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ABSTRACT

Motivated by the needs of wall modeled Large Eddy Simulation (LES), we introduce
fits to numerical solutions of the Reynolds Averaged Navier-Stokes equations in their
simplest near-wall, boundary layer approximation including a mixing-length model.
We formulate the problem such that independent and dependent dimensionless vari-
ables are those directly available in LES. We provide practical fits that encompass a
smooth transition between the viscous sublayer and inertial logarithmic layer, and
then progress first considering moderate pressure gradients as well as roughness ef-
fects under the assumption that the mixing-length is not affected by the pressure
gradient. An alternative fit based on the empirical wall model (Nickels, J. Fluid
Mech. vol.512, pp. 217-239, 2004) is also provided, taking into account possible ef-
fects of pressure gradient on turbulence near-wall structure. We then consider the
case of large pressure gradients, both favorable and adverse, up to conditions of
separation, for both smooth and rough surfaces. The proposed fitting functions con-
stitute a generalized Moody chart, comply with analytical solutions valid in various
asymptotic regimes, and obviate the need for numerical iterative solution methods
or numerical integration of ordinary differential equations during LES.

KEYWORDS
Turbulence, Wall Model, Large Eddy Simulations

1. Introduction

Wall-resolving Large-Eddy-Simulation (LES) of high Reynolds number wall-bounded
flows continues to be a challenge due largely to stringent near wall resolution require-
ments. A large number of grid points is required to resolve the inner, viscous dominated
region, and that number increases rapidly with Reynolds number. Conversely, wall
modeled LES exhibits a much weaker dependence on Reynolds number and is there-
fore a necessary choice when applying LES to high Reynolds number wall-bounded
flows. A variety of wall models have been developed for LES and reviews of many of
them can be found in Refs. [1-3]. The most frequently used wall model is the so-called
equilibrium wall model. There are typically three most commonly used approaches to
implement the equilibrium wall model, each valid in different Reynolds number ranges
and types of surfaces. (a) The rough-wall, high Reynolds number wall model, used
e.g. in [4-6]: The approach assumes that the streamwise mean velocity profile in a
direction normal to the surface (coordinate y) is given by (us(y)) = (u-/x)log(y/z0),
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where z is the roughness length. Evaluated at a distance y = A, where the streamwise
velocity is known from LES (denoted as Urgs = (us(Ay))) it allows solving for u, as
function of Upgs, Ay, k and zp. The assumption is that A, falls in the logarithmic
layer and that x and zp are known (e.g. k = 0.4). (b) The smooth surface case at
finite Reynolds number: For flows over smooth surfaces, the equilibrium wall model
approach is based on the assumed profile (us(y)) = u,[x ! log(yu,/v)+ B], providing a
transcendental equation for u, which must be solved iteratively in a code. Specifically,
one solves Upgs = ur[k—1log(Ayur/v)+ B] for u,, for given Urgs, A, and v (typical
parameter values are x = 0.4 and B = 5). Again, this method assumes A, falls in the
logarithmic layer. If A, falls in the viscous sublayer (approaching wall resolved LES)
one must instead assume a linear profile [7], or one can use a smooth fit to the entire
profile such as the classic fit by Reichardt (1951) [8] or the recent work in Refs. [9—
11] including pressure gradient effects. Typically the fitted solution is for the velocity
profile in inner units, which means that further iterative methods are needed to find
the friction velocity numerically. (¢) Numerical integration of an ordinary differential
equation (ODE method): Typically, if one wishes to ensure a smooth transition be-
tween the viscous and log-layer regions, to include additional physical effects, or to
apply the approach to other variables such as temperature, a common approach is to
use numerical solution of an ODE [3]. For the case of an equilibrium layer the ODE
to be solved for the streamwise velocity reads

d du()))
. (<v+ w)dy) —o, W

subject to boundary conditions (us(0)) = 0 and (us(A,)) = Upgs. The turbulent eddy
viscosity vp can be prescribed using a mixing length model including a van-Driest
damping function.

