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Abstract

Head movement is an important but often overlooked component of emotion and social
interaction. Examination of regularity and differences in head movements of infant-mother
dyads over time and across dyads can shed light on whether and how mothers and infants
alter their dynamics over the course of an interaction to adapt to each others. One way to
study these emergent differences in dynamics is to allow parameters that govern the
patterns of interactions to change over time, and according to person- and dyad-specific
characteristics. Using two estimation approaches to implement variations of a
vector-autoregressive model with time-varying coefficients, we investigated the dynamics of
automatically-tracked head movements in mothers and infants during the
Face-Face/Still-Face Procedure (SFP) with 24 infant-mother dyads. The first approach
requires specification of a confirmatory model for the time-varying parameters as part of a
state-space model, whereas the second approach handles the time-varying parameters in a
semi-parametric (“mostly” model-free) fashion within a generalized additive modeling
framework. Results suggested that infant-mother head movement dynamics varied in time
both within and across episodes of the SFP, and varied based on infants’
subsequently-assessed attachment security. Code for implementing the time-varying
vector-autoregressive model using two R packages, dynr and mgcv, is provided.

Keywords: Time-varying Parameters, Vector Autoregressive Models, State-space
Models, Generalized Additive Models, Parent-infant Interactions, Head Movements,

Still-face Paradigm
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A Person- and Time-Varying Vector Autoregressive Model to Capture Interactive

Infant-mother Head Movement Dynamics

Self-organization is a process through which orderliness emerges from apparent disorder
(Lewis & Ferrari, 2001)). The idea of self-organization is deeply entrenched in psychology
(Bosma & Kunnen, |2011; Kelso, [1995; [Magnusson & Cairns, (1996). In the area of human
movement, for example, a simple motion involves approximately 10? muscle, 10° joints, and
10 cells. Yet, as our bodies are capable of self-organization, human movements can be
effectively captured by changes in a few key dimensions (Bertenthal, 2007; Turvey, |1990).
Newell| (1990) proposed a time scale of human action that organizes study interests in the
field of psychology into a set of hierarchical levels of analysis. According to Newell’s
classification scheme, changes occurring in the human body include neural activities that
unfold over milliseconds, simple cognitive operations (such as directing attention) that
evolve over seconds, rational decision-making processes that unfold over minutes or hours,
as well as social processes (e.g. forming a relationship) that occur on the scales of days,
weeks, or even months (Bertenthal, 2007). Self-organization comes into play naturally in
change processes that emerge as an integrated result of activities across different levels, and
alternatively, time scales.

Interpersonal coordination of movements, including head movements — the focus of
our motivating empirical illustration, are characterized by self-organizing change processes
that unfold over multiple time scales (Kelso|, 1995)). Imagine a hypothetical scenario in
which two individuals are conversing with each other. In this case, each individual is
constantly attending to the other individual’s bodily cues such as head nodding/shaking,
postures, and other quick second-by-second movements; making periodic inferences of the
other individual’s emotions or interest level based on these bodily cues; and adjusting
his/her own emotions and behaviors accordingly. We may notice that the conversation
progresses from delivery of cordial updates to engagement in an exciting — or even heated

— debate, and eventually cools down as the conversation comes to an end. The
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conversation is thus a self-organizing process that encompasses multiple types of social and
cognitive sub-processes at a micro level. The utilization of dynamic systems theory
emphasizes both the observed expression of the process as well as its temporal evolution as
a whole (Nowak & Lewenstein| [1994). A dynamic systems model thus allows us to extract
and formulate key patterns of change as simplified mathematical equations with a
manageable set of parameters, that can further be evaluated against empirical data using
targeted analytic tools and techniques of choice (van Geert, 2018). The same dynamic
system model with different sets of parameters can manifest very different observed
trajectories through time. Therefore, allowing the parameters in a model to comprise
multi-timescale changes provides one viable way of representing the over-time progression
of such a self-organizing process.

Substantial work exists in the econometric, statistical, engineering, as well as social
and behavioral sciences literature on longitudinal models with time-varying parameters
(TVPs). Varying coefficent models, which were popularized by Hastie and Tibshirani
(1993)), originally involves cross-sectional models that posit varying relationships between
predictors and the outcome as functions of covariates. These varying coefficients are often
approximated using spline or functional data analysis methods nonparametrically
(completely model-free), or semiparametrically (partially model-free, with spline methods
embedded within a model that includes other parametric components). Extensions to
longitudinal context with time as a covariate have gained popularity in the past decade
(e.g., (Cao, Huang, & Wu, 2012; [Liang, Miao, & Wu, 2010; [Wu & Tian, 2018). Increased
applications have also emerged in the psychological literature (Bringmann et al., [2017}
McKeown & Sneddon, 2014), sometimes under the alternative name of time-varying effect
model (TVEM; |Li, Tan, Huang, Wagner, & Yang), 2014)), particularly in examining
substance use and intervention-related issues (e.g. [Shiyko, Naab, Shiffman, & Li, [2013;
Vasilenko et al.| 2014)). Beyond the spline and functional data literature, variants of

discrete-time (e.g., autoregressive models with TVPs; (Chow, Haltigan, & Messinger|, 2010
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|Del Negro & Otrokl 2008; Harvey, 2001; Molenaar, 1987, {1994} [Molenaar, Sinclair, Rovine, |

[Ram, & Corneal, 2009; Prado, West, & Krystal, 2001; Rajan & Rayner] 1996} [Tarvainen, |

\Georgiadis, Ranta—aho, & Karjalainen, [2006; Wang et al., [2014; [Weiss|, 1985)) and

continuous-time models (Chen, Chow, & Hunter} |2018) with TVPs have also been

proposed and estimated within a time series and state-space context, and used to represent

a broad range of phenomena from individuals’ physiological responses (Molenaar, |1994;

Tarvainen et al., [2006]), glucose level (Wang et al |2014), affect (Chow, Hamaker, Fujita, &|

Boker}, 2009; [Chow, Zu, Shifren, & Zhang), 2011)), and dyadic coupling between individuals

(Chow, Haltigan, & Messinger} 2010; Molenaar et al., 2009).

In this paper, we consider and illustrate two approaches to implement variations of a
vector autoregressive (VAR) model with TVPs, which in the remaining of this paper will
be referred to as a time-varying VAR (TV-VAR) model, to evaluate the dynamics of head
movements in mothers and infants during the Still Face paradigm (SFP). The first
approach, referred to herein as the state-space modeling approach, requires specification of

a model for the TVPs as part of the dynamical systems model describing the endogenous

processes of interest (Chow et al 2011; [Molenaar, de Gooijer, & Schmitz, [1992) — in this

case, infant and mother head movements. The TVP model can, in turn, include time-,
person-, and/or dyad-specific predictors. Depending on the model adopted for the TVPs,
the state-space approach may vary from semi-parametric to strictly parametric
(confirmatory) in nature. Here, we specify a theory-driven parametric model under the
state-space approach to sharpen its contrasts with the second modeling approach. The

second approach handles the TVPs in a semi-parametric (partially model-free) fashion

within a generalized additive modeling (GAM) framework (Bringmann, Ferrer, Hamaker, |

Borsboom, & Tuerlinckx, 2018). Using data from the SFP and two R (R Core Team) 2018)

packages, Dynamic Modeling in R (dynr; Ou, Hunter, & Chow, [2019) and mgcv (Wood

2019), we demonstrate and compare the results from the two modeling approaches as well

as their respective strengths and weaknesses.
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The remainder of this paper is organized as follows. We first present the motivating
example to highlight some of the key questions of interest in utilizing head movement to
study early parent-infant interactions. We then introduce the TV-VAR model, followed by
a description of the adaptations made by us to capture targeted parent-infant interaction
changes during the SFP. Next, we present the two approaches for fitting TV-VAR models
investigated in the present paper, followed by the corresponding estimation details. Then,
we present empirical modeling results from the motivating example, and demonstrate how
the two modeling approaches can provide distinct but complementary insights on
differences in interactive dynamics over time and between dyads. We conclude with some
remarks on the contributions and limitations of the two modeling approaches and the

empirical study.

Motivating Example: Head Movement Dynamics in Infant-Parent Interactions

Parent-child co-regulation is an important aspect of early self-regulation often regarded as
a precursor of self-initiated regulatory behaviors in later childhood. In the first three years
of life, children progressively gain a variety of abilities that allow them to manage different
levels of regulation, from being soothed by parents and other caregivers to self-initiated
soothing and control, to active regulation of one’s own emotions and behaviors (Kopp,
1982; Rothbart, Ziaie, & O’Boyle, |1992)). Before six months of age, self-regulation in
infants mainly consists of modulating states of arousal (Calkins, 2011; |[Feldman 2003}
Kopp, [1982). Before infants can achieve self-initiated regulation, they rely heavily on input
and feedback from their parents. At the same time, parents’ emotional and behavioral
states are affected by their infants’ behaviors, valence, and arousal levels (Chow, Haltigan,
& Messinger), |2010; |Cohn & Tronickl] |1988; |Jafte, Beebe, Feldstein, Crown, & Jasnow),
2001)). That is to say, in the interactions and co-regulatory processes between infants and
parents, the future states of the individual(s) depend on current action and reaction of the
individual as well as those of the partner. This is in line with the view of infant-caregiver

interaction as a dynamic systems, and it is possible to extract and express the complex
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patterns of synchrony and mismatches in infant-caregiver interaction over time as specific
patterns of change over time (van Geert|, 2018)).

Head movement, just as vocalization and facial expressions, is an important
behavioral aspect of emotion communication and social interaction. Previous research has
provided evidence that overall movements, including head movements, provide information
about the intensity of arousal (Ekman & Friesen, |1974; |[Kleinsmith & Bianchi-Berthouze,
2013; Wallbott, 1998). Humans often use head movements to convey and detect emotional
intensity and meaning (Hammal, Cohn, & George, 2014} Hammal, Cohn, Heike, & Speltz,
2015; Michel, Camras, & Sullivan, 1992), and they serve special functions in
communication practices such as turn-taking and back-channeling (Duncan, [1972; |Jokinen,
Nishida, & Yamamoto, |2010; Michel et al., [1992). However, unlike vocalization and facial
expressions, which are commonly investigated in research through voice intonation analysis
and face recognition tools, information and affect transmission via head movements are
often overlooked despite their central roles in human communication.

