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Abstract

We present a weighted approach to compute a maximum cardinality matching in an arbitrary

bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite

graph G(A ∪ B, E) with edge weights of 0 or 1. Let w ≤ n be an upper bound on the weight

of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0.

Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We

present an algorithm to compute a maximum cardinality matching in G in Õ(m(
√

w +
√

r + wr
n ))

time.1

When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will

be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m
√

n) time.

However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r

are sub-linear in n and wr = O(nγ) for γ < 3/2, then we can compute maximum cardinality

matching in G in o(m
√

n) time. Using our algorithm, we obtain a new Õ(n4/3/ε4) time algorithm

to compute an ε-approximate bottleneck matching of A, B ⊂ R
2 and an 1

εO(d) n1+ d−1
2d−1 poly log n

time algorithm for computing ε-approximate bottleneck matching in d-dimensions. All previous

algorithms take Ω(n3/2) time. Given any graph G(A ∪ B, E) that has an easily computable

balanced vertex separator for every subgraph G′(V ′, E′) of size |V ′|δ, for δ ∈ [1/2, 1), we can

apply our algorithm to compute a maximum matching in Õ(mn
δ

1+δ ) time improving upon the

O(m
√

n) time taken by the HK-Algorithm.
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1 Introduction

We consider the classical matching problem in an arbitrary unweighted bipartite graph

G(A ∪ B, E) with |A| = |B| = n and E ⊆ A × B. A matching M ⊆ E is a set of vertex-

disjoint edges. We refer to a largest cardinality matching M in G as a maximum matching.

A maximum matching is perfect if |M | = n. Now suppose the graph is weighted and every

edge (a, b) ∈ E has a weight specified by c(a, b). The weight of any subset of edges E′ ⊆ E is

given by
∑

(a,b)∈E c(a, b). A minimum-weight maximum matching is a maximum matching

with the smallest weight. In this paper, we present an algorithm to compute a maximum

matching faster by carefully assigning weights of 0 and 1 to the edges of G.

1 We use Õ to suppress poly-logarithmic terms.
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Maximum matching in graphs: In an arbitrary bipartite graph with n vertices and m

edges, Ford and Fulkerson’s algorithm [7] iteratively computes, in each phase, an augment-

ing path inO(m) time, leading to a maximum cardinality matching inO(mn) time. Hopcroft

and Karp’s algorithm (HK-Algorithm) [10] reduces the number of phases from n to O(
√

n)

by computing a maximal set of vertex-disjoint shortest augmenting paths in each phase.

A single phase can be implemented in O(m) time leading to an overall execution time of

O(m
√

n). In weighted bipartite graphs with n vertices and m edges, the well-known Hun-

garian method computes a minimum-weight maximum matching inO(mn) time [11]. Gabow

and Tarjan designed a weight-scaling algorithm (GT-Algorithm) to compute a minimum-

weight perfect matching in O(m
√

n log(nC)) time, provided all edge weights are integers

bounded by C [8]. Their method, like the Hopcroft-Karp algorithm, computes a maximal

set of vertex-disjoint shortest (for an appropriately defined augmenting path cost) augment-

ing paths in each phase. For the maximum matching problem in arbitrary graphs (not

necessarily bipartite), a weighted approach has been applied to achieve a simple O(m
√

n)

time algorithm [9].

Recently Lahn and Raghvendra [12] gave Õ(n6/5) and Õ(n7/5) time algorithms for finding

a minimum-weight perfect bipartite matching in planar and Kh-minor2 free graphs respect-

ively, overcoming the Ω(m
√

n) barrier; see also Asathulla et al. [4]. Both these algorithms

are based on the existence of an r-clustering which, for a parameter r > 0, is a partition-

ing of G into edge-disjoint clusters {R1, . . . ,Rk} such that k = Õ(n/
√

r), every cluster Rj

has O(r) vertices, and each cluster has Õ(
√

r) boundary vertices. A boundary vertex has

edges from two or more clusters incident on it. Furthermore, the total number of boundary

vertices, counted with multiplicity, is Õ(n/
√

r). The algorithm of Lahn and Raghvendra

extends to any graph that admits an r-clustering. There are also algebraic approaches for

the design of fast algorithms for bipartite matching; see for instance [14, 15].

Matching in geometric settings: In geometric settings, A and B are points in a fixed

d-dimensional space and G is a complete bipartite graph on A and B. For a fixed in-

teger p ≥ 1, the weight of an edge between a ∈ A and b ∈ B is ‖a − b‖p, where ‖a − b‖
denotes the Euclidean distance between a and b. The weight of a matching M is given by
(
∑

(a,b)∈M ‖a−b‖p
)1/p

. For any fixed p ≥ 1, we wish to compute a perfect matching with the

minimum weight. When p = 1, the problem is the well-studied Euclidean bipartite matching

problem. A minimum-weight perfect matching for p = ∞ will minimize the largest-weight

edge in the matching and is referred to as a bottleneck matching. The Euclidean bipartite

matching in a plane can be computed in Õ(n3/2+δ) [17] time for an arbitrary small δ > 0;

see also Sharathkumar and Agarwal [18]. Efrat et al. present an algorithm to compute a

bottleneck matching in the plane in Õ(n3/2) [6] time. Both these algorithms use geometric

data structures in a non-trivial fashion to speed up classical graph algorithms.

When p = 1, for any 0 < ε ≤ 1, there is an ε-approximation algorithm for the Euclidean

bipartite matching problem that runs in Õ(n/εd) time [19]. However, for p > 1, all known

ε-approximation algorithms take Ω(n3/2/εd) time. We note that it is possible to find a Θ(1)-

approximate bottleneck matching in 2-dimensional space by reducing the problem to finding

maximum flow in a planar graph and then finding the flow using an Õ(n) time max-flow

algorithm [5]. There are numerous other results; see also [2, 3, 16]. Designing exact and

approximation algorithms that break the Ω(n3/2) barrier remains an important research

challenge in computational geometry.

2 They assume h = O(1).
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Our results: We present a weighted approach to compute a maximum cardinality matching

in an arbitrary bipartite graph. Our main result is a new matching algorithm that takes

as input a weighted bipartite graph G(A ∪B, E) with every edge having a weight of 0 or 1.

Let w ≤ n be an upper bound on the weight of any matching in G. Consider the subgraph

induced by all the edges of G with a weight 0. Let {K1, K2, . . . , Kl} be the connected

components in this subgraph and let, for any 1 ≤ i ≤ l, Vi and Ei be the vertices and

edges of Ki. We refer to each connected component Ki as a piece. Suppose |Vi| = O(r) and

|Ei| = O(mr/n). Given G, we present an algorithm to compute a maximum matching in G

in Õ(m(
√

w +
√

r + wr
n )) time. Consider any graph in which removal of sub-linear number

of “separator” vertices partitions the graph into connected components with O(r) vertices

and O(mr/n) edges. We can apply our algorithm to any such graph by simply setting the

weight of every edge incident on any separator vertex to 1 and weights of all other edges to

0.