It would appear useful to cast the solution of this sort of ODE into an appropriate
dimensionless form, solve it numerically once and for all, and to provide useful fits to
the (inverse) solution that can be applied uniformly to a large number of LES cases.
One reason that many researchers opt for numerical solution is that the ODE itself
depends upon the unknown dimensional parameter u, via the van-Driest damping
function and that when written in inner units as function of y* the equation must be
integrated numerically up to a case-dependent position y+ = AT which itself depends
on the unknown value of w,. In this note, we address this issue by rewriting the
equation in a non-standard dimensionless form in terms of two Reynolds numbers that
facilitates more general applicability for wall modeling. Another reason researchers
opt for numerical solution of the boundary layer equation is that it is then possible to
include additional physical effects such as pressure gradient, which we shall address
here, or handle other fields such as temperature, which will not be covered.

The aims of this note are thus rather modest, namely to reformulate Eq. 1 in such
a way as to facilitate numerical integration and fitting of the results in the context
of wall-modeled LES (WMLES). Specifically, we fit the inverse of the solution to the
velocity profile, i.e. we will be able to find u, = f(known variables) directly using
relatively simple function evaluations. We also aim to include pressure gradient ef-
fects and to merge the resulting fits smoothly to the equilibrium wall model approach
valid for rough-wall, very high Reynolds number boundary layers. This note does not
include implementation and applications in LES codes, but documents errors and dif-
ferences between the proposed fits and the full numerical solution of the corresponding
ODE (RANS) equations. Also, we do not address any of the other fundamental issues
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underlying wall modeling using the equilibrium wall model, such as the log-layer mis-
match and challenges associated with modeling non-equilibrium unsteady terms, issues
treated e.g. in Refs. [7,12-14].

It is hoped that the generalized fits provided (a kind of “generalized Moody di-
agram” for wall modeling in LES) can save computational resources and simplify
implementations of equilibrium wall models in LES.

2. Friction velocity for turbulent equilibrium flow over a smooth wall

We first focus on the simplest case of wall modeling in which we consider only the
streamwise direction (subscripts “s”) without pressure gradient or other acceleration
terms. We assume the streamwise velocity away from the wall is known, and denote it
by Urgs = (us(Ay)). The unknown to be determined is the friction velocity u,, from
which the (kinematic) wall stress in the streamwise direction can then be evaluated
according to 7,, = u2 and oriented according to the usual approaches [1-3,6]. To cast
the problem into a dimensionless framework, we now define two Reynolds numbers:

~ ULgs4y

~A
Repa = u.

and Re,a = (2)
In WMLES, Rep is the known input whereas Re A = A;“ is the unknown output for
which we wish to solve and then obtain u..

Using the usual mixing length model, integrating Eq. 1 once and using the fact that
the stress tends to u2 as y — 0 we have

du

<I/+[D(y)/<ay]2 &

du 4
)= 3)

where for notational simplicity henceforth we set u = (us). The traditional van Driest
damping function is included: D(y) = [1 —exp(—yT/AT)] with y™ = (y/Ay)Rera, and
At = 25 is a commonly used value. This formulation assumes that A, is sufficiently
small so as to not fall into the outer wake region of boundary layers. In WMLES, this
condition is typically met as long as more than O(10) grid-points are used to resolve
the boundary layer region. In the remainder of this note, we will continue making this
assumption.

We first develop a numerical integration by recasting this equation in terms of
dimensionless variables that can be expressed in terms of the dimensional parameters
known in LES (besides Upgg), namely A, and v:

Yy N u(y)A
y/ =2 U(y/) — ( ) Y . (4)
y v
The equation then reads as follows:
dil N (AN s
dTJ,JF[D(Z/)’W ] ay = Reip (5)

(for now we assume a monotonic profile, where du/dy does not change sign). Solving
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Figure 1. (a) Blue crosses: numerical solution of Eq. 6 over wide range of conditions. Dark solid line: empirical
fit given by Eq. 7 with parameters given by Egs. 8. (b) Relative error between numerical solution of Eq. 6 and
empirical fit given by Eq. 7.

the quadratic equation [15] casts it into a simple first-order ODE for 4(y/):

du 1 / / 62
e R URE N EN “

where D(y') = 1 — exp(—y'Re-a/25) and with a single boundary condition %(0) = 0.