Advances in automated, unobtrusive, continuous annotation of behavior now make it
feasible to gather intensive head tracking data through automated software programs (e.g.
Cox, Nuevo-Chiquero, Saragih, & Lucey, 2013; |Jeni, Cohn, & Kanade, 2017). Unlike
emotional coding schemes that require human coders, automated measures such as head
movements are less prone to subjective human biases, and have been shown to be a valid
and meaningful alternative to human coding. Research has been sparse in investigating
head movements in the context of emotion communications, and especially so in studies of
co-regulation. Previous work from Hammal, Cohn, and Messinger| (2015|) suggested that
quantitative measures of head movements in parent-infant interactions were strongly
associated with age-appropriate emotion challenges, thus opening up the new possibilities
of using automated head movement measures to uncover characteristics of dyadic dynamics
during these interactions.

The current article presents analysis of the data from a previously published study in
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Hammal, Cohn, and Messinger| (2015|) for investigating face-to-face interactions through
the channel of head movements under the experimental manipulation of the SFP. The
original sample consisted of 42 parent-infant dyads, and 10 more dyads became available
for analysis since then, resulting in a total of 52 dyads. The SFP (Tronick, Als, Adamson,
Wise, & Brazelton| [1978) consists of three equal-length (lasting two minutes each) but
distinct episodes (Face-to-Face (FF), Still Face (SF) and Reunion (RE)) of parent-infant
interaction. It is intended to assess parent-infant reciprocity and infant response to, and
recovery from, disturbance of normal dyadic interactive behavior. As briefly as each
episode lasts within the SFP, a previous study by |Chow, Haltigan, and Messinger| (2010))
reported substantial over-time variations (non-constancy) in the dynamics between
mothers and infants even within the FF and RE episodes based on human rater data. Yet
to be clarified, however, are whether such over-time variations are also evidenced in
infant-mother interactive head movement dynamics, and the practical implications of such
within-episode variations. Thus, the present study seeks to address: (1) within- and
between-episode variability in infant-mother interactive head movement dynamics; (2)
whether these sources of variability relate to meaningful between-dyad differences, such as
attachment outcome; and within-dyad contextual differences, such as under positively as
compared to negatively valenced interactions; and (3) consistency in the modeling results

as deduced from the GAM vs. the state-space modeling approach.
Data Descriptions and Preprocessing

To quantify head movement dynamics, a person-independent 3D face tracker (Zface[[), was
used to track the 3 degrees of rigid head movements (i.e., pitch, yaw, and roll) and 49 facial
landmarks, or fiducial points, from video recordings on the interactions (Jeni et al., 2017).

Head angles in the horizontal (i.e., pitch), vertical (i.e., yaw), and lateral (i.e., roll)

directions as described in the above sections were used for analyzes. A total of 15% of the

IThe current version of the software is now publicly available at https://github.com/department-of-

psychology /AFARtoolbox.
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video frames could not be tracked. Several conditions contributed to tracking failure,
including self-occlusion (hands on the face), extreme head movement, and location change
(i.e., child moved out of the frame). Proportions of successfully tracked frames were used
for analyses. The raw data contained over 3700 measurement occasions per participant per
episode, with a sampling rate of one measurement every 33.366 milliseconds. Given our
interest in studying the individuals’ conscious and unconscious self-regulation and
interactions, which in Newell’s time scales of human action, would fall within in the
“deliberate act” band which is on the unit of 100 milliseconds, or the “operations” band
which is on the unit of seconds (Newell, [1990). We were particularly interested in capturing
the latter. Thus, we performed data aggregation over every 15 frames to smooth out
micro-level noise that may be too fine-grained for the interactive process of our interest, so
that the time elapsed between two consecutive measurements was roughly 0.5 second. To
ensure sufficient data for ascertaining system dynamics, we included only the dyads
meeting the following two criteria for each dyad member: (1) the maximum length of
successive missing data points did not exceed 120 (which translates roughly to 60 seconds,
namely, at least half of the data from each episode were available); and (2) there existed at
least 40 successive observed data points in all of FF, SF and RE episodes after data
aggregation. Following these exclusion criteria, 24 dyads were retained from the sample.
The average number of non-missing aggregated measurements was 665.2 during the entire
SFP, with a minimum of 583 and a maximum of 737 (FF: mean 228.8, min. 153, max. 248;
SF: mean 229.5, min. 152, max. 248; RE: mean 221.9, min. 173, max. 248). The mean
infant age in this sample was 3.98 months, with a standard deviation of 0.34 months.

For each participant (mother or infant), the three head angle measures (i.e., pitch,
yaw, and roll) were then combined into a single variable by calculating the Mahalanobis
distances (MDs) from the participant’s baseline angles on a reference occasion, defined as

the beginning of each episode (i.e., the first available measurement in FF, SF or RE), as:

MD(@;,|ep) = \/(wi,p,t — Hepip1) Sy (@ipt — Bepyip,1) (1)
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where «; ,,; is a vector of observed three dimensions ([pitch; ., yaw; 1, roll; ,4]). The i, p,
and t subscripts denote, respectively, dyad i, group p (which can further take on the value
of b for infant and m for mother), and time ¢. The mean or “center point” for distance
calculation, ptcp;p1, is a vector containing the pitch, yaw, and roll measures for
mother/infant ¢ on the first occasion of each episode for each participant within dyads
([pitchip1, yaw; 1, r0ll; »1]ep) These initial head angles corresponded to the first instance of
valid, front-facing video images of the dyads before other episode-related changes unfolded,
and thus served as a practical reference point for our modeling purposes. S, is the group-
(mothers or infants) specific covariance matrix. For infants, we used the covariance of these
three measures across all episodes (S, = cov((pitchb, yawy, rollb)T)). For mothers, we
used the covariance matrix of these three measures in the FF session only, S,, =
cov((pitchm,pp, Yaw,, rr, rollmFF)T), to have a covariance matrix that better reflected
mothers’ typical ranges of head movements. Person-specific linear trends were then
removed from all participants’ aggregated head movement within each episode, and the
resulting data were re-standardized using the group-wise standard deviations (i.e., with all
mothers in one group and all infants in the other) computed using data across all three
episodes. We chose to standardize the data across all episodes using the group standard
deviations, as opposed to standardizing within each episode with each individual’s own
within-episode standard deviation, to perserve some between-individual differences in data
variability to be captured with the TVPs. In the remaining of the article, the detrending
step and scaling step together are referred to as “data preparation” for short.

<Figure[l] goes here.>

For illustration purposes, Figure [1| contains the plotted observed head movement data
for three randomly sampled dyads through SPF before and after data preparation. The
plots indicate that the data preprocessing procedures helped remove some of the arbitrary
shifts in head positions as the participants transitioned through the SFP episodes, while

also preserving some of the between-dyad and between-episode differences of interest in this
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study. Furthermore, Figure [2| offers a visual mapping of the resulting MD measures to the
original video clip during SF. At the beginning of the SF episode, this specific child was
showing minimal movements, which, in turn, resulted in MD values that were around 0.
Toward the later half of the episode, the child began to show a greater range of head
movements (e.g. lifting head and looking up, turning to the right, edging and looking left
in the last three screen shots). These increased head movements were, in turn, evident
from the larger MD values.

<Figure[9 goes here.>

Smiling in parent-infant face-to-face interaction is often studied in the context of
emotional communication. Infants tend to respond to mothers’ smiling expressions with
their own smiles, and seeing the smile for their own mothers elicits a response in the brain
region associated with positive affect information and reward mechanism (Minagawa-Kawai
et al., 2008). To investigate contextual differences in head movement dynamics under
positively vs. negatively valenced interactions, we used a binary marker of mother smiling
by applying a previously validated smile detection classifier (adapted from |Girard, Cohn, &
De la Torre, 2015). Inter-system agreement between the classifier and expert manual
annotation was moderate to high (x = 0.71).

As a marker of between-dyad differences, we used Richters’ Attachment Security Scale
(Richters, Waters, & Vaughn) [1988)). This scale provided a continuous index of attachment
security derived from expert ratings of the Strange Situation (Ainsworth, Blehar, Waters,

& Wall, 1978) administered to the infants in this study at 15 months of age.

TV-VAR Models

In this paper, we utilized a series of TV-VAR models to examine our questions of interest.
The TV-VAR model is a multivariate discrete-time dynamic system model that allows us
to capture patterns of temporal dependencies both within an individual and also between
dyadic member simultaneously. In addition, it allows the temporal dependencies to vary

over time through incorporation of TVPs. To ease presentation, we begin our illustration
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with a VAR model with time-invariant parameters.

Imagine a hypothetical scenario in which a mother tries to comfort a frustrated,
crying infant. With time, the arousal level of the child is likely to decline if the mother
helps the child regulate (e.g. by employing strategies such as distraction or verbal
soothing). Despite the mother’s help, the child may not calm down instantly, that is, the
child would likely exhibit a certain level of continuity of the previous high arousal. The
mother’s effect, the child’s own continuity in arousal, and other sources of stochastic
influences from the environment can all be incorporated into a model that describes the
fluctuations in the child’s arousal levels around a baseline, or a desired level of arousal that
reflects the child’s own temperament, for instance. A similar process can be applied to the
mother in this scenario as well. Observing the infant’s crying may increase the arousal level
of the mother. The mother’s arousal level would also show some continuity in this case as
the mother tries to self-regulate. As such, we can also describe the mother’s arousal level as
a process that fluctuates around her own baseline, and the extent of deviations from
baseline, in turn, would exert an influence on the child’s deviations in arousal from the
child’s baseline. Following these characteristics, we can model the arousal levels of the

mother and infant over the course of this interaction with the following VAR model of

order 1:
infant; inty ary  Crpp| | infant;i—1 — inty Cp.it
= + + (2)
mothery int,, CTym ATy, | [MoOther; 1 — inty, Cmit
Cp,it (o
"I ~n(o. )
Cm,it 7pbm wm

in which 7 indexes dyad (i = 1, 2, ..., N, where N is the total number of dyads in a
sample. In the above scenario, N = 1.), and ¢ indexes time measured at discrete,
equidistant values (t = 1, 2, ..., T;. T; is the maximum of time index for dyad 7). The
system variables, in fant;; and mother;,, correspond to arousal levels as indicated by head

movements in dyad ¢ at time ¢ of the infant and the mother respectively. The intercept
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parameters, int,, and int,, describe the levels that the system variables evolve around. The
dynamic evolutionary patterns of the system are described by four parameters: ar, and
arp,, the autoregressive (AR) parameters, along with cr,,;, and cry,,, the cross-regression
(CR) parameters. The components (,; and (s, hereby referred to as process noises,
represent random disturbances to the system, including disturbances caused by internal or
environmental influences that cannot be predicted by knowing the infant and mother
previous arousal levels at time ¢-1.

