1.2 (Figure 7), we showed one violation of the BAOS spec that we

wrongly classified as a TrueBug, but which turned out to be a FalseAlarm because the BAOS

30 Legunsen et al.

1 A r r a y L i s t < I n t e g e r > l i s t = new A r r a y L i s t < >() ;

2 l i s t . add (1) ;

3 I t e r a t o r < I n t e g e r > i t = l i s t . i t e r a t o r () ;

4 i f (i t . ha s Nex t ()) { i n t a = i t . n e x t () ; }

5 i f (l i s t . s i z e () > 0) {

6 i n t b = l i s t . i t e r a t o r () . n e x t () ;

7 }

8 i f (! l i s t . i sEmpty ()) {

9 i n t c = l i s t . i t e r a t o r () . n e x t () ;

10 }

11 HashMap< S t r i n g , I n t e g e r > map = new HashMap < >() ;

12 map . p u t (" one " , 1) ;

13 i f (map . c o n t a i n s K e y (" one ")) {

14 i n t d = map . v a l u e s () . i t e r a t o r () . n e x t () ;

15 }

16 i n t e = l i s t . i t e r a t o r () . n e x t () ;

17 i n t f = map . v a l u e s () . i t e r a t o r () . n e x t () ;

Fig. 8: False alarms from the Iterator_HasNext spec

1 Map< S t r i n g , S t r i n g > map = new HashMap < >() ;

2 map . p u t (" 1 " , " 1 ") ; map . p u t (" 2 " , " 2 ") ;

3 f o r (S t r i n g key : map . keySe t ()) {

4 S t r i n g v a l u e = map . g e t (key) ;

5 map . p u t (key , v a l u e + " x ") ;

6 / / map . p u t (key + " x " , v a l u e + " x ") ;

7 }

Fig. 9: False alarms from the Map_UnsafeIterator spec

spec did not encode the fact that a method could be invoked on an object after casting it to a

supertype. Other specs with many false alarms also missed to capture some conditions.

For example, consider the Iterator_HasNext spec which states that each invoca-

tion of next() on a java.util.Iterator object must be preceded by an invocation of

hasNext() that returns true on the same Iterator object. Violations of Iterator_HasNext

led us to discover 4 accepted bugs in Thomas-S-B.visualee project, and other researchers

had previously used Iterator_HasNext to find some real bugs in production AspectJ

(bug IDs #218167 and #218171 (Wasylkowski and Zeller, 2009)). However, Iterator_HasNext

also reports a huge number of false alarms—150 of 154 non-HardToInspect violations

were false alarms—with FAR of 97.40%. Figure 8 illustrates several valid invocations of

Iterator.next()—lines 4, 6, 9, 14, 16, and 17—with no bugs in the shown code. How-

ever, Iterator_HasNext will be violated for all those invocations except the one on line 4.

The example next() invocations in Figure 8 illustrate only a few of the valid uses of the

next() method that were violations of the Iterator_HasNext spec during our main ex-

periment. To make the Iterator_HasNext spec more precise, one would need to ensure

that it encodes more valid ways of checking that an Iterator has enough elements before

invoking next(), taking into consideration various possible Collection types underlying

the Iterator.

Map_UnsafeIterator is another spec with a lot of false alarms because it does not

capture enough; it checks whether code is modifying a java.util.Map instance while

iterating over it. All 9 Map_UnsafeIterator violations that we inspected were false alarms.

To illustrate the problem, consider the code snippet in Figure 9. On each iteration, line 5

modifies the values in the Map—a valid operation. Nevertheless, Map_UnsafeIterator is

violated, because it is too restrictive, and reports a violation for any modification to the

Map. If line 5 is replaced with the commented-out statement on line 6, the standard Java

How Effective are Existing Java API Specifications for Finding Bugs? 31

library would throw a ConcurrentModificationException. We therefore asked other

JavaMOP developers (not involved in this project) why anyone would want to monitor this

spec. The response reflects one challenge in coming up with effective specs: “Invoking the

put method on a map object may or may not change its key set... there is a trade-off between

accuracy and simplicity... when writing [a JavaMOP] spec and it is up to the user; one can

put more effort into writing more fine-grained specs... (using conditional pointcut to obtain

more accurate instrumentation) so that there will be fewer false alarms reported; or write a

simple spec easily and [then] manually eliminate the false alarms.”