Since D(0) = 0, we initialize at y;” = 1073 or y] = 10_3Re;i. The corresponding
value of 4(y]) is obtained from the near wall behavior u(y) = (u2/v)y or a(y) =
Re? \y!. The integration is done numerically (Matlab™ ODE45), for a wide range
of given Re,a, between 10~! and 10%. The forward integration is done until ' = 1
is reached. The value obtained as a result, @(1), corresponds to the LES velocity
normalized by A and v. That is to say, we find Rea = (1) as a result of the numerical
integration. Note that this approach is equivalent to expressing the ODE in terms of
yT and then integrating from y* = 0 up to ¥ = Re,a, where Re,; A could again be
prescribed. The results of the numerical integration are shown as symbols in Fig. 2(a)
in which Rea is plotted on the x-axis and the (imposed) parameter Re,a on the y-
axis. At small Reynolds numbers, the expected trend is Re,a ~ RelA/2 (Ay in viscous
region), whereas at high Rea the behavior is a slow approach to a linear behavior,
with sub-leading logarithmic corrections (from the inverse log-law).

Next, we aim to fit the numerical result using an empirical function. The fit function
should transitions smoothly between a 1/2 power law at low Rea towards a power law
with exponent 31 that is on the order of 0.8-1.0 at high Rea, and which itself can be
chosen to depend upon Rea. We use the approach proposed by Batchelor [16] in the
context of structure function transitions:

(B1—1/2)/B2
Ref (Rep) = ky Rely [1 + (ngReA)fﬂQ} . (7)

The transition sharpness is controlled by a parameter Bo. Choosing constant values

51 =0.9, By = 1.2, k3 = 0.005, and kg = /@51_1/2 gives results with errors of around
5%. Making some of the parameters dependent on Rea leads to improved accuracy.
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Specifically, we choose
Bi(Rea) = (1+0.155Re;%%) ™| By(Rea) = 1.7— (1436Re;°™) ™ . (8)

The fit is displayed as solid line in Fig. 2(a), showing excellent agreement with the
numerical solution over many decades. The relative error is plotted in Fig. 2(b). The
errors for 0 < Rea < 107 (which should easily cover all practical applications of
WMLES) are below 1.2%. In WMLES, for a given velocity Urgs, one evaluates Rea,
then applies Eq. 7 and determines the friction velocity according to

R fit
_ pfit vo_ €ra
Ur = RGTA(RGA) X , = ULES en . (9)

Thus, Eq. 7 constitutes an equilibrium wall model for flow over smooth walls that
merges with the viscous behavior and does not require iteratively solving for w, or
numerically integrating an ODE. It does not, however, include effects of pressure gra-
dients, considered in the next sections.

3. Effects of mild pressure gradients over smooth walls

The topic of modifications to the law-of-the-wall and wall functions including pressure
gradient effects has received considerable attention [11,17-25]. As an example, since
u, ceases to be the only relevant velocity scale, an additive approach using another
velocity profile based on a “pressure velocity u,” [9,11,17,20,23,25] has been proposed.
As written in [11,17,25] it leads to a downward shift of the mean velocity u™ in the
inertial region for favorable pressure gradient (FPG) and an upward shift for adverse
pressure gradient (APG), qualitatively in agreement with the expectation that the
profile becomes steeper near the wall for FPG while being less steep for APG. Similar
trends are obtained when integrating the momentum equation (ODE) in the near
wall region including a pressure gradient while assuming that the eddy viscosity and
mixing lengths are unaffected by pressure gradient. In this section we summarize the
approach of integrating the ODE and fit the corresponding inverse wall functions for
applications in which the pressure gradient is mild, far from separation and close to
equilibrium conditions. We underline, however, that the physics of pressure gradient
effects on boundary layers presents a number of more subtle features (some of them
are recalled in Appendix A).

Defining the streamwