1903.10445v1 [cs.CG] 25 Mar 2019

arxiv

A Weighted Approach to the Maximum
Cardinality Bipartite Matching Problem with
Applications in Geometric Settings

Nathaniel Lahn

Department of Computer Science, Virginia Tech, USA
lahnn@vt.edu

Sharath Raghvendra

Department of Computer Science, Virginia Tech, USA
sharathr@vt.edu

—— Abstract

We present a weighted approach to compute a maximum cardinality matching in an arbitrary
bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite
graph G(A U B, E) with edge weights of 0 or 1. Let w < n be an upper bound on the weight
of any matching in GG. Consider the subgraph induced by all the edges of G with a weight 0.
Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We
present an algorithm to compute a maximum cardinality matching in G in O(m(y/w + /7 +)
time.!

When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will
be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m4/n) time.
However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r
are sub-linear in n and wr = O(n?) for v < 3/2, then we can compute maximum cardinality
matching in G in o(m+/n) time. Using our algorithm, we obtain a new O(n*/? /%) time algorithm

to compute an e-approximate bottleneck matching of A, B C R? and an gol(d) nH‘%poly logn

time algorithm for computing e-approximate bottleneck matching in d-dimensions. All previous

algorithms take Q(n®/?) time. Given any graph G(A U B, E) that has an easily computable

balanced vertex separator for every subgraph G'(V', E’) of size |V’ |9, for & € [1/2,1), we can

apply our algorithm to compute a maximum matching in O(mn 1+5) time improving upon the
O(m+/n) time taken by the HK-Algorithm.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
— Graph algorithms analysis — Network flows

Keywords and phrases Bipartite Matching, Bottleneck Matching

1 Introduction

We consider the classical matching problem in an arbitrary unweighted bipartite graph
G(AU B, FE) with |A| = |B| =n and E C A x B. A matching M C E is a set of vertex-
disjoint edges. We refer to a largest cardinality matching M in G as a mazimum matching.
A maximum matching is perfect if |M| = n. Now suppose the graph is weighted and every
edge (a,b) € E has a weight specified by c(a,b). The weight of any subset of edges E’ C F is
given by Z(a,b)eE c(a,b). A minimum-weight maximum matching is a maximum matching
with the smallest weight. In this paper, we present an algorithm to compute a maximum
matching faster by carefully assigning weights of 0 and 1 to the edges of G.

1 We use O to suppress poly-logarithmic terms.

http://arxiv.org/abs/1903.10445v1
mailto:lahnn@vt.edu
mailto:sharathr@vt.edu

XX:2

Weighted Approach to Maximum Cardinality Bipartite Matching

Maximum matching in graphs: In an arbitrary bipartite graph with n vertices and m
edges, Ford and Fulkerson’s algorithm [7] iteratively computes, in each phase, an augment-
ing path in O(m) time, leading to a maximum cardinality matching in O(mn) time. Hopcroft
and Karp’s algorithm (HK-Algorithm) [10] reduces the number of phases from n to O(y/n)
by computing a maximal set of vertex-disjoint shortest augmenting paths in each phase.
A single phase can be implemented in O(m) time leading to an overall execution time of
O(my/n). In weighted bipartite graphs with n vertices and m edges, the well-known Hun-
garian method computes a minimum-weight maximum matching in O(mn) time [11]. Gabow
and Tarjan designed a weight-scaling algorithm (GT-Algorithm) to compute a minimum-
weight perfect matching in O(m+/nlog(nC)) time, provided all edge weights are integers
bounded by C' [8]. Their method, like the Hopcroft-Karp algorithm, computes a maximal
set of vertex-disjoint shortest (for an appropriately defined augmenting path cost) augment-
ing paths in each phase. For the maximum matching problem in arbitrary graphs (not
necessarily bipartite), a weighted approach has been applied to achieve a simple O(m+/n)
time algorithm [9].

Recently Lahn and Raghvendra [12] gave O(n5/%) and O(n"/?) time algorithms for finding
a minimum-weight perfect bipartite matching in planar and Kj,-minor? free graphs respect-
ively, overcoming the Q(m+/n) barrier; see also Asathulla et al. [4]. Both these algorithms
are based on the existence of an r-clustering which, for a parameter r > 0, is a partition-
ing of G into edge-disjoint clusters {R1,..., Ry} such that k = O(n//r), every cluster R;
has O(r) vertices, and each cluster has O(y/7) boundary vertices. A boundary vertex has
edges from two or more clusters incident on it. Furthermore, the total number of boundary
vertices, counted with multiplicity, is O(n/y/r). The algorithm of Lahn and Raghvendra
extends to any graph that admits an r-clustering. There are also algebraic approaches for
the design of fast algorithms for bipartite matching; see for instance [14, 15].

Matching in geometric settings: In geometric settings, A and B are points in a fixed
d-dimensional space and G is a complete bipartite graph on A and B. For a fixed in-
teger p > 1, the weight of an edge between a € A and b € B is |la — b||P, where |a — b||
denotes the Euclidean distance between a and b. The weight of a matching M is given by
(Z(a_’b)eM Ha—b||p)1/p. For any fixed p > 1, we wish to compute a perfect matching with the
minimum weight. When p = 1, the problem is the well-studied Fuclidean bipartite matching
problem. A minimum-weight perfect matching for p = oo will minimize the largest-weight
edge in the matching and is referred to as a bottleneck matching. The Euclidean bipartite
matching in a plane can be computed in O(n?/2+9) [17] time for an arbitrary small § > 0;
see also Sharathkumar and Agarwal [18]. Efrat et al. present an algorithm to compute a
bottleneck matching in the plane in O(n3/2) [6] time. Both these algorithms use geometric
data structures in a non-trivial fashion to speed up classical graph algorithms.

When p =1, for any 0 < & < 1, there is an e-approximation algorithm for the Euclidean
bipartite matching problem that runs in O(n/e?) time [19]. However, for p > 1, all known
e-approximation algorithms take Q(n?/2/c?) time. We note that it is possible to find a ©(1)-
approximate bottleneck matching in 2-dimensional space by reducing the problem to finding
maximum flow in a planar graph and then finding the flow using an O(n) time max-flow
algorithm [5]. There are numerous other results; see also [2, 3, 16]. Designing exact and
approximation algorithms that break the Q(n3/?) barrier remains an important research
challenge in computational geometry.

2 They assume h = O(1).

N. Lahn and S. Raghvendra

Our results: We present a weighted approach to compute a maximum cardinality matching
in an arbitrary bipartite graph. Our main result is a new matching algorithm that takes

as input a weighted bipartite graph G(A U B, E) with every edge having a weight of 0 or 1.

