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Abstract

Head movement is an important but often overlooked component of emotion and social

interaction. Examination of regularity and differences in head movements of infant-mother

dyads over time and across dyads can shed light on whether and how mothers and infants

alter their dynamics over the course of an interaction to adapt to each others. One way to

study these emergent differences in dynamics is to allow parameters that govern the

patterns of interactions to change over time, and according to person- and dyad-specific

characteristics. Using two estimation approaches to implement variations of a

vector-autoregressive model with time-varying coefficients, we investigated the dynamics of

automatically-tracked head movements in mothers and infants during the

Face-Face/Still-Face Procedure (SFP) with 24 infant-mother dyads. The first approach

requires specification of a confirmatory model for the time-varying parameters as part of a

state-space model, whereas the second approach handles the time-varying parameters in a

semi-parametric (“mostly” model-free) fashion within a generalized additive modeling

framework. Results suggested that infant-mother head movement dynamics varied in time

both within and across episodes of the SFP, and varied based on infants’

subsequently-assessed attachment security. Code for implementing the time-varying

vector-autoregressive model using two R packages, dynr and mgcv, is provided.

Keywords: Time-varying Parameters, Vector Autoregressive Models, State-space

Models, Generalized Additive Models, Parent-infant Interactions, Head Movements,

Still-face Paradigm
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A Person- and Time-Varying Vector Autoregressive Model to Capture Interactive

Infant-mother Head Movement Dynamics

Self-organization is a process through which orderliness emerges from apparent disorder

(Lewis & Ferrari, 2001). The idea of self-organization is deeply entrenched in psychology

(Bosma & Kunnen, 2011; Kelso, 1995; Magnusson & Cairns, 1996). In the area of human

movement, for example, a simple motion involves approximately 102 muscle, 103 joints, and

1014 cells. Yet, as our bodies are capable of self-organization, human movements can be

effectively captured by changes in a few key dimensions (Bertenthal, 2007; Turvey, 1990).

Newell (1990) proposed a time scale of human action that organizes study interests in the

field of psychology into a set of hierarchical levels of analysis. According to Newell’s

classification scheme, changes occurring in the human body include neural activities that

unfold over milliseconds, simple cognitive operations (such as directing attention) that

evolve over seconds, rational decision-making processes that unfold over minutes or hours,

as well as social processes (e.g. forming a relationship) that occur on the scales of days,

weeks, or even months (Bertenthal, 2007). Self-organization comes into play naturally in

change processes that emerge as an integrated result of activities across different levels, and

alternatively, time scales.

Interpersonal coordination of movements, including head movements — the focus of

our motivating empirical illustration, are characterized by self-organizing change processes

that unfold over multiple time scales (Kelso, 1995). Imagine a hypothetical scenario in

which two individuals are conversing with each other. In this case, each individual is

constantly attending to the other individual’s bodily cues such as head nodding/shaking,

postures, and other quick second-by-second movements; making periodic inferences of the

other individual’s emotions or interest level based on these bodily cues; and adjusting

his/her own emotions and behaviors accordingly. We may notice that the conversation

progresses from delivery of cordial updates to engagement in an exciting — or even heated

— debate, and eventually cools down as the conversation comes to an end. The
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conversation is thus a self-organizing process that encompasses multiple types of social and

cognitive sub-processes at a micro level. The utilization of dynamic systems theory

emphasizes both the observed expression of the process as well as its temporal evolution as

a whole (Nowak & Lewenstein, 1994). A dynamic systems model thus allows us to extract

and formulate key patterns of change as simplified mathematical equations with a

manageable set of parameters, that can further be evaluated against empirical data using

targeted analytic tools and techniques of choice (van Geert, 2018). The same dynamic

system model with different sets of parameters can manifest very different observed

trajectories through time. Therefore, allowing the parameters in a model to comprise

multi-timescale changes provides one viable way of representing the over-time progression

of such a self-organizing process.

Substantial work exists in the econometric, statistical, engineering, as well as social

and behavioral sciences literature on longitudinal models with time-varying parameters

(TVPs). Varying coefficent models, which were popularized by Hastie and Tibshirani

(1993), originally involves cross-sectional models that posit varying relationships between

predictors and the outcome as functions of covariates. These varying coefficients are often

approximated using spline or functional data analysis methods nonparametrically

(completely model-free), or semiparametrically (partially model-free, with spline methods

embedded within a model that includes other parametric components). Extensions to

longitudinal context with time as a covariate have gained popularity in the past decade

(e.g., Cao, Huang, & Wu, 2012; Liang, Miao, & Wu, 2010; Wu & Tian, 2018). Increased

applications have also emerged in the psychological literature (Bringmann et al., 2017;

McKeown & Sneddon, 2014), sometimes under the alternative name of time-varying effect

model (TVEM; Li, Tan, Huang, Wagner, & Yang, 2014), particularly in examining

substance use and intervention-related issues (e.g. Shiyko, Naab, Shiffman, & Li, 2013;

Vasilenko et al., 2014). Beyond the spline and functional data literature, variants of

discrete-time (e.g., autoregressive models with TVPs; Chow, Haltigan, & Messinger, 2010;
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Del Negro & Otrok, 2008; Harvey, 2001; Molenaar, 1987, 1994; Molenaar, Sinclair, Rovine,

Ram, & Corneal, 2009; Prado, West, & Krystal, 2001; Rajan & Rayner, 1996; Tarvainen,

Georgiadis, Ranta–aho, & Karjalainen, 2006; Wang et al., 2014; Weiss, 1985) and

continuous-time models (Chen, Chow, & Hunter, 2018) with TVPs have also been

proposed and estimated within a time series and state-space context, and used to represent

a broad range of phenomena from individuals’ physiological responses (Molenaar, 1994;

Tarvainen et al., 2006), glucose level (Wang et al., 2014), affect (Chow, Hamaker, Fujita, &

Boker, 2009; Chow, Zu, Shifren, & Zhang, 2011), and dyadic coupling between individuals

(Chow, Haltigan, & Messinger, 2010; Molenaar et al., 2009).

In this paper, we consider and illustrate two approaches to implement variations of a

vector autoregressive (VAR) model with TVPs, which in the remaining of this paper will

be referred to as a time-varying VAR (TV-VAR) model, to evaluate the dynamics of head

movements in mothers and infants during the Still Face paradigm (SFP). The first

approach, referred to herein as the state-space modeling approach, requires specification of

a model for the TVPs as part of the dynamical systems model describing the endogenous

processes of interest (Chow et al., 2011; Molenaar, de Gooijer, & Schmitz, 1992) — in this

case, infant and mother head movements. The TVP model can, in turn, include time-,

person-, and/or dyad-specific predictors. Depending on the model adopted for the TVPs,

the state-space approach may vary from semi-parametric to strictly parametric

(confirmatory) in nature. Here, we specify a theory-driven parametric model under the

state-space approach to sharpen its contrasts with the second modeling approach. The

second approach handles the TVPs in a semi-parametric (partially model-free) fashion

within a generalized additive modeling (GAM) framework (Bringmann, Ferrer, Hamaker,

Borsboom, & Tuerlinckx, 2018). Using data from the SFP and two R (R Core Team, 2018)

packages, Dynamic Modeling in R (dynr; Ou, Hunter, & Chow, 2019) and mgcv (Wood,

2019), we demonstrate and compare the results from the two modeling approaches as well

as their respective strengths and weaknesses.
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The remainder of this paper is organized as follows. We first present the motivating

example to highlight some of the key questions of interest in utilizing head movement to

study early parent-infant interactions. We then introduce the TV-VAR model, followed by

a description of the adaptations made by us to capture targeted parent-infant interaction

changes during the SFP. Next, we present the two approaches for fitting TV-VAR models

investigated in the present paper, followed by the corresponding estimation details. Then,

we present empirical modeling results from the motivating example, and demonstrate how

the two modeling approaches can provide distinct but complementary insights on

differences in interactive dynamics over time and between dyads. We conclude with some

remarks on the contributions and limitations of the two modeling approaches and the

empirical study.

Motivating Example: Head Movement Dynamics in Infant-Parent Interactions

Parent-child co-regulation is an important aspect of early self-regulation often regarded as

a precursor of self-initiated regulatory behaviors in later childhood. In the first three years

of life, children progressively gain a variety of abilities that allow them to manage different

levels of regulation, from being soothed by parents and other caregivers to self-initiated

soothing and control, to active regulation of one’s own emotions and behaviors (Kopp,

1982; Rothbart, Ziaie, & O’Boyle, 1992). Before six months of age, self-regulation in

infants mainly consists of modulating states of arousal (Calkins, 2011; Feldman, 2003;

Kopp, 1982). Before infants can achieve self-initiated regulation, they rely heavily on input

and feedback from their parents. At the same time, parents’ emotional and behavioral

states are affected by their infants’ behaviors, valence, and arousal levels (Chow, Haltigan,

& Messinger, 2010; Cohn & Tronick, 1988; Jaffe, Beebe, Feldstein, Crown, & Jasnow,

2001). That is to say, in the interactions and co-regulatory processes between infants and

parents, the future states of the individual(s) depend on current action and reaction of the

individual as well as those of the partner. This is in line with the view of infant-caregiver

interaction as a dynamic systems, and it is possible to extract and express the complex
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patterns of synchrony and mismatches in infant-caregiver interaction over time as specific

patterns of change over time (van Geert, 2018).

Head movement, just as vocalization and facial expressions, is an important

behavioral aspect of emotion communication and social interaction. Previous research has

provided evidence that overall movements, including head movements, provide information

about the intensity of arousal (Ekman & Friesen, 1974; Kleinsmith & Bianchi-Berthouze,

2013; Wallbott, 1998). Humans often use head movements to convey and detect emotional

intensity and meaning (Hammal, Cohn, & George, 2014; Hammal, Cohn, Heike, & Speltz,

2015; Michel, Camras, & Sullivan, 1992), and they serve special functions in

communication practices such as turn-taking and back-channeling (Duncan, 1972; Jokinen,

Nishida, & Yamamoto, 2010; Michel et al., 1992). However, unlike vocalization and facial

expressions, which are commonly investigated in research through voice intonation analysis

and face recognition tools, information and affect transmission via head movements are

often overlooked despite their central roles in human communication.

Advances in automated, unobtrusive, continuous annotation of behavior now make it

feasible to gather intensive head tracking data through automated software programs (e.g.

Cox, Nuevo-Chiquero, Saragih, & Lucey, 2013; Jeni, Cohn, & Kanade, 2017). Unlike

emotional coding schemes that require human coders, automated measures such as head

movements are less prone to subjective human biases, and have been shown to be a valid

and meaningful alternative to human coding. Research has been sparse in investigating

head movements in the context of emotion communications, and especially so in studies of

co-regulation. Previous work from Hammal, Cohn, and Messinger (2015) suggested that

quantitative measures of head movements in parent-infant interactions were strongly

associated with age-appropriate emotion challenges, thus opening up the new possibilities

of using automated head movement measures to uncover characteristics of dyadic dynamics

during these interactions.