When all the edge weights are 1 or all edge weights are 0, our algorithm will be identical

to the HK-Algorithm algorithm and runs in O(m
√

n) time. However, if we can carefully

assign weights of 0 and 1 on the edges such that both w and r are sub-linear in n and for

some constant γ < 3/2, wr = O(nγ), then we can compute a maximum matching in G in

o(m
√

n) time. Using our algorithm, we obtain the following result for bottleneck matching:

Given two point sets A, B ⊂ R2 and an 0 < ε ≤ 1, we reduce the problem of computing

an ε-approximate bottleneck matching to computing a maximum cardinality matching

in a subgraph G of the complete bipartite graph on A and B. We can, in O(n) time

assign 0/1 weights to the O(n2) edges of G with so that any matching has a weight of

O(n2/3). Despite possibly Θ(n2) edges in G, we present an efficient implementation of

our graph algorithm with Õ(n4/3/ε4) execution time that computes an ε-approximate

bottleneck matching for d = 2; all previously known algorithms take Ω(n3/2) time. Our

algorithm, for any fixed d ≥ 2 dimensional space, computes an ε-approximate bottleneck

matching in 1
εO(d) n1+ d−1

2d−1 poly log n time. (See Section 5).

The algorithm of Lahn and Raghvendra [12] for Kh-minor free graphs requires the clusters to

have a small number of boundary vertices, which is used to create a compact representation

of the residual network. This compact representation becomes prohibitively large as the

number of boundary vertices increase. For instance, their algorithm has an execution time

of Ω(m
√

n) for the case where G has a balanced vertex separator of Θ(n2/3). Our algorithm,

on the other hand, extends to any graph with a sub-linear vertex separator. Given any graph

G(A ∪ B, E) that has an easily computable balanced vertex separator for every subgraph

G′(V ′, E′) of size |V ′|δ, for δ ∈ [1/2, 1), there is a 0/1 weight assignment on edges of the

graph so that the weight of any matching is O(n
2δ

1+δ ) and r = O(n
1

1+δ ). This assignment

can be obtained by simply recursively sub-dividing the graph using balanced separators until

each piece has O(r) vertices and O(mr/n) edges. All edges incident on the separator vertices

are then assigned a weight of 1 and all other edges are assigned a weight of 0. As a result, we

obtain an algorithm that computes the maximum cardinality matching in Õ(mn
δ

1+δ ) time.

Our approach: Initially, we compute, in O(m
√

r) time, a maximum matching within all

pieces. Similar to the GT-Algorithm, the rest of our algorithm is based on a primal-dual

method and executes in phases. Each phase consists of two stages. The first stage conducts

a Hungarian search and finds at least one augmenting path containing only zero slack (with

respect to the dual constraints) edges. Let the admissible graph be the subgraph induced by

the set of all zero slack edges. Unlike in the GT-Algorithm, the second stage of our algorithm

computes augmenting paths in the admissible graph that are not necessarily vertex-disjoint.
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In the second stage, the algorithm iteratively initiates a DFS from every free vertex. When

a DFS finds an augmenting path P , the algorithm will augment the matching immediately

and terminate this DFS. Let all pieces of the graph that contain the edges of P be affected.

Unlike the GT-Algorithm, which deletes all edges visited by the DFS, our algorithm deletes

only those edges that were visited by the DFS and did not belong to an affected piece.

Consequently, we allow for visited edges from an affected piece to be reused in another

augmenting path. As a result, our algorithm computes several more augmenting paths per

phase than the GT-Algorithm, leading to a reduction of number of phases from O(
√

n) to

O(
√

w). Note, however, that the edges of an affected piece may now be visited multiple times

by different DFS searches within the same phase. This increases the cumulative time taken

by all the DFS searches in the second stage. However, we are able to bound the total number

of affected pieces across all phases of the algorithm by O(w log w). Since each piece has

O(mr/n) edges, the total time spent revisiting these edges is bounded by O(mrw log(w)/n).

The total execution time can therefore be bounded by Õ(m(
√

w +
√

r + wr
n )).

2 Preliminaries

We are given a bipartite graph G(A ∪B, E), where any edge (a, b) ∈ E has a weight c(a, b)

of 0 or 1. Given a matching M , a vertex is free if it is not matched in M . An alternating

path (resp. cycle) is a simple path (resp. cycle) that alternates between edges in M and not

in M . An augmenting path is an alternating path that begins and ends at a free vertex.

A matching M and an assignment of dual weights y(·) on the vertices of G is feasible if

for any (a, b) ∈ A×B:

y(b)− y(a) ≤ c(a, b) if (a, b) 6∈M, (1)

y(a)− y(b) = c(a, b) if (a, b) ∈M. (2)

To assist in describing our algorithm, we first define a residual network and an augmented

residual network with respect to a feasible matching M, y(·). A residual network GM with

respect to a feasible matching M is a directed graph where every edge (a, b) is directed from

b to a if (a, b) 6∈ M and from a to b if (a, b) ∈ M . The weight s(a, b) of any edge is given

by the slack of this edge with respect to feasibility conditions (1) and (2), i.e., if (a, b) 6∈M ,

then s(a, b) = c(a, b)+y(a)−y(b) and s(a, b) = 0 otherwise. An augmented residual network

is obtained by adding to the residual network an additional vertex s and additional directed

edges from s to every vertex in BF , each of having a weight of 0. We denote the augmented

residual network as G′
M .

3 Our algorithm

Throughout this section we will use M to denote the current matching maintained by the

algorithm and AF and BF to denote the vertices of A and B that are free with respect

to M . Initially M = ∅, AF = A, and BF = B. Our algorithm consists of two steps.

The first step, which we refer to as the preprocessing step, will execute the Hopcroft-Karp

algorithm and compute a maximum matching within every piece. Any maximum matching

MOpt has at most w edges with a weight of 1 and the remaining edges have a weight of

0. Therefore, |MOpt| − |M | ≤ w. The time taken by the preprocessing step for Ki is

O(|Ei|
√

|Vi|) = O(|Ei|
√

r). Since the pieces are vertex disjoint, the total time taken across

all pieces is O(m
√

r). After this step, no augmenting path with respect to M is completely
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contained within a single piece. We set the dual weight y(v) of every vertex v ∈ A∪B to 0.

The matching M along with the dual weights y(·) satisfies (1) and (2) and is feasible.

The second step of the algorithm is executed in phases. We describe phase k of the

algorithm. This phase consists of two stages.

First stage: In the first stage, we construct the augmented residual network G′
M and

execute Dijkstra’s algorithm with s as the source. Let ℓv for any vertex v denote the

shortest path distance from s to v in G′
M . If a vertex v is not reachable from s, we set ℓv to

∞. Let

ℓ = min
v∈AF

ℓv. (3)

Suppose M is a perfect matching or ℓ = ∞, then this algorithm returns with M as a

maximum matching. Otherwise, we update the dual weight of any vertex v ∈ A ∪ B as

follows. If ℓv ≥ ℓ, we leave its dual weight unchanged. Otherwise, if ℓv < ℓ, we set

y(v) ← y(v) + ℓ − ℓv. After updating the dual weights, we construct the admissible graph

which consists of a subset of edges in the residual network GM that have zero slack. After

the first stage, the matching M and the updated dual weights are feasible. Furthermore,

there is at least one augmenting path in the admissible graph. This completes the first stage

of the phase.

Second stage: In the second stage, we initialize G′ to be the admissible graph and execute

DFS to identify augmenting paths. For any augmenting path P found during the DFS, we

refer to the pieces that contain its edges as affected pieces of P .

Similar to the HK-Algorithm, the second stage of this phase will initiate a DFS from

every free vertex b ∈ BF in G′. If the DFS does not lead to an augmenting path, we delete

all edges that were visited by the DFS. On the other hand, if the DFS finds an augmenting

path P , then the matching is augmented along P , all edges that are visited by the DFS and

do not lie in an affected piece of P are deleted, and the DFS initiated at b will terminate.

Now, we describe in detail the DFS initiated for a free vertex b ∈ BF . Initially P = 〈b =

v1〉. Every edge of G′ is marked unvisited. At any point during the execution of DFS, the

algorithm maintains a simple path P = 〈b = v1, v2, . . . , vk〉. The DFS search continues from

the last vertex of this path as follows:

If there are no unvisited edges that are going out of vk in G′,

If P = 〈v1〉, remove all edges that were marked as visited from G′ and terminate the

execution of DFS initiated at b.

Otherwise, delete vk from P and continue the DFS search from vk−1,

If there is an unvisited edge going out of vk, let (vk, v) be this edge. Mark (vk, v) as

visited. If v is on the path P , continue the DFS from vk. If v is not on the path P , add

(vk, v) to P , set vk+1 to v, and,

Suppose v ∈ AF , then P is an augmenting path from b to v. Execute the Augment

procedure which augments M along P . Delete from G′ every visited edge that does

not belong to any affected piece of P and terminate the execution of DFS initiated at

b.

Otherwise, v ∈ (A ∪B) \AF . Continue the DFS from vk+1.

The Augment procedure receives a feasible matching M , a set of dual weights y(·), and

an augmenting path P as input. For any (b, a) ∈ P \ M , where a ∈ A and b ∈ B, set

y(b) ← y(b) − 2c(a, b). Then augment M along P by setting M ← M ⊕ P . By doing so,
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every edge of M after augmentation satisfies the feasibility condition (2). This completes

the description of our algorithm. The algorithm maintains the following invariants during

its execution:

(I1) The matching M and the set of dual weights y(·) are feasible. Let ymax = maxv∈B y(v).

The dual weight of every vertex v ∈ BF is ymax and the dual weight for every vertex

v ∈ AF is 0.

(I2) For every phase that is fully executed prior to obtaining a maximum matching, at least

one augmenting path is found and the dual weight of every free vertex of BF increases

by at least 1.

Comparison with the GT-Algorithm: In the GT-Algorithm, the admissible graph does

not have any alternating cycles. Also, every augmenting path edge can be shown to not

participate in any future augmenting paths that are computed in the current phase. By

using these facts, one can show that the edges visited unsuccessfully by a DFS will not lead

to an augmenting path in the current phase. In our case, however, admissible cycles can

exist. Also, some edges on the augmenting path that have zero weight remain admissible

after augmentation and may participate in another augmenting path in the current phase.

We show, however, that any admissible cycle must be completely inside a piece and cannot

span multiple pieces (Lemma 2). Using this fact, we show that edges visited unsuccessfully

by the DFS that do not lie in an affected piece will not participate in any more augmenting

paths (Lemma 7 and Lemma 9) in the current phase. Therefore, we can safely delete them.

Correctness: From Invariant (I2), each phase of our algorithm will increase the cardinality

of M by at least 1 and so, our algorithm terminates with a maximum matching.

Efficiency: We use the following notations to bound the efficiency of our algorithm. Let

{P1, . . . , Pt} be the t augmenting paths computed in the second step of the algorithm. Let

Ki be the set of affected pieces with respect to the augmenting path Pi. Let M0 be the

matching at the end of the first step of the algorithm. Let, for 1 ≤ i ≤ t, Mi = Mi−1 ⊕ Pi,

i.e., Mi is the matching after the ith augmentation in the second step of the algorithm.

The first stage is an execution of Dijkstra’s algorithm which takes O(m + n log n) time.

Suppose there are λ phases; then the cumulative time taken across all phases for the first

stage is O(λm + λn log n). In the second stage, each edge visited by a DFS is discarded

for the remainder of the phase, provided it is not in an affected piece. Since each affected

piece has O(mr/n) edges, the total time taken by all the DFS searches across all the λ

phases is bounded by O((m + n log n)λ + (mr/n)
∑t

i=1 |Ki|). In Lemma 3, we bound λ

by
√

w and
∑t

i=1 |Ki| by O(w log w). Therefore, the total time taken by the algorithm

including the time taken by preprocessing step is O(m
√

r+m
√

w+n
√

w log n+ mrw log w
n ) =

Õ(m(
√

w +
√

r + wr
n )).

◮ Lemma 1. For any feasible matching M, y(·) maintained by the algorithm, let ymax be the

dual weight of every vertex of BF . For any augmenting path P with respect to M from a

free vertex u ∈ BF to a free vertex v ∈ AF ,

c(P ) = ymax +
∑

(a,b)∈P

s(a, b).

Proof. The weight of P is
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c(P ) =
∑

(a,b)∈P

c(a, b) =
∑

(a,b)∈P \M

(y(b)− y(a) + s(a, b)) +
∑

(a,b)∈P ∩M

(y(a)− y(b)).

Since every vertex on P except for u and v participates in one edge of P ∩M and one edge

of P \M , we can write the above equation as

c(P ) = y(u)− y(v) +
∑

(a,b)∈P \M

s(a, b) = y(u)− y(v) +
∑

(a,b)∈P

s(a, b). (4)

The last equality follows from the fact that edges of P ∩M satisfy (2) and have a slack

of zero. From (I1), we get that y(u) = ymax and y(v) = 0, which gives,

c(P ) = ymax +
∑

(a,b)∈P

s(a, b).

◭

◮ Lemma 2. For any feasible matching M, y(·) maintained by the algorithm, and for any

alternating cycle C with respect to M , if c(C) > 0, then

∑

(a,b)∈P

s(a, b) > 0,

i.e., C is not a cycle in the admissible graph.

Proof. The claim follows from (4) and the fact that the first vertex u and the last vertex v

in a cycle are the same. ◭

◮ Lemma 3. The total number of phases is O(
√

w) and the total number of affected pieces

is O(w log w), i.e.,
∑t

i=1 |Ki| = O(w log w).