Let w < n be an upper bound on the weight of any matching in G. Consider the subgraph
induced by all the edges of G with a weight 0. Let {Ki, Ko,...,K;} be the connected
components in this subgraph and let, for any 1 < ¢ < [, V; and E; be the vertices and
edges of K;. We refer to each connected component K; as a piece. Suppose |V;| = O(r) and
|Ei| = O(mr/n). Given G, we present an algorithm to compute a maximum matching in G
in O(m(yw + /7 + “r)) time. Consider any graph in which removal of sub-linear number
of “separator” vertices partitions the graph into connected components with O(r) vertices
and O(mr/n) edges. We can apply our algorithm to any such graph by simply setting the
weight of every edge incident on any separator vertex to 1 and weights of all other edges to
0.

When all the edge weights are 1 or all edge weights are 0, our algorithm will be identical
to the HK-Algorithm algorithm and runs in O(m+/n) time. However, if we can carefully
assign weights of 0 and 1 on the edges such that both w and r are sub-linear in n and for
some constant v < 3/2, wr = O(n”), then we can compute a maximum matching in G in
o(m+/n) time. Using our algorithm, we obtain the following result for bottleneck matching:
= Given two point sets A, B C R? and an 0 < € < 1, we reduce the problem of computing

an e-approximate bottleneck matching to computing a maximum cardinality matching

in a subgraph G of the complete bipartite graph on A and B. We can, in O(n) time
assign 0/1 weights to the O(n?) edges of G with so that any matching has a weight of

O(n?/3). Despite possibly ©(n?) edges in G, we present an efficient implementation of

our graph algorithm with O(n*/3 /%) execution time that computes an e-approximate

bottleneck matching for d = 2; all previously known algorithms take Q(n?/?) time. Our
algorithm, for any fixed d > 2 dimensional space, computes an e-approximate bottleneck

matching in Eo%n”ﬁpoly logn time. (See Section 5).

The algorithm of Lahn and Raghvendra [12] for Kp-minor free graphs requires the clusters to
have a small number of boundary vertices, which is used to create a compact representation
of the residual network. This compact representation becomes prohibitively large as the
number of boundary vertices increase. For instance, their algorithm has an execution time
of Q(m/n) for the case where G has a balanced vertex separator of ©(n?/3). Our algorithm,
on the other hand, extends to any graph with a sub-linear vertex separator. Given any graph
G(A U B, E) that has an easily computable balanced vertex separator for every subgraph
G'(V', E") of size |[V']°, for § € [1/2,1), there is a 0/1 weight assignment on edges of the
graph so that the weight of any matching is O(nl%) and r = O(nl;%) This assignment
can be obtained by simply recursively sub-dividing the graph using balanced separators until
each piece has O(r) vertices and O(mr/n) edges. All edges incident on the separator vertices
are then assigned a weight of 1 and all other edges are assigned a weight of 0. As a result, we
obtain an algorithm that computes the maximum cardinality matching in @(mnl_ié) time.

Our approach: Initially, we compute, in O(m+/r) time, a maximum matching within all
pieces. Similar to the GT-Algorithm, the rest of our algorithm is based on a primal-dual
method and executes in phases. Each phase consists of two stages. The first stage conducts
a Hungarian search and finds at least one augmenting path containing only zero slack (with
respect to the dual constraints) edges. Let the admissible graph be the subgraph induced by
the set of all zero slack edges. Unlike in the GT-Algorithm, the second stage of our algorithm

computes augmenting paths in the admissible graph that are not necessarily vertex-disjoint.

XX:3

XX:4

Weighted Approach to Maximum Cardinality Bipartite Matching

In the second stage, the algorithm iteratively initiates a DFS from every free vertex. When
a DFS finds an augmenting path P, the algorithm will augment the matching immediately
and terminate this DFS. Let all pieces of the graph that contain the edges of P be affected.
Unlike the GT-Algorithm, which deletes all edges visited by the DFS, our algorithm deletes
only those edges that were visited by the DFS and did not belong to an affected piece.
Consequently, we allow for visited edges from an affected piece to be reused in another
augmenting path. As a result, our algorithm computes several more augmenting paths per
phase than the GT-Algorithm, leading to a reduction of number of phases from O(y/n) to
O(y/w). Note, however, that the edges of an affected piece may now be visited multiple times
by different DFS searches within the same phase. This increases the cumulative time taken
by all the DF'S searches in the second stage. However, we are able to bound the total number
of affected pieces across all phases of the algorithm by O(wlogw). Since each piece has
O(mr/n) edges, the total time spent revisiting these edges is bounded by O(mrw log(w)/n).
The total execution time can therefore be bounded by O(m(y/w + /7 + “2)).

2 Preliminaries

We are given a bipartite graph G(A U B, E), where any edge (a,b) € E has a weight c(a,b)
of 0 or 1. Given a matching M, a vertex is free if it is not matched in M. An alternating
path (resp. cycle) is a simple path (resp. cycle) that alternates between edges in M and not
in M. An augmenting path is an alternating path that begins and ends at a free vertex.

A matching M and an assignment of dual weights y(-) on the vertices of G is feasible if
for any (a,b) € A x B:

y(b) —y(a) < c(a,b) if (a,0) ¢ M, (1)
y(a) —y(b) = c(a,b) if (a,b) € M. (2)

To assist in describing our algorithm, we first define a residual network and an augmented
residual network with respect to a feasible matching M, y(+). A residual network Gp; with
respect to a feasible matching M is a directed graph where every edge (a, b) is directed from
b to a if (a,b) ¢ M and from a to b if (a,b) € M. The weight s(a,b) of any edge is given
by the slack of this edge with respect to feasibility conditions (1) and (2), i.e., if (a,b) & M,
then s(a,b) = c(a,b)+y(a) —y(b) and s(a,b) = 0 otherwise. An augmented residual network
is obtained by adding to the residual network an additional vertex s and additional directed
edges from s to every vertex in Bp, each of having a weight of 0. We denote the augmented
residual network as G-

3 Our algorithm

Throughout this section we will use M to denote the current matching maintained by the
algorithm and Arp and Bp to denote the vertices of A and B that are free with respect
to M. Initially M = 0, Arp = A, and Bp B. Our algorithm consists of two steps.
The first step, which we refer to as the preprocessing step, will execute the Hopcroft-Karp
algorithm and compute a maximum matching within every piece. Any maximum matching
Mopr has at most w edges with a weight of 1 and the remaining edges have a weight of
0. Therefore, |Mopr| — |[M| < w. The time taken by the preprocessing step for K; is
O(|Ei|\/1Vi]) = O(|E;|\/r). Since the pieces are vertex disjoint, the total time taken across
all pieces is O(m+/r). After this step, no augmenting path with respect to M is completely

N. Lahn and S. Raghvendra

contained within a single piece. We set the dual weight y(v) of every vertex v € AU B to 0.
The matching M along with the dual weights y(-) satisfies (1) and (2) and is feasible.

The second step of the algorithm is executed in phases. We describe phase k of the
algorithm. This phase consists of two stages.