Roughly 20% of all the false alarms among manually written specs were from two

Closeable_* specs (Closeable_MultipleClose and Closeable_MeaninglessClo

se), with 113 violations between them. Both had 100% FAR. One of them catches calls of

close() on subtypes of java.io.OutputStream for which close() is a no op. The other

catches situations where calling close() on an OutputStream object that is already closed

has no effect. Although both of these specs can help find developers’ likely misunderstand-

ing of the API, we classified them as FalseAlarms because they are harmless in the current

version of the code. It is debatable whether we should have classified these as “code smells”

as done in some prior work (Gabel and Su, 2010; Nguyen and Khoo, 2011; Pradel et al.,

2012), and whether these were serious enough to submit to the developers. We could not

easily change the code to avoid these problems, and it is highly unlikely that the developers

would have accepted our changes.

Automatically mined specs have similar reasons for false alarms as manually written

specs. For example, FSM373 is similar to Iterator_HasNext, so its false alarms were sim-

ilar as well. However, one additional cause of false alarms among violations of FSM373

was that it did not permit to call hasNext() multiple times successively (a self transi-

tion is missing from a state in the FSM). FSM162 also contains transitions that are similar

to Iterator_HasNext, but also adds in a single transition on the Iterator.remove()

method such that the spec is violated if remove() is called multiple times successively.

5.3 Developers’ Responses

We discuss some example responses and comments that developers made regarding our

pull requests, which gives a valuable insight into developers’ perception. Note that these

responses are from a small subset of pull requests for which the developers made comments.

Majority of the accepted pull requests were without developer comments, and the fact that

most of them were accepted shortly after we submitted suggests that developers considered

them important.

Developers Asked for More: On the same day that we submitted a pull request for a BAOS

violation, the apache.gora developers asked us to help check other portions of their code:

“ Hi, thanks for the pull request....Are there any other instances of this behavior through-

out the codebase? If so it would be real nice to catch them all at the same time...I just

undertook a quick scan of the codebase for ByteArrayOutputStream, I found the follow-

ing instances. Can you please check these out as well?” We did not check those ear-

lier because they were not dynamically executed and hence did not have similar viola-

tions. Even after we fixed these other instances that they pointed out, the developers asked

whether we would be interested to help with similar problems in their other codebase. In an-

other project, hoverruan.weiboclient4j, we sent a pull request that fixed one of seven

Long_BadParsingArgs violations and simply reported the other six. The developers fixed

the remaining six within a day of accepting our pull request.

32 Legunsen et al.

Developers Viewed Pull Requests Liberally: The joda-time developers accepted one of

our BAOS pull requests although they found it unnecessary: “While I’m not convinced it is

necessary, this will cause no harm.” We got similar comments for two pending pull requests.

In Apache Zookeeper, for the BAOS spec, the developer wrote “Makes sense. I don’t see

why we shouldn’t do what you suggest (add the flush). You see why it’s a no-op currently

though, right? (and why we haven’t seen issues with this code)”. In TestNG, the developer

tagged one of our synchronization-related pull requests as a perf/enhancement and said,

“I’m not sure if it is relevant here: the lists of results should be already computed when the

reporter will report, and...no one is supposed to add something new at the report phase.”

Developers Accepted Better Exception Messages: For pull requests pertaining to missing

checks for invalid inputs, developers responded well to the better error messages that we

provided. In IvanTrendafilov.Confucius, the developer responded “Looks good, I’ll

be happy to add that more helpful error message to the lib. Yes, please also add this check

for parseShort and parseByte...”. Similarly, in jriecken.gae-java-mini-profile

r, the developer commented on our suggested error message “Not sure that this is much

better than the previous behavior - the exception message is a little more helpful, but it still

throws a NumberFormatException”, and requested that we further modify our pull request

before they accepted it.