Proof. Let MOpt be a maximum matching, which has weight at most w. Consider any

phase k of the algorithm. By (I2), the dual weight ymax of every free vertex in BF is at least

k. The symmetric difference of M and MOpt will contain j = |MOpt| − |M | vertex-disjoint

augmenting paths. Let {P1, . . . ,Pj} be these augmenting paths. These paths contain edges

of MOpt and M , both of which are of weight at most w. Therefore, the sum of weights of

these paths is

j
∑

i=1

c(Pi) ≤ 2w.

Let ymax be the dual weight of every vertex b of B that is free with respect to M . i.e.,

b ∈ BF . From (I2), ymax ≥ k. From Lemma 1 and the fact that the slack on every edge is

non-negative, we immediately get,

2w ≥
j

∑

i=1

c(Pi) ≥ jymax ≥ jk. (5)

When
√

w ≤ k <
√

w + 1, it follows from the above equation that j = |MOpt| − |M | ≤ 2
√

w.

From (I2), we will compute at least one augmenting path in each phase and so the remaining

j unmatched vertices are matched in at most 2
√

w phases. This bounds the total number

of phases by 3
√

w.
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Recollect that {P1, . . . , Pt} are the augmenting paths computed by the algorithm. The

matching M0 has |MOpt|−t edges. Let yl
max correspond to the dual weight of the free vertices

of BF when the augmenting path Pl is found by the algorithm. From Lemma 1, and the fact

that Pl is an augmenting path consisting of zero slack edges, we have yl
max = c(Pl). Before

augmenting along Pl, there are |MOpt| − t + l− 1 edges in Ml−1 and j = |MOpt| − |Ml−1| =
t− l + 1. Plugging this in to (5), we get c(Pl) = yl

max ≤ 2w
t−l+1 . Summing over all 1 ≤ l ≤ t,

we get,

t
∑

l=1

c(Pl) ≤ w

t
∑

l=1

2

t− l + 1
= O(w log t) = O(w log w). (6)

For any augmenting path Pl, the number of affected pieces is upper bounded by the number

of non-zero weight edges on Pl, i.e., |Kl| ≤ c(Pl). Therefore,

t
∑

l=1

|Kl| ≤
t

∑

l=1

c(Pl) = O(w log w).

◭

4 Proof of invariants

We now prove (I1) and (I2). Consider any phase k in the algorithm. Assume inductively

that at the end of phase k− 1, (I1) and (I2) hold. We will show that (I1) and (I2) also hold

at the end of the phase k. We establish a lemma that will help us prove (I1) and (I2).

◮ Lemma 4. For any edge (a, b) ∈M , let ℓa and ℓb be the distances returned by Dijkstra’s

algorithm during the first stage of phase k, then ℓa = ℓb.

Proof. The only edge directed towards b is an edge from its match a. Therefore, any path

from s to b in the augmented residual network, including the shortest path, should pass

through a. Since the slack on any edge of M is 0, ℓb = ℓa + s(a, b) = ℓa. ◭

◮ Lemma 5. Any matching M and dual weights y(·) maintained during the execution of the

algorithm are feasible.

Proof. We begin by showing that the dual weight modifications in the first stage of phase k

will not violate dual feasibility conditions (1) and (2). Let ỹ(·) denote the dual weights after

the execution of the first stage of the algorithm. Consider any edge (u, v) directed from u

to v. There are the following possibilities:

If both ℓu and ℓv are greater than or equal to ℓ, then y(u) and y(v) remain unchanged

and the edge remains feasible.

If both ℓu and ℓv are less than ℓ, suppose (u, v) ∈M . Then, from Lemma 4, ℓu = ℓv. We

have, ỹ(u) = y(u)+ℓ−ℓu, ỹ(v) = y(v)+ℓ−ℓv, and ỹ(u)−ỹ(v) = y(u)−y(v)+ℓv−ℓu = c(u, v)

implying (u, v) satisfies (2).

If ℓu and ℓv are less than ℓ and (u, v) 6∈ M , then u ∈ B and v ∈ A. By definition,

y(u) − y(v) + s(u, v) = c(u, v). By the properties of shortest paths, for any edge (u, v),

ℓv − ℓu ≤ s(u, v). The dual weight of u is updated to y(u) + ℓ − ℓu and dual weight of

v is updated to y(v) + ℓ − ℓv. The difference in the updated dual weights ỹ(u) − ỹ(v) =

(y(u) + ℓ − ℓu) − (y(v) + ℓ − ℓv) = y(u) − y(v) + ℓv − ℓu ≤ y(u) − y(v) + s(u, v) = c(u, v).

Therefore, (u, v) satisfies (1).
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If ℓu < ℓ and ℓv ≥ ℓ, then, from Lemma 4, (u, v) 6∈ M , and so u ∈ B and v ∈ A. From

the shortest path property, for any edge (u, v), ℓv − ℓu ≤ s(u, v). Therefore,

ỹ(u)− ỹ(v) = y(u)− y(v) + ℓ− ℓu ≤ y(u)− y(v) + ℓv− ℓu ≤ y(u)− y(v) + s(u, v) = c(u, v),

implying (u, v) satisfies (1).

If ℓu ≥ ℓ and ℓv < ℓ, then, from Lemma 4, (u, v) 6∈ M , and so u ∈ B and v ∈ A. Since

ℓv < ℓ, we have,

ỹ(u)− ỹ(v) = y(u)− y(v)− ℓ + ℓv < y(u)− y(v) ≤ c(u, v),

implying (u, v) satisfies (1).

In the second stage of the algorithm, when an augmenting path P is found, the dual

weights of some vertices of B on P decrease and the directions of edges of P change. We

argue these operations do not violate feasibility. Let ỹ(·) be the dual weights after these

operations. Consider any edge (a, b) ∈ A × B. If b is not on P , then the feasibility of

(a, b) is unchanged. If b is on P and a is not on P , then ỹ(b) ≤ y(b), and ỹ(b) − ỹ(a) ≤
y(b) − y(a) ≤ c(a, b), implying (1) holds. The remaining case is when both a and b are

on P . Consider if (a, b) ∈ M after augmentation. Prior to augmentation, (a, b) was an

admissible edge not in M , and we have y(b)− y(a) = c(a, b) and ỹ(b) = y(b)− 2c(a, b). So,

ỹ(a) − ỹ(b) = y(a) − (y(b) − 2c(a, b)) = y(a) − y(b) + 2c(a, b) = c(a, b), implying (2) holds.

Finally, consider if (a, b) /∈ M after augmentation. Then, prior to augmentation, (a, b) was

in M , and y(a)− y(b) = c(a, b). So, ỹ(b)− ỹ(a) ≤ y(b)− y(a) = −c(a, b) ≤ c(a, b), implying

(1) holds. We conclude the second stage maintains feasibility.

◭

Next we show that the dual weights AF are zero and the dual weights of all vertices of BF

are equal to ymax. At the start of the second step, all dual weights are 0. During the first

stage, the dual weight of any vertex v will increase by ℓ − ℓv only if ℓv < ℓ. By (3), for

every free vertex a ∈ AF , ℓa ≥ ℓ, and so the dual weight of every free vertex of A remains

unchanged at 0. Similarly, for any free vertex b ∈ BF , ℓb = 0, and the dual weight increases

by ℓ, which is the largest possible increase. This implies that every free vertex in BF will

have the same dual weight of ymax. In the second stage, matched vertices of B undergo a

decrease in their dual weights, which does not affect vertices in BF . Therefore, the dual

weights of vertices of BF will still have a dual weight of ymax after stage two. This completes

the proof of (I1).

Before we prove (I2), we will first establish a property of the admissible graph after the

dual weight modifications in the first stage of the algorithm.

◮ Lemma 6. After the first stage of each phase, there is an augmenting path consisting of

admissible edges.

Proof. Let a ∈ AF be a free vertex whose shortest path distance from s in the augmented

residual network is ℓ, i.e., ℓa = ℓ. Let P be the shortest path from s to a and let Pa be

the path P with s removed from it. Note that Pa is an augmenting path. We will show

that after the dual updates in the first stage, every edge of Pa is admissible. Consider

any edge (u, v) ∈ Pa ∩ M , where u ∈ A and v ∈ B. From Lemma 4, ℓu = ℓv. Then

the updated dual weights are ỹ(u) = y(u) + ℓ − ℓu and ỹ(v) = y(v) + ℓ − ℓv. Therefore,

ỹ(u)− ỹ(v) = y(u)− y(v)− ℓu + ℓv = c(u, v), and (u, v) is admissible. Otherwise, consider

any edge (u, v) ∈ Pa \M , where u ∈ B and v ∈ A. From the optimal substructure property
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of shortest paths, for any edge (u, v) ∈ Pa directed from u to v, ℓv − ℓu = s(u, v). Therefore,

the difference of the new dual weights is

ỹ(u)−ỹ(v) = y(u)+ℓ−ℓu−y(v)−ℓ+ℓv = y(u)−y(v)−ℓu+ℓv = y(u)−y(v)+s(u, v) = c(u, v),

implying that (u, v) is admissible. ◭

Proof of (I2): From Lemma 6, there is an augmenting path of admissible edges at the end

of the first stage of any phase. Since we execute a DFS from every free vertex b ∈ BF in the

second stage, we are guaranteed to find an augmenting path. Next, we show in Corollary 10

that there is no augmenting path of admissible edges at the end of stage two of phase k, i.e.,

all augmenting paths in the residual network have a slack of at least 1. This will immediately

imply that the first stage of phase k + 1 will have to increase the dual weight of every free

vertex by at least 1 completing the proof for (I2).

Edges that are deleted during a phase do not participate in any augmenting path for the

rest of the phase. We show this in two steps. First, we show that at the time of deletion of

an edge (u, v), there is no path in the admissible graph that starts from the edge (u, v) and

ends at a free vertex a ∈ AF (Lemma 9). In Lemma 7, we show that any such edge (u, v)

will not participate in any admissible alternating path to a free vertex of AF for the rest of

the phase.

We use DFS(b, k) to denote the DFS initiated from b in phase k. Let P b
u denote the path

maintained by DFS(b, k) when the vertex u was added to the path.

◮ Lemma 7. Consider some point during the second stage of phase k where there is an edge

(u, v) that does not participate in any admissible alternating path to a vertex of AF . Then,

for the remainder of phase k, (u, v) does not participate in any admissible alternating path

to a vertex of AF .

Proof. Assume for the sake of contradiction that at some later time during phase k, (u, v)

becomes part of an admissible path Py,z from a vertex y to a vertex z ∈ AF . Consider the

first time this occurs for (u, v). During the second stage, the dual weights of some vertices of

B may decrease just prior to augmentation; however, this does not create any new admissible

edges. Therefore, Py,z must have become an admissible path due to augmentation along a

path Pa,b from some b ∈ BF to some a ∈ AF . Specifically, Py,z must intersect Pa,b at some

vertex x. Therefore, prior to augmenting along Pa,b, there was an admissible path from y to

a via x. This contradicts the assumption that (u, v) did not participate in any admissible

path to a vertex of AF prior to this time. ◭

◮ Lemma 8. Consider the execution of DFS(b, k) and the path P b
u. Suppose the DFS(b, k)

marks an edge (u, v) as visited. Let Pv be an admissible alternating path from v to any free

vertex a ∈ AF in G′. Suppose Pv and P b
u are vertex-disjoint. Then, DFS(b, k) will find an

augmenting path that includes the edge (u, v).

Proof. Pv and P b
u are vertex-disjoint and so, v is not on the path P b

u. Therefore, DFS(b, k)

will add (u, v) to the path and we get the path P = P b
v . We will show that all edges of Pv

are unvisited by DFS(b, k), and so the DFS procedure, when continued from v, will discover

an augmenting path.

We show, through a contradiction, that all edges of Pv are not yet visited by DFS(b, k).

Consider, for the sake of contradiction, among all the edges of Pv, the edge (u′, v′) that was

marked visited first. We claim the following:
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(i) (u′, v′) is visited before (u, v): This follows from the assumption that when (u, v) was

marked as visited, (u′, v′) was already marked as visited by the DFS.

(ii) (u, v) is not a descendant of (u′, v′) in the DFS: If (u′, v′) was an ancestor of (u, v) in the

DFS, then P b
u contains (u′, v′). By definition, Pv also contains (u′, v′), which contradicts

the assumption that P b
u and Pv are disjoint paths.

(iii) When (u′, v′) is marked visited, it will be added to the path by the DFS: The only reason

why (u′, v′) is visited but not added is if v′ is already on the path P b
u′ . In that case, Pv

and P b
u′ will share an edge that was visited before (u′, v′) contradicting the assumption

that (u′, v′) was the earliest edge of Pv to be marked visited.

From (iii), when (u′, v′) was visited, it was added to the path P b
v′ . Since (u′, v′) was the edge

on Pv that was marked visited first by DFS(b, k), all edges on the subpath from v′ to a are

unvisited. Therefore, the DFS(b, k), when continued from v′, will not visit (u, v) (from (ii)),

will find an augmenting path, and terminate. From (i), (u, v) will not be marked visited by

DFS(b, k) leading to a contradiction. ◭

◮ Lemma 9. Consider a DFS initiated from some free vertex b ∈ BF in phase k. Let M

be the matching at the start of this DFS and M ′ be the matching when the DFS terminates.

Suppose the edge (u, v) was deleted during DFS(b, k). Then there is no admissible path

starting with (u, v) and ending at a free vertex a ∈ AF in GM ′ .

Proof. At the start of phase k, G′ is initialized to the admissible graph. Inductively, we

assume that all the edges discarded in phase k prior to the execution of DFS(b, k) do not

participate in any augmenting path of admissible edges with respect to M . Therefore, any

augmenting path of admissible edges in GM remains an augmenting path in G′. There are

two possible outcomes for DFS(b, k). Either, (i) the DFS terminates without finding an

augmenting path, or (ii) the DFS terminates with an augmenting path P̃ and M ′ = M ⊕ P̃ .

In case (i), M = M ′ and any edge (u, v) visited by the DFS(b, k) is marked for deletion.

For the sake of contradiction, let (u, v) participate in an admissible path P to a free vertex

a′ ∈ AF . Since u is reachable from b and a′ is reachable from u in GM , a′ is reachable from

b. This contradicts the fact that DFS(b, k) did not find an augmenting path. Therefore, no

edge (u, v) marked for deletion participates in an augmenting path with respect to M .

In case (ii), M ′ = M ⊕ P̃ . DFS(b, k) marks two kinds of edges for deletion.

(a) Any edge (u, v) on the augmenting path P̃ such that c(u, v) = 1 is deleted, and,

(b) Any edge (u, v) that is marked visited by DFS(b, k), does not lie on P̃ , and does not

belong to any affected piece is deleted.

In (a), there are two possibilities (1) (u, v) ∈ P̃ ∩M or (2) (u, v) ∈ P̃ \M . If (u, v) ∈M (case

(a)(1)), then, after augmentation along P̃ , s(u, v) increases from 0 to at least 2, and (u, v)

is no longer admissible. Therefore, (u, v) does not participate in any admissible alternating

paths to a free vertex in AF with respect to GM ′ . If (u, v) 6∈ M (case (a)(2)), then the

Augment procedure reduces the dual weight of u ∈ B by 2. So, every edge going out of u

will have a slack of at least 2. Therefore, (u, v) cannot participate in any admissible path P

to a free vertex in AF . This completes case (a).

For (b), we will show that (u, v), even prior to augmentation along P̃ , did not participate

in any path of admissible edges from v to any free vertex of AF . For the sake of contradiction,

let there be a path Pv from v to a′ ∈ AF . We claim that Pv and P b
u are not vertex-disjoint.

Otherwise, from Lemma 8, the path P̃ found by DFS(b, k) includes (u, v). However, by

our assumption for case (b), (u, v) does not lie on P̃ . Therefore, we safely assume that Pv

intersects P b
u. There are two cases:
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c(u, v) = 1: We will construct a cycle of admissible edges containing the edge (u, v).

Since c(u, v) = 1, our construction will contradict Lemma 2. Let x be the first vertex

common to both Pv and P b
u as we walk from v to a′ on Pv. To create the cycle, we

traverse from x to u along the path P b
u, followed by the edge (u, v), followed by the path

from v to x along Pv. All edges of this cycle are admissible including the edge (u, v).

c(u, v) = 0: In this case, (u, v) belongs to some piece Ki that is not an affected piece.

Among all edges visited by DFS(b, k), consider the edge (u′, v′) of Ki, the same piece as

(u, v), such that v′ has a path to the vertex a′ ∈ AF with the fewest number of edges.

Let Pv′ be this path. We claim that Pv′ and P b
u′ are not vertex-disjoint. Otherwise, from

Lemma 8, the path P̃ found by DFS(b, k) includes (u′, v′) and Ki would have been an

affected piece. Therefore, we can safely assume that Pv′ intersects with P b
u′ . Let z be

the first intersection point with P b
u′ as we walk from v′ to a′ and let z′ be the vertex that

follows after z in P b
u′ . There are two possibilities:

The edge (z, z′) ∈ Ki: In this case, (z, z′) is also marked visited by DFS(b, k), and z′

has path to a′ with fewer number of edges than v′. This contradicts our assumption

about (u′, v′).

The edge (z, z′) 6∈ Ki: In this case, consider the cycle obtained by walking from z to

u′ along the path P b
u′ followed by the edge (u′, v′) and the path from v′ to z along Pv′ .

Since (u′, v′) ∈ Ki and (z, z′) 6∈ Ki, the admissible cycle contains at least one edge of

weight 1. This contradicts Lemma 2.

This concludes case (b) which shows that (u, v) did not participate in any augmenting

paths with respect to M . From Lemma 7, it follows that (u, v) does not participate in any

augmenting path with respect to GM ′ as well. ◭

◮ Corollary 10. At the end of any phase, there is no augmenting path of admissible edges.

5 Minimum bottleneck matching

We are given two sets A and B of n d-dimensional points. Consider a weighted and complete

bipartite graph on points of A and B. The weight of any edge (a, b) ∈ A×B is given by its

Euclidean distance and denoted by ‖a− b‖. For any matching M of A and B let its largest

weight edge be its bottleneck edge. In the minimum bottleneck matching problem, we wish to

compute a matching MOpt of A and B with the smallest weight bottleneck edge. We refer

to this weight as the bottleneck distance of A and B and denote it by β∗. An ε-approximate

bottleneck matching of A and B is any matching M with a bottleneck edge weight of at

most (1 + ε)β∗. We present an algorithm that takes as input A, B, and a value δ such that

β∗ ≤ δ ≤ (1 + ε/3)β∗, and produces an ε-approximate bottleneck matching. For simplicity

in presentation, we describe our algorithm for the 2-dimensional case when all points of A

and B are in a bounding square S. The algorithm easily extends to any arbitrary fixed

dimension d. For 2-dimensional case, given a value δ, our algorithm executes in Õ(n4/3/ε3)

time.

Although, the value of δ is not known to the algorithm, we can first find a value α

that is guaranteed to be an n-approximation of the bottleneck distance [1, Lemma 2.2]

and then select O(log n/ε) values from the interval [α/n, α] of the form (1 + ε/3)iα/n,

for 0 ≤ i ≤ O(log n/ε). We will then execute our algorithm for each of these O(log n/ε)

selected values of δ. Our algorithm returns a maximum matching whose edges are of length

at most (1 + ε/3)δ in O(n4/3/ε3) time. At least one of the δ values chosen will be a

β∗ ≤ δ ≤ (1 + ε/3)β∗. The matching returned by the algorithm for this value of δ will be

perfect (|M | = n) and have a bottleneck edge of weight at most (1 + ε/3)2β∗ ≤ (1 + ε)β∗ as
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desired. Among all executions of our algorithm that return a perfect matching, we return a

perfect matching with the smallest bottleneck edge weight. Therefore, the total time taken

to compute the ε-approximate bottleneck matching is Õ(n4/3/ε4).

Given the value of δ, the algorithm will construct a graph as follows: Let G be a grid on

the bounding square S. The side-length of every square in this grid is εδ/(6
√

2). For any

cell ξ in the grid G, let N(ξ) denote the subset of all cells ξ′ of G such that the minimum

distance between ξ and ξ′ is at most δ. By the use of a simple packing argument, it can be

shown that |N(ξ)| = O(1/ε2).

For any point v ∈ A ∪B, let ξv be the cell of grid G that contains v. We say that a cell

ξ is active if (A∪B)∩ ξ 6= ∅. Let Aξ and Bξ denote the points of A and B in the cell ξ. We

construct a bipartite graph G(A ∪ B, E) on the points in A ∪ B as follows: For any pair of

points (a, b) ∈ A×B, we add an edge in the graph if ξb ∈ N(ξa). Note that every edge (a, b)

with ‖a − b‖ ≤ δ will be included in G. Since δ is at least the bottleneck distance, G will

have a perfect matching. The maximum distance between any cell ξ and a cell in N(ξ) is

(1 + ε/3)δ. Therefore, no edge in G will have a length greater than (1 + ε/3)δ. This implies

that any perfect matching in G will also be an ε-approximate bottleneck matching. We use

our algorithm for maximum matching to compute this perfect matching in G. Note, that

G can have Ω(n2) edges. For the sake of efficiency, our algorithm executes on a compact

representation of G that is described later. Next, we assign weights of 0 and 1 to the edges

of G so that the any maximum matching in G has a small weight w.

For a parameter3 r > 1, we will carefully select another grid G′ on the bounding square

S, each cell of which has a side-length of
√

r(εδ/(6
√

2)) and encloses
√

r × √r cells of

G. For any cell ξ of the grid G, let �ξ be the cell in G′ that contains ξ. Any cell ξ of

G is a boundary cell with respect to G′ if there is a cell ξ′ ∈ N(ξ) such that �ξ′ 6= �ξ.

Equivalently, if the minimum distance from ξ to �ξ is at most δ, then ξ is a boundary cell.

For any boundary cell ξ of G with respect to grid G′, we refer to all points of Aξ and Bξ

that lie in ξ as boundary points. All other points of A and B are referred to as internal

points. We carefully construct this grid G′ such that the total number of boundary points

is O(n/ε
√

r) as follows: First, we will generate the vertical lines for G
′, and then we will

generate the horizontal lines using a similar construction. Consider the vertical line yij to

be the line x = i(εδ)/(6
√

2) + j
√

r(εδ/(6
√

2)). For any fixed integer i in [1,
√

r], consider

the set of vertical lines Yi = {yij | yij intersects the bounding square S}. We label all cells

ξ of G as boundary cells with respect to Yi if the distance from ξ to some vertical line in Yi

is at most δ. We designate the points inside the boundary cells as boundary vertices with

respect to Yi. For any given i, let Ai and Bi be the boundary vertices of A and B with

respect to the lines in Yi. We select an integer κ = arg min1≤i≤√
r |Ai ∪ Bi| and use Yκ as

the vertical lines for our grid G′. We use a symmetric construction for the horizontal lines.

◮ Lemma 11. Let Ai and Bi be the boundary points with respect to the vertical lines Yi.

Let κ = arg min1≤i≤√
r |Ai ∪Bi|. Then, |Aκ ∪Bκ| = O(n/(ε

√
r)).

Proof. For any fixed cell ξ in G, of the
√

r values of i, there are O(1/ε) values for which Yi

has a vertical line at a distance at most δ from ξ. Therefore, each cell ξ will be a boundary

cell in only O(1/ε) shifts out of
√

r shifts. So, Aξ and Bξ will be counted in Ai ∪ Bi for

3 Assume r to be a perfect square.
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O(1/ε) different values of i. Therefore, if we take the average over choices of i, we get

min
1≤i≤√

r
|Ai ∪Bi| ≤

1√
r

√
r

∑

i=1

|Ai ∪Bi| ≤ O(n/(ε
√

r)).

◭

Using a similar construction, we guarantee that the boundary points with respect to the

horizontal lines of G′ is also at most O(n/(ε
√

r)).

◮ Corollary 12. The grid G′ that we construct has O(n/(ε
√

r)) many boundary points.

For any two cells ξ and ξ′ ∈ N(ξ) of the grid G, suppose �ξ 6= �ξ′ . Then the weights of

all edges of Aξ×Bξ′ and of Bξ×Aξ′ are set to 1. All other edges have a weight of 0. We do

not make an explicit weight assignment as it is expensive to do so. Instead, we can always

derive the weight of an edge when we access it. Only boundary points will have edges of

weight 1 incident on them. From Corollary 12, it follows that any maximum matching will

have a weight of w = O(n/(ε
√

r)).

The edges of every piece in G have endpoints that are completely inside a cell of G′. Note,

however, that there is no straight-forward bound on the number of points and edges of G
inside each piece. Moreover, the number of edges in G can be Θ(n2). Consider any feasible

matching M, y(·) in G. Let GM be the residual network. In order to obtain a running time of

Õ(n4/3/ε3), we use the grid G to construct a compact residual network CGM for any feasible

matching M, y(·) and use this compact graph to implement our algorithm. The following

lemma assists us in constructing the compressed residual network.

◮ Lemma 13. Consider any feasible matching M, y(·) maintained by our algorithm on G
and any active cell ξ in the grid G. The dual weight of any two points a, a′ ∈ Aξ can differ

by at most 2. Similarly, the dual weights of any two points b, b′ ∈ Bξ can differ by at most

2.

Proof. We present our proof for two points b, b′ ∈ Bξ. A similar argument will extend

for a, a′ ∈ Aξ. For the sake of contradiction, let y(b) ≥ y(b′) + 3. b′ must be matched

since y(b′) < y(b) ≤ ymax. Let m(b′) ∈ A be the match of b′ in M . From (2), y(m(b′)) −
y(b′) = c(b′, m(b′)). Since both b and b′ are in ξ, the distance c(b, m(b′)) = c(b′, m(b′)). So,

y(b) − y(m(b′)) ≥ (y(b′) + 3) − y(m(b′)) = 3 − c(b, m(b′)). This violates (1) leading to a

contradiction. ◭

For any feasible matching and any cell ξ of G, we divide points of Aξ and Bξ based on their

dual weight into at most three clusters. Let A1
ξ, A2

ξ and A3
ξ be the three clusters of points

in Aξ and let B1
ξ , B2

ξ and B3
ξ be the three clusters of points in Bξ. We assume that points

with the largest dual weights are in A1
ξ (resp. B1

ξ ), the points with the second largest dual

weights are in A2
ξ (resp. B2

ξ ), and the points with the smallest dual weights are in A3
ξ (resp.

B3
ξ ).

Compact residual network: Given a feasible matching M , we construct a compact residual

network CGM to assist in the fast implementation of our algorithm. This vertex set A∪B for

the compact residual network is constructed as follows. First we describe the vertex set A.

For every active cell ξ in G, we add a vertex a1
ξ (resp. a2

ξ, a3
ξ) to represent the set A1

ξ (resp.