First stage: In the first stage, we construct the augmented residual network G, and
execute Dijkstra’s algorithm with s as the source. Let ¢, for any vertex v denote the
shortest path distance from s to v in G,. If a vertex v is not reachable from s, we set ¢, to
oo. Let

(=t @
Suppose M is a perfect matching or ¢ = oo, then this algorithm returns with M as a
maximum matching. Otherwise, we update the dual weight of any vertex v € AU B as
follows. If ¢, > ¢, we leave its dual weight unchanged. Otherwise, if ¢, < ¢, we set
y(v) < y(v) + £ — £,. After updating the dual weights, we construct the admissible graph
which consists of a subset of edges in the residual network G; that have zero slack. After
the first stage, the matching M and the updated dual weights are feasible. Furthermore,
there is at least one augmenting path in the admissible graph. This completes the first stage
of the phase.

Second stage: In the second stage, we initialize G’ to be the admissible graph and execute
DFS to identify augmenting paths. For any augmenting path P found during the DFS, we
refer to the pieces that contain its edges as affected pieces of P.

Similar to the HK-Algorithm, the second stage of this phase will initiate a DFS from
every free vertex b € Br in G’. If the DFS does not lead to an augmenting path, we delete
all edges that were visited by the DFS. On the other hand, if the DFS finds an augmenting
path P, then the matching is augmented along P, all edges that are visited by the DFS and
do not lie in an affected piece of P are deleted, and the DFS initiated at b will terminate.

Now, we describe in detail the DFS initiated for a free vertex b € Bp. Initially P = (b =
v1). Every edge of G’ is marked unvisited. At any point during the execution of DFS, the
algorithm maintains a simple path P = (b = vy, va,...,v;). The DFS search continues from
the last vertex of this path as follows:
= If there are no unvisited edges that are going out of vy in G’,

= If P = (v1), remove all edges that were marked as visited from G’ and terminate the

execution of DF'S initiated at b.
= Otherwise, delete vy from P and continue the DFS search from vg_1,
m If there is an unvisited edge going out of vy, let (vj,v) be this edge. Mark (vg,v) as
visited. If v is on the path P, continue the DFS from vy. If v is not on the path P, add
(vg,v) to P, set vy to v, and,
= Suppose v € Ap, then P is an augmenting path from b to v. Execute the AUGMENT
procedure which augments M along P. Delete from G’ every visited edge that does
not belong to any affected piece of P and terminate the execution of DFS initiated at
b.

= Otherwise, v € (AU B) \ Ap. Continue the DFS from vj41.

The AUGMENT procedure receives a feasible matching M, a set of dual weights y(-), and
an augmenting path P as input. For any (b,a) € P\ M, where a € A and b € B, set
y(b) < y(b) — 2¢c(a,b). Then augment M along P by setting M + M @ P. By doing so,

XX:5

XX:6 Weighted Approach to Maximum Cardinality Bipartite Matching

every edge of M after augmentation satisfies the feasibility condition (2). This completes
the description of our algorithm. The algorithm maintains the following invariants during
its execution:
(I1) The matching M and the set of dual weights y(-) are feasible. Let ymmax = max,ep y(v).
The dual weight of every vertex v € Bp is ymax and the dual weight for every vertex
ve Ar is 0.
(I2) For every phase that is fully executed prior to obtaining a maximum matching, at least
one augmenting path is found and the dual weight of every free vertex of Bp increases
by at least 1.

Comparison with the GT-Algorithm: In the GT-Algorithm, the admissible graph does
not have any alternating cycles. Also, every augmenting path edge can be shown to not
participate in any future augmenting paths that are computed in the current phase. By
using these facts, one can show that the edges visited unsuccessfully by a DFS will not lead
to an augmenting path in the current phase. In our case, however, admissible cycles can
exist. Also, some edges on the augmenting path that have zero weight remain admissible
after augmentation and may participate in another augmenting path in the current phase.
We show, however, that any admissible cycle must be completely inside a piece and cannot
span multiple pieces (Lemma 2). Using this fact, we show that edges visited unsuccessfully
by the DFS that do not lie in an affected piece will not participate in any more augmenting
paths (Lemma 7 and Lemma 9) in the current phase. Therefore, we can safely delete them.

Correctness: From Invariant (I2), each phase of our algorithm will increase the cardinality
of M by at least 1 and so, our algorithm terminates with a maximum matching.

Efficiency: We use the following notations to bound the efficiency of our algorithm. Let
{P1,..., P} be the ¢t augmenting paths computed in the second step of the algorithm. Let
K; be the set of affected pieces with respect to the augmenting path P;. Let M, be the
matching at the end of the first step of the algorithm. Let, for 1 < i <t¢, M; = M;_1 & P;,
i.e., M; is the matching after the ith augmentation in the second step of the algorithm.
The first stage is an execution of Dijkstra’s algorithm which takes O(m + nlogn) time.
Suppose there are A phases; then the cumulative time taken across all phases for the first
stage is O(Am + Anlogn). In the second stage, each edge visited by a DFS is discarded
for the remainder of the phase, provided it is not in an affected piece. Since each affected
piece has O(mr/n) edges, the total time taken by all the DFS searches across all the A
phases is bounded by O((m + nlogn)\ + (mr/n) Yi_, |K;|). In Lemma 3, we bound A
by vw and Y'_, |K;| by O(wlogw). Therefore, the total time taken by the algorithm
including the time taken by preprocessing step is O(m/r +my/w+n/wlogn+ 708w) —

O(m(v/w + /1 + 42)).

» Lemma 1. For any feasible matching M, y(-) maintained by the algorithm, let ymax be the
dual weight of every vertexr of Br. For any augmenting path P with respect to M from a
free vertex u € Bp to a free vertex v € Ap,

<(P) =Ymax + »_ s(a,b).

(a,b)eP

Proof. The weight of P is

N. Lahn and S. Raghvendra

c(P)= > cab)= > (yb) -yl +s@b)+ Y (yla)—y®b):

(a,b)eP (a,b)e P\M (a,b)ePNM

Since every vertex on P except for u and v participates in one edge of PN M and one edge
of P\ M, we can write the above equation as

c(P)=ylw) —ylw)+ Y slab)=y(u) —y)+ Y sab). (4)

(a,b)e P\M (a,b)eP

The last equality follows from the fact that edges of P N M satisfy (2) and have a slack
of zero. From (I1), we get that y(u) = ymax and y(v) = 0, which gives,

c(P) = Ymax + Z s(a,b).

(a,b)eP

<

» Lemma 2. For any feasible matching M,y(-) maintained by the algorithm, and for any
alternating cycle C" with respect to M, if c(C) > 0, then

Z s(a,b) > 0,

(a,b)eP
i.e., C is not a cycle in the admissible graph.

Proof. The claim follows from (4) and the fact that the first vertex v and the last vertex v
in a cycle are the same. |

» Lemma 3. The total number of phases is O(y/w) and the total number of affected pieces
is O(wlogw), i.e., Sor_, [Ki| = O(wlogw).

Proof. Let Mopr be a maximum matching, which has weight at most w. Consider any
phase k of the algorithm. By (12), the dual weight ymax of every free vertex in By is at least
k. The symmetric difference of M and Mop, will contain j = |Mop:| — | M| vertex-disjoint
augmenting paths. Let {P1,...,P;} be these augmenting paths. These paths contain edges
of Mopr and M, both of which are of weight at most w. Therefore, the sum of weights of
these paths is

C(Pl) < 2w.