6 Suggestions for the Future of Specification Engineering

Based on the experience from this study, we give several suggestions to help the spec mining

and runtime verification research communities with spec engineering, i.e., writing/discover-

ing and evaluating more effective specs, in the future.

(1) Increased Focus on Bug-Finding Effectiveness: More focus should be on the bug-

finding effectiveness of specs, which is more important to developers than the performance

of monitoring. For example, the most widely used Iterator_HasNext spec was highly

ineffective for finding bugs.

(2) Better Spec Categorization: It is crucial to find good ways to designate the severity

levels of specs. All specs are not equal in their bug-finding effectiveness. Some specs, when

violated, indicate a bug with a very high probability. Other specs indicate issues that may

be bugs in some projects but not in others; these may be improved to carry more program

state in the monitor and be more precise. Finally, some specs are less severe, indicating

potentially poor coding practices and may not lead to the detection of actual bugs.

(3) Complementing Benchmarks: Continued use of benchmarks like DaCapo is good for

comparison with older results and evaluating performance of new techniques, but bench-

marks should be complemented with evaluations on a larger number of open-source projects,

to assess the techniques and specs in more realistic scenarios.

(4) Confirming Detected Bugs with Developers: Evaluating on recent project versions

and reporting detected bugs to developers of open-source projects should be encouraged

more. Admittedly, the process is challenging and time consuming, requiring to understand

the application domain and communicate with the developers. We have publicly released a

list of all our pull requests, to serve as a starting point for collecting true bugs: (Legunsen

et al., 2016c). We found interesting results from submitted pull requests, e.g., even “buggy”

specs like BAOS can lead to accepted pull requests, and feedback from developers can help

improve the specs.

(5) Automated Filtering of Specs and False Alarms: It is necessary to better automati-

cally filter out likely false alarms to improve ineffective specs. We found that specs with

How Effective are Existing Java API Specifications for Finding Bugs? 33

too many violations were almost always ineffective. Pradel et al. (Pradel et al., 2012) de-

fined some heuristics-based automated techniques for filtering out violations while stati-

cally checking mined specs, while Gabel and Su (Gabel and Su, 2012) as well as Nguyen

and Khoo (Nguyen and Khoo, 2011) proposed techniques for checking that mined specs

are true specs. More work in this direction is needed, especially because manual inspection,

which we did in this paper, is rather tedious.

(6) Open Spec Repositories: It would be beneficial to have community-driven spec repos-

itories and standardized ways of representing specs to facilitate spec sharing—we could

have evaluated more specs if it were easier to find and use them. We started such a repos-

itory using all the specs monitored in this paper (Formal Systems Laboratory, 2016); we

plan to continue adding more specs to this repository, and invite the research community to

contribute their specs there as well to facilitate research on engineering better specs.

7 Threats to Validity

External: The results of our study may not generalize beyond the projects, tests, or specs

that we evaluated. To mitigate this threat, we used a larger number of open-source projects

than had been evaluated in previous runtime verification and spec mining studies. Further,

the 218 projects that we used were quite diverse in size, number of tests, test coverage,

and GitHub activity. Concerning the bug-finding effectiveness of specs, we used the largest

sets of manually written and automatically mined specs that we could find with our mini-

survey of the spec mining and runtime verification literature, and that could easily work with

JavaMOP. JavaMOP is representative of the performance of runtime verification tools in the

literature and allows to simultaneously monitor specs written in different formalism, making

it well suited for our large-scale evaluation of existing specs. Our study is focused on Java,

and the results may differ for other programming languages.

Internal: We wrote scripts to automate the monitoring of tests against the specs. Our scripts

that run the tests, measure overhead, and post-process results were reviewed by at least

two authors. During inspection and classification of violations into TrueBug, FalseAlarm,

and HardToInspect, we initially had two reviewers inspect independently to prevent them

from influencing each other. It is possible that some violations we labeled as FalseAlarms

are actually TrueBugs. For violations that we labeled as TrueBugs, we submitted 95 pull

requests, and developers make the final judgment whether to accept (76 so far) or reject (3

so far).