A2
ξ, A3

ξ) provided A1
ξ 6= ∅ (resp. A2

ξ 6= ∅, A3
ξ 6= ∅). We designate a1

ξ (resp. a2
ξ, a3

ξ) as a free

vertex if A1
ξ ∩ AF 6= ∅ (resp. A2

ξ ∩ AF 6= ∅, A3
ξ ∩ AF 6= ∅). Similarly, we construct a vertex
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set B by adding a vertex b1
ξ (resp. b2

ξ, b3
ξ) to represent the set B1

ξ (resp. B2
ξ , B3

ξ ) provided

B1
ξ 6= ∅ (resp. B2

ξ 6= ∅, B3
ξ 6= ∅). We designate b1

ξ (resp. b2
ξ, b3

ξ) as a free vertex if B1
ξ ∩BF 6= ∅

(resp. B2
ξ ∩BF 6= ∅, B3

ξ ∩BF 6= ∅). Each active cell ξ of the grid G therefore has at most six

points. Each point in A∪B will inherit the dual weights of the points in its cluster; for any

vertex a1
ξ ∈ A (resp. a2

ξ ∈ A, a3
ξ ∈ A), let y(a1

ξ)(resp. y(a2
ξ), y(a3

ξ)) be the dual weight of all

points in A1
ξ (resp. A2

ξ , A3
ξ). We define y(b1

ξ), y(b2
ξ), and y(b3

ξ) as dual weights of points in

B1
ξ , B2

ξ , and B3
ξ respectively. Since there are at most n active cells, |A ∪ B| = O(n).

Next, we create the edge set for the compact residual network CG. For any active cell ξ

in the grid G and for any cell ξ′ ∈ N(ξ),

We add a directed edge from ai
ξ to bj

ξ′ , for i, j ∈ {1, 2, 3} if there is an edge (a, b) ∈
(Ai

ξ ×Bj
ξ′) ∩M . We define the weight of (ai

ξ, bj
ξ′) to be c(a, b). We also define the slack

s(ai
ξ, bj

ξ′) to be c(ai
ξ, bj

ξ′)−y(ai
ξ)+y(bj

ξ′) which is equal to s(ai
ξ, bj

ξ′) = c(a, b)−y(a)+y(b) =

s(a, b) = 0.

We add a directed edge from bi
ξ to aj

ξ′ , for i, j ∈ {1, 2, 3} if (Bi
ξ × Aj

ξ′) \M 6= ∅. Note

that the weight and slack of every directed edge in Bi
ξ × Aj

ξ′ are identical. We define

the weight of (bi
ξ, aj

ξ′) to be c(a, b) for any (a, b) ∈ Aj
ξ′ × Bi

ξ. We also define the slack

s(bi
ξ, aj

ξ′) = c(bi
ξ, aj

ξ′)− y(bi
ξ) + y(aj

ξ′) which is equal to the slack s(a, b).

For each vertex in A ∪ B, we added at most two edges to every cell ξ′ ∈ N(ξ). Since

N(ξ) = O(1/ε2), the total number of edges in E is O(n/ε2). For a cell � in G′, let A� be

the points of A generated by cells of G that are contained inside the cell �. A piece K�

has A� ∪ B� as the vertex set and E� = ((A� × B�) ∪ (B� × A�) ∩ E) as the edge set.

Note that the number of vertices in any piece K� is O(r) and the number of edges in K�

is O(r/ε2). Every edge (u, v) of any piece K� has a weight c(u, v) = 0 and every edge (u, v)

with a weight of zero belongs to some piece of CG.

The following lemma shows that the compact graph CG preserves all minimum slack

paths in GM .

◮ Lemma 14. For any directed path P in the compact residual network CG, there is a

directed path P in the residual network such that
∑

(u,v)∈P s(u, v) =
∑

(u,v)∈P s(u, v). For

any directed path P in GM , there is a directed path P in the compact residual network such

that
∑

(u,v)∈P s(u, v) ≥∑

(u,v)∈P s(u, v).

Preprocessing step: At the start, M = ∅ and all dual weights are 0. Consider any cell � of

the grid G′ and any cell ξ of G that is contained inside �. Suppose we have a point a1
ξ. We

assign a demand da1
ξ

= |A1
ξ| = |Aξ| to a1

ξ. Similarly, suppose we have a point b1
ξ, we assign a

supply sb1
ξ

= |B1
ξ | = |Bξ|. The preprocessing step reduces to finding a maximum matching of

supplies to demand. This is an instance of the unweighted transportation problem which can

be solved using the algorithm of [13] in Õ(|E�|
√

|A� ∪ B�|) = Õ(|E�|
√

r). Every edge of E
participates in at most one piece. Therefore, the total time taken for preprocessing across

all pieces is Õ(|E|√r) = Õ(n
√

r/ε2). We can trivially convert the matching of supplies to

demand to a matching in G.

Efficient implementation of the second step: Recollect that the second step of the al-

gorithm consists of phases. Each phase has two stages. In the first stage, we execute

Dijkstra’s algorithm in O(n log n/ε2) time by using the compact residual network CG. After

adjusting the dual weight of nodes in the compact graph, in the second stage, we iteratively

compute augmenting paths of admissible edges by conducting a DFS from each vertex. Our

implemnetation of DFS has the following differences from the one described in Section 3.



XX:16 Weighted Approach to Maximum Cardinality Bipartite Matching

Recollect that each free vertex v ∈ B may represent a cluster that has t > 0 free vertices.

We will execute DFS from v exactly t times, once for each of the free vertices of B.

During the execution of any DFS, unlike the algorithm described in Section 3, the DFS

will mark an edge as visited only when it backtracks from the edge. Due to this change, all

edges on the path maintained by the DFS are marked as unvisited. Therefore, unlike the

algorithm from Section 3, this algorithm will not discard weight 1 edges of an augmenting

path after augmentation. From Lemma 3, the total number of these edges is O(w log w).

Efficiency: The first stage is an execution of Dijkstra’s algorithm which takes O(|E| +

|V| log |V|) = O(n log n/ε2) time. Suppose there are λ phases; then the cumulative time

taken across all phases for the first stage is Õ(λn/ε2). In the second stage of the algorithm,

in each phase, every edge is discarded once it is visited by a DFS, unless it is in an af-

fected piece or it is an edge of weight 1 on an augmenting path. Since each affected piece

has O(r/ε2) edges, and since there are O(w log w) edges of weight 1 on the computed aug-

menting paths, the total time taken by all the DFS searches across all the λ phases is

bounded by Õ(nλ/ε2 + r/ε2
∑t

i=1 |Ki| + w log w). In Lemma 3, we bound λ by
√

w and
∑t

i=1 |Ki| by O(w log w). Therefore, the total time taken by the algorithm including the

time taken by preprocessing step is Õ((n/ε2)(
√

r +
√

w + wr
n )). Setting r = n2/3, we get

w = O(n/(ε
√

r)) = O(n2/3/ε), and the total running time of our algorithm is Õ(n4/3/ε3).

To obtain the bottleneck matching, we execute this algorithm on O(log(n/ε)) guesses; there-

fore, the total time taken to compute an ε-approximate bottleneck matching is Õ(n4/3/ε4).

For d > 2, we choose r = n
d

2d−1 and w = O(n/(dεr1/d)). With these values, the execution

time of our algorithm is 1
εO(d) n1+ d−1

2d−1 poly log n.
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