J
i=1

Let ymax be the dual weight of every vertex b of B that is free with respect to M. i.e.,
b € Bp. From (12), ymax > k. From Lemma 1 and the fact that the slack on every edge is
non-negative, we immediately get,

J
2w > " c(Pi) > jymax > jk. (5)
i=1

When w < k < y/w+ 1, it follows from the above equation that j = |[Mops| — |[M]| < 2y/w.

From (I2), we will compute at least one augmenting path in each phase and so the remaining
j unmatched vertices are matched in at most 2\/w phases. This bounds the total number
of phases by 3v/w.

XX:7

XX:8

Weighted Approach to Maximum Cardinality Bipartite Matching

Recollect that {Py,..., P} are the augmenting paths computed by the algorithm. The
matching My has |Mopr|—t edges. Let y! . correspond to the dual weight of the free vertices
of Br when the augmenting path P, is found by the algorithm. From Lemma 1, and the fact
that P, is an augmenting path consisting of zero slack edges, we have y!,,. = c(FP;). Before
augmenting along P, there are |Mopr| —t+1—1 edges in M;_1 and j = |[Mopr| — |M;—1] =
t — 1+ 1. Plugging this in to (5), we get c(P) = vl < tfl% Summing over all 1 <[<t
we get,

)

c(P) < wz ﬁ = O(wlogt) = O(wlogw). (6)
=1

M-~

=1

For any augmenting path P;, the number of affected pieces is upper bounded by the number
of non-zero weight edges on P, i.e., |K;| < c(P;). Therefore,

M-~

t
Ki| <" e(P) = O(wlogw).
l =1

1

4 Proof of invariants

We now prove (I1) and (I2). Consider any phase k in the algorithm. Assume inductively
that at the end of phase k — 1, (I1) and (I2) hold. We will show that (I1) and (I2) also hold
at the end of the phase k. We establish a lemma that will help us prove (I1) and (12).

» Lemma 4. For any edge (a,b) € M, let {, and {, be the distances returned by Dijkstra’s
algorithm during the first stage of phase k, then £, = ly.

Proof. The only edge directed towards b is an edge from its match a. Therefore, any path
from s to b in the augmented residual network, including the shortest path, should pass
through a. Since the slack on any edge of M is 0, £, = ¢, + s(a,b) = £,. |

» Lemma 5. Any matching M and dual weights y(-) maintained during the execution of the
algorithm are feasible.

Proof. We begin by showing that the dual weight modifications in the first stage of phase k
will not violate dual feasibility conditions (1) and (2). Let §(-) denote the dual weights after
the execution of the first stage of the algorithm. Consider any edge (u,v) directed from u
to v. There are the following possibilities:

If both ¢, and ¢, are greater than or equal to ¢, then y(u) and y(v) remain unchanged
and the edge remains feasible.

If both ¢, and ¢, are less than ¢, suppose (u,v) € M. Then, from Lemma 4, ¢, = £,. We
have, g(u) = y(u)—l—ﬁ—ﬁw gj(v) = y(’l})-ﬁ-f—fm and g(u)_g(v) = y(u)—y(v)—i—ﬂv—ﬁu = C(ua v)
implying (u,v) satisfies (2).

If ¢, and ¢, are less than ¢ and (u,v) ¢ M, then v € B and v € A. By definition,
y(u) — y(v) + s(u,v) = c(u,v). By the properties of shortest paths, for any edge (u,v),
Ly — Ly, < s(u,v). The dual weight of u is updated to y(u) + ¢ — £, and dual weight of
v is updated to y(v) + ¢ — £,. The difference in the updated dual weights g(u) — g(v) =
(y(u) + €= Lu) = (y(v) + £ = L) = y(u) — y(v) + by — b < y(u) — y(v) + s(u,v) = c(u,v).
Therefore, (u,v) satisfies (1).

N. Lahn and S. Raghvendra

If 0, < £ and £, > ¢, then, from Lemma 4, (u,v) ¢ M, and so uw € B and v € A. From
the shortest path property, for any edge (u,v), £, — £, < s(u,v). Therefore,

gu) = g(v) = y(u) —y(v) + £ = by < y(u) —y(v) + by —lu <y(u) —y(v) +s(u, v) = c(u, v),

implying (u, v) satisfies (1).
If ¢, > ¢ and £, < ¢, then, from Lemma 4, (u,v) ¢ M, and so v € B and v € A. Since
L, < £, we have,

§(u) = g(v) = y(u) —y(v) =L+ £, < y(u) —y(v) < c(u,v),

implying (u,v) satisfies (1).

In the second stage of the algorithm, when an augmenting path P is found, the dual
weights of some vertices of B on P decrease and the directions of edges of P change. We
argue these operations do not violate feasibility. Let §(-) be the dual weights after these
operations. Consider any edge (a,b) € A x B. If b is not on P, then the feasibility of
(a,b) is unchanged. If b is on P and a is not on P, then §(b) < y(b), and §(b) — g(a) <
y(b) — y(a) < c(a,b), implying (1) holds. The remaining case is when both a and b are
on P. Consider if (a,b) € M after augmentation. Prior to augmentation, (a,b) was an
admissible edge not in M, and we have y(b) — y(a) = c(a,b) and §(b) = y(b) — 2¢(a,b). So,
3la) — §(b) = y(a) — (y(b) — 2c(a,b)) = yla) — y(b) + 2c(a, b) = c(a,b), implying (2) holds.
Finally, consider if (a,b) ¢ M after augmentation. Then, prior to augmentation, (a,b) was
in M, and y(a) — y(b) = c(a,b). So, §(b) — §(a) < y(b) — y(a) = —c(a,b) < c(a,b), implying
(1) holds. We conclude the second stage maintains feasibility.

<

Next we show that the dual weights Ap are zero and the dual weights of all vertices of Bp
are equal to Ymaee. At the start of the second step, all dual weights are 0. During the first
stage, the dual weight of any vertex v will increase by ¢ — ¢, only if ¢, < ¢. By (3), for
every free vertex a € Ap, ¢, > £, and so the dual weight of every free vertex of A remains
unchanged at 0. Similarly, for any free vertex b € Bp, ¢, = 0, and the dual weight increases
by ¢, which is the largest possible increase. This implies that every free vertex in Bp will
have the same dual weight of ymax. In the second stage, matched vertices of B undergo a
decrease in their dual weights, which does not affect vertices in Bp. Therefore, the dual
weights of vertices of Bp will still have a dual weight of ymax after stage two. This completes
the proof of (I1).

Before we prove (12), we will first establish a property of the admissible graph after the
dual weight modifications in the first stage of the algorithm.

» Lemma 6. After the first stage of each phase, there is an augmenting path consisting of
admissible edges.

Proof. Let a € Ap be a free vertex whose shortest path distance from s in the augmented
residual network is ¢, i.e., ¢, = £. Let P be the shortest path from s to a and let P, be
the path P with s removed from it. Note that P, is an augmenting path. We will show
that after the dual updates in the first stage, every edge of P, is admissible. Consider
any edge (u,v) € P, N M, where w € A and v € B. From Lemma 4, ¢, = {,. Then
the updated dual weights are g(u) = y(u) + £ — £, and g(v) = y(v) + ¢ — £,. Therefore,
g(u) — g(v) = y(u) — y(v) — by + £, = c(u,v), and (u,v) is admissible. Otherwise, consider
any edge (u,v) € P, \ M, where u € B and v € A. From the optimal substructure property

XX:9

XX:10

Weighted Approach to Maximum Cardinality Bipartite Matching

of shortest paths, for any edge (u,v) € P, directed from u to v, £, — £, = s(u,v). Therefore,
the difference of the new dual weights is

§w)=g(v) = y(u) =Ly =y (v) =+l = y(u) =y (v) = lut+Lly = y(u) =y (v) +s(u, v) = c(u, v),

implying that (u,v) is admissible. |

Proof of (12): From Lemma 6, there is an augmenting path of admissible edges at the end
of the first stage of any phase. Since we execute a DFS from every free vertex b € B in the
second stage, we are guaranteed to find an augmenting path. Next, we show in Corollary 10
that there is no augmenting path of admissible edges at the end of stage two of phase k, i.e.,
all augmenting paths in the residual network have a slack of at least 1. This will immediately
imply that the first stage of phase k + 1 will have to increase the dual weight of every free
vertex by at least 1 completing the proof for (I2).

Edges that are deleted during a phase do not participate in any augmenting path for the
rest of the phase. We show this in two steps. First, we show that at the time of deletion of
an edge (u,v), there is no path in the admissible graph that starts from the edge (u,v) and
ends at a free vertex a € Ap (Lemma 9). In Lemma 7, we show that any such edge (u,v)
will not participate in any admissible alternating path to a free vertex of Ap for the rest of
the phase.

We use DFS(b, k) to denote the DFS initiated from b in phase k. Let P? denote the path
maintained by DFS(b, k) when the vertex u was added to the path.

» Lemma 7. Consider some point during the second stage of phase k where there is an edge
(u,v) that does not participate in any admissible alternating path to a vertex of Ap. Then,
for the remainder of phase k, (u,v) does not participate in any admissible alternating path
to a vertex of Ap.

Proof. Assume for the sake of contradiction that at some later time during phase k, (u,v)
becomes part of an admissible path P, . from a vertex y to a vertex z € Ap. Consider the
first time this occurs for (u,v). During the second stage, the dual weights of some vertices of
B may decrease just prior to augmentation; however, this does not create any new admissible
edges. Therefore, P, . must have become an admissible path due to augmentation along a
path P, from some b € B to some a € Ap. Specifically, P, . must intersect P, ; at some
vertex z. Therefore, prior to augmenting along P, ;, there was an admissible path from y to
a via z. This contradicts the assumption that (u,v) did not participate in any admissible
path to a vertex of Ap prior to this time. <

» Lemma 8. Consider the execution of DFS(b,k) and the path P°. Suppose the DFS(b, k)
marks an edge (u,v) as visited. Let P, be an admissible alternating path from v to any free
verter a € Ap in G'. Suppose P, and P’ are verter-disjoint. Then, DFS(b, k) will find an
augmenting path that includes the edge (u,v).

Proof. P, and P! are vertex-disjoint and so, v is not on the path P’. Therefore, DFS(b, k)
will add (u,v) to the path and we get the path P = P?. We will show that all edges of P,
are unvisited by DFS(b, k), and so the DFS procedure, when continued from v, will discover
an augmenting path.

We show, through a contradiction, that all edges of P, are not yet visited by DFS(b, k).
Consider, for the sake of contradiction, among all the edges of P,, the edge (u/,v’) that was
marked visited first. We claim the following:

N. Lahn and S. Raghvendra XX:11

(i) (u',v") is wisited before (u,v): This follows from the assumption that when (u,v) was
marked as visited, (u’,v") was already marked as visited by the DFS.

(ii) (u,v) is not a descendant of (u’,v") in the DFS: If (u,v") was an ancestor of (u,v) in the
DFS, then P! contains (u/,v’). By definition, P, also contains (u/,v’), which contradicts
the assumption that P? and P, are disjoint paths.

(iii) When (u',v") is marked visited, it will be added to the path by the DFS: The only reason
why (u/,v') is visited but not added is if v’ is already on the path P%. In that case, P,
and PY will share an edge that was visited before (u’,v’) contradicting the assumption
that (u’,v") was the earliest edge of P, to be marked visited.

From (iii), when (u’,v") was visited, it was added to the path P?. Since (u/,v’) was the edge
on P, that was marked visited first by DFS(b, k), all edges on the subpath from v’ to a are
unvisited. Therefore, the DFS(b, k), when continued from v, will not visit (u, v) (from (ii)),
will find an augmenting path, and terminate. From (i), (u,v) will not be marked visited by
DFS(b, k) leading to a contradiction. |

» Lemma 9. Consider a DFS initiated from some free vertex b € Bp in phase k. Let M
be the matching at the start of this DES and M’ be the matching when the DFES terminates.
Suppose the edge (u,v) was deleted during DFS(b,k). Then there is no admissible path
starting with (u,v) and ending at a free vertex a € Ap in Gy .

Proof. At the start of phase k, G’ is initialized to the admissible graph. Inductively, we
assume that all the edges discarded in phase k prior to the execution of DFS(b, k) do not
participate in any augmenting path of admissible edges with respect to M. Therefore, any
augmenting path of admissible edges in GGj; remains an augmenting path in G’. There are
two possible outcomes for DFS(b, k). Either, (i) the DFS terminates without finding an
augmenting path, or (ii) the DFS terminates with an augmenting path P and M’ = M & P.

In case (i), M = M’ and any edge (u,v) visited by the DFS(b, k) is marked for deletion.
For the sake of contradiction, let (u,v) participate in an admissible path P to a free vertex
a’ € Ap. Since u is reachable from b and a’ is reachable from u in Gy, @’ is reachable from
b. This contradicts the fact that DFS(b, k) did not find an augmenting path. Therefore, no
edge (u,v) marked for deletion participates in an augmenting path with respect to M.

In case (i), M’ = M @ P. DFS(b, k) marks two kinds of edges for deletion.

(a) Any edge (u,v) on the augmenting path P such that c(u,v) = 1 is deleted, and,

(b) Any edge (u,v) that is marked visited by DFS(b, k), does not lie on P, and does not

belong to any affected piece is deleted.