AR parameters capture the influence of system variables on themselves over time.
For example, ar,, describes how much the mother’s arousal at the previous observation
(t — 1) influences the current observation (¢). Because the influence of previous
observations is limited to that from occasion t — 1, Equation [2| depict a VAR model of
order 1, or VAR(1), process. In the affect literature, AR parameters are frequently referred
to as inertia (e.g. [Kuppens, Allen, & Sheeber} 2010), and in the regulatory literature as
self-contingency (e.g. Beebe et al., 2016). It reflects the temporal influence of an
individual’s state of interest on itself, and thus the continuity of behaviors or emotions.
Emotional inertia can be noted as the resistance to change. A high AR value suggests that
an individual’s current state can be largely predicted using his or her previous state, thus
extreme emotions are more likely to persist and less responsive to environmental influence
or regulatory efforts. Therefore, emotional inertia is often associated with ineffective
emotional regulation and psychological maladjustmnents (Kuppens et al., [2010). Here, we
adopt the term inertia to denote the AR parameters to better reflect predictability and
rigidity of movements. Further, we use the term state throughout broadly to refer to an
individual’s unobserved underlying process of interest (e.g., emotional valence or arousal).

<Figure 3 goes here.>

Figure |3| demonstrates the hypothetical dyadic trajectories of Equations [2| with
relatively} (a) high AR values (ar,, = ar, = 0.8), and (b) low AR values (ar,, = ar, =

2R code for simulating data and reproducing Figure |3|is included in the Supplementary Material.
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0.5). In this scenario, a value of 0 represents a dyad member’s average level of arousal,
higher positive numbers indicate higher arousal than average, and negative numbers
represent lower arousal than average. To elucidate the trajectories of the system in the
presence/absence of process noises, we added process noises starting only after time = 60.
If the two members start from states far away from their desired stable states (in Figure
set to a value of zero), it takes the dyad 16 time units in the high AR scenario, but only 7
time units in the low AR scenario, for the dyad members to return to their stable state in
the absence of new process noises. In other words, under low AR values, mother and infants
are less resistant to change, thus making the other person’s influence more salient. From
the 60" time unit on, an identical two-dimensional sequence of process noises is added to
all the systems in Figure [3] Here the trajectories become “rougher” and are harder to
predict based on information from time ¢ — 1. That is, the inclusion of process noises has
now made these processes stochastic. The high AR scenario in (a) is characterized by longer
and more extreme bouts of ebb and flow compared to the low AR scenario (b), where the
fluctuations are smaller in magnitudes and clutter more closely around the baseline of zero.

The CR parameters capture the influence of system variables on each other. For
example, in Equation [2], ¢ry,, indicates how much the infant’s arousal at the previous
observation affects the mother’s arousal at the current observation. The CR parameters
can capture the relation in behaviors between two dyad members as indicated by Granger
causality (Molenaar] 2019)), after taken into consideration the continuity carried by the
members themselves (as accounted for by the AR parameters). Beebe et al.| (2016) also
referred to this type of relation as “interactive contingency” because it reflects one
member’s adjustment in state relative to the other member’s prior state. The subfigures
(a), (), (d), and (e) in Figure [3|represent four scenarios of Equations [2] each with a
different set of the CR parameter values: (a) positive for both parameters, (c) zero for both
CR parameters (thus no interactive contingency at all), (d) positive value for one CR

parameter and negative value for the other, and (e) negative for both parameters. In (c),
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there is no interactive contingency at all, as in a scenario where the mother and infant show
no interactive contingency with respect to each other whatsoever. It takes 25 time units for
both trajectories to converge at a state level (zero) without any noise or disturbance to the
system. Subfigure (a) represents a scenario where the trajectories are pulled toward each
other, yielding a more efficient co-regulated system that converges to their stable states
faster (16 time units) compared to when no interactive contingency. In contrast, (e)
represents a scenario where there is a weak “anti-regulatory” force against each other. In
such a scenario, when the mother is trying to respond to the infant’s heightened emotional
arousal with a lower level of arousal, conditional on the fact that their arousal states
started from opposite directions, such a mismatch in arousal levels and the “anti-regulatory
force” create further delays (requiring 52 time units) for the two members to calm down
toward their stable states. The last scenario, (d), is where there is a repelling force on the
infant from the mother, and a pulling force on the mother from the infant. This might
mirror the case where the infant is resistant to the soothing actions of the mother, and
meanwhile the mother’s arousal level is brought up by the infant not cooperating. Without
any process noise, this system still converges to the stable level at time unit 26.

When within-dyad differences across time exist, for example, when the interaction
dynamics changed when entering SF, the system then violates stationarity, which is a key
assumption of time-series analysis. Most commonly used definition of stationarity, the
covariance stationarity, states that the first and second moments of the time-series data
should be time-invariant. Translated into terms in Equation [2], this implies that the
intercepts and the AR, CR dynamic parameters need to be time-invariant. One way to
account for within-dyad variations over time, and sometimes also between-dyad differences,
in dynamics using the VAR model is to allow for TVPs. In other words, we can have the
four dynamic parameters (i.e. AR and CR parameters) to differ across dyads and over

time. Here we use the ar, parameter in Equation [2] as an example. We can replace it with
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a time-and dyad-specific version,

ary ;¢ = f(t; aTyit—1, Ui, wit) + Carb,i,t (3)
Ca'rb,i,t ~ N<07 1/)111"1,)7

where ary,;; is a function of the following components: time (¢), the value of the AR
parameter at time ¢ — 1, ary;¢—1, a vector of dyad-specific characteristics (v;), a vector of
time-specific predictor variables (@;;). v; may include characteristics of individual members
that constitute dyad 7 — in our case, the attachment level of the infant as indicated by the
Richter scores. x;; in our motivating example is a one-dimensional exogenous time-varying
binary covariate, mother’s smile. f can be parametric or nonparametric. The term (4, 4.1,
which is usually assumed to confirm to a normal distribution, represents residual or process
noise that account for deviations from the predicted AR. If f contains only an intercept
parameter (f(.) = inty) and no process noise is added, then ar,;; in Equation 3| is
equivalent to the time-invariant ar, parameter in Equations [2] In fact, in model fitting
involving any potential TVP, a model with only process noise is often fitted to that specific
parameter before any theory-driven models to see whether representing such parameter as
a TVP is necessary. If the estimated process noise variance is different from zero, then it
provides evidence that suggests there is enough variability in the parameter and thus may
be an indication that the parameter varies through time. Otherwise, the parameter would
be specified as time-invariant (Chow et al., |2011)

Although in the previous paragraph we used an AR parameter as an example, AR
parameters are not the only ones that can be time-varying. In fact, previous work by
Chow, Haltigan, and Messinger| (2010) found time variations in the concurrent association
between infants and parents during FF and RE episodes using a stochastic regression
model predicting infant emotional valence while controlling for previous infant valence.
These results provide initial support for incorporating CR parameters as TVPs but do not
treat the dyad as a bivariate system, nor do they model potential TVP covariates.

In summary, the standard VAR model defines (successful) regulation and thus
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co-regulation of the pair as dependent not only on the affect of the other member (CR
parameters), but also on the resistance (or reversely, susceptibility) to change of the
individual him/herself (AR parameters). A thorough investigation of co-regulation requires
consideration of both interactive contingency and inertia. Therefore, to study the the
phenomenon of co-regulation through the VAR model, it is important to take the entire
evolutionary pattern of the system into consideration, as both AR and CR parameters
provide unique but complementary pieces of information concerning the dynamics of
dyadic interactions. TVPs extend on the traditional VAR model with possibilities to
account for any between-dyad and across-time differences in the dynamic system patterns.
One novel contribution of the article is to illustrate a rather systematic investigation of the
dynamic parameters in a VAR model that may be time-varying in the context of intensive
longitudinal data on parent-infant interactions, as well as the associations between
variations of dynamics (marked by TVPs) and dyad-specific characteristic (infants’ later

attachment) and time-varying environmental factor (mothers’ smiles).
Estimation Details for TV-VAR Models

State-Space Approach

The state-space modeling approach operates by incorporating the TVPs as additional
latent variables in the context of a state-space model, and subsequently estimating the
over-time fluctuations in the TVPs with other latent variables in the system. The specific
form of state-space model we consider in this study comprises a dynamic model expressed

as:
Mt = Fo(Mii—1,B) + Cits Git ~ IN(0,3¢), (4)

and a linear measurement function written as:
Y = Any + €, e~ N(0,%,). (5)

In the above model formulation, n;; is a p—dimensional vector representing latent variables

— also referred to as “states” in the state-space literature — for the system unit i at time
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t; fn (RP — RP) is the state transition function from a previously time ¢ — 1 to the current
time t; and B is a k—dimensional vector of parameters in f,. (; is also a p—dimensional
vector, and it represents the process noise at time t. y;; is a ¢—dimensional vector of
observed manifestations of the latent states m;;; A is a ¢ X p matrix of the measurement
loading that links the latent states 1;; to the observed y;;; and €;; is a g—dimensional

vector representing measurement errors. In the traditional VAR model, the latent states
mnfanty

are the system variables of interest ( in Equation [2| for this study; p=2). In the
mother;

case of TV-VAR, for example, if we are to include a time-varying version of ar; as
infant;

illustrated in Equation (3| we add another dimension in 7;; that now it becomes |mother;,

QTp,it

with p=3 and include a parametric model for ary ;; in frn- Cit then is also three-dimensional

Chyit by
and becomes | ¢, ;. |, and the corresponding covariance matrix ¢ is |q)y,., 1y, . In
Carb,it 0 0 warb
our particular example, the observed y;; is also the two-dimensional latent state variable
infant;
representing mother’s and infant’s head movement. Therefore, g=2 and with
mother
. . 1 0 O . .
the inclusion of ary ¢, A = , with no measurement error €;; involved.
010

We used the R package dynr (Ou, Hunter, & Chow, [2018), to implement this
approach. In dynr, estimation of both the latent states in TV-VAR and time-invariant
parameters (sometimes referred to as “dual-estimation”) calls to three steps, which we
describe briefly in turn below. As an overview, these steps include a filtering step to
estimate the values of the latent variables (including the TVPs) and the uncertainty
associated with those estimates at time ¢. Filtering assumes that the observed data are
only available up to time ¢, and the unknown parameters are fixed at their specified (e.g.,

starting) values. The filtering then leads to by-products that can be used to compute a raw
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data likelihood function. Optimization of this raw data likelihood function with respect to
the unknown parameters essentially involves repeated execution of the filtering step at
different parameter values until some pre-defined convergence criteria are met. At
convergence, the final (converged) parameter estimates are used to run filtering one more
time, followed by a smoothing procedure to generate refined estimates of the latent
variables scores using data from all the time points.