8 Related Work

Weimer and Necula (2005), Le Goues and Weimer (2009), and Gabel and Su (2012) all men-

tion high false alarm rates when evaluating spec mining algorithms, but our work is different

in the sense that we evaluate the bug-detection capability of existing “true specs”. Because

our main goal was to evaluate the effectiveness of existing specs on open-source projects,

i.e., “in the wild”, we used a larger number of projects in our study than in any prior work

related to specs that we are aware of. Most of the literature on spec mining that we surveyed

(see Section 3.2.2) were either evaluated on benchmarks (e.g., 7 of 17 papers were evalu-

ated on DaCapo) or on a small set of open-source projects (6 of 17 papers were evaluated on

4–7 open-source projects). Some papers did not even use any projects but instead the mined

specs were evaluated (in 4 of the 17 papers) by means of recall and precision against existing

34 Legunsen et al.

specs derived from a small collection of classes or from prior work. Evaluating specs on a

larger set of open-source projects can provide a more indicative picture of the bug-finding

effectiveness of the specs in code that developers commonly write.

Our process for evaluating mined spec is similar in scale and approach to that used for

evaluating Doc2Spec (Zhong et al., 2009). There, the authors obtained violations of mined

specs in 138 open-source projects, manually inspected them to filter out false alarms (73.9%

of the violations) and reported suspected bugs to the developers of the projects in which

the violations occurred. Our work is different (i) in the way that the violations are obtained

(they perform static analysis of selected client code that use the API from which the specs are

mined, we find dynamic violations obtained from running tests that shipped with our subject

applications), (ii) in scope (they only evaluate automatically mined specs, but we evaluate

both manually written and automatically mined specs) and (ii) in purpose (their goal was

to show, specifically how good Doc2Spec was for finding bugs, our goal is to show how

good, generally, are specs when they are monitored against test executions in open-source

projects).

Thummalapenta and Xie (Thummalapenta and Xie, 2009) proposed an automated ap-

proach, Alattin, for reducing the false alarms generated by automatically mined specs. Their

idea is to not just report frequently-occurring code patterns as part of a mined spec, but to

also include “alternate patterns”—code patterns that were seen less frequently during the

spec mining process, but which, if not incorporated into the resulting spec can lead to many

FalseAlarms when checking the spec. For example, we showed in Figure 8 some legitimate

code that would nevertheless violate the Iterator_HasNext spec. Alattin would encode

some of these as alternate patterns in the spec, so that some of those FalseAlarms are not

generated at runtime. More ideas like Alattin, as well as extending Alattin to work on other

kinds of formalism that JavaMOP supports, would be worthwhile to pursue in the future, for

augmenting some of the more effective specs in our study.

9 Conclusions

Runtime verification has been receiving increased attention in the research community, with

substantial contributions to reducing the overhead of monitoring. However, insufficient work

has been done on evaluating and improving specs. Our extensive study shows that existing

tools such as JavaMOP have an acceptable overhead for development-time monitoring of

test runs, and the existing specs can find some true bugs. Unfortunately, a vast majority of

violations from these specs are false alarms. We believe that this greatly hinders the adoption

of these techniques by practitioners.

Based on the experience from our study, we provided a set of recommendations for fu-

ture work. We also made publicly available the data from our study (Legunsen et al., 2016c)

to aid future research. The runtime verification and spec mining research communities need

to put much more emphasis on better spec engineering to develop more effective specs.

It is possible that improving existing specs or mining new effective specs will need more

expressive formalism, which may slow down monitoring and require further efficiency im-

provements to runtime verification. But only when effective specs are available, will it be

truly worthwhile to consider how to further make monitoring faster and to have some chance

of practical adoption. We hope this paper presents a call to action for the researchers to de-

velop better specs and evaluate them more thoroughly.