In (a), there are two possibilities (1) (u,v) € POM or (2) (u,v) € P\ M. If (u,v) € M (case
(a)(1)), then, after augmentation along P, s(u,v) increases from 0 to at least 2, and (u,v)
is no longer admissible. Therefore, (u,v) does not participate in any admissible alternating
paths to a free vertex in Ap with respect to Gpr. If (u,v) € M (case (a)(2)), then the
AUGMENT procedure reduces the dual weight of u € B by 2. So, every edge going out of u
will have a slack of at least 2. Therefore, (u,v) cannot participate in any admissible path P
to a free vertex in Ap. This completes case (a).

For (b), we will show that (u, v), even prior to augmentation along P, did not participate
in any path of admissible edges from v to any free vertex of Ap. For the sake of contradiction,
let there be a path P, from v to @’ € Ap. We claim that P, and Pfj are not vertex-disjoint.
Otherwise, from Lemma 8, the path P found by DFS(b, k) includes (u,v). However, by
our assumption for case (b), (u,v) does not lie on P. Therefore, we safely assume that P,
intersects P?. There are two cases:

XX:12

Weighted Approach to Maximum Cardinality Bipartite Matching

m c(u,v) = 1: We will construct a cycle of admissible edges containing the edge (u,v).
Since c(u,v) = 1, our construction will contradict Lemma 2. Let x be the first vertex
common to both P, and P’ as we walk from v to a’ on P,. To create the cycle, we
traverse from x to u along the path P?, followed by the edge (u,v), followed by the path
from v to x along P,. All edges of this cycle are admissible including the edge (u,v).
= c(u,v) = 0: In this case, (u,v) belongs to some piece K; that is not an affected piece.
Among all edges visited by DFS(b, k), consider the edge (u',v’) of K;, the same piece as
(u,v), such that v’ has a path to the vertex o’ € Ap with the fewest number of edges.
Let P, be this path. We claim that P, and lef/ are not vertex-disjoint. Otherwise, from
Lemma 8, the path P found by DFS(b, k) includes (u/,v") and K; would have been an
affected piece. Therefore, we can safely assume that P, intersects with P’. Let z be
the first intersection point with P?, as we walk from v’ to a’ and let 2’ be the vertex that
follows after z in P?,. There are two possibilities:
= The edge (z,2') € K;: In this case, (z,2z’) is also marked visited by DFS(b, k), and 2’
has path to a’ with fewer number of edges than v’. This contradicts our assumption
about (u',v’).

= The edge (z,2') ¢ K;: In this case, consider the cycle obtained by walking from z to
u along the path P?, followed by the edge (u/,v") and the path from v’ to z along P,.
Since (v',v") € K; and (z,2’) ¢ K, the admissible cycle contains at least one edge of
weight 1. This contradicts Lemma 2.

This concludes case (b) which shows that (u,v) did not participate in any augmenting

paths with respect to M. From Lemma 7, it follows that (u,v) does not participate in any

augmenting path with respect to G as well. |

» Corollary 10. At the end of any phase, there is no augmenting path of admissible edges.

5 Minimum bottleneck matching

We are given two sets A and B of n d-dimensional points. Consider a weighted and complete
bipartite graph on points of A and B. The weight of any edge (a,b) € A x B is given by its
Euclidean distance and denoted by ||a — b||. For any matching M of A and B let its largest
weight edge be its bottleneck edge. In the minimum bottleneck matching problem, we wish to
compute a matching Mopy of A and B with the smallest weight bottleneck edge. We refer
to this weight as the bottleneck distance of A and B and denote it by 5*. An e-approzimate
bottleneck matching of A and B is any matching M with a bottleneck edge weight of at
most (1 +¢)B8*. We present an algorithm that takes as input A, B, and a value ¢ such that
p* <6 < (14¢/3)p*, and produces an e-approximate bottleneck matching. For simplicity
in presentation, we describe our algorithm for the 2-dimensional case when all points of A
and B are in a bounding square S. The algorithm easily extends to any arbitrary fixed
dimension d. For 2-dimensional case, given a value d, our algorithm executes in O(n*/3 /&%)
time.

Although, the value of § is not known to the algorithm, we can first find a value «
that is guaranteed to be an n-approximation of the bottleneck distance [1, Lemma 2.2]
and then select O(logn/c) values from the interval [a/n,a] of the form (1 + ¢/3)'a/n,
for 0 < i < O(logn/e). We will then execute our algorithm for each of these O(logn/e)
selected values of §. Our algorithm returns a maximum matching whose edges are of length
at most (1 + ¢/3)¢ in O(n?/3/e3) time. At least one of the & values chosen will be a
B* <6 < (1+¢/3)5*. The matching returned by the algorithm for this value of § will be
perfect (|M| = n) and have a bottleneck edge of weight at most (1+¢/3)?8* < (1+¢)B* as

N. Lahn and S. Raghvendra

desired. Among all executions of our algorithm that return a perfect matching, we return a
perfect matching with the smallest bottleneck edge weight. Therefore, the total time taken
to compute the e-approximate bottleneck matching is O(n*/3 /).

Given the value of §, the algorithm will construct a graph as follows: Let G be a grid on
the bounding square S. The side-length of every square in this grid is £6/(6v/2). For any
cell € in the grid G, let N(§) denote the subset of all cells & of G such that the minimum
distance between & and &’ is at most §. By the use of a simple packing argument, it can be
shown that |N(£)| = O(1/€?).

For any point v € AU B, let &, be the cell of grid G that contains v. We say that a cell
€ is active if (AUB)NE # (0. Let A¢ and Be denote the points of A and B in the cell £. We
construct a bipartite graph G(A U B,) on the points in AU B as follows: For any pair of
points (a,b) € A x B, we add an edge in the graph if & € N(&,). Note that every edge (a,b)
with [Ja — b|| < § will be included in G. Since 0 is at least the bottleneck distance, G will
have a perfect matching. The maximum distance between any cell £ and a cell in N(€) is
(14 ¢/3)d. Therefore, no edge in G will have a length greater than (1 4 ¢/3)d. This implies
that any perfect matching in G will also be an e-approximate bottleneck matching. We use
our algorithm for maximum matching to compute this perfect matching in G. Note, that
G can have Q(n?) edges. For the sake of efficiency, our algorithm executes on a compact
representation of G that is described later. Next, we assign weights of 0 and 1 to the edges
of G so that the any maximum matching in G has a small weight w.

For a parameter® » > 1, we will carefully select another grid G’ on the bounding square
S, each cell of which has a side-length of \/7(0/(6v/2)) and encloses /7 x /r cells of
G. For any cell £ of the grid G, let ¢ be the cell in G’ that contains {. Any cell £ of

G is a boundary cell with respect to G’ if there is a cell ¢ € N(&) such that O¢ # Oe.
Equivalently, if the minimum distance from £ to [¢ is at most J, then ¢ is a boundary cell.