The current article presents analysis of the data from a previously published study in
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Hammal, Cohn, and Messinger (2015) for investigating face-to-face interactions through

the channel of head movements under the experimental manipulation of the SFP. The

original sample consisted of 42 parent-infant dyads, and 10 more dyads became available

for analysis since then, resulting in a total of 52 dyads. The SFP (Tronick, Als, Adamson,

Wise, & Brazelton, 1978) consists of three equal-length (lasting two minutes each) but

distinct episodes (Face-to-Face (FF), Still Face (SF) and Reunion (RE)) of parent-infant

interaction. It is intended to assess parent-infant reciprocity and infant response to, and

recovery from, disturbance of normal dyadic interactive behavior. As briefly as each

episode lasts within the SFP, a previous study by Chow, Haltigan, and Messinger (2010)

reported substantial over-time variations (non-constancy) in the dynamics between

mothers and infants even within the FF and RE episodes based on human rater data. Yet

to be clarified, however, are whether such over-time variations are also evidenced in

infant-mother interactive head movement dynamics, and the practical implications of such

within-episode variations. Thus, the present study seeks to address: (1) within- and

between-episode variability in infant-mother interactive head movement dynamics; (2)

whether these sources of variability relate to meaningful between-dyad differences, such as

attachment outcome; and within-dyad contextual differences, such as under positively as

compared to negatively valenced interactions; and (3) consistency in the modeling results

as deduced from the GAM vs. the state-space modeling approach.

Data Descriptions and Preprocessing

To quantify head movement dynamics, a person-independent 3D face tracker (Zface1), was

used to track the 3 degrees of rigid head movements (i.e., pitch, yaw, and roll) and 49 facial

landmarks, or fiducial points, from video recordings on the interactions (Jeni et al., 2017).

Head angles in the horizontal (i.e., pitch), vertical (i.e., yaw), and lateral (i.e., roll)

directions as described in the above sections were used for analyzes. A total of 15% of the

1The current version of the software is now publicly available at https://github.com/department-of-

psychology/AFARtoolbox.

https://github.com/department-of-psychology/AFARtoolbox
https://github.com/department-of-psychology/AFARtoolbox
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video frames could not be tracked. Several conditions contributed to tracking failure,

including self-occlusion (hands on the face), extreme head movement, and location change

(i.e., child moved out of the frame). Proportions of successfully tracked frames were used

for analyses. The raw data contained over 3700 measurement occasions per participant per

episode, with a sampling rate of one measurement every 33.366 milliseconds. Given our

interest in studying the individuals’ conscious and unconscious self-regulation and

interactions, which in Newell’s time scales of human action, would fall within in the

“deliberate act” band which is on the unit of 100 milliseconds, or the “operations” band

which is on the unit of seconds (Newell, 1990). We were particularly interested in capturing

the latter. Thus, we performed data aggregation over every 15 frames to smooth out

micro-level noise that may be too fine-grained for the interactive process of our interest, so

that the time elapsed between two consecutive measurements was roughly 0.5 second. To

ensure sufficient data for ascertaining system dynamics, we included only the dyads

meeting the following two criteria for each dyad member: (1) the maximum length of

successive missing data points did not exceed 120 (which translates roughly to 60 seconds,

namely, at least half of the data from each episode were available); and (2) there existed at

least 40 successive observed data points in all of FF, SF and RE episodes after data

aggregation. Following these exclusion criteria, 24 dyads were retained from the sample.

The average number of non-missing aggregated measurements was 665.2 during the entire

SFP, with a minimum of 583 and a maximum of 737 (FF: mean 228.8, min. 153, max. 248;

SF: mean 229.5, min. 152, max. 248; RE: mean 221.9, min. 173, max. 248). The mean

infant age in this sample was 3.98 months, with a standard deviation of 0.34 months.

For each participant (mother or infant), the three head angle measures (i.e., pitch,

yaw, and roll) were then combined into a single variable by calculating the Mahalanobis

distances (MDs) from the participant’s baseline angles on a reference occasion, defined as

the beginning of each episode (i.e., the first available measurement in FF, SF or RE), as:

MD(xi,p,t|ep) =
√

(xi,p,t − µep,i,p,1)>S−1
p (xi,p,t − µep,i,p,1) (1)
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where xi,p,t is a vector of observed three dimensions ([pitchi,p,t, yawi,p,t, rolli,p,t]). The i, p,

and t subscripts denote, respectively, dyad i, group p (which can further take on the value

of b for infant and m for mother), and time t. The mean or “center point” for distance

calculation, µep,i,p,1, is a vector containing the pitch, yaw, and roll measures for

mother/infant i on the first occasion of each episode for each participant within dyads

([pitchi,p,1, yawi,p,1, rolli,p,1]ep) These initial head angles corresponded to the first instance of

valid, front-facing video images of the dyads before other episode-related changes unfolded,

and thus served as a practical reference point for our modeling purposes. Sp is the group-

(mothers or infants) specific covariance matrix. For infants, we used the covariance of these

three measures across all episodes (Sb = cov
(
(pitchb,yawb, rollb)>

)
). For mothers, we

used the covariance matrix of these three measures in the FF session only, Sm =

cov
(
(pitchm,FF ,yawm,FF , rollm,FF )>

)
, to have a covariance matrix that better reflected

mothers’ typical ranges of head movements. Person-specific linear trends were then

removed from all participants’ aggregated head movement within each episode, and the

resulting data were re-standardized using the group-wise standard deviations (i.e., with all

mothers in one group and all infants in the other) computed using data across all three

episodes. We chose to standardize the data across all episodes using the group standard

deviations, as opposed to standardizing within each episode with each individual’s own

within-episode standard deviation, to perserve some between-individual differences in data

variability to be captured with the TVPs. In the remaining of the article, the detrending

step and scaling step together are referred to as “data preparation” for short.

<Figure 1 goes here.>

For illustration purposes, Figure 1 contains the plotted observed head movement data

for three randomly sampled dyads through SPF before and after data preparation. The

plots indicate that the data preprocessing procedures helped remove some of the arbitrary

shifts in head positions as the participants transitioned through the SFP episodes, while

also preserving some of the between-dyad and between-episode differences of interest in this
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study. Furthermore, Figure 2 offers a visual mapping of the resulting MD measures to the

original video clip during SF. At the beginning of the SF episode, this specific child was

showing minimal movements, which, in turn, resulted in MD values that were around 0.

Toward the later half of the episode, the child began to show a greater range of head

movements (e.g. lifting head and looking up, turning to the right, edging and looking left

in the last three screen shots). These increased head movements were, in turn, evident

from the larger MD values.

<Figure 2 goes here.>

Smiling in parent-infant face-to-face interaction is often studied in the context of

emotional communication. Infants tend to respond to mothers’ smiling expressions with

their own smiles, and seeing the smile for their own mothers elicits a response in the brain

region associated with positive affect information and reward mechanism (Minagawa-Kawai

et al., 2008). To investigate contextual differences in head movement dynamics under

positively vs. negatively valenced interactions, we used a binary marker of mother smiling

by applying a previously validated smile detection classifier (adapted from Girard, Cohn, &

De la Torre, 2015). Inter-system agreement between the classifier and expert manual

annotation was moderate to high (κ = 0.71).

As a marker of between-dyad differences, we used Richters’ Attachment Security Scale

(Richters, Waters, & Vaughn, 1988). This scale provided a continuous index of attachment

security derived from expert ratings of the Strange Situation (Ainsworth, Blehar, Waters,

& Wall, 1978) administered to the infants in this study at 15 months of age.

TV-VAR Models

In this paper, we utilized a series of TV-VAR models to examine our questions of interest.

The TV-VAR model is a multivariate discrete-time dynamic system model that allows us

to capture patterns of temporal dependencies both within an individual and also between

dyadic member simultaneously. In addition, it allows the temporal dependencies to vary

over time through incorporation of TVPs. To ease presentation, we begin our illustration
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with a VAR model with time-invariant parameters.

Imagine a hypothetical scenario in which a mother tries to comfort a frustrated,

crying infant. With time, the arousal level of the child is likely to decline if the mother

helps the child regulate (e.g. by employing strategies such as distraction or verbal

soothing). Despite the mother’s help, the child may not calm down instantly, that is, the

child would likely exhibit a certain level of continuity of the previous high arousal. The

mother’s effect, the child’s own continuity in arousal, and other sources of stochastic

influences from the environment can all be incorporated into a model that describes the

fluctuations in the child’s arousal levels around a baseline, or a desired level of arousal that

reflects the child’s own temperament, for instance. A similar process can be applied to the

mother in this scenario as well. Observing the infant’s crying may increase the arousal level

of the mother. The mother’s arousal level would also show some continuity in this case as

the mother tries to self-regulate. As such, we can also describe the mother’s arousal level as

a process that fluctuates around her own baseline, and the extent of deviations from

baseline, in turn, would exert an influence on the child’s deviations in arousal from the

child’s baseline. Following these characteristics, we can model the arousal levels of the

mother and infant over the course of this interaction with the following VAR model of

order 1: infantit
motherit

 =

 intb
intm

+

 arb crmb

crbm arm


 infanti,t−1 − intb

motheri,t−1 − intm

+

 ζb,it
ζm,it

 (2)

 ζb,it
ζm,it

 ∼N(
0,

 ψb
ψbm ψm

),
in which i indexes dyad (i = 1, 2, . . ., N , where N is the total number of dyads in a

sample. In the above scenario, N = 1.), and t indexes time measured at discrete,

equidistant values (t = 1, 2, . . ., Ti. Ti is the maximum of time index for dyad i). The

system variables, infantit and motherit, correspond to arousal levels as indicated by head

movements in dyad i at time t of the infant and the mother respectively. The intercept
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parameters, intm and intb, describe the levels that the system variables evolve around. The

dynamic evolutionary patterns of the system are described by four parameters: arb and

arm, the autoregressive (AR) parameters, along with crmb and crbm, the cross-regression

(CR) parameters. The components ζb,t and ζm,t, hereby referred to as process noises,

represent random disturbances to the system, including disturbances caused by internal or

environmental influences that cannot be predicted by knowing the infant and mother

previous arousal levels at time t-1.

AR parameters capture the influence of system variables on themselves over time.

For example, arm describes how much the mother’s arousal at the previous observation

(t− 1) influences the current observation (t). Because the influence of previous

observations is limited to that from occasion t− 1, Equation 2 depict a VAR model of

order 1, or VAR(1), process. In the affect literature, AR parameters are frequently referred

to as inertia (e.g. Kuppens, Allen, & Sheeber, 2010), and in the regulatory literature as

self-contingency (e.g. Beebe et al., 2016). It reflects the temporal influence of an

individual’s state of interest on itself, and thus the continuity of behaviors or emotions.

Emotional inertia can be noted as the resistance to change. A high AR value suggests that

an individual’s current state can be largely predicted using his or her previous state, thus

extreme emotions are more likely to persist and less responsive to environmental influence

or regulatory efforts. Therefore, emotional inertia is often associated with ineffective

emotional regulation and psychological maladjustmnents (Kuppens et al., 2010). Here, we

adopt the term inertia to denote the AR parameters to better reflect predictability and

rigidity of movements. Further, we use the term state throughout broadly to refer to an

individual’s unobserved underlying process of interest (e.g., emotional valence or arousal).