How Effective are Existing Java API Specifications for Finding Bugs? 35

Acknowledgements Karl Hajal, Milica Hadzi-Tanovic and Igor Lima helped with inspecting violations in

our validation study and submitting pull requests. We thank Alex Gyori, Farah Hariri, Cosmin Radoi, and Au-

gust Shi for feedback on early drafts of this paper, Rahul Gopinath for discussions and help with Randoop, and

He Xiao and Yi Zhang for help with JavaMOP. We also thank all authors of papers who replied to our emails

concerning their mined specs. This research was partially supported by the NSF Grants CCF-1421503, CCF-

1421575, CCF-1438982, CCF-1439957, CNS-1646305, CNS-1740916, and CCF-1763788. Wajih Ul Hassan

was partially supported by the Sohaib and Sara Abassi Fellowship. We gratefully acknowledge support for

research on testing from Microsoft and Qualcomm.

References

Allan C, Avgustinov P, Christensen AS, Hendren L, Kuzins S, Lhoták O, de Moor O, Sereni

D, Sittampalam G, Tibble J (2005) Adding trace matching with free variables to AspectJ.

In: OOPSLA, pp 345–364

Arnold M, Vechev M, Yahav E (2008) QVM: An efficient runtime for detecting defects in

deployed systems. In: OOPSLA, pp 143–162

Beckman NE, Nori AV (2011) Probabilistic, modular and scalable inference of typestate

specifications. In: PLDI, pp 211–221

Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan A,

Feinberg D, Frampton D, Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss JEB,

Phansalkar A, Stefanović D, VanDrunen T, von Dincklage D, Wiedermann B (2006) The

DaCapo benchmarks: Java benchmarking development and analysis. In: OOPSLA, pp

169–190

Bodden E (2011) MOPBox: A library approach to runtime verification. In: RV Tool Demo,

pp 365–369

Bodden E, Hendren L, Lam P, Lhoták O, Naeem NA (2007a) Collaborative runtime verifi-

cation with tracematches. In: RV, pp 22–37

Bodden E, Hendren LJ, Lhoták O (2007b) A staged static program analysis to improve the

performance of runtime monitoring. In: ECOOP, pp 525–549

Bodden E, Lam P, Hendren L (2008) Finding programming errors earlier by evaluating

runtime monitors ahead-of-time. In: FSE, pp 36–47

Chen D, Zhang Y, Wang R, Li X, Peng L, Wei W (2015) Mining universal specification

based on probabilistic model. In: SEKE, pp 471–476

Chen F, Roşu G (2003) Towards monitoring-oriented programming: A paradigm combining

specification and implementation. In: RV, pp 108–127

Cochran WG (1977) Sampling techniques. John Wiley & Sons

Dallmeier V, Knopp N, Mallon C, Hack S, Zeller A (2010) Generating test cases for speci-

fication mining. In: ISSTA, pp 85–96

Dwyer MB, Purandare R, Person S (2010) Runtime verification in context: Can optimizing

error detection improve fault diagnosis? In: RV, pp 36–50

Emopers (2015) Closing ObjectOutputStream before calling toByteArray on the underlying

ByteArrayOutputStream. https://github.com/JodaOrg/joda-time/pull/339

Emopers (2019) Checking the validity of input ListIterators. https://github.com/

imglib/imglib2/pull/259

Forejt V, Kwiatkowska M, Parker D, Qu H, Ujma M (2012) Incremental runtime verification

of probabilistic systems. In: RV, pp 314–319

Formal Systems Laboratory (2014) JavaMOP. http://fsl.cs.illinois.edu/index.

php/JavaMOP

36 Legunsen et al.

Formal Systems Laboratory (2015a) Collections_SynchronizedCollection. http://

fsl.cs.illinois.edu/annotated-java/__properties/html/java/util/

Collections_SynchronizedCollection.html

Formal Systems Laboratory (2015b) JavaMOPAgent Documentation. https://github.

com/runtimeverification/javamop/blob/master/docs/JavaMOPAgentUsage.

md

Formal Systems Laboratory (2016) FSL Specification Database. https://

runtimeverification.com/monitor/propertydb

Gabel M, Su Z (2010) Online inference and enforcement of temporal properties. In: ICSE,

pp 15–24

Gabel M, Su Z (2012) Testing mined specifications. In: FSE, pp 1–11

Hussein S, Meredith P, Roşu G (2012) Security-policy monitoring and enforcement with