For any boundary cell £ of G with respect to grid G’, we refer to all points of A¢ and Be
that lie in € as boundary points. All other points of A and B are referred to as internal
points. We carefully construct this grid G’ such that the total number of boundary points
is O(n/e\/r) as follows: First, we will generate the vertical lines for G/, and then we will
generate the horizontal lines using a similar construction. Consider the vertical line y;; to
be the line 2 = i(0)/(6v/2) + j/7(¢8/(6v/2)). For any fixed integer i in [1,/r], consider
the set of vertical lines Y; = {y,; | y;; intersects the bounding square S}. We label all cells
¢ of G as boundary cells with respect to Y; if the distance from & to some vertical line in Y,
is at most 0. We designate the points inside the boundary cells as boundary vertices with
respect to Y;. For any given i, let A; and B; be the boundary vertices of A and B with
respect to the lines in Y;. We select an integer xk = argmin; ;< & |A; U B;| and use Y, as
the vertical lines for our grid G’. We use a symmetric construction for the horizontal lines.

» Lemma 11. Let A; and B; be the boundary points with respect to the vertical lines Y;.
Let k = argmin, ;< 7 |A; U By|. Then, |A; U Bi| = O(n/(ey/r)).

Proof. For any fixed cell £ in G, of the /r values of i, there are O(1/e) values for which Y;
has a vertical line at a distance at most ¢ from £. Therefore, each cell ¢ will be a boundary
cell in only O(1/e) shifts out of \/r shifts. So, A¢ and Be will be counted in A; U B; for

3 Assume r to be a perfect square.

XX:13

XX:14

Weighted Approach to Maximum Cardinality Bipartite Matching

O(1/¢) different values of i. Therefore, if we take the average over choices of i, we get

v
. 1

<

Using a similar construction, we guarantee that the boundary points with respect to the
horizontal lines of G’ is also at most O(n/(e\/r)).

» Corollary 12. The grid G’ that we construct has O(n/(e\/r)) many boundary points.

For any two cells £ and £’ € N (&) of the grid G, suppose ¢ # Og. Then the weights of
all edges of A¢ X B¢ and of Be x Agr are set to 1. All other edges have a weight of 0. We do
not make an explicit weight assignment as it is expensive to do so. Instead, we can always
derive the weight of an edge when we access it. Only boundary points will have edges of
weight 1 incident on them. From Corollary 12, it follows that any maximum matching will
have a weight of w = O(n/(e\/T)).

The edges of every piece in G have endpoints that are completely inside a cell of G’. Note,
however, that there is no straight-forward bound on the number of points and edges of G
inside each piece. Moreover, the number of edges in G can be ©(n?). Consider any feasible
matching M, y(-) in G. Let Gy be the residual network. In order to obtain a running time of
@(n4/ 3 / 53), we use the grid G to construct a compact residual network CG,; for any feasible
matching M, y(-) and use this compact graph to implement our algorithm. The following
lemma assists us in constructing the compressed residual network.

» Lemma 13. Consider any feasible matching M,y(-) maintained by our algorithm on G
and any active cell & in the grid G. The dual weight of any two points a,a’ € A¢ can differ
by at most 2. Similarly, the dual weights of any two points b,b' € Be can differ by at most
2.

Proof. We present our proof for two points b’ € Be. A similar argument will extend
for a,a’ € A¢. For the sake of contradiction, let y(b) > y(b') + 3. b must be matched
since y(b') < y(b) < Ymax. Let m(b') € A be the match of b’ in M. From (2), y(m(b')) —
y(') = c(b',m(’)). Since both b and b’ are in £, the distance c(b, m (b)) = c(b/,m(b’)). So,
y(b) — y(m(@')) = (y(') + 3) — y(m(d)) = 3 — c(b,m(d')). This violates (1) leading to a
contradiction. |

For any feasible matching and any cell £ of G, we divide points of A¢ and B¢ based on their
dual weight into at most three clusters. Let Af, A7 and A? be the three clusters of points
in A¢ and let Bf, B and B be the three clusters of points in Bg. We assume that points
with the largest dual weights are in Aé (resp. Bgl), the points with the second largest dual
weights are in A7 (resp. Bf), and the points with the smallest dual weights are in A? (resp.
By).

Compact residual network: Given a feasible matching M, we construct a compact residual
network CG) to assist in the fast implementation of our algorithm. This vertex set AUB for
the compact residual network is constructed as follows. First we describe the vertex set A.
For every active cell € in G, we add a vertex aé (resp. ag, ag) to represent the set A% (resp.
Az, A?) provided A # 0 (vesp. AZ # 0, A} # 0). We designate ag (resp. aZ,a?) as a free
vertex if Af N Ap # 0 (resp. A7 N Ap #0,A} N Ap # 0). Similarly, we construct a vertex

N. Lahn and S. Raghvendra

set B by adding a vertex bi (resp. bZ,b?) to represent the set B (resp. BZ, Bf) provided
Bi # 0 (vesp. BE # 0, B} #). We designate b (resp. b7, b?) as a free vertex if B N Br # 0
(resp. Bf N Br # 0, BN Br # (). Each active cell £ of the grid G therefore has at most six
points. Each point in A U B will inherit the dual weights of the points in its cluster; for any
vertex a; € A (resp. af € A af € A), let y(ag)(resp. y(az),y(a)) be the dual weight of all
points in Af (resp. AZ, A?). We define y(b), y(b7), and y(b?) as dual weights of points in
B, B, and B respectively. Since there are at most n active cells, |AU B| = O(n).
Next, we create the edge set for the compact residual network CG. For any active cell £
in the grid G and for any cell £ € N(¢),
= We add a directed edge from aé to bé,, for 4,5 € {1,2,3} if there is an edge (a,b) €
(Ag x Bg,) N M. We define the weight of (ag, bg,) to be c(a,b). We also define the slack
s(ag, bg,) to be c(ay, bg,)—y(aé)—i—y(bé/) which is equal to s(af, bé/) =c(a,b)—y(a)+y(db) =
s(a,b) =0.
= We add a directed edge from b} to aé,, for 4,5 € {1,2,3} if (Bg x Ag,) \ M # (. Note
that the weight and slack of every directed edge in Bg X Aé, are identical. We define
the weight of (b, aé,) to be c(a,b) for any (a,b) € Aé, x B{. We also define the slack
s(bg, aé,) = c(b, aé) —y(b%) + y(aé,) which is equal to the slack s(a, b).

For each vertex in AU B, we added at most two edges to every cell ¢ € N(§). Since
N(¢) = O(1/€?), the total number of edges in & is O(n/e?). For a cell O in G, let Ag be
the points of A generated by cells of G that are contained inside the cell [. A piece Kn
has Ag U B as the vertex set and &g = ((Ag x Bo) U (Bg x Ag) N E) as the edge set.
Note that the number of vertices in any piece Kp is O(r) and the number of edges in K
is O(r/e?). Every edge (u,v) of any piece K has a weight c(u,v) = 0 and every edge (u,v)
with a weight of zero belongs to some piece of CG.

The following lemma shows that the compact graph CG preserves all minimum slack
paths in Gy;.

» Lemma 14. For any directed path P in the compact residual network CG, there is a
directed path P in the residual network such that 3_, yep 5(u,v) = 32, ,)ep S(u,v). For
any directed path P in Gy, there is a directed path P in the compact residual network such

that Z(u,v)EP s(u,v) > Z(U,U)EP s(u, v).