<Figure 3 goes here.>

Figure 3 demonstrates the hypothetical dyadic trajectories of Equations 2 with

relatively2: (a) high AR values (arm = arb = 0.8), and (b) low AR values (arm = arb =

2R code for simulating data and reproducing Figure 3 is included in the Supplementary Material.
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0.5). In this scenario, a value of 0 represents a dyad member’s average level of arousal,

higher positive numbers indicate higher arousal than average, and negative numbers

represent lower arousal than average. To elucidate the trajectories of the system in the

presence/absence of process noises, we added process noises starting only after time = 60.

If the two members start from states far away from their desired stable states (in Figure 3

set to a value of zero), it takes the dyad 16 time units in the high AR scenario, but only 7

time units in the low AR scenario, for the dyad members to return to their stable state in

the absence of new process noises. In other words, under low AR values, mother and infants

are less resistant to change, thus making the other person’s influence more salient. From

the 60th time unit on, an identical two-dimensional sequence of process noises is added to

all the systems in Figure 3. Here the trajectories become “rougher” and are harder to

predict based on information from time t− 1. That is, the inclusion of process noises has

now made these processes stochastic. The high AR scenario in (a) is characterized by longer

and more extreme bouts of ebb and flow compared to the low AR scenario (b), where the

fluctuations are smaller in magnitudes and clutter more closely around the baseline of zero.

The CR parameters capture the influence of system variables on each other. For

example, in Equation 2, crbm indicates how much the infant’s arousal at the previous

observation affects the mother’s arousal at the current observation. The CR parameters

can capture the relation in behaviors between two dyad members as indicated by Granger

causality (Molenaar, 2019), after taken into consideration the continuity carried by the

members themselves (as accounted for by the AR parameters). Beebe et al. (2016) also

referred to this type of relation as “interactive contingency” because it reflects one

member’s adjustment in state relative to the other member’s prior state. The subfigures

(a), (c), (d), and (e) in Figure 3 represent four scenarios of Equations 2, each with a

different set of the CR parameter values: (a) positive for both parameters, (c) zero for both

CR parameters (thus no interactive contingency at all), (d) positive value for one CR

parameter and negative value for the other, and (e) negative for both parameters. In (c),
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there is no interactive contingency at all, as in a scenario where the mother and infant show

no interactive contingency with respect to each other whatsoever. It takes 25 time units for

both trajectories to converge at a state level (zero) without any noise or disturbance to the

system. Subfigure (a) represents a scenario where the trajectories are pulled toward each

other, yielding a more efficient co-regulated system that converges to their stable states

faster (16 time units) compared to when no interactive contingency. In contrast, (e)

represents a scenario where there is a weak “anti-regulatory” force against each other. In

such a scenario, when the mother is trying to respond to the infant’s heightened emotional

arousal with a lower level of arousal, conditional on the fact that their arousal states

started from opposite directions, such a mismatch in arousal levels and the “anti-regulatory

force” create further delays (requiring 52 time units) for the two members to calm down

toward their stable states. The last scenario, (d), is where there is a repelling force on the

infant from the mother, and a pulling force on the mother from the infant. This might

mirror the case where the infant is resistant to the soothing actions of the mother, and

meanwhile the mother’s arousal level is brought up by the infant not cooperating. Without

any process noise, this system still converges to the stable level at time unit 26.

When within-dyad differences across time exist, for example, when the interaction

dynamics changed when entering SF, the system then violates stationarity, which is a key

assumption of time-series analysis. Most commonly used definition of stationarity, the

covariance stationarity, states that the first and second moments of the time-series data

should be time-invariant. Translated into terms in Equation 2, this implies that the

intercepts and the AR, CR dynamic parameters need to be time-invariant. One way to

account for within-dyad variations over time, and sometimes also between-dyad differences,

in dynamics using the VAR model is to allow for TVPs. In other words, we can have the

four dynamic parameters (i.e. AR and CR parameters) to differ across dyads and over

time. Here we use the arb parameter in Equation 2 as an example. We can replace it with
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a time-and dyad-specific version,

arb,it = f(t, arb,i,t−1,vi,xit) + ζarb,i,t (3)

ζarb,i,t ∼N (0, ψarb
),

where arb,it is a function of the following components: time (t), the value of the AR

parameter at time t− 1, arb,i,t−1, a vector of dyad-specific characteristics (vi), a vector of

time-specific predictor variables (xit). vi may include characteristics of individual members

that constitute dyad i – in our case, the attachment level of the infant as indicated by the

Richter scores. xit in our motivating example is a one-dimensional exogenous time-varying

binary covariate, mother’s smile. f can be parametric or nonparametric. The term ζarb,i,t,

which is usually assumed to confirm to a normal distribution, represents residual or process

noise that account for deviations from the predicted AR. If f contains only an intercept

parameter (f(.) = intarb) and no process noise is added, then arb,it in Equation 3 is

equivalent to the time-invariant arb parameter in Equations 2. In fact, in model fitting

involving any potential TVP, a model with only process noise is often fitted to that specific

parameter before any theory-driven models to see whether representing such parameter as

a TVP is necessary. If the estimated process noise variance is different from zero, then it

provides evidence that suggests there is enough variability in the parameter and thus may

be an indication that the parameter varies through time. Otherwise, the parameter would

be specified as time-invariant (Chow et al., 2011)

Although in the previous paragraph we used an AR parameter as an example, AR

parameters are not the only ones that can be time-varying. In fact, previous work by

Chow, Haltigan, and Messinger (2010) found time variations in the concurrent association

between infants and parents during FF and RE episodes using a stochastic regression

model predicting infant emotional valence while controlling for previous infant valence.

These results provide initial support for incorporating CR parameters as TVPs but do not

treat the dyad as a bivariate system, nor do they model potential TVP covariates.

In summary, the standard VAR model defines (successful) regulation and thus
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co-regulation of the pair as dependent not only on the affect of the other member (CR

parameters), but also on the resistance (or reversely, susceptibility) to change of the

individual him/herself (AR parameters). A thorough investigation of co-regulation requires

consideration of both interactive contingency and inertia. Therefore, to study the the

phenomenon of co-regulation through the VAR model, it is important to take the entire

evolutionary pattern of the system into consideration, as both AR and CR parameters

provide unique but complementary pieces of information concerning the dynamics of

dyadic interactions. TVPs extend on the traditional VAR model with possibilities to

account for any between-dyad and across-time differences in the dynamic system patterns.

One novel contribution of the article is to illustrate a rather systematic investigation of the

dynamic parameters in a VAR model that may be time-varying in the context of intensive

longitudinal data on parent-infant interactions, as well as the associations between

variations of dynamics (marked by TVPs) and dyad-specific characteristic (infants’ later

attachment) and time-varying environmental factor (mothers’ smiles).

Estimation Details for TV-VAR Models

State-Space Approach

The state-space modeling approach operates by incorporating the TVPs as additional

latent variables in the context of a state-space model, and subsequently estimating the

over-time fluctuations in the TVPs with other latent variables in the system. The specific

form of state-space model we consider in this study comprises a dynamic model expressed

as:

ηit = fη(ηi,t−1,β) + ζit, ζit ∼N (0,Σζ), (4)

and a linear measurement function written as:

yit = Ληit + εit, εt ∼N(0,Σε). (5)

In the above model formulation, ηit is a p−dimensional vector representing latent variables

— also referred to as “states” in the state-space literature — for the system unit i at time
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t; fη (Rp → Rp) is the state transition function from a previously time t− 1 to the current

time t; and β is a k−dimensional vector of parameters in fη. ζit is also a p−dimensional

vector, and it represents the process noise at time t. yit is a q−dimensional vector of

observed manifestations of the latent states ηit; Λ is a q × p matrix of the measurement

loading that links the latent states ηit to the observed yit; and εit is a q−dimensional

vector representing measurement errors. In the traditional VAR model, the latent states

are the system variables of interest (

infantit
motherit

 in Equation 2 for this study; p=2). In the

case of TV-VAR, for example, if we are to include a time-varying version of arb as

illustrated in Equation 3, we add another dimension in ηit that now it becomes


infantit

motherit

arb,it


with p=3 and include a parametric model for arb,it in fη. ζit then is also three-dimensional

and becomes


ζb,it

ζm,it

ζarb,it

, and the corresponding covariance matrix Σζ is


ψb

ψbm ψm

0 0 ψarb

. In
our particular example, the observed yit is also the two-dimensional latent state variableinfantit
motherit

 representing mother’s and infant’s head movement. Therefore, q=2 and with

the inclusion of arb,it, Λ =

1 0 0

0 1 0

, with no measurement error εit involved.

We used the R package dynr (Ou, Hunter, & Chow, 2018), to implement this

approach. In dynr, estimation of both the latent states in TV-VAR and time-invariant

parameters (sometimes referred to as “dual-estimation”) calls to three steps, which we

describe briefly in turn below. As an overview, these steps include a filtering step to

estimate the values of the latent variables (including the TVPs) and the uncertainty

associated with those estimates at time t. Filtering assumes that the observed data are

only available up to time t, and the unknown parameters are fixed at their specified (e.g.,

starting) values. The filtering then leads to by-products that can be used to compute a raw
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data likelihood function. Optimization of this raw data likelihood function with respect to

the unknown parameters essentially involves repeated execution of the filtering step at

different parameter values until some pre-defined convergence criteria are met. At

convergence, the final (converged) parameter estimates are used to run filtering one more

time, followed by a smoothing procedure to generate refined estimates of the latent

variables scores using data from all the time points.

Step 1. Filtering. To perform filtering on the latent variables in Equations (4)-(5),

the extended Kalman filter (EKF), a nonlinear extension of the linear Kalman filter

(Kalman, 1960) for nonlinear, discrete-time dynamic models was used. As in the Kalman

filter procedure, the EKF involves iterations of prediction steps and update steps over all

subjects and time points to yield filtered estimates of the state variables η and the

associated variance covariance structure P (Anderson & Moore, 1979). For the filtering

step, the collection of time-invariant parameters θ (consisting of elements in

{β,Σζ ,Σε,Λ}) are assumed known. Estimation of these parameters are addressed in Step

2 with the optimization algorithm.

Let η̂i,t|t−1 denote the estimated ηit at the prediction step, which utilizes information

in the data up to time t− 1, and η̂i,t−1|t−1 denote the estimated ηi,t−1 at the previous

update step, which also utilizes information up to time t− 1. Pi,t|t−1 and Pi,t−1|t−1

represent, respectively, their associated covariance matrices. In each iteration of EKF, the

prediction step builds up on results from the previous iteration’s update step, which are

derived from observations {y1, . . . ,yt−1}, to yield:

η̂i,t|t−1
∆= E(ηi,t|yi,1, ...,yi,t−1) = fη(η̂i,t−1|t−1) (6)

Pi,t|t−1
∆= cov(ηi,t|yi,1, ...,yi,t−1) = Jf (η̂i,t−1|t−1)P̂i,t−1|t−1Jf (η̂i,t−1|t−1)> + Σζ , (7)

in which Jf (η̂i,t−1|t−1) is the Jacobian matrix of fη, with element in the jth row and kth

column being the first-order partial derivative of the jth function in fη with respect to the

kth variable in ηit, evaluated at the most current estimate η̂i,t−1|t−1.

The prediction step estimates η̂i,t|t−1 and Pi,t|t−1 are then carried into the update step
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as information of yit is utilized to further refine the state estimates as:

vit
∆= yit − E(yit|η̂i,t|t−1) = yit −Λη̂i,t|t−1

Vit
∆= cov(vit) = ΛPi,t|t−1ΛT + Σε

Kit = Pi,t|t−1ΛTV −1
it

η̂i,t|t = η̂i,t|t−1 +Kitvit

Pi,t|t = Pi,t|t−1 −KitΛPi,t|t−1

Here vit is referred to as prediction error at time t, and Vit is its variance. Both vit and Vit

are used in the calculation of likelihood for parameter optimization in Step 2. Kit, called

the Kalman gain, can be seen as a relative weight between variability of the predicted state

estimates, the magnitudes of which are captured by Pi,t|t−1, and the total variability of the

new observations, the magnitudes of which depend both on the variability of the predicted

state estimates, Pi,t|t−1, and also the measurement error covariance matrix, Σε. The noisier

the observations are, the lower the Kalman gain value is. Thus less weight is given to the

new observations when updating the state predicted estimates. The current estimate of ηit

from the update step and its associated covariance, η̂i,t|t and Pi,t|t are subsequently used in

the next iteration of prediction step for ηi,t+1. Pi,t|t helps quantify the “errors” or

uncertainty in the state estimates after new data are available from time t, and is

sometimes referred to as the conditional state error covariance matrix (Anderson & Moore,

1979).

Step 2. Parameter Estimation. Parameter estimation is performed by finding

parameter estimates that maximize a raw log-likelihood function, also known as the

prediction error decomposition function, that can be computed using by-products from the

filtering step. The raw data log-likelihood function is expressed as (Chow, Ferrer, &

Nesselroade, 2007; Schweppe, 1965):

log`(θ) = −1
2

N∑
i=1

Ti∑
j=1

[
log(2π) + log |Vi,tj |+ v>i,tjV

−1
i,tj
vi,tj

]
. (8)

The optimization algorithm employed by dynr is a sequential quadratic programming
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algorithm (Kraft, 1988, 1994) from the open-source library for nonlinear optimization,

NLOPT (Johnson, 2014; Ou et al., 2018).

Step 3. Smoothing. The filtering step only uses information up to time t for

estimation of the the latent states and covariance structure, η̂i,t|t and Pi,t|t. We can further

refine these estimates using information contained in observations from the entire

time-series, including those from time t+ 1 and so on, via the fixed interval smoother that

is run backward in time (Ansley & Kohn, 1985; Chow, Ho, Hamaker, & Dolan, 2010;

Harvey, 2001):

η̂i,t|T = η̂i,t|t + P̃it(η̂i,t+1|T − η̂i,t+1|t), (9)

Pi,t|T = Pi,t|t + P̃it(Pi,t+1|T − Pi,t+1|t)P̃it, (10)

where P̃it = Pi,t|tJf (η̂i,t|t)>[Pi,t+1|t]−1. This step yields our final estimates of the latent

states, including the TVPs, The square roots of the diagonal elements in Pi,t|T are the

standard deviations of the state estimates after all the data up to time T have been used

for estimation, and they can be used as standard errors to form confidence intervals around

η̂i,t|T . When TVPs are included as additional latent variables in ηit, the pertinent elements

in η̂i,t|T serve as estimates of the TVPs, with confidence intervals constructed using the

corresponding square root elements in Pi,t|T .

A unique feature of the fitting TV-VAR in the state-space framework is the capability

for researchers to specify particular functional forms for TVPs. In theory-driven TVPs,

doing so can help confirm any particular pattern of time-varyingness of the parameters and

establish connections between time-varying characteristics of dynamics and other factors

that may have influences on the dynamics (e.g. Chow et al., 2009, 2011; Tarvainen,

Hiltunen, Ranta-Aho, & Karjalainen, 2004). Even in cases where theories guiding the

nature of TVPs are lacking, one can choose functions that are flexible enough as a first

probe for TVPs before making decisions about more targeted confirmatory models (e.g.

Asparouhov, Hamaker, & Muthén, 2017; Chen et al., 2018) or explicitly incorporate

nonparametric functions or splines for TVPs (e.g. Tarvainen et al., 2006; Zhu & Wu, 2007).
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GAM Framework Approach

Another approach adopted in the present article to estimate variations of the TV-VAR

model is a GAM framework approach. Following Bringmann et al. (2018), we utilized

GAMs through the R package, Mixed GAM Computation Vehicle with Automatic

Smoothness Estimation (mgcv, Wood, 2019) to estimate the over-time trajectories of the

TVPs by means of penalized regression splines. A GAM with dependent variable y and

predictors x is generally written as (Yee, 2015):

E(yi) = g(µ(xi)) = β1 +
J∑
j=1

fj(xij) +
K∑

k=J+1
fk(xik1)xik2 +

H∑
h=K+1

fh(xih1xih2) (11)

where β1 and fd (d = 1, . . . , H) are smooth functions, which in mgcv are based on thin

plate regression splines3 by default. The term fj(xij) represents the smooth functional

effect of the jth predictor xij, an example being a nonlinear time trend. The term

fk(xik1)xik2 allows the effect of the kth1 predictor, xik1 , on y to vary as a function of the kth2

predictor (in our case, time). This is the key term utilized in the present article to allow

the effects of the lag-1 predictors, infanti,t−1 and motheri,t−1, to be time-varying. Finally,

fh(xih1xih2) is a tensor product term that allows for approximations of jointly nonlinear

effects involving both xih1 and xih2 . Tensor product terms are not used in the present

article, but see Chow (2019) for examples of modeling with this term.

Using mgcv, we considered an alternative TV-VAR model adapted from Equations

2—3 as:

infantit
motherit

 =

f1(t)

f2(t)

+

f3(t) f4(t)

f5(t) f6(t)


infanti,t−1

motheri,t−1

+

 ζb,it
ζm,it

 (12)

 ζb,it
ζm,it

 ∼N(
0,

 ψb
ψbm ψm

),
3In thin plate regression splines, the basis is obtained through eigen-decomposition of a data-determined

matrix. Please refer to Wood (2003) for details.
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and the two system variables, infanti,t and motheri,t, need to be manually manipulated to

create the lag-1 predictors, infanti,t−1 and motheri,t−1, to be entered into the regression as

predictors. The smooth functions f1(t) and f2(t) correspond to time-varying intercept

parameters for mothers and babies, respectively; f3(t) and f6(t) correspond to time-varying

AR parameters arbt and armt, and finally f4(t) and f5(t) correspond to time-varying CR

parameters crmb,t and crbm,t. Compared to the original TV-VAR model shown in Equations

2—3, one notable difference is the inclusion of the time-varying intercept terms, f1(t) and

f2(t) in the model. In this case, a researcher may opt to capitalize on the nonparametric

strengths of the GAM framework to simultaneously model other unspecified time trends in

all mothers’ and infants’ trajectories with relative ease.

Let βd, d = 1, . . . , 6, represent the vector of basis coefficients in the smooth function

fd in Equation 12 and β′ = (β′1, . . . ,β′6). The estimated β are then obtained by

maximizing the penalized log-likelihood:

log l(β)− 1
2

6∑
d=1

λdβ
′
dSdβd, (13)

where λi is a penalty parameter that controls the importance of smoothness of the

approximation curve, fd, and Sd is the “wiggliness” penalty matrix that defines the

smoothness criterion for the dth approximation curve, fd, the deviations from which are

penalized to ensure the smoothness of fd. The collection of penalty parameter

λ = {λ1, . . . , λ6} needs to be selected with care to maintain a balance between

goodness-of-fit (measured by the first term in Equation 13) and wiggliness (measured by

the second term in the equation). In mgcv, λ and basis coefficients β are jointly optimized

through a procedure with nested iterations. The outer iteration handles optimization of λ

using criteria such as generalized cross-validation (GCV) and restricted maxmimum

likelihood (REML). Nested within this outer iteration is the estimation of β by using a

Newton algorithm to maximize Equation 13 (Wood, 2019). If the dependent variable

follows a multivariate normal distribution, as in the case of our model assumption, an

approximated REML is used, which showed better performance than GCV in a previous
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simulation study (Wood, 2011).

Apart from λ, the smoothness in GAM is also affected by the number of basis

functions (k). On choosing the value of k, authors of the mgcv package suggested running

a gam.check() on a fitted GAM to test whether the number is adequate. The test is based

on computing an estimate of the residual variance after ordering the residuals according to

the predictor values and taking differences of successive residuals. If the value of this

estimate divided by the residual variance falls below 1, the residuals are likely to contain

patterns not already accounted for by the existing basis expansion and one may consider

doubling the value of k and re-fittig GAM (Wood, 2019). After the parameter estimation,

mgcv uses a Bayesian approach for deriving standard errors of predictions (and confidence

bands; see Marra & Wood, 2012, for details), and also for testing the significance of the

smooth terms. Significance in mgcv is defined against the null hypothesis that a particular

smooth term fd is zero (Wood, 2012).

The approach of TV-VAR model fitting under the GAM framework does not rely on

pre-existing speculations on the nature and shape of the TVPs and therefore offers a

relatively model-free approach to TVP estimations. However, it makes customized

specification of theory-drive TVP models difficult for the same reason. One key advantage

of the state-space model approach over the GAM approach is the capability to include a

measurement structure (Equation 5), albeit not highlighted in the current study. Another

difference between these two model fitting approaches lies in how they handle between-unit

(e.g. dyad) differences. The state-space model approach aims to extract a universal pattern

within the sample by constraining the time-invariant parameters and the general

predefined model for TVPs to be the same across dyads, while preserving some

between-dyad differences in dynamics as reflected through the process noise elements and

the individual filtering and smoothing procedures. Thus, even with the same general model

for TVPs, the estimated TVP trajectories would still differ from one dyad to the next. In

contrast, in the GAM framework approach, one needs to fit a group-based model to
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extract, for all dyads in the sample, a common trend for each TVP; alternatively, one may

adopt a dyad-specific approach and fit a model separately to each dyad’s data. In the case

of group-based model fitting, the implied TVP trajectory would be identical across dyads.

Either way, incorporating theory-driven parametric functions that link known covariates to

the TVPs is not very straightforward in mgcv, by the design and nature of the package.

Other spline packages exist and have other unique strengths that are beyond the scope of

the specific empirical illustration targeted in this article. We provide a brief synopsis in the

Discussion section.

Empirical Results

The Empirical Results section is organized as follows: preliminary results are first reported

to showcase the similarities and differences in results using the aggregated MDs on head

movement compared with the previous published results using pitch, yaw and roll

separately; then results from the state-space approach are presented, following a process of

screening for TVP to confirmatory model fitting with dyad- and time-specific elements

predicting TVPs with special attention given to: a) whether CR and AR parameters are

time-varying, and if they are, whether the TVPs of CR can be predicted by episodes and

b) whether the TVPs can be predicted by the mother’s smiles and Richters’ Attachment

Scale the infant; and finally we represent results from GAM approach and how the

conclusions drawn from the GAM approach may be similar or different from those from the

state-space approach.

Preliminary Results on Mahalanobis Distances

Descriptive statistics of the MDs measures before and after detrending with across-episode

group-wise standardizations, are shown in Table 1. The aggregated MDs between mothers

and infants showed only low to moderate concurrent and lag-1 associations, and high lag-1

autocorrelations (Table 2). The lag-2 partial correlations were diminished in magnitude

but significant for 51.4% of both mothers’ and infants’ time series. Both mothers’ and

infants’ post-preparation data exhibited a certain level of nonstationary by the unit root
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tests (proportion of nonstationary data: infants: 13.89% by the augmented Dickey-Fuller

test, 2.78% by the KPSS test for level stationarity; mothers: 23.61% by the augmented

Dickey-Fuller test, 9.72 % by the KPSS test for level stationarity).

<Table 1 and 2 go here.>

Prior to dynamic model fitting, we conducted preliminary analyses to examine the

veracity of the MD measure and the effect of omitting dyads with excessive missingness in

the time series data. The goal here was to compare the results reported by Hammal, Cohn,

and Messinger (2015) for a larger sample of 42 dyads in two summary measures:

displacement and velocity of head movement. Unlike Hammal, Cohn, and Messinger

(2015), who performed separate analyses of displacement and velocity for pitch, yaw and

roll for all 42 dyads, the results reported here were based on the combined measure of MD,

and only from a subset of 24 dyads with sufficient data for subsequent dynamic modeling.

In addition, the head movement measures were extracted in the current study using a

different tracker from the one used in Hammal, Cohn, and Messinger (2015).

Between-episode differences in displacement and velocity of MD were analyzed using

repeated measures analysis of variance (ANOVA). The effect of episodes was not significant

in the displacement levels of mothers’ head MD (SS = 0.059, F (2,46) = 1.556, p > .05),

but was in that of infants’ (SS = 0.627, F (2,46) = 8.672, p < 0.001). A series of post-hoc

pairwise t-tests were carried out as follow-up tests of the significant episode effect for

infant. Consonant with the results reported in Hammal, Cohn, and Messinger (2015),

significant differences in MD displacements were found between the FF and the SF, and

between the SF and the RE (Table 3). There was also a significant SFP episode effect on

both the mothers’ and infants’ velocities in head movements (for mothers: SS = 0.048,

F (2,46) = 4.145, p < 0.03; for infants: SS = 0.246, F (2,46) = 25.434, p < 0.001). Post-hoc

pairwise t-tests indicated significant difference between the FF and the SF in mothers’

velocities, as well as significant differences between the FF and the SF, and between the SF

and the RE in infants’ velocities (Table 3). These results from preliminary analyses suggest
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that the combined, one-dimensional MD measure of overall head movement is able to

capture most of the between-episode differences previously found in the three dimensions of

pitch, yaw, and roll separately.

<Table 3 goes here.>

Results from State-Space Modeling of TV-VAR

The bivariate VAR model previously introduced in Equations 2 were fit to the processed

data. Apart from the VAR(1) model elaborated previously, we also fit a VAR model of

order 2 (VAR(2)) given the previously found significant lag-2 partial correlations, which in

addition to the lag-1 variables of mother and infant movements, also included the lag-2

variables in the model. We compared the fit of these two models using the Akaike

Information Criterion (AIC; Akaike, 1998) and Bayesian Information Criterion (BIC;

Schwarz et al., 1978). A lower score on either criterion suggests better model fit. VAR(2)

had an AIC slightly smaller than that of VAR (1) (62812.84 vs. 62827.38) but a larger BIC

(62914.08 vs 62897.47). Given AIC’s tendency to prefer more complicated model, we

decided to proceed with VAR(1) for model parsimony. Then, TVPs were included to

capture targeted between-episode and between-dyad differences during the SFP. To help

decide whether certain TVPs were supported, we began by fitting two unconditional

models in which either AR or CR parameters were estimated as TVPs but not predicted

using any covariates or assumed to take on a particular shape (Equation 3 with

f(.) = intarb
)4. Figure 4 shows the estimated trajectories from the unconditional

time-varying AR and CR parameters for two sample dyads. Results from fitting these

unconditional models suggested that only the autoregression parameters (i.e., arb, and

arm), but not the cross-regression parameters (i.e., crmb and crbm) showed evidence as

TVPs, diagnosed based on the statistical significance of their corresponding process noise

variances. This is also evident in plots (b1) to (b4) in Figure 4, that the estimated

4Due to the observability constraint (elaborated in the Discussion) of the original VAR model, we can

only fit up to two TVPs at a time.
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time-varying CR trajectories from the state-space approach were extremely flat. Therefore,

CR parameters were included in the final model as time-invariant parameters.

<Figure 4 goes here.>

Next, for the parameters determined to show substantial within-person, over-time

variations, we added selected covariates to examine whether these over-time variations were

associated with SFP episode and dyadic characteristics. In particular, we included as

predictors: (1) episodic information (contrast coded into SF: SF (2) vs. others (-1) and RE:

RE (1) vs. FF (-1)); (2) contextual information about the interactions: whether the mother

was smiling at the moment (“momSmileit"); and (3) and dyad-specific characteristic that

may contribute to differences in dynamics: infant later attachment security (“Richteri").

We also included person-specific variances of the head movement measures across all

episodes (denoted as “V arb,i” and “V arm,i”) to account for other sources of between-person

variability in head movements not captured by these three sets of covariates of interest.

arb,it = βb0 + βb1 × SFit + βb2 ×REit + βb3 ×momSmileit + βb4 ×Richteri (14)

+ βb34 ×momSmileit ×Richteri + βb5V arb,i + ζarb,i,t, and

arm,it = βm0 + βm1 × SFit + βm2 ×REit + βm3 ×momSmileit + βm4 ×Richteri (15)

+ βm34 ×momSmileit ×Richteri + βm5V arm,i + ζarm,i,t.

 ζarb,i,t

ζarm,i,t

 ∼N (0,

ψarb,i,t

0 ψarm,i,t

)

<Table 4 goes here.>

Table 4 shows the estimated values for all the time-invariant parameters in Equations

2 and 14-16 along with the standard errors and the associated 95% confidence intervals of

these estimates. The unit root tests were ran again with the residuals from this model, and

the tests indicated the data were conditionally stationary given the model. Although the

CR paramters were found to be time-invariant, their magnitudes were significantly different
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from zero. That is, we found evidence for mother → infant as well as infant → mother

interactive contingencies during the SFP, as averaged across all three SFP episodes. That

is, overall, across all dyads and all episodes, mothers’ head movements at the previous time

point (at a time lag of 1) were found to negatively influence children’s current head

movements (crmb = −0.011), and children’s head movements at the previous time point

positively influenced their mothers’ (crbm = 0.012) at the current time point. Thus, on

average across the three SFP episodes, mothers’ head movement magnitudes, which we

postulated to be related to their affect arousal levels, appeared to synchronize to infants’

previous head movements, with higher magnitudes of infant head movements at time t-1

leading to higher magnitudes of mother head movements at time t. In contrast, the

negative mother → infant interactive contingency weight suggested the opposite patterns:

low magnitudes of mother head movement at time t-1 tended to elicit high magnitudes of

infant head movement at time t, and conversely, high magnitudes of mother head

movement at time t-1 tended to elicit low magnitudes of infant head movement at time t.

These differences in interactive contingency weights may reflect mothers’ intrinsic

motivation to adapt to their child’s head movements, and corresponding effects of the

mothers on the infants either in helping to down-regulate intense head movements, or in

eliciting more intense movements when high magnitudes of head movement were

reciprocated with low magnitudes of head movements from the others.

When we prepared data for analyses, linear trends were removed for every dyad

within each episode, but all standardization was done on the non-episode-specific group

level (all mothers as a group and all infants as another) instead of on the individual dyad

and episode level. We made such decision for standardization to preserve some

between-dyad differences and within-dyad variability across episodes given the theoretically

different natures of these three episodes of the SFP. We expected that the TVPs, namely,

the time-varying AR coefficients, would be adequate in capturing most of the within-person

variability across episodes. However, the intercept parameters in the TV-VAR model was
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estimated to be significant, albeit small in magnitude (Table 4; intb = −0.067,

intm = 0.034). The significant intercepts suggested that some signs of misspecification of

the VAR process noise covariance structure remained and were manifested through the

intercepts.

Within-dyad Variations in AR Parameters across Episodes.Results showed that on

average, mothers and infants manifested relatively large positive values of AR parameters,

or inertia, in head movements during the SFP interactions (βb0 = 0.730, βm0 = 0.708). The

episode-specific components in the model for time-varying AR parameters supported the

experimental manipulation in SFP as different episodes resulted in different interaction

dynamics indexed by head movements. As shown in Figure 5, across all dyads, infants

showed lower levels of AR during the SF episode as compared to FF, though the coefficient

associated with the contrast code for SF was not found significant (βb1 = −0.005). This

might be related to the construction of the contrast code for the SF effect, in which the FF

episode was grouped together with the RE episode. However, contrary to our initial

expectation, there was greater similarity between infants’ AR values during the RE and

those from the SF, as opposed to those from the FF episode (βb2 = −0.017). This may

reflect infants’ recovery from distress developed during SF (sometimes referred to as the

“carryover” effect of SF; Haley & Stansbury, 2003). A lower AR generally means that the

observed process is less predictable from previous observations. Here, it reflects the infants

making less consistent movements in SF and RE as compared to FF.

<Figure 5 goes here.>

Mothers on average showed the highest AR values during SF (βm1 = 0.031). An

increase in the AR parameter indicates that the movement is more predictable and

consistent in time, and in the case of the SF episode, it reflects the experimental design of

mothers being not responsive, thus making consistently no or minimal head movements.

Mothers on average also showed higher levels of AR during the RE compared to FF

(βm2 = 0.035), thus providing some evidence for the carryover AR effect from the SF. Still,
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as can be observed from Figure 5, mothers’ AR was on average lower in the RE than in the

SF, possibly reflecting mothers’ efforts to resume her emotional connections with the

infants through a variety of movements to calm and/or distract the infants. In addition,

the estimated process noise variances of these two parameters, ψarb
and ψarm , remained

statistically significant after the inclusion of these covariates. This indicated that there was

still substantial between-individual and across-time variability in these two AR parameters

that were not explained by the covariates.

Between-dyad Differences in Inertia Based on Attachment.We found that the AR

parameter for infants also differed depending on infants’ levels of attachment security.

After controlling for differences between episodes, infants who were more securely attached

had higher inertia in their head movements across all episodes (βb4 = 0.012), which means

that their head movement were more predictable compared to those less securely attached.