Step 1. Filtering. To perform filtering on the latent variables in Equations —,
the extended Kalman filter (EKF), a nonlinear extension of the linear Kalman filter
(Kalmanl, [1960)) for nonlinear, discrete-time dynamic models was used. As in the Kalman
filter procedure, the EKF involves iterations of prediction steps and update steps over all
subjects and time points to yield filtered estimates of the state variables  and the
associated variance covariance structure P (Anderson & Moore, [1979)). For the filtering
step, the collection of time-invariant parameters @ (consisting of elements in
{B,%¢, e, A}) are assumed known. Estimation of these parameters are addressed in Step
2 with the optimization algorithm.

Let 7;¢:—1 denote the estimated m;; at the prediction step, which utilizes information
in the data up to time ¢ — 1, and 7);;_1;—1 denote the estimated 7;;_; at the previous
update step, which also utilizes information up to time ¢t — 1. Py, and Py_1,;
represent, respectively, their associated covariance matrices. In each iteration of EKF, the
prediction step builds up on results from the previous iteration’s update step, which are

derived from observations {y,...,y;_1}, to yield:

A A A
Nitlt—1 = E(Tli,t|yi,17 ey yi,t—l) = fn("?i,t71|t71> (6)

Yil, - yi,t—l) = Jf('f’i,tflh‘fl)I'A)i,tfl\tflJf('fh,tthfl)T + 24, (7)

A
Pi,t|t71 = cov(m,t

in which J¢(7;—1:—1) is the Jacobian matrix of f,,, with element in the jth row and kth
column being the first-order partial derivative of the jth function in f,, with respect to the
kth variable in m;;, evaluated at the most current estimate ) ;_1j;—1.

The prediction step estimates 7); 4,1 and P;;;—; are then carried into the update step
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as information of y;; is utilized to further refine the state estimates as:

Vit = Yit — E(yit|fli,t|t71) =Yit — A'fh‘,t|t71
\Z 2 cov(vy) = APi,t|t—1AT + 3

K; = Pi,t\t—lAT‘/;;l

Nitle = Nigje—1 + Kipvy

Pi,t|t = Pz‘,t\t—l - KitA-Pi,ﬂt—l

Here v;; is referred to as prediction error at time t, and Vj; is its variance. Both v; and Vj;
are used in the calculation of likelihood for parameter optimization in Step 2. Kj;, called
the Kalman gain, can be seen as a relative weight between variability of the predicted state
estimates, the magnitudes of which are captured by P, ;;_1, and the total variability of the
new observations, the magnitudes of which depend both on the variability of the predicted
state estimates, P;;;_1, and also the measurement error covariance matrix, .. The noisier
the observations are, the lower the Kalman gain value is. Thus less weight is given to the
new observations when updating the state predicted estimates. The current estimate of n;
from the update step and its associated covariance, 7); ;¢ and Py, are subsequently used in
the next iteration of prediction step for n; ;1. P;y helps quantify the “errors” or
uncertainty in the state estimates after new data are available from time ¢, and is
sometimes referred to as the conditional state error covariance matrix (Anderson & Moore,
1979).

Step 2. Parameter Estimation. Parameter estimation is performed by finding
parameter estimates that maximize a raw log-likelihood function, also known as the
prediction error decomposition function, that can be computed using by-products from the
filtering step. The raw data log-likelihood function is expressed as (Chow, Ferrer, &
Nesselroade, [2007; [Schweppe, [1965):

T,
logl(6 Z{log (2m) + log [Viy, \—l—v”‘/;t Vi, (8)

MM—‘
||M2

The optimization algorithm employed by dynr is a sequential quadratic programming
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algorithm (Kraft, (1988, 11994)) from the open-source library for nonlinear optimization,
NLOPT (Johnson| 2014; Ou et al| 2018)).

Step 3. Smoothing. The filtering step only uses information up to time ¢ for
estimation of the the latent states and covariance structure, 9); ;¢ and P; ;. We can further
refine these estimates using information contained in observations from the entire
time-series, including those from time ¢ + 1 and so on, via the fixed interval smoother that
is run backward in time (Ansley & Kohn| [1985; (Chow, Ho, Hamaker, & Dolan, [2010;
Harvey, 2001)):

Nigr = Nige + Et(ﬁi,t+l|T — it 41]t)s 9)

Pyr =P,y + E‘t(Pi,tJruT - Pz‘,t+1|t)E‘b (10)

where P, = P, i J¢(Rigp) " [Prys1p) ' This step yields our final estimates of the latent
states, including the TVPs, The square roots of the diagonal elements in P ;7 are the
standard deviations of the state estimates after all the data up to time 7" have been used
for estimation, and they can be used as standard errors to form confidence intervals around
Nir- When TVPs are included as additional latent variables in 7;;, the pertinent elements
in 7); 47 serve as estimates of the TVPs, with confidence intervals constructed using the
corresponding square root elements in P 7.

A unique feature of the fitting TV-VAR in the state-space framework is the capability
for researchers to specify particular functional forms for TVPs. In theory-driven TVPs,
doing so can help confirm any particular pattern of time-varyingness of the parameters and
establish connections between time-varying characteristics of dynamics and other factors
that may have influences on the dynamics (e.g. Chow et al., 2009, 2011; Tarvainen,
Hiltunen, Ranta-Aho, & Karjalainen| |2004). Even in cases where theories guiding the
nature of TVPs are lacking, one can choose functions that are flexible enough as a first
probe for TVPs before making decisions about more targeted confirmatory models (e.g.
Asparouhov, Hamaker, & Muthén| 2017; (Chen et al., |2018) or explicitly incorporate

nonparametric functions or splines for TVPs (e.g. Tarvainen et al.l 2006; [Zhu & Wu, 2007)).
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GAM Framework Approach

Another approach adopted in the present article to estimate variations of the TV-VAR
model is a GAM framework approach. Following Bringmann et al.| (2018), we utilized
GAMs through the R package, Mixed GAM Computation Vehicle with Automatic
Smoothness Estimation (mgcv, Wood, 2019) to estimate the over-time trajectories of the
TVPs by means of penalized regression splines. A GAM with dependent variable y and
predictors @ is generally written as (Yee, [2015)):

E(Z/@) —g( ( 61+ij xz] =+ Z fk Liky xzkz"i_ Z fh Ilhlxﬂm) (11>

k=J+1 h=K+1

where 31 and fy (d =1,..., H) are smooth functions, which in mgcv are based on thin
plate regression splinesﬂ by default. The term f;(z;;) represents the smooth functional
effect of the j' predictor x;;, an example being a nonlinear time trend. The term
fe(@ir, ) Tir, allows the effect of the k" predictor, z;;,, on y to vary as a function of the kéh
predictor (in our case, time). This is the key term utilized in the present article to allow
the effects of the lag-1 predictors, infant;;—1 and mother;;_1, to be time-varying. Finally,
fr(Zin, xin,) is a tensor product term that allows for approximations of jointly nonlinear
effects involving both x;,, and x;,,. Tensor product terms are not used in the present
article, but see |Chow| (2019) for examples of modeling with this term.

Using mgcv, we considered an alternative TV-VAR model adapted from Equations

2 as:

infanty fi(t) N f3(t)  fa(t)| |infant; N Cb,it
mother;, fa(t) f5(t)  fe(t)| |mother;:—y Cm.it

_ NN(O, Uy )7

Cb,it
<m,z't_ ¢bm wm

3In thin plate regression splines, the basis is obtained through eigen-decomposition of a data-determined

matrix. Please refer to|Wood (2003)) for details.
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and the two system variables, infant;; and mother;;, need to be manually manipulated to
create the lag-1 predictors, infant;;—; and mother;;_1, to be entered into the regression as
predictors. The smooth functions fi(t) and f5(t) correspond to time-varying intercept
parameters for mothers and babies, respectively; f3(¢) and fg(t) correspond to time-varying
AR parameters ary, and ary,,, and finally f4(¢) and f5(t) correspond to time-varying CR
parameters cryp and cryy, . Compared to the original TV-VAR model shown in Equations
3, one notable difference is the inclusion of the time-varying intercept terms, fi(t) and
f2(t) in the model. In this case, a researcher may opt to capitalize on the nonparametric
strengths of the GAM framework to simultaneously model other unspecified time trends in
all mothers’ and infants’ trajectories with relative ease.

Let B4, d =1,...,6, represent the vector of basis coefficients in the smooth function
fa in Equation [12{and B’ = (B, .., B;). The estimated B are then obtained by

maximizing the penalized log-likelihood:

6
log I(B) — ; > XaBiSaBa; (13)
=1

where )\; is a penalty parameter that controls the importance of smoothness of the
approximation curve, f;, and Sy is the “wiggliness” penalty matrix that defines the
smoothness criterion for the dth approximation curve, fy, the deviations from which are
penalized to ensure the smoothness of f;. The collection of penalty parameter

A ={\,..., X6} needs to be selected with care to maintain a balance between
goodness-of-fit (measured by the first term in Equation and wiggliness (measured by
the second term in the equation). In mgev, A and basis coefficients B are jointly optimized
through a procedure with nested iterations. The outer iteration handles optimization of A
using criteria such as generalized cross-validation (GCV) and restricted maxmimum
likelihood (REML). Nested within this outer iteration is the estimation of 8 by using a
Newton algorithm to maximize Equation [13| (Wood, 2019). If the dependent variable
follows a multivariate normal distribution, as in the case of our model assumption, an

approximated REML is used, which showed better performance than GCV in a previous



TIME-VARYING VAR MODELING OF INFANT-MOTHER HEAD MOVEMENTS 24

simulation study (Wood, 2011)).

Apart from A, the smoothness in GAM is also affected by the number of basis
functions (k). On choosing the value of k, authors of the mgcv package suggested running
a gam.check() on a fitted GAM to test whether the number is adequate. The test is based
on computing an estimate of the residual variance after ordering the residuals according to
the predictor values and taking differences of successive residuals. If the value of this
estimate divided by the residual variance falls below 1, the residuals are likely to contain
patterns not already accounted for by the existing basis expansion and one may consider
doubling the value of k and re-fittig GAM (Wood, 2019). After the parameter estimation,
mgcv uses a Bayesian approach for deriving standard errors of predictions (and confidence
bands; see [Marra & Wood, 2012, for details), and also for testing the significance of the
smooth terms. Significance in mgcv is defined against the null hypothesis that a particular
smooth term fy is zero (Wood, [2012]).

The approach of TV-VAR model fitting under the GAM framework does not rely on
pre-existing speculations on the nature and shape of the TVPs and therefore offers a
relatively model-free approach to TVP estimations. However, it makes customized
specification of theory-drive TVP models difficult for the same reason. One key advantage
of the state-space model approach over the GAM approach is the capability to include a
measurement structure (Equation , albeit not highlighted in the current study. Another
difference between these two model fitting approaches lies in how they handle between-unit
(e.g. dyad) differences. The state-space model approach aims to extract a universal pattern
within the sample by constraining the time-invariant parameters and the general
predefined model for TVPs to be the same across dyads, while preserving some
between-dyad differences in dynamics as reflected through the process noise elements and
the individual filtering and smoothing procedures. Thus, even with the same general model
for TVPs, the estimated TVP trajectories would still differ from one dyad to the next. In

contrast, in the GAM framework approach, one needs to fit a group-based model to
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extract, for all dyads in the sample, a common trend for each TVP; alternatively, one may
adopt a dyad-specific approach and fit a model separately to each dyad’s data. In the case
of group-based model fitting, the implied TVP trajectory would be identical across dyads.
Either way, incorporating theory-driven parametric functions that link known covariates to
the TVPs is not very straightforward in mgcv, by the design and nature of the package.
Other spline packages exist and have other unique strengths that are beyond the scope of
the specific empirical illustration targeted in this article. We provide a brief synopsis in the

Discussion section.

Empirical Results

The Empirical Results section is organized as follows: preliminary results are first reported
to showcase the similarities and differences in results using the aggregated MDs on head
movement compared with the previous published results using pitch, yaw and roll
separately; then results from the state-space approach are presented, following a process of
screening for TVP to confirmatory model fitting with dyad- and time-specific elements
predicting TVPs with special attention given to: a) whether CR and AR parameters are
time-varying, and if they are, whether the TVPs of CR can be predicted by episodes and
b) whether the TVPs can be predicted by the mother’s smiles and Richters’ Attachment
Scale the infant; and finally we represent results from GAM approach and how the
conclusions drawn from the GAM approach may be similar or different from those from the

state-space approach.
Preliminary Results on Mahalanobis Distances

Descriptive statistics of the MDs measures before and after detrending with across-episode
group-wise standardizations, are shown in Table [I] The aggregated MDs between mothers
and infants showed only low to moderate concurrent and lag-1 associations, and high lag-1
autocorrelations (Table . The lag-2 partial correlations were diminished in magnitude
but significant for 51.4% of both mothers’ and infants’ time series. Both mothers’ and

infants’ post-preparation data exhibited a certain level of nonstationary by the unit root
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tests (proportion of nonstationary data: infants: 13.89% by the augmented Dickey-Fuller
test, 2.78% by the KPSS test for level stationarity; mothers: 23.61% by the augmented
Dickey-Fuller test, 9.72 % by the KPSS test for level stationarity).

<Table[1] and[3 go here.>

Prior to dynamic model fitting, we conducted preliminary analyses to examine the
veracity of the MD measure and the effect of omitting dyads with excessive missingness in
the time series data. The goal here was to compare the results reported by [Hammal, Cohn,
and Messinger| (2015) for a larger sample of 42 dyads in two summary measures:
displacement and velocity of head movement. Unlike Hammal, Cohn, and Messinger
(2015)), who performed separate analyses of displacement and velocity for pitch, yaw and
roll for all 42 dyads, the results reported here were based on the combined measure of MD,
and only from a subset of 24 dyads with sufficient data for subsequent dynamic modeling.
In addition, the head movement measures were extracted in the current study using a
different tracker from the one used in Hammal, Cohn, and Messinger| (2015).

Between-episode differences in displacement and velocity of MD were analyzed using
repeated measures analysis of variance (ANOVA). The effect of episodes was not significant
in the displacement levels of mothers’ head MD (SS = 0.059, F'(2,46) = 1.556, p > .05),
but was in that of infants’ (SS = 0.627, F'(2,46) = 8.672, p < 0.001). A series of post-hoc
pairwise t-tests were carried out as follow-up tests of the significant episode effect for
infant. Consonant with the results reported in Hammal, Cohn, and Messinger| (2015)),
significant differences in MD displacements were found between the FF and the SF, and
between the SF and the RE (Table [3). There was also a significant SFP episode effect on
both the mothers’ and infants’ velocities in head movements (for mothers: SS = 0.048,
F(2,46) = 4.145, p < 0.03; for infants: SS = 0.246, F'(2,46) = 25.434, p < 0.001). Post-hoc
pairwise t-tests indicated significant difference between the FF and the SF in mothers’
velocities, as well as significant differences between the FF and the SF, and between the SF

and the RE in infants’ velocities (Table . These results from preliminary analyses suggest
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that the combined, one-dimensional MD measure of overall head movement is able to
capture most of the between-episode differences previously found in the three dimensions of
pitch, yaw, and roll separately.

<Table[d goes here.>
Results from State-Space Modeling of TV-VAR

The bivariate VAR model previously introduced in Equations [2| were fit to the processed
data. Apart from the VAR(1) model elaborated previously, we also fit a VAR model of
order 2 (VAR(2)) given the previously found significant lag-2 partial correlations, which in
addition to the lag-1 variables of mother and infant movements, also included the lag-2
variables in the model. We compared the fit of these two models using the Akaike
Information Criterion (AIC; |Akaike, 1998) and Bayesian Information Criterion (BIC;
Schwarz et al., [1978)). A lower score on either criterion suggests better model fit. VAR(2)
had an AIC slightly smaller than that of VAR (1) (62812.84 vs. 62827.38) but a larger BIC
(62914.08 vs 62897.47). Given AIC’s tendency to prefer more complicated model, we
decided to proceed with VAR(1) for model parsimony. Then, TVPs were included to
capture targeted between-episode and between-dyad differences during the SFP. To help
decide whether certain TVPs were supported, we began by fitting two unconditional
models in which either AR or CR parameters were estimated as TVPs but not predicted
using any covariates or assumed to take on a particular shape (Equation [3| with

f(.) = inty, [ Figure [4] shows the estimated trajectories from the unconditional
time-varying AR and CR parameters for two sample dyads. Results from fitting these
unconditional models suggested that only the autoregression parameters (i.e., ary, and
ary,), but not the cross-regression parameters (i.e., cr,,;, and cry,,) showed evidence as
TVPs, diagnosed based on the statistical significance of their corresponding process noise

variances. This is also evident in plots (b1) to (b4) in Figure [4] that the estimated

4Due to the observability constraint (elaborated in the Discussion) of the original VAR model, we can

only fit up to two TVPs at a time.
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time-varying CR trajectories from the state-space approach were extremely flat. Therefore,
CR parameters were included in the final model as time-invariant parameters.

<Fligure 4] goes here.>

Next, for the parameters determined to show substantial within-person, over-time
variations, we added selected covariates to examine whether these over-time variations were
associated with SFP episode and dyadic characteristics. In particular, we included as
predictors: (1) episodic information (contrast coded into SF: SF (2) vs. others (-1) and RE:
RE (1) vs. FF (-1)); (2) contextual information about the interactions: whether the mother
was smiling at the moment (“momSmile;"); and (3) and dyad-specific characteristic that
may contribute to differences in dynamics: infant later attachment security (“Richter;").
We also included person-specific variances of the head movement measures across all
episodes (denoted as “Var,;” and “Var,,;”) to account for other sources of between-person

variability in head movements not captured by these three sets of covariates of interest.
arpit = Bpo + Bp1 X SEit + Bra X REy + P X momSmile; + Bpy X Richter; (14)
+ Bpza X momSmile; x Richter; + BpsVary; + Caryit, and
armit = Bmo + Bm1 X SFy + Bmz X REy + Bms x momSmile; + B4 X Richter; (15)
+ Bmza X momSmiley X Richter; + BrsVary, i + Carnit-

garb,i,t ¢arb,i,t
)

~ N(0
Carm,i,t 0 warm,i,t

)

<Table[4 goes here.>

Table [ shows the estimated values for all the time-invariant parameters in Equations
and along with the standard errors and the associated 95% confidence intervals of
these estimates. The unit root tests were ran again with the residuals from this model, and
the tests indicated the data were conditionally stationary given the model. Although the

CR paramters were found to be time-invariant, their magnitudes were significantly different
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from zero. That is, we found evidence for mother — infant as well as infant — mother
interactive contingencies during the SFP, as averaged across all three SFP episodes. That
is, overall, across all dyads and all episodes, mothers’ head movements at the previous time
point (at a time lag of 1) were found to negatively influence children’s current head
movements (¢r,,, = —0.011), and children’s head movements at the previous time point
positively influenced their mothers’ (¢ry, = 0.012) at the current time point. Thus, on
average across the three SFP episodes, mothers’ head movement magnitudes, which we
postulated to be related to their affect arousal levels, appeared to synchronize to infants’
previous head movements, with higher magnitudes of infant head movements at time ¢-1
leading to higher magnitudes of mother head movements at time ¢. In contrast, the
negative mother — infant interactive contingency weight suggested the opposite patterns:
low magnitudes of mother head movement at time ¢-1 tended to elicit high magnitudes of
infant head movement at time ¢, and conversely, high magnitudes of mother head
movement at time t-1 tended to elicit low magnitudes of infant head movement at time ¢.
These differences in interactive contingency weights may reflect mothers’ intrinsic
motivation to adapt to their child’s head movements, and corresponding effects of the
mothers on the infants either in helping to down-regulate intense head movements, or in
eliciting more intense movements when high magnitudes of head movement were
reciprocated with low magnitudes of head movements from the others.

When we prepared data for analyses, linear trends were removed for every dyad
within each episode, but all standardization was done on the non-episode-specific group
level (all mothers as a group and all infants as another) instead of on the individual dyad
and episode level. We made such decision for standardization to preserve some
between-dyad differences and within-dyad variability across episodes given the theoretically
different natures of these three episodes of the SFP. We expected that the TVPs, namely,
the time-varying AR coefficients, would be adequate in capturing most of the within-person

variability across episodes. However, the intercept parameters in the TV-VAR model was
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estimated to be significant, albeit small in magnitude (Table 4} int, = —0.067,
int,, = 0.034). The significant intercepts suggested that some signs of misspecification of
the VAR process noise covariance structure remained and were manifested through the

intercepts.