Preprocessing step: At the start, M = () and all dual weights are 0. Consider any cell O of
the grid G’ and any cell £ of G that is contained inside []. Suppose we have a point aé. We
assign a demand daé = |A{| = |A¢| to ag. Similarly, suppose we have a point by, we assign a
supply Sp1 = |B§| = |Be|. The preprocessing step reduces to finding a maximum matching of
supplies to demand. This is an instance of the unweighted transportation problem which can
be solved using the algorithm of [13] in O(|€n|v/]Ag U Bal) = O(|€a|v/7). Every edge of £
participates in at most one piece. Therefore, the total time taken for preprocessing across
all pieces is O(|E]y/r) = O(ny/r/e%). We can trivially convert the matching of supplies to
demand to a matching in G.

Efficient implementation of the second step: Recollect that the second step of the al-
gorithm consists of phases. Each phase has two stages. In the first stage, we execute
Dijkstra’s algorithm in O(nlogn/e?) time by using the compact residual network CG. After
adjusting the dual weight of nodes in the compact graph, in the second stage, we iteratively
compute augmenting paths of admissible edges by conducting a DFS from each vertex. Our
implemnetation of DFS has the following differences from the one described in Section 3.

XX:15

XX:16

Weighted Approach to Maximum Cardinality Bipartite Matching

= Recollect that each free vertex v € B may represent a cluster that has ¢ > 0 free vertices.
We will execute DFS from v exactly ¢ times, once for each of the free vertices of B.

= During the execution of any DFS, unlike the algorithm described in Section 3, the DFS
will mark an edge as visited only when it backtracks from the edge. Due to this change, all
edges on the path maintained by the DFS are marked as unvisited. Therefore, unlike the
algorithm from Section 3, this algorithm will not discard weight 1 edges of an augmenting
path after augmentation. From Lemma 3, the total number of these edges is O(w logw).

Efficiency: The first stage is an execution of Dijkstra’s algorithm which takes O(|€| 4+
[V|log|V|) = O(nlogn/e?) time. Suppose there are A phases; then the cumulative time
taken across all phases for the first stage is @()\n /€2). In the second stage of the algorithm,
in each phase, every edge is discarded once it is visited by a DFS, unless it is in an af-
fected piece or it is an edge of weight 1 on an augmenting path. Since each affected piece
has O(r/e?) edges, and since there are O(wlogw) edges of weight 1 on the computed aug-
menting paths, the total time taken by all the DFS searches across all the A phases is
bounded by O(nA\/e? + r/e2 3! [Ki| + wlogw). In Lemma 3, we bound A by y/w and
21;:1 |K;| by O(wlogw). Therefore, the total time taken by the algorithm including the
time taken by preprocessing step is O((n/e?)(\v/7 + w + “5)). Setting r = n?/3, we get
w = O(n/(e/r)) = O(n*?/e), and the total running time of our algorithm is O(n*/3/e%).
To obtain the bottleneck matching, we execute this algorithm on O(log(n/c)) guesses; there-
fore, the total time taken to compute an e-approximate bottleneck matching is O(n*/3/e%).
For d > 2, we choose r = n% T and w = O(n/(der'/?)). With these values, the execution

d—1
time of our algorithm is Eo%npr—?d*l poly log n.

—— References

1 P. K. Agarwal and K. R. Varadarajan. A near-linear constant-factor approximation for
euclidean bipartite matching? In Proc. 12th Annual Sympos. Comput. Geom., pages 247—
252, 2004.

2 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen
Xiao. Faster algorithms for the geometric transportation problem. In 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,
pages 7:1-7:16, 2017.

3 Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 555-564, 2014.

4 Mudabir Kabir Asuthulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra. A
faster algorithm for minimum-cost bipartite perfect matching in planar graphs. In SODA,
pages 457-476, 2018.

5 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. In FOCS, pages 170-179, 2011.

6 A. Efrat, A. TItai, and M. J. Katz. Geometry helps in bottleneck match-
ing and related problems. Algorithmica, 31(1):1-28, Sep 2001. URL:
https://doi.org/10.1007/s00453-001-0016-8, doi:10.1007/s00453-001-0016-8.

7 L. R. Ford Jr and D. R. Fulkerson. A simple algorithm for finding maximal network flows
and an application to the hitchcock problem. No. RAND/P-743, 1955.

8 H. N. Gabow and R.E. Tarjan. Faster scaling algorithms for net-
work problems. SIAM J. Comput., 18:1013-1036, October 1989. URL:
http://portal.acm.org/citation.cfm?id=75795.75806, doi:10.1137/0218069.

https://doi.org/10.1007/s00453-001-0016-8
http://dx.doi.org/10.1007/s00453-001-0016-8
http://portal.acm.org/citation.cfm?id=75795.75806
http://dx.doi.org/10.1137/0218069

N. Lahn and S. Raghvendra

10

11

12

13

14

15

16

17

18

19

Harold N Gabow. The weighted matching approach to maximum cardinality matching.

Fundamenta Informaticae, 154(1-4):109-130, 2017.

J. Hoperoft and R. Karp. An n/? algorithm for maximum matchings in bipartite graphs.

SIAM Journal on Computing, 2(4):225-231, 1973.

Harold Kuhn. Variants of the hungarian method for assignment problems. Naval Research
Logistics, 3(4):253-258, 1956.

Nathaniel Lahn and Sharath Raghvendra. A faster algorithm for minimum-cost bipartite
matching in minor free graphs. In SODA, pages 569-588, 2019.

Yin Tat Lee and Aaron Sidford. Following the path of least resistance : An 6(m
sqrt(n)) algorithm for the minimum cost flow problem. CoRR, abs/1312.6713, 2013. URL:
http://arxiv.org/abs/1312.6713, arXiv:1312.6713.

Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Foundations of Computer Science (FOCS), pages 253-262. IEEE, 2013.
Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In
FOCS, pages 248-255, 2004.

Jeff M. Phillips and Pankaj K. Agarwal. On bipartite matching under the RMS distance. In
Proceedings of the 18th Annual Canadian Conference on Computational Geometry, CCCG
2006, August 14-16, 2006, Queen’s University, Ontario, Canada, 2006.

R. Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points with
bounded integer coordinates. In SOCG, pages 9-16, 2013.

R. Sharathkumar and P. K. Agarwal. Algorithms for transportation problem in geometric
settings. In Proc. 23rd Annual ACM/SIAM Sympos. on Discrete Algorithms, pages 306-317,
2012.

R. Sharathkumar and P. K. Agarwal. A near-linear time approximation algorithm for
geometric bipartite matching. In Proc. 44th Annual ACM Annual Sympos. on Theory of
Comput., pages 385-394, 2012.

XX:17

http://arxiv.org/abs/1312.6713
http://arxiv.org/abs/1312.6713

	1 Introduction
	2 Preliminaries
	3 Our algorithm
	4 Proof of invariants
	5 Minimum bottleneck matching