These results are consonant with Beebe et al. (2010)’s emotional engagement results in

which future securely attached infants exhibited higher levels of self-regulation and lower

levels of responsivity to mother than future insecurely attached infants, as well as Jaffe et

al.’s similar (2001) findings in the vocal coordination domain. Infants’ secure attachment

did not predict mothers’ AR parameter, but it did have a significant interaction effect with

mother smiling on mothers’ AR parameter (βm34 = −0.015), despite mother smiling itself

not having any direct influence on either mothers’ or infants’ AR (βb3 = 0.017,

βm3 = −0.002). Mothers whose infants were more securely attached had lower inertia in

their head movements when they smiled compared to when they did not (see Figure 5).

This suggests that they were more likely to show a greater range of head motions when

they were smiling. On the other hand, mothers whose infants were less securely attached

showed comparable inertia in their head movements regardless of whether they were

smiling. These findings suggested that mothers of more securely attached infants exhibited

greater within-person differences in their head movement when expressing positive

affect–which might signal their involvement in and receptivity to the interaction –than
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mothers of less securely attached infants.

Results from GAM Fitting of TV-VAR

We fit the model represented in Equation 12 to the same dataset with 24 dyads, over a

handful of choices of number of basis functions (k) in thin plate regression splines. Figure 6

shows the estimated smooth functions for each parameter under all the k values. The

choice of k made the biggest difference in mother’s AR parameter (arm), some difference in

mother’s intercept parameter (intm), and almost no difference in the other parameters.

Comparing smoothed functions of difference parameters, it appeared that mother’s AR

parameter had the highest variability across time while the CR parameters were mostly flat

(Figure 6). These observations were consistent with the conclusions from the state-space

model approach. In addition, according to the plot, mother’s intercept parameter may also

be varying across time. The patterns of change in mother’s AR and intercept parameters

also matched roughly to the change points of episodes in SFP (around time points 249 and

488).

The random sample based diagnostic in gam.check() did not support k being big

enough for all the k values we implemented. However, the estimated trajectories suggested

that wigglier functions in most of the parameters had been smoothed out with the

optimized λ, and for arm that did exhibite a difference based on k, k = 160 already yielded

fairly wiggly trajectories. Given this, we stopped doubling k and chose a k value based on

examination of the plots. In the following comparison between the state-space model and

GAM approaches, we adopt a k value of 20, which generated some wiggliness but at the

same time also preserved a certain level of smoothness.

To begin with a relatively fair comparison of modeling approaches, we compared

results from the two unconditional TVP models used in the state-space model approach as

a model building step with results from fitting GAMs where certain parts of the model in

Equation 12 were constrained to be parametric. For the unconditional model with

time-varying ARs, the intercept and CR parameters (f1, f2, f4 and f5) were estimated as
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constants instead of functions of time, and the same goes for the intercept and AR

parameters (f1, f2, f3 and f6) for the unconditional model with time-varying CRs.

Estimation results for the parametric coefficients are reported in Table 5, and the

estimated trajectories for TVPs are compared for two dyads in Figure 4. We would like to

note that despite the TVPs not having any theoretically guided form, the models compared

under the state-space approach and the GAM approach were still not entirely identical.

Other than having different functional forms, the two TVPs in the state-space model

approach were modeled as a bivariate process with correlated process noises, whereas in

GAM the two functions representing TVPs were not associated. Despite the differences,

estimates of the parametric coefficients for the ARs (in a model with time-varying CRs)

and CRs (in a model with time-varying ARs) were similar in magnitude and direction.

There existed some discrepancies in the estimates of intercepts. The estimated TVP

trajectories exhibited similar overall tendencies, with the ones from the state-space model

approach being more “jiggly” due to the inclusion of random process noise (Figure 4).

<Table 5 here.>

The state-space model approach did not support the CR parameters as TVPs, but

the time-invariance CR parameters were significantly different from zero with

crmb = −0.011 and crbm = 0.012 in the final TV-VAR model (Equations 2 and 14-16). In

contrast, although the smooth functions representing the time-varying CR parameters were

estimated to be significant in GAM, the estimated time-varying CR trajectories were of

small magnitude (similar to the results from the state-space model with unconditional

time-varying CRs) and only some portions of the corresponding confidence bands for the

CR trajectories did not include 0 in plots (e)-(f) in Figure 6. The mean values of the

trajectories mirror these time-invariant estimates (mean(crmb,t) = −0.011,

mean(crbm,t) = 0.015). Some discrepancies were observed in the estimated intercept

parameters and the covariance structure for process noise of the head movement variables.

The function representing time-varying intercept for infants was not significant in the
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GAM approach, and the estimated process noise variances and covariance were slightly

larger compared to those in the state-space approach (ψb,i,t = 0.394, ψm,i,t = 0.353,

ψbm,i,t = 0.020). The GAM approach also suggested the intercept parameter of mother’s

head movement to be time-varying, in contrast to the time-invariant intercepts we imposed

in our state-space model.

<Figure 6 goes here.>

To further facilitate the comparison between the state-space model with TVPs in

Equations 14-16 versus GAM model of TVPs, estimated trajectories of the shared TVP in

both models, arb and arm, are plotted for two dyads in Figure 7. Comparing between

dyads, the state-space approach, as discussed earlier, was able to accommodate some

between-dyad differences. The smoothed arb trajectory from the GAM approach was

roughly the mean trend in the smoothed arb trajectories from the state-space approach.

Furthermore, the smoothed arm trajectories from the state-space approach show a visible

SF effect in both dyads, where the mother’s AR during SF (the middle chunk) was much

flatter and also slightly higher in value on average than the other two episodes. This offers a

demonstration of how theory-guided model can be helpful. The SF effect in mothers’ AR is

supported by the experiment design of SPF. In the GAM TVP trajectories, the differences

between episodes were less salient but some changes in mothers’ AR were still evident. On

the other hand, it is worth noting that the GAM model with enforced smoothness yielded

much narrower confidence bands of the estimated trajectories compared to the state-space

model due to the differences between the two approaches in handling group-based models.

The individual filtering and smoothing scheme adopted in the state-space model approach

resulted in confidence bands reflecting the uncertainty around the estimates of the specific

dyad in each plot. Meanwhile, confidence bands in the GAM approach generated through

model-implied predictions reflected uncertainly at the mean sample level across all dyads.

In summary, in our particular TV-VAR model, the GAM and the state-space model

approach results suggested similar overall dynamics in mother-infant interactions in terms



TIME-VARYING VAR MODELING OF INFANT-MOTHER HEAD MOVEMENTS 35

of the estimated (mean) values of the AR/CR parameters, and both approaches uncovered

some degrees of SF effect in mothers’ head movements. GAM accommodated more TVPs

compared to the state-space approach (6 vs. 2) but the three parameters other than AR

and mother’s intercept exhibited relatively flat trajectories that hovered closely around

zero. In contrast, through the state-space model, we were able to link dyadic head

movements to mothers’ facial cue of smiling and also infants’ later attachment

development. These are some examples of parametric effects that are relatively

straightforward to specify within the state-space framework, but are difficult to specify

within the GAM framework due to software-related constraints.

Discussion

As longitudinal designs and data become more prominent in the study of human behaviors,

models with TVPs have also gained considerable traction over the last decade. In this

article, we applied a time series-inspired dynamic systems model with TVPs to study

parent-infant co-regulation using automated measures of head movements during the SFP.

We compared results from fitting variations of the TV-VAR model using two approaches: a

parametric state-space approach, and a semi-parametric approach utilizing GAMs. The

two approaches yielded similar inferential results with regard to the mother-infant dyads’

dynamics as a group, but also some discrepancies in the findings concerning the nature of

the TVPs.

Both approaches can accommodate TVPs rather flexibly, with the GAM approach

being a nonparametric approach in the TVP part, and the state-space approach accounting

for additional within- and across-individual variability in the TVPs via stochastic process

noises in the TVPs. Overall, the two approaches differ in both their model formulation and

estimation details. Thus, the slight divergence in results did not come as a surprise, but

did suggest important implications for future studies involving TVPs. To begin with, the

smoothing procedure embedded in GAM with penalized regression splines allows

researchers to explicitly control the smoothness/wiggliness of TVP trajectories through the
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smoothing parameter (λ), if desired. In the state-space modeling approach, the filtering

and smoothing procedures are done individually for each unit of analysis so the smoothed

TVP trajectories are also individually adapted to observed data. As such, compared to the

smoothed TVP trajectories from GAM, the estimated TVP trajectories from the

state-space approach tend to appear “rougher” when process noises are included to allow

nuanced fluctuations in each individual’s observed data be captured as process noises in

the TVPs. Thus, the inclusion of process noises in the TVP in the state-space approach,

and the explicit regularization (i.e., smoothing) of the TVP trajectories through the

penalty term in the GAM approach are two key features that set these approaches apart

from each other.

The roughness of the TVP trajectories in the state-space approach is contributed in

part by other reasons as well. Specifically, the state-space modeling approach is able to

accommodate both within- and between-unit (e.g., individuals and dyads) differences in

the TVPs essentially as latent variable scores, even though model fitting is performed at

the group level, with time-invariant parameters that are constrained to be equal across

units. In contrast, fitting a group-based model in the GAM approach is sensitive to only

the universal trends and effects across all units. In principle, it is possible to adapt the

TV-VAR models implemented in the two modeling approaches to obtain a model that is

more comparable across frameworks. For instance, to confine the TVPs in the state-space

model approach to be the same across unit (by, for example, dropping the process noise

structure and adopting a functional form that is not dependent on unit-specific

characteristics), or to do individual model-fitting in both approaches. Here, we can

demonstrate with two dyads that some between-dyad differences exist in the AR

trajectories, examining the results from both approaches with model fitting to each

individual dyad (Figure 8). Alternatively, it is also possible to specify some penalized

spline functions as a state-space model (e.g., cubic splines; Chow & Zhang, 2008; Wahba,

1978). We did not adopt these procedures because we were interested in investigating
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specific, substantively motivated hypotheses in the state-space approach. In our view, some

of these differences in results actually made our illustration more informative.

<Figure 8 here.>

The two approaches are also characterized by distinct model identifiability

constraints. In state-space models, one well-known model identifiability condition is for the

system of interest to be observable. In other words, the system’s underlying latent variable

values can be uniquely determined from the observed measurements (Bar-Shalom, Li, &

Kirubarajan, 2001). As such, the number of TVPs that can be estimated as additional

latent variables in a state-space model is also limited by the number of observed

endogenous (dependent) variables and latent variables that are already present in the

model aside from the TVPs. Based on Gates, Molenaar, and Chow (In Progress), in a

model with q observed variables and p latent variables (not including TVPs), the maximum

number of TVPs identifiable from the data is the minimum of p and q. Thus, in the context

a VAR(1) model, for instance, the model would not be observable if more than two TVPs

are present in the model. However, as distinct from the state-space approach, each smooth

function in GAM that is tied to a unique predictor is identified via implicit constraints on

the basis coefficients, namely, by requiring that the basis coefficients associated with any

particular predictor to sum to zero over all possible values of that predictor. Because lag-1

mother and infant head movement variables are included in GAM as predictors that are

distinct from the dependent variables (the lag-0 mother and infant head movement

variables), we were able to allow for time-dependent smooths of the AR as well as CR

parameters with the same data. However, uninformed expansion of the order of the VAR

model to allow higher-lag coefficients (e.g., lag-2, lag-3 and so on) to be time-varying may

yield over-fitting and is thus not recommended. In practice, we recommend that researchers

first use some screening procedures, such as some of the ones we adopted in this article, to

examine evidence for TVPs prior to freeing them up in completely unsupervised ways.

In summary, the two approaches have unique benefits that may make them more
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appealing in some cases than others. If one wants to explicitly model multivariate

associations among system variables and with other TVPs, or to link the change in system

patterns (manifested in TVPs) with between-unit and within-unit characteristics to study

the mechanisms of change, then the state-space model offers a more straightforward

approach to implement selected parametric functions that maybe difficult or even

impossible to implement and interpret in GAM. The state-space model approach can also

accommodate a measurement structure, which is not possible in GAM. On the other hand,

in the absence of clear parametric modeling goals, the GAM approach offers another

advantage besides the flexibility associated with a model-free approach: the dependent

variable of interest can conform to any distribution from the exponential family, including

the Normal, Binomial, and Poisson distributions as special cases. This opens up the

possibility of using binary and count data as system variables. In addition, we note that

GAM through mgcv is only one spline-based functional regression method out of many

that could be applied to estimate models with TVPs. Other functional regression software

packages exist and may utilize slightly different spline formulations, penalty terms and

optimization criteria (e.g. as defined within a least squares vs. likelihood framework). For

example, the SAS Macro TVEM (Li et al., 2015) utilizes P-splines and B-splines, and has

extensions to accommodate data nesting, clustering and different sampling weights. Other

R packages include funreg (Dziak et al., 2019),npmlda (Wu & Tian, 2018) and refund

(Goldsmith et al., 2019). Direct comparisons of these other spline-based approaches for

fitting models with TVPs are beyond of the scope of this article, but warrant further

attention in a future study.

Both approaches in this study utilized a group-based model-fitting strategy, and

between-unit variations were controlled by including dyad-specific characteristics into the

state-space model, and allowing for stochastic system noises. A way to completely separate

between-unit and within-unit variations is to fit a multilevel TV-VAR model, for which

between-unit variations are modeled by random effects. mgcv does have the option to
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include random effects; it is also possible in the state-space approach by dynr to insert and

estimate selected random effects as part of the latent variable vector concurrently with the

other TVPs. However, this expands the dimension of the latent variables very quickly and

brings with it other identification issues. Bayesian methods may be a more viable

alternative in this case. For example, the dynamic structural equation modelling toolbox in

the software Mplus (e.g. Asparouhov et al., 2017; Hamaker, Asparouhov, Brose, & Muthen,

2018), which is implemented through Bayesian estimation, or the R package ctsem (e.g.

Driver & Voelkle, 2018), has the option of using Stan (Carpenter et al., 2017) to fit

multilevel dynamic models. These extensions warrant close examination in future work.

The trajectories of the VAR processes investigated in this study (i.e., the mother and

infant trajectories) were assumed to be vary smoothly over time (i.e., differentiable with

respect to the latent variables). Although not the focus of this article, under certain

occastions the key processes of interest may display non-continuous, abrupt changes and

the corresponding TVP patterns. Some approaches that would account for such kind of

changes include (but are not limited to) regime-switching models (e.g. Chow et al., 2018),

threshold AR models (e.g. De Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2016;

Hamaker, Zhang, & van der Maas, 2009), and using a two-step process of change point

detection followed by a parametric model with change point entered as known data.

Beyond the methodological insights discussed thus far, the article also offers an

example of how dynamic system models can be applied to investigate the temporal

evolution of regulatory behaviors, and how TVPs can be utilized to capture within-dyad

variations and between-dyad differences. To our knowledge, this article is the first effort to

apply dynamic systems technique to examine co-regulation in mother-infant dyads via

automated head movement measures. In confirmation with experimental manipulation and

similar to the results obtained in Hammal, Cohn, and Messinger (2015), we detected some

differences in mothers’ head movement dynamics in the SF than in other episodes, as

revealed in mothers’ AR parameter. This suggests that the inertia of mothers’ head
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movements, as revealed by their AR parameter, may serve as a proxy for understanding

key changes in mother-infant intrinsic and interactive dynamics during the SFP. The

decline in infants’ AR parameter in the SF episode – though not statistically significant

due to our a priori choice of contrast coding scheme, and the prolonged decline into the RE

episode, are all in accordance with the established results in the literature on increased

negative emotions during SF, the persistence of such emotions into RE (e.g. Toda &

Fogel, 1993; Tronick et al., 1978). This article also linked infants’ later attachment and the

early interactive patterns with their mothers by showing that infants’ dynamics in

interaction and also their mothers’ display of facial affect at 4 months are associated with

15-month attachment measure.

This article highlights the utility of using automated head movements in the study of

parent-infant interactions to understand the communication and co-regulation patterns

between infants and mothers. This automated measure is reasonable in cost, unaffected by

the subjective biases from human raters, and allows quantification of dynamic movement

patterns on a frame-by-frame basis. An ambiguity is whether infant head movement is

more associated with the valence or arousal dimension of emotion. Hammal, Cohn, Heike,

and Speltz (2015) found that infants’ head movement was greater during tasks intended to

elicit negative emotion and was strongly related to observer ratings of affect intensity.

Caution needs to be exercised in interpreting our analytic results involving head

movements as indices of emotion. The context within which the interactions take place

may strongly influence whether head movement is more closely associated with valence or

arousal. In our study, such frame-by-frame quantification also made the raw data fairly

noisy. As described in Data Descriptions and Preprocessing under the Motivating

Example, the raw data went through four steps of preprocessing before analyses:

aggregation, variable combination, detrending within dyad and episode, and

standardization with group. The decisions on whether and how to perform each step were

based on the phenomenon and research question. With different research questions, the
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data can be preprocessed in different ways to fulfill the need. For example, in our study,

aggregation was done to collapse the sampling rate within the time-scale of our

phenomenon of interest – behavioral coregulation. If the researcher’s interest was on a finer

time-scale (e.g. simple movement tendencies for a single person), s/he can choose to not

aggregate or aggregate into smaller intervals, and vice versa. With a similar dataset, a

researcher can choose to detrend or not based on whether the main level change is of

interest and needs to be incorporated in the modeling efforts. Lastly, whether to

standardize and what level to standardize on depend on what kind of comparison the

research would like to see. In our study, we standardized the data on a rather broad level

given we wanted to compare both between dyads and within dyad across episodes. If the

research interest is to extract common patterns of within-dyad dynamics and less about

between-dyad differences, standardization can be done within each dyad instead.

One limitation of the current study is its small sample size. The analytic sample size

was reduced to ensure we had enough data per dyad that spanned all three SFP episodes.

Therefore, dyads in which either member had long chunks of missing data in their head

movements were removed from the analytic sample. A common reason for such missing

data was that the individual moved out of range of the video camera, or that the

individual’s face was at a position where the software tracker could not identify the face

anchors. Such missingness may potentially be classified as non-ignorable missingness

(Little & Rubin, 2002), as the reason for removal was related to the variable of interest

(head movements). Future studies should better account for, or directly incorporate

modeling of the missing data patterns in the study, before generalizing the findings to

other contexts and samples.

In conclusion, this article provides important insights on two of the most widely

utilized methods for fitting dynamic systems models with TVPs — specifically, TV-VAR.

Our empirical application further attests to the importance of considering the presence of

TVPs, and the issue of self-organization, in the study of human dynamics. It also validated
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the feasibility of direct modeling of automated measures of head movements from a

dynamic systems perspective to uncover aspects of parent-infant interaction and

co-regulation. In addition, it provided further evidence for the link between interactive

patterns early in life to the infant’s later development of attachment.
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Before Data Preparation (“Raw” Mahalanobis Distance)

Mother

Episode Mean (SD) Median (Min., Max.)

FF 1.413 (0.860) 1.233 (0.000, 7.967)

SF 1.491 (0.918) 1.260 (0.000, 6.829)

RE 1.852 (1.005) 1.717 (0.000. 6.546)

Infant

Episode Mean (SD) Median (Min., Max.)

FF 1.498 (1.124) 1.211 (0.000, 7.824)

SF 1.503 (0.992) 1.272 (0.000, 5.902)

RE 1.576 (0.834) 1.576 (0.000, 6.578)

After Data Preparation

Mother

Episode Mean (SD) Median (Min., Max.)

FF 0.000 (1.028) -0.089 (-4.630, 10.435)

SF 0.000 (0.784) 0.016 (-4.858, 9.410)

RE 0.000 (1.125) -0.050 (-5.485, 6.856)

Infant

Episode Mean (SD) Median (Min., Max.)

FF 0.000 (0.981) -0.052 (-8.115, 5.958)

SF 0.000 (1.095) -0.088 (-3.499, 6.563)

RE 0.000 (0.985) -0.065 (-5.026, 6.540)
Table 1

Mahalanobis Distance (before and after Data Preparation) across Dyads Summarized by

Person and Episode
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Mothert Infantt−1 Mothert−1

All Episodes

Infantt 0.079 0.732 0.042

Mothert 0.077 0.761

FF

Infantt 0.121 0.746 0.079

Mothert 0.122 0.695

SF

Infantt 0.083 0.719 0.051

Mothert 0.065 0.751

RE

Infantt 0.081 0.709

0.029

Mothert 0.079 0.761
Table 2

Average Correlations and Autocorrelations after Data Preparation
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Comparison t-score p-value t-score p-value

Displacement

Infants Mothers

FF - SF 1.98 0.18 -3.30 0.01

FF - RE 0.39 1.00 1.33 0.59

SF - RE -1.18 0.75 3.35 0.01

Velocity

Infants Mothers

FF - SF 3.40 0.01 -6.51 0.00

FF - RE 1.25 0.67 -0.29 1.00

SF - RE -1.42 0.50 5.49 0.00
Table 3

Results from post-hoc pairwise t-tests.
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Estimate Standard Error 95% Confidence Interval

crmb -0.011 0.005 (-0.020, -0.002)

crbm 0.012 0.004 (0.004, 0.020)

intb -0.067 0.014 (-0.095, -0.039)

intm 0.034 0.013 (0.009, 0.059)

βb0 0.730 0.013 (0.705, 0.755)

βb1 -0.005 0.005 (-0.015, 0.005)

βb2 -0.017 0.008 (-0.032, -0.002)

βb3 -0.017 0.019 (-0.054, 0.019)

βb4 0.012 0.004 (0.003, 0.020)

βb34 0.008 0.006 (-0.004, 0.020)

βb5 0.027 0.009 (0.009, 0.045)

βm0 0.708 0.018 (0.674, 0.743)

βm1 0.031 0.006 (0.020, 0.042)

βm2 0.035 0.007 (0.021, 0.049)

βm3 -0.002 0.016 (-0.033, 0.030)

βm4 0.006 0.004 (-0.002, 0.014)

βm34 -0.018 0.006 (-0.030, -0.006)

βm5 0.084 0.012 (0.060, 0.107)

ψb 0.273 0.004 (0.265, 0.281)

ψm 0.219 0.003 (0.212, 0.225)

ψbm 0.006 0.002 (0.002, 0.011)

ψarb
0.128 0.006 (0.117, 0.139)

ψarm 0.144 0.006 (0.132, 0.157)

AIC: 58986.19 BIC: 59165.30
Table 4

TV-VAR Model Parameter Estimation Results using the State-space Approach
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State-space Approach GAM Approach

Unconditional AR Model

crmb -0.011* -0.012*

crbm 0.011* 0.016*

intb -0.076* 0.010*

intm 0.042* -0.002

Unconditional CR Model

arb 0.778* 0.785*

arm 0.796* 0.783*

intb 0.043* 0.010*

intm 0.040* -0.001

*: significant at α=0.05
Table 5

Unconditional TV-VAR Model Parametric Coefficients Comparison between the State-space

and GAM Approaches
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Figure 1 . Head movement data before and after data preparation procedures for three

randomly selected three dyads.
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Figure 2 . A plot of the MD time series computed for one infant during the SF episode with

screen shots from the original video clip. The increases in head movement magnitude

during the later half of the episode correspond well with the increases in affect arousal

manifested by the infant.



TIME-VARYING VAR MODELING OF INFANT-MOTHER HEAD MOVEMENTS 62

0 20 40 60 80 100 120

B
as

el
in

e

16

Stablized

A
ro

us
al

 (H
ea

d 
M

ov
em

en
t)

Time

(a) High AR values, positive CR values
arb = 0.8 , arm = 0.8 , crmb = 0.1 , crbm = 0.1

No process 
 noise

Process noise 
 added

0 20 40 60 80 100 120

B
as

el
in

e

7

Stablized

A
ro

us
al

 (H
ea

d 
M

ov
em

en
t)

Time

(b) Low AR values, positive CR values.
arb = 0.5 , arm = 0.5 , crmb = 0.1 , crbm = 0.1

No process 
 noise

Process noise 
 added

0 20 40 60 80 100 120

B
as

el
in

e

25

Stablized

A
ro

us
al

 (H
ea

d 
M

ov
em

en
t)

Time

(c) High AR values, no CR.
arb = 0.8 , arm = 0.8 , crmb = 0 , crbm = 0

No process 
 noise

Process noise 
 added

0 20 40 60 80 100 120

B
as

el
in

e

26

Stablized

A
ro

us
al

 (H
ea

d 
M

ov
em

en
t)

Time

(d) High AR values, 
 one positive and one negative CR values
arb = 0.8 , arm = 0.8 , crmb = −0.1 , crbm = 0.1

No process 
 noise

Process noise 
 added

0 20 40 60 80 100 120

B
as

el
in

e

52

Stablized

A
ro

us
al

 (H
ea

d 
M

ov
em

en
t)

Time

(e) High AR values, 
 negative CR values.

arb = 0.8 , arm = 0.8 , crmb = −0.1 , crbm = −0.1

No process 
 noise

Process noise 
 added

0 20 40 60 80 100 120

B
as

el
in

e

9

Stablized

A
ro

us
al

 (H
ea

d 
M

ov
em

en
t)

Time

(f) Low AR values, 
 one positive and one negative CR value.
arb = 0.5 , arm = 0.5 , crmb = −0.1 , crbm = 0.1

No process 
 noise

Process noise 
 added

Infant Mother
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Figure 6 . Time-varying Parameter Trajectories and Associated 95% Confidence Intervals

Using Different Number of Basis Functions (k)
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Appendix

R Code for Fitting TV-VAR Models in dynr and mgcv

########### R Code Demonstration ###########

# Loading the libraries

library(dynr)# version 0.1.12-5

library(mgcv)# version 1.8-22

library(quantmod)# version 0.4-14

# The follow script needs a long-format data frame Data that should roughly looks like:

# id id.session Time.agg Time.withinSession SF RE y_baby y_mom other_vars

# 1 1.1 1 1 -1 -1

# 1 1.1 2 2 -1 -1

# .. .. .. .. .. ..

# 1 1.2 258 1 2 0

# 1 1.2 259 2 2 0

# .. .. .. .. .. ..

# 1 1.3 497 1 -1 1

# 1 1.3 498 2 -1 1

# .. .. .. .. .. ..

# 2 2.1 1 1 -1 -1

# 2 2.1 2 2 -1 -1

#### State-space model approach: dynr ---
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dynrdata <- dynr.data(Data, id="id.session", time="Time.withinSession",

observed=c("y_baby","y_mom"),

covariates=c("smile","SF","RE","Richter",

"var_baby","var_mom"))

# Measurement model for linking latent states to observed variables

meas <- prep.measurement(

values.load=matrix(c(1,0,0,0,

0,1,0,0),ncol=4,byrow=T),

params.load=matrix("fixed",ncol=4,nrow=2),

state.names=c("baby","mom","arb","arm"),

obs.names=c("y_baby","y_mom")

)

# Initial conditions for the dynamic model

initial <- prep.initial(

values.inistate=c(0,0,.5,.5),

params.inistate=c(’fixed’, ’fixed’,’beta_b0’,’beta_m0’),

values.inicov=diag(c(rep(1,2),rep(.1,2))),

params.inicov=diag(’fixed’,4))

# Process noise and measurement error variances

mdcov <- prep.noise(

values.latent=matrix(c(.5,0.1,0,0,

0.1,.5,0,0,

0,0,0.1,0,

0,0,0,0.1), ncol=4,byrow=T),
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params.latent=matrix(c(’zv_mom’,’cov_bm’,0,0,

’cov_bm’,’zv_baby’,0,0,

0,0,’zv_arb’,0,

0,0,0,’zv_arm’), ncol=4,byrow=T),

values.observed=diag(c(0,0)),

params.observed=diag(c(’fixed’,’fixed’),2))

# State-space model formula

# The final model in the article with only time-varying ARs is specified below:

formula =list(

list(baby~intb+arb*(baby-intb)+crmb*(mom-intm),

mom~intm+arm*(mom-intm)+crbm*(baby-intb),

arb~beta_b0+beta_b1*SF+beta_b2*RE+beta_b3*smile+

beta_b4*Richter+beta_b34*Richter*smile+beta_b5*var_baby,

arm~beta_m0+beta_m1*SF+beta_m2*RE+beta_m3*smile+

beta_m4*Richter+beta_m34*Richter*smile+beta_m5*var_mom

))

# A dynr formula object with starting values for parameter optimization

dynm <- prep.formulaDynamics(formula=formula,

startval=c(crmb=.03,crbm=.03,

intb=0.1,intm=0.1,

beta_b0 = 0.5,beta_b1=0.01,

beta_b2 = 0.01,

beta_b3 = 0.5,beta_b4=0.01,
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beta_b34=0.01,

beta_m0=0.5,beta_m1=0.01,

beta_m2=0.01,

beta_m3=0.5, beta_m4=0.01,

beta_m34=0.01,

beta_b5=0.01,beta_m5=0.01

), isContinuousTime=FALSE)

# Combine all the model components specifed above into one dynr model object

dynrmodel <- dynr.model(dynamics=dynm, measurement=meas,

noise=mdcov, initial=initial, data=dynrdata,

outfile="SSMTVP.c")

# Run the parameter optimization with filtering and smoothing for the states

modelRes <- dynr.cook(dynrmodel)

# Result summary

summary(modelRes)

#### GAM approach: mgcv ---

# Created lag-1 variables

Data$bL=unlist(by(Data$y_baby,Data$id,Lag,k=1))
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Data$mL=unlist(by(Data$y_mom,Data$id,Lag,k=1))

# Run a GAM with:

# time-varying intercepts: s(Time.agg)

# time-varying AR: s(Time.agg,by=bL) for y_baby, for example

# time-varying CR: s(Time.agg,by=mL) for y_baby, for example

# 20 basis functions: k=20

gam_biv<-gam(list(y_baby~-1+s(Time.agg,k=20)+

s(Time.agg,by=bL,k=20)+s(Time.agg,by=mL,k=20),

y_mom~-1+s(Time.agg,k=20)+

s(Time.agg,by=mL,k=20)+s(Time.agg,by=bL,k=20)),

family=mvn(d=2),data=Data)

# Result summary

summary(gam_biv)

# Process noise variance-covariance

solve(crossprod(gam_biv$family$data$R))

List of Figures

1 Head movement data before and after data preparation procedures for three

randomly selected three dyads. . . . . . . . . . . . . . . . . . . . . . . . . . 60



TIME-VARYING VAR MODELING OF INFANT-MOTHER HEAD MOVEMENTS 73

2 A plot of the MD time series computed for one infant during the SF episode

with screen shots from the original video clip. The increases in head move-

ment magnitude during the later half of the episode correspond well with the

increases in affect arousal manifested by the infant. . . . . . . . . . . . . . . 61

3 Realizations of the same VAR model in Equation 2 can look very different

depending on the parameter values. No process noise is added before the

60th time unit so that the trajectories are entirely driven by the AR and

CR parameters. The vertical dashed green line and the associated value on

the x-axis represent the time when both dyadic members arrive at a stable

state. After the 60th time unit (vertical dotted line), the identical sequence of

bivariate process noises are added to trajectories in each plot. . . . . . . . . 62

4 Comparison of AR and CR Trajectories with the Unconditional TVP Models

and GAM for Two Example Dyads. . . . . . . . . . . . . . . . . . . . . . . 63

5 Differences in AR parameters dependent on whether mother was smiling, in-

fant’s attachment tendency, and episodes . . . . . . . . . . . . . . . . . . . . 64

6 Time-varying Parameter Trajectories and Associated 95% Confidence Inter-

vals Using Different Number of Basis Functions (k) . . . . . . . . . . . . . . 65

7 Comparison of AR Trajectories with the Parametric TV-VAR Model and

GAM for Two Example Dyads Along with Observed Data used for Model-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 TVP Trajectories for Two Dyads when Fitting the State-space Model and

GAM to Each Individual Dyad . . . . . . . . . . . . . . . . . . . . . . . . . 67


	Abstract
	A Person- and Time-Varying Vector Autoregressive Model to Capture Interactive Infant-mother Head Movement Dynamics
	Motivating Example: Head Movement Dynamics in Infant-Parent Interactions
	Data Descriptions and Preprocessing
	TV-VAR Models

	Estimation Details for TV-VAR Models
	State-Space Approach
	GAM Framework Approach


	Empirical Results
	Preliminary Results on Mahalanobis Distances
	Results from State-Space Modeling of TV-VAR
	Within-dyad Variations in AR Parameters across Episodes.
	Between-dyad Differences in Inertia Based on Attachment.

	Results from GAM Fitting of TV-VAR

	Discussion
	References