Within-dyad Variations in AR Parameters across Episodes. Results showed that on
average, mothers and infants manifested relatively large positive values of AR parameters,
or inertia, in head movements during the SFP interactions (8y = 0.730, S0 = 0.708). The
episode-specific components in the model for time-varying AR parameters supported the
experimental manipulation in SFP as different episodes resulted in different interaction
dynamics indexed by head movements. As shown in Figure 5] across all dyads, infants
showed lower levels of AR during the SF episode as compared to FF, though the coefficient
associated with the contrast code for SF was not found significant (3,; = —0.005). This
might be related to the construction of the contrast code for the SF effect, in which the FF
episode was grouped together with the RE episode. However, contrary to our initial
expectation, there was greater similarity between infants’ AR values during the RE and
those from the SF, as opposed to those from the FF episode (5 = —0.017). This may
reflect infants’ recovery from distress developed during SF (sometimes referred to as the
“carryover” effect of SF;|Haley & Stansbury|, 2003). A lower AR generally means that the
observed process is less predictable from previous observations. Here, it reflects the infants
making less consistent movements in SF and RE as compared to FF.

<F'igure 3 goes here.>

Mothers on average showed the highest AR values during SF (5,,; = 0.031). An
increase in the AR parameter indicates that the movement is more predictable and
consistent in time, and in the case of the SF episode, it reflects the experimental design of
mothers being not responsive, thus making consistently no or minimal head movements.
Mothers on average also showed higher levels of AR during the RE compared to FF

(Bma2 = 0.035), thus providing some evidence for the carryover AR effect from the SF. Still,
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as can be observed from Figure [5, mothers” AR was on average lower in the RE than in the
SFE', possibly reflecting mothers’ efforts to resume her emotional connections with the
infants through a variety of movements to calm and/or distract the infants. In addition,
the estimated process noise variances of these two parameters, 1,,, and v, ,, remained
statistically significant after the inclusion of these covariates. This indicated that there was
still substantial between-individual and across-time variability in these two AR parameters

that were not explained by the covariates.

Between-dyad Differences in Inertia Based on Attachment. We found that the AR
parameter for infants also differed depending on infants’ levels of attachment security.
After controlling for differences between episodes, infants who were more securely attached
had higher inertia in their head movements across all episodes (fp4 = 0.012), which means
that their head movement were more predictable compared to those less securely attached.
These results are consonant with Beebe et al.| (2010)’s emotional engagement results in
which future securely attached infants exhibited higher levels of self-regulation and lower
levels of responsivity to mother than future insecurely attached infants, as well as Jaffe et
al’s similar (2001) findings in the vocal coordination domain. Infants’ secure attachment
did not predict mothers” AR parameter, but it did have a significant interaction effect with
mother smiling on mothers’ AR parameter (3,34 = —0.015), despite mother smiling itself
not having any direct influence on either mothers’ or infants” AR (8,3 = 0.017,

Bms = —0.002). Mothers whose infants were more securely attached had lower inertia in
their head movements when they smiled compared to when they did not (see Figure [5)).
This suggests that they were more likely to show a greater range of head motions when
they were smiling. On the other hand, mothers whose infants were less securely attached
showed comparable inertia in their head movements regardless of whether they were
smiling. These findings suggested that mothers of more securely attached infants exhibited
greater within-person differences in their head movement when expressing positive

affect—which might signal their involvement in and receptivity to the interaction —than
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mothers of less securely attached infants.

Results from GAM Fitting of TV-VAR

We fit the model represented in Equation [12] to the same dataset with 24 dyads, over a
handful of choices of number of basis functions (k) in thin plate regression splines. Figure |§|
shows the estimated smooth functions for each parameter under all the k& values. The
choice of k made the biggest difference in mother’s AR parameter (ar,,), some difference in
mother’s intercept parameter (int,,), and almost no difference in the other parameters.
Comparing smoothed functions of difference parameters, it appeared that mother’s AR
parameter had the highest variability across time while the CR parameters were mostly flat
(Figure [6). These observations were consistent with the conclusions from the state-space
model approach. In addition, according to the plot, mother’s intercept parameter may also
be varying across time. The patterns of change in mother’s AR and intercept parameters
also matched roughly to the change points of episodes in SFP (around time points 249 and
488).

The random sample based diagnostic in gam.check() did not support k being big
enough for all the k values we implemented. However, the estimated trajectories suggested
that wigglier functions in most of the parameters had been smoothed out with the
optimized A, and for ar,, that did exhibite a difference based on k, k = 160 already yielded
fairly wiggly trajectories. Given this, we stopped doubling k£ and chose a k value based on
examination of the plots. In the following comparison between the state-space model and
GAM approaches, we adopt a k value of 20, which generated some wiggliness but at the
same time also preserved a certain level of smoothness.

To begin with a relatively fair comparison of modeling approaches, we compared
results from the two unconditional TVP models used in the state-space model approach as
a model building step with results from fitting GAMs where certain parts of the model in
Equation [12] were constrained to be parametric. For the unconditional model with

time-varying ARs, the intercept and CR parameters (fi1, fa, fi and f5) were estimated as
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constants instead of functions of time, and the same goes for the intercept and AR
parameters (f1, fo, f3 and fg) for the unconditional model with time-varying CRs.
Estimation results for the parametric coefficients are reported in Table [3], and the
estimated trajectories for TVPs are compared for two dyads in Figure [d] We would like to
note that despite the TVPs not having any theoretically guided form, the models compared
under the state-space approach and the GAM approach were still not entirely identical.
Other than having different functional forms, the two TVPs in the state-space model
approach were modeled as a bivariate process with correlated process noises, whereas in
GAM the two functions representing TVPs were not associated. Despite the differences,
estimates of the parametric coefficients for the ARs (in a model with time-varying CRs)
and CRs (in a model with time-varying ARs) were similar in magnitude and direction.
There existed some discrepancies in the estimates of intercepts. The estimated TVP
trajectories exhibited similar overall tendencies, with the ones from the state-space model
approach being more “jiggly” due to the inclusion of random process noise (Figure 4)).

<Table[d here. >

The state-space model approach did not support the CR parameters as TVPs, but
the time-invariance CR parameters were significantly different from zero with
crmpy = —0.011 and cry, = 0.012 in the final TV-VAR model (Equations [2[ and . In
contrast, although the smooth functions representing the time-varying CR parameters were
estimated to be significant in GAM, the estimated time-varying CR trajectories were of
small magnitude (similar to the results from the state-space model with unconditional
time-varying CRs) and only some portions of the corresponding confidence bands for the
CR trajectories did not include 0 in plots (e)-(f) in Figure [ The mean values of the
trajectories mirror these time-invariant estimates (mean(crp;;) = —0.011,
mean(cry, ) = 0.015). Some discrepancies were observed in the estimated intercept
parameters and the covariance structure for process noise of the head movement variables.

The function representing time-varying intercept for infants was not significant in the
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GAM approach, and the estimated process noise variances and covariance were slightly
larger compared to those in the state-space approach (v, = 0.394, ¥, ;+ = 0.353,
Ypmir = 0.020). The GAM approach also suggested the intercept parameter of mother’s
head movement to be time-varying, in contrast to the time-invariant intercepts we imposed
in our state-space model.

<Figure[] goes here.>

To further facilitate the comparison between the state-space model with TVPs in
Equations [T4HI6] versus GAM model of TVPs, estimated trajectories of the shared TVP in
both models, ar, and ary,, are plotted for two dyads in Figure[7]] Comparing between
dyads, the state-space approach, as discussed earlier, was able to accommodate some
between-dyad differences. The smoothed ary, trajectory from the GAM approach was
roughly the mean trend in the smoothed ar, trajectories from the state-space approach.
Furthermore, the smoothed ar,, trajectories from the state-space approach show a visible
SF effect in both dyads, where the mother’s AR during SF (the middle chunk) was much
flatter and also slightly higher in value on average than the other two episodes. This offers a
demonstration of how theory-guided model can be helpful. The SF effect in mothers’ AR is
supported by the experiment design of SPF. In the GAM TVP trajectories, the differences
between episodes were less salient but some changes in mothers’ AR were still evident. On
the other hand, it is worth noting that the GAM model with enforced smoothness yielded
much narrower confidence bands of the estimated trajectories compared to the state-space
model due to the differences between the two approaches in handling group-based models.
The individual filtering and smoothing scheme adopted in the state-space model approach
resulted in confidence bands reflecting the uncertainty around the estimates of the specific
dyad in each plot. Meanwhile, confidence bands in the GAM approach generated through
model-implied predictions reflected uncertainly at the mean sample level across all dyads.

In summary, in our particular TV-VAR model, the GAM and the state-space model

approach results suggested similar overall dynamics in mother-infant interactions in terms
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of the estimated (mean) values of the AR/CR parameters, and both approaches uncovered
some degrees of SF effect in mothers’ head movements. GAM accommodated more TVPs
compared to the state-space approach (6 vs. 2) but the three parameters other than AR
and mother’s intercept exhibited relatively flat trajectories that hovered closely around
zero. In contrast, through the state-space model, we were able to link dyadic head
movements to mothers’ facial cue of smiling and also infants’ later attachment
development. These are some examples of parametric effects that are relatively
straightforward to specify within the state-space framework, but are difficult to specify

within the GAM framework due to software-related constraints.

Discussion

As longitudinal designs and data become more prominent in the study of human behaviors,
models with TVPs have also gained considerable traction over the last decade. In this
article, we applied a time series-inspired dynamic systems model with TVPs to study
parent-infant co-regulation using automated measures of head movements during the SFP.
We compared results from fitting variations of the TV-VAR model using two approaches: a
parametric state-space approach, and a semi-parametric approach utilizing GAMs. The
two approaches yielded similar inferential results with regard to the mother-infant dyads’
dynamics as a group, but also some discrepancies in the findings concerning the nature of
the TVPs.

Both approaches can accommodate TVPs rather flexibly, with the GAM approach
being a nonparametric approach in the TVP part, and the state-space approach accounting
for additional within- and across-individual variability in the TVPs via stochastic process
noises in the TVPs. Overall, the two approaches differ in both their model formulation and
estimation details. Thus, the slight divergence in results did not come as a surprise, but
did suggest important implications for future studies involving TVPs. To begin with, the
smoothing procedure embedded in GAM with penalized regression splines allows

researchers to explicitly control the smoothness/wiggliness of TVP trajectories through the
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smoothing parameter (X), if desired. In the state-space modeling approach, the filtering
and smoothing procedures are done individually for each unit of analysis so the smoothed
TVP trajectories are also individually adapted to observed data. As such, compared to the
smoothed TVP trajectories from GAM, the estimated TVP trajectories from the
state-space approach tend to appear “rougher” when process noises are included to allow
nuanced fluctuations in each individual’s observed data be captured as process noises in
the TVPs. Thus, the inclusion of process noises in the TVP in the state-space approach,
and the explicit regularization (i.e., smoothing) of the TVP trajectories through the
penalty term in the GAM approach are two key features that set these approaches apart
from each other.