JavaMOP. In: PLAS, pp 1–11

Jin D, Meredith PO, Griffith D, Roşu G (2011) Garbage collection for monitoring parametric

properties. In: PLDI, pp 415–424

Jin D, Meredith PO, Lee C, Roşu G (2012a) JavaMOP: Efficient parametric runtime moni-

toring framework. In: ICSE Demo, pp 1427–1430

Jin D, Meredith PO, Roşu G (2012b) Scalable parametric runtime monitoring. Tech. rep.,

Computer Science Dept., UIUC

Joda S (2016) Joda-Time. http://www.joda.org/joda-time/

Karaorman M, Freeman J (2004) jMonitor: Java runtime event specification and monitoring

library. In: RV, pp 181 – 200

Krka I, Brun Y, Medvidovic N (2014) Automatic mining of specifications from invocation

traces and method invariants. In: FSE, pp 178–189

Le Goues C, Weimer W (2009) Specification mining with few false positives. In: TACAS,

pp 292–306

Lee C, Chen F, Roşu G (2011) Mining parametric specifications. In: ICSE, pp 591–600

Lee C, Jin D, Meredith PO, Roşu G (2012) Towards categorizing and formalizing the JDK

API. Tech. rep., Computer Science Dept., UIUC

Legunsen O, Marinov D, Roşu G (2015) Evolution-aware monitoring-oriented program-

ming. In: ICSE NIER, pp 615–618

Legunsen O, Hariri F, Shi A, Lu Y, Zhang L, Marinov D (2016a) An extensive study of static

regression test selection in modern software evolution. In: FSE, pp 583–594

Legunsen O, Hassan WU, Xu X, Rosu G, Marinov D (2016b) How good are the specs? a

study of the bug-finding effectiveness of existing Java API specifications. In: ASE, pp

602–613

Legunsen O, Hassan WU, Xu X, Roşu G, Marinov D (2016c) Supplementary material for

this paper. http://fsl.cs.illinois.edu/spec-eval

Legunsen O, Shi A, Marinov D (2017) STARTS: STAtic Regression Test Selection. In: ASE,

pp 949–954

Legunsen O, Zhang Y, Hadzi-Tanovic M, Roşu G, Marinov D (2019) Techniques for

evolution-aware runtime verification. In: ICST, pp 300–311

Lemieux C (2015) Mining temporal properties of data invariants. In: ICSE SRC, pp 751–753

Lemieux C, Park D, Beschastnikh I (2015) General LTL specification mining. In: ASE, pp

81–92

Ley M (2015) CompleteSearch DBLP. http://www.dblp.org/search/index.php

Luo Q, Zhang Y, Lee C, Jin D, Meredith PO, Şerbănuţă TF, Roşu G (2014) RV-Monitor:

Efficient parametric runtime verification with simultaneous properties. In: RV, pp 285–

300

How Effective are Existing Java API Specifications for Finding Bugs? 37

Mao D, Chen L, Zhang L (2019) An extensive study on cross-project predictive mutation

testing. In: ICST, pp 160–171

Meredith P, Roşu G (2013) Efficient parametric runtime verification with deterministic string

rewriting. In: ASE, pp 70–80

Meredith P, Jin D, Chen F, Roşu G (2008) Efficient monitoring of parametric context-free

patterns. In: ASE, pp 148–157

Navabpour S, Wu CWW, Bonakdarpour B, Fischmeister S (2011) Efficient techniques for

near-optimal instrumentation in time-triggered runtime verification. In: RV, pp 208–222

Nguyen AC, Khoo SC (2011) Extracting significant specifications from mining through

mutation testing. In: ICFEM, pp 472–488

Nguyen HA, Dyer R, Nguyen TN, Rajan H (2014) Mining preconditions of APIs in large-

scale code corpus. In: FSE, pp 166–177

Oracle (2015a) java.lang.instrument. http://docs.oracle.com/javase/7/docs/api/

java/lang/instrument/package-summary.html

Oracle (2015b) java.lang.Math. https://docs.oracle.com/javase/7/docs/api/

java/lang/Math.html

Oracle (2015c) java.net.URL. https://docs.oracle.com/javase/7/docs/api/

java/net/URL.html

Oracle (2015d) java.util.Collections. https://docs.oracle.com/javase/7/docs/

api/java/util/Collections.html

Pacheco C, Ernst MD (2007) Randoop: Feedback-directed random testing for Java. In: OOP-