The roughness of the TVP trajectories in the state-space approach is contributed in
part by other reasons as well. Specifically, the state-space modeling approach is able to
accommodate both within- and between-unit (e.g., individuals and dyads) differences in
the TVPs essentially as latent variable scores, even though model fitting is performed at
the group level, with time-invariant parameters that are constrained to be equal across
units. In contrast, fitting a group-based model in the GAM approach is sensitive to only
the universal trends and effects across all units. In principle, it is possible to adapt the
TV-VAR models implemented in the two modeling approaches to obtain a model that is
more comparable across frameworks. For instance, to confine the TVPs in the state-space
model approach to be the same across unit (by, for example, dropping the process noise
structure and adopting a functional form that is not dependent on unit-specific
characteristics), or to do individual model-fitting in both approaches. Here, we can
demonstrate with two dyads that some between-dyad differences exist in the AR
trajectories, examining the results from both approaches with model fitting to each
individual dyad (Figure . Alternatively, it is also possible to specify some penalized
spline functions as a state-space model (e.g., cubic splines; (Chow & Zhang, 2008; Wahbal,

1978). We did not adopt these procedures because we were interested in investigating
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specific, substantively motivated hypotheses in the state-space approach. In our view, some
of these differences in results actually made our illustration more informative.

<Fligure 8§ here.>

The two approaches are also characterized by distinct model identifiability
constraints. In state-space models, one well-known model identifiability condition is for the
system of interest to be observable. In other words, the system’s underlying latent variable
values can be uniquely determined from the observed measurements (Bar-Shalom, Li, &
Kirubarajan), 2001)). As such, the number of TVPs that can be estimated as additional
latent variables in a state-space model is also limited by the number of observed
endogenous (dependent) variables and latent variables that are already present in the
model aside from the TVPs. Based on |Gates, Molenaar, and Chow| (In Progress), in a
model with ¢ observed variables and p latent variables (not including TVPs), the maximum
number of TVPs identifiable from the data is the minimum of p and ¢. Thus, in the context
a VAR(1) model, for instance, the model would not be observable if more than two TVPs
are present in the model. However, as distinct from the state-space approach, each smooth
function in GAM that is tied to a unique predictor is identified via implicit constraints on
the basis coefficients, namely, by requiring that the basis coefficients associated with any
particular predictor to sum to zero over all possible values of that predictor. Because lag-1
mother and infant head movement variables are included in GAM as predictors that are
distinct from the dependent variables (the lag-0 mother and infant head movement
variables), we were able to allow for time-dependent smooths of the AR as well as CR
parameters with the same data. However, uninformed expansion of the order of the VAR
model to allow higher-lag coefficients (e.g., lag-2, lag-3 and so on) to be time-varying may
yield over-fitting and is thus not recommended. In practice, we recommend that researchers
first use some screening procedures, such as some of the ones we adopted in this article, to
examine evidence for TVPs prior to freeing them up in completely unsupervised ways.

In summary, the two approaches have unique benefits that may make them more
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appealing in some cases than others. If one wants to explicitly model multivariate
associations among system variables and with other TVPs, or to link the change in system
patterns (manifested in TVPs) with between-unit and within-unit characteristics to study
the mechanisms of change, then the state-space model offers a more straightforward
approach to implement selected parametric functions that maybe difficult or even
impossible to implement and interpret in GAM. The state-space model approach can also
accommodate a measurement structure, which is not possible in GAM. On the other hand,
in the absence of clear parametric modeling goals, the GAM approach offers another
advantage besides the flexibility associated with a model-free approach: the dependent
variable of interest can conform to any distribution from the exponential family, including
the Normal, Binomial, and Poisson distributions as special cases. This opens up the
possibility of using binary and count data as system variables. In addition, we note that
GAM through mgcv is only one spline-based functional regression method out of many
that could be applied to estimate models with TVPs. Other functional regression software
packages exist and may utilize slightly different spline formulations, penalty terms and
optimization criteria (e.g. as defined within a least squares vs. likelihood framework). For
example, the SAS Macro TVEM (Li et al 2015) utilizes P-splines and B-splines, and has
extensions to accommodate data nesting, clustering and different sampling weights. Other
R packages include funreg (Dziak et al., |2019),npmlda (Wu & Tian| 2018)) and refund
(Goldsmith et al., 2019). Direct comparisons of these other spline-based approaches for
fitting models with TVPs are beyond of the scope of this article, but warrant further
attention in a future study.

Both approaches in this study utilized a group-based model-fitting strategy, and
between-unit variations were controlled by including dyad-specific characteristics into the
state-space model, and allowing for stochastic system noises. A way to completely separate
between-unit and within-unit variations is to fit a multilevel TV-VAR model, for which

between-unit variations are modeled by random effects. mgcv does have the option to
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include random effects; it is also possible in the state-space approach by dynr to insert and
estimate selected random effects as part of the latent variable vector concurrently with the
other TVPs. However, this expands the dimension of the latent variables very quickly and
brings with it other identification issues. Bayesian methods may be a more viable
alternative in this case. For example, the dynamic structural equation modelling toolbox in
the software Mplus (e.g. |Asparouhov et al., 2017; [Hamaker, Asparouhov, Brose, & Muthen),
2018)), which is implemented through Bayesian estimation, or the R package ctsem (e.g.
Driver & Voelkle, |2018)), has the option of using Stan (Carpenter et al.| [2017)) to fit
multilevel dynamic models. These extensions warrant close examination in future work.
The trajectories of the VAR processes investigated in this study (i.e., the mother and
infant trajectories) were assumed to be vary smoothly over time (i.e., differentiable with
respect to the latent variables). Although not the focus of this article, under certain
occastions the key processes of interest may display non-continuous, abrupt changes and
the corresponding TVP patterns. Some approaches that would account for such kind of
changes include (but are not limited to) regime-switching models (e.g. (Chow et al., 2018]),
threshold AR models (e.g. De Haan-Rietdijk, Gottman, Bergeman, & Hamaker, [2016;
Hamaker, Zhang, & van der Maas, 2009), and using a two-step process of change point
detection followed by a parametric model with change point entered as known data.
Beyond the methodological insights discussed thus far, the article also offers an
example of how dynamic system models can be applied to investigate the temporal
evolution of regulatory behaviors, and how TVPs can be utilized to capture within-dyad
variations and between-dyad differences. To our knowledge, this article is the first effort to
apply dynamic systems technique to examine co-regulation in mother-infant dyads via
automated head movement measures. In confirmation with experimental manipulation and
similar to the results obtained in Hammal, Cohn, and Messinger| (2015), we detected some
differences in mothers’ head movement dynamics in the SF than in other episodes, as

revealed in mothers’ AR parameter. This suggests that the inertia of mothers’ head
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movements, as revealed by their AR parameter, may serve as a proxy for understanding
key changes in mother-infant intrinsic and interactive dynamics during the SFP. The
decline in infants” AR parameter in the SF episode — though not statistically significant
due to our a priori choice of contrast coding scheme, and the prolonged decline into the RE
episode, are all in accordance with the established results in the literature on increased
negative emotions during SF, the persistence of such emotions into RE (e.g. (Toda &
Fogel, 1993; Tronick et al [1978]). This article also linked infants’ later attachment and the
early interactive patterns with their mothers by showing that infants’ dynamics in
interaction and also their mothers’ display of facial affect at 4 months are associated with
15-month attachment measure.

This article highlights the utility of using automated head movements in the study of
parent-infant interactions to understand the communication and co-regulation patterns
between infants and mothers. This automated measure is reasonable in cost, unaffected by
the subjective biases from human raters, and allows quantification of dynamic movement
patterns on a frame-by-frame basis. An ambiguity is whether infant head movement is
more associated with the valence or arousal dimension of emotion. [Hammal, Cohn, Heike,
and Speltz| (2015)) found that infants’ head movement was greater during tasks intended to
elicit negative emotion and was strongly related to observer ratings of affect intensity.
Caution needs to be exercised in interpreting our analytic results involving head
movements as indices of emotion. The context within which the interactions take place
may strongly influence whether head movement is more closely associated with valence or
arousal. In our study, such frame-by-frame quantification also made the raw data fairly
noisy. As described in Data Descriptions and Preprocessing under the Motivating
Example, the raw data went through four steps of preprocessing before analyses:
aggregation, variable combination, detrending within dyad and episode, and
standardization with group. The decisions on whether and how to perform each step were

based on the phenomenon and research question. With different research questions, the
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data can be preprocessed in different ways to fulfill the need. For example, in our study,
aggregation was done to collapse the sampling rate within the time-scale of our
phenomenon of interest — behavioral coregulation. If the researcher’s interest was on a finer
time-scale (e.g. simple movement tendencies for a single person), s/he can choose to not
aggregate or aggregate into smaller intervals, and vice versa. With a similar dataset, a
researcher can choose to detrend or not based on whether the main level change is of
interest and needs to be incorporated in the modeling efforts. Lastly, whether to
standardize and what level to standardize on depend on what kind of comparison the
research would like to see. In our study, we standardized the data on a rather broad level
given we wanted to compare both between dyads and within dyad across episodes. If the
research interest is to extract common patterns of within-dyad dynamics and less about
between-dyad differences, standardization can be done within each dyad instead.

One limitation of the current study is its small sample size. The analytic sample size
was reduced to ensure we had enough data per dyad that spanned all three SFP episodes.
Therefore, dyads in which either member had long chunks of missing data in their head
movements were removed from the analytic sample. A common reason for such missing
data was that the individual moved out of range of the video camera, or that the
individual’s face was at a position where the software tracker could not identify the face
anchors. Such missingness may potentially be classified as non-ignorable missingness
(Little & Rubin, 2002), as the reason for removal was related to the variable of interest
(head movements). Future studies should better account for, or directly incorporate
modeling of the missing data patterns in the study, before generalizing the findings to
other contexts and samples.

In conclusion, this article provides important insights on two of the most widely
utilized methods for fitting dynamic systems models with TVPs — specifically, TV-VAR.
Our empirical application further attests to the importance of considering the presence of

TVPs, and the issue of self-organization, in the study of human dynamics. It also validated
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the feasibility of direct modeling of automated measures of head movements from a
dynamic systems perspective to uncover aspects of parent-infant interaction and
co-regulation. In addition, it provided further evidence for the link between interactive

patterns early in life to the infant’s later development of attachment.