SLA Companion, pp 815–816

Pacheco C, Ernst MD (2016) Randoop. https://randoop.github.io/randoop/

Pacheco C, Lahiri SK, Ernst MD, Ball T (2007) Feedback-directed random test generation.

In: ICSE, pp 75–84

Pacheco C, Lahiri SK, Ball T (2008) Finding errors in .NET with feedback-directed random

testing. In: ISSTA, pp 87–96

Pradel M (2009) Dynamically inferring, refining, and checking API usage protocols. In:

OOPSLA Companion, pp 773–774

Pradel M (2015) Statically checking API protocol conformance with mined multi-

object specifications (supplementary material). http://mp.binaervarianz.de/

icse2012-statically/

Pradel M, Gross TR (2009) Automatic generation of object usage specifications from large

method traces. In: ASE, pp 371–382

Pradel M, Gross TR (2012) Leveraging test generation and specification mining for auto-

mated bug detection without false positives. In: ICSE, pp 288–298

Pradel M, Bichsel P, Gross TR (2010) A framework for the evaluation of specification miners

based on finite state machines. In: ICSM, pp 1–10

Pradel M, Jaspan C, Aldrich J, Gross TR (2012) Statically checking API protocol confor-

mance with mined multi-object specifications. In: ICSE, pp 925–935

Purandare R, Dwyer MB, Elbaum S (2013) Optimizing monitoring of finite state properties

through monitor compaction. In: ISSTA, pp 280–290

Reger G, Barringer H, Rydeheard D (2013) A pattern-based approach to parametric specifi-

cation mining. In: ASE, pp 658–663

Robillard MP, Bodden E, Kawrykow D, Mezini M, Ratchford T (2013) Automated API

property inference techniques. TSE 39(5):613–637

Shamshiri S, Just R, Rojas J, Fraser G, McMinn P, Arcuri A (2015) Do automatically gen-

erated unit tests find real faults? An empirical study of effectiveness and challenges. In:

ASE, pp 201–211

38 Legunsen et al.

Sun J, Xiao H, Liu Y, Lin SW, Qin S (2015) TLV: Abstraction through testing, learning, and

validation. In: ESEC/FSE, pp 698–709

Tan SH, Marinov D, Tan L, Leavens GT (2012) @tComment: Testing Javadoc comments to

detect comment-code inconsistencies. In: ICST, pp 260–269

The JaCoCo Team (2018) JaCoCo Java Code Coverage Library. https://www.jacoco.

org/jacoco

Thummalapenta S, Xie T (2009) Alattin: Mining alternative patterns for detecting neglected

conditions. In: ASE, pp 283–294

Wasylkowski A, Zeller A (2009) Mining temporal specifications from object usage. In: ASE,

pp 295–306

Weimer W, Necula G (2005) Mining temporal specifications for error detection. In: TACAS,

pp 461–476

Wu CWW, Kumar D, Bonakdarpour B, Fischmeister S (2013) Reducing monitoring over-

head by integrating event- and time-triggered techniques. In: RV, pp 304–321

Wu Q, Liang G, Wang Q, Xie T, Mei H (2011) Iterative mining of resource-releasing speci-

fications. In: ASE, pp 233–242

Zhang J, Wang Z, Zhang L, Hao D, Zang L, Cheng S, Zhang L (2016) Predictive mutation

testing. In: ISSTA, pp 342–353

Zhang J, Zhang L, Harman M, Hao D, Jia Y, Zhang L (2018) Predictive mutation testing.

TSE pp 898–918

Zhong H, Zhang L, Xie T, Mei H (2009) Inferring resource specifications from natural

language API documentation. In: ASE, pp 307–318