42
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Before Data Preparation (“Raw” Mahalanobis Distance)

Mother
FEpisode | Mean (SD)  Median (Min., Max.)
FF 1.413 (0.860)  1.233 (0.000, 7.967)
SF 1.491 (0.918)  1.260 (0.000, 6.829)
RE | 1.852 (1.005) 1.717 (0.000. 6.546)
Infant
FEpisode | Mean (SD)  Median (Min., Max.)
FF | 1.498 (1.124)  1.211 (0.000, 7.824)
SF | 1.503 (0.992) 1.272 (0.000, 5.902)
RE | 1.576 (0.834) 1.576 (0.000, 6.578)

After Data Preparation

Mother

FEpisode | Mean (SD) Median  (Min., Max.)

FF 0.000 (1.028) -0.089  (-4.630, 10.435)
SF 0.000 (0.784)  0.016 (-4.858, 9.410)

RE 0.000 (1.125) -0.050  (-5.485, 6.856)

Infant

FEpisode | Mean (SD) Median  (Min., Max.)

FF 0.000 (0.981) -0.052  (-8.115, 5.958)

SF 0.000 (1.095) -0.088  (-3.499, 6.563)

RE 0.000 (0.985) -0.065  (-5.026, 6.540)

Table 1
Mahalanobis Distance (before and after Data Preparation) across Dyads Summarized by

Person and Episode
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Mother; Infant,_; Mother;_;

All Episodes

Infant, 0.079 0.732 0.042
Mother; 0.077 0.761
FF

Infant; 0.121 0.746 0.079
Mother, 0.122 0.695
SF

Infant, 0.083 0.719 0.051
Mother; 0.065 0.751
RE

Infant, 0.081 0.709
0.029

Mother; 0.079 0.761

Table 2

Average Correlations and Autocorrelations after Data Preparation
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Table 3

Comparison t-score p-value

t-score p-value

Displacement

Infants Mothers
FF - SF 1.98 0.18 -3.30 0.01
FF - RE 0.39 1.00 1.33 0.59
SF - RE -1.18 0.75 3.35 0.01

Velocity

Infants Mothers
FF - SF 3.40 0.01 -6.51 0.00
FF - RE 1.25 0.67 -0.29 1.00
SF - RE -1.42 0.50 5.49 0.00

Results from post-hoc pairwise t-tests.
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Table 4

TV-VAR Model Parameter Estimation Results using the State-space Approach

Estimate Standard Error 95% Confidence Interval
Clmb -0.011 0.005 (-0.020, -0.002)
Clom 0.012 0.004 (0.004, 0.020)
int,, -0.067 0.014 (-0.095, -0.039)
int,, 0.034 0.013 (0.009, 0.059)
Bro 0.730 0.013 (0.705, 0.755)
By -0.005 0.005 (-0.015, 0.005)
Bre -0.017 0.008 (-0.032, -0.002)
Brs -0.017 0.019 (-0.054, 0.019)
Bra 0.012 0.004 (0.003, 0.020)
Braa 0.008 0.006 (-0.004, 0.020)
Bys 0.027 0.009 (0.009, 0.045)
Bmo 0.708 0.018 (0.674, 0.743)
B 0.031 0.006 (0.020, 0.042)
Bz 0.035 0.007 (0.021, 0.049)
Brns -0.002 0.016 (-0.033, 0.030)
Brma 0.006 0.004 (-0.002, 0.014)
B34 -0.018 0.006 (-0.030, -0.006)
Brns 0.084 0.012 (0.060, 0.107)
Uy 0.273 0.004 (0.265, 0.281)
U 0.219 0.003 (0.212, 0.225)
Vom 0.006 0.002 (0.002, 0.011)
Var, 0.128 0.006 (0.117, 0.139)
Var,, 0.144 0.006 (0.132, 0.157)

AIC: 58986.19

BIC: 59165.30
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State-space Approach GAM Approach

Unconditional AR Model

Climp -0.011* -0.012*
CThm 0.011* 0.016*
inty -0.076%* 0.010%*
int,, 0.042* -0.002

Unconditional CR Model

ary 0.778%* 0.785*
ary, 0.796* 0.783*
int,, 0.043* 0.010*
int,, 0.040%* -0.001

*. significant at a«=0.05
Table 5

Unconditional TV-VAR Model Parametric Coefficients Comparison between the State-space

and GAM Approaches
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Figure 1. Head movement data before and after data preparation procedures for three

randomly selected three dyads.



TIME-VARYING VAR MODELING OF INFANT-MOTHER HEAD MOVEMENTS 61

One Example of Infant's Head Movement During SF
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Figure 2. A plot of the MD time series computed for one infant during the SF episode with
screen shots from the original video clip. The increases in head movement magnitude
during the later half of the episode correspond well with the increases in affect arousal

manifested by the infant.
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(a) High AR values, positive CR values

ar,=0.8,ar,=0.8,crp,=0.1, crp, =0.1
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(b) Low AR values, positive CR values.
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Figure 3. Realizations of the same VAR model in Equation |2 can look very different
depending on the parameter values. No process noise is added before the 60 time unit so
that the trajectories are entirely driven by the AR and CR parameters. The vertical
dashed green line and the associated value on the x-axis represent the time when both
dyadic members arrive at a stable state. After the 60" time unit (vertical dotted line), the

identical sequence of bivariate process noises are added to trajectories in each plot.
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AR Relation with

Smile and Attachment Episodic AR Differences
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Figure 5. Differences in AR parameters dependent on whether mother was smiling, infant’s

attachment tendency, and episodes
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Figure 6. Time-varying Parameter Trajectories

Using Different Number of Basis Functions (k)
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and Associated 95% Confidence Intervals
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Figure 7. Comparison of AR Trajectories with the Parametric TV-VAR Model and GAM

for Two Example Dyads Along with Observed Data used for Modeling.
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Figure 8. TVP Trajectories for Two Dyads when Fitting the State-space Model and GAM

to Each Individual Dyad
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Appendix
R Code for Fitting TV-VAR Models in dynr and mgcv

########### R Code Demonstration ##########H

# Loading the libraries

library(dynr)# version 0.1.12-5

library(mgcv)# version 1.8-22

library(quantmod)# version 0.4-14

# The follow script needs a long-format data frame Data that should roughly looks like:

# id id.session Time.agg Time.withinSession SF RE y_baby y_mom other_vars

# 1 1.1 1 1 -1 -1
# 1 1.1 2 2 -1 -1
#

# 1 1.2 258 1 2 0
# 1 1.2 259 2 2 0
#

# 1 1.3 497 1 -1 1
# 1 1.3 498 2 -1 1
#

# 2 2.1 1 1 -1 -1
# 2 2.1 2 2 -1 -1

#### State—space model approach: dynr --—-—
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dynrdata <- dynr.data(Data, id="id.session", time="Time.withinSession",
observed=c("y_baby","y_mom"),
covariates=c("smile","SF","RE","Richter",

"var_baby","var_mom"))

# Measurement model for linking latent states to observed variables
meas <- prep.measurement (
values.load=matrix(c(1,0,0,0,
0,1,0,0),ncol=4,byrow=T),
params.load=matrix("fixed",ncol=4,nrow=2),
state.names=c("baby","mom","arb","arm"),

obs.names=c("y_baby","y_mom")

# Initial conditions for the dynamic model

initial <- prep.initial(
values.inistate=c(0,0,.5,.5),
params.inistate=c(’fixed’, ’fixed’,’beta_b0’,’beta_m0’),
values.inicov=diag(c(rep(1,2),rep(.1,2))),

params.inicov=diag(’fixed’,4))

# Process noise and measurement error variances
mdcov <- prep.noise(
values.latent=matrix(c(.5,0.1,0,0,
0.1,.5,0,0,
0,0,0.1,0,

0,0,0,0.1), ncol=4,byrow=T),

69
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params.latent=matrix(c(’zv_mom’,’cov_bm’,0,0,
’cov_bm’,’zv_baby’,0,0,
0,0,’zv_arb’,0,
0,0,0,’zv_arm’), ncol=4,byrow=T),
values.observed=diag(c(0,0)),

params.observed=diag(c(’fixed’,’fixed’),2))

# State-space model formula

# The final model in the article with only time-varying ARs is specified below:

formula =list(

list (baby~intb+arb*(baby-intb)+crmb* (mom-intm) ,
mom~intm+arm* (mom-intm)+crbm* (baby-intb),
arb~beta_bO+beta_bl*SF+beta_b2*RE+beta_b3*smile+
beta_b4*Richter+beta_b34*Richter*smile+beta_bb*var_baby,

arm~beta mO+beta ml*SF+beta m2*RE+beta m3*smile+

beta_mé4xRichter+beta_m34*Richter*smile+beta_mb*var_mom

))

# A dynr formula object with starting values for parameter optimization
dynm <- prep.formulaDynamics(formula=formula,
startval=c(crmb=.03,crbm=.03,

intb=0.1,intm=0.1,

beta_b0 = 0.5,beta_b1=0.01,

beta_b2

0.01,

beta b3 = 0.5,beta_b4=0.01,
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beta_b34=0.01,
beta_m0=0.5,beta_m1=0.01,
beta m2=0.01,
beta_m3=0.5, beta_m4=0.01,
beta_m34=0.01,

beta_b5=0.01,beta mb5=0.01
), isContinuousTime=FALSE)
# Combine all the model components specifed above into one dynr model object
dynrmodel <- dynr.model(dynamics=dynm, measurement=meas,
noise=mdcov, initial=initial, data=dynrdata,

outfile="SSMTVP.c")

# Run the parameter optimization with filtering and smoothing for the states

modelRes <- dynr.cook(dynrmodel)

# Result summary

summary (modelRes)

#### GAM approach: mgecv ---

# Created lag-1 variables

Data$bL=unlist (by(Data$y_baby,Data$id,Lag,k=1))
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Data$mL=unlist (by(Data$y_mom,Data$id,Lag,k=1))

# Run a GAM with:

# time-varying intercepts: s(Time.agg)

# time-varying AR: s(Time.agg,by=bL) for y_baby, for example
# time-varying CR: s(Time.agg,by=mL) for y_baby, for example

# 20 basis functions: k=20

gam_biv<-gam(list(y_baby~-1+s(Time.agg,k=20)+
s(Time.agg,by=bL,k=20)+s(Time.agg,by=mL,k=20),
y_mom~-1+s(Time.agg,k=20)+
s(Time.agg,by=mL,k=20)+s(Time.agg,by=bL,k=20)),

family=mvn(d=2) ,data=Data)

# Result summary

summary (gam_biv)

# Process noise variance-covariance

solve(crossprod(gam_biv$family$data$R))
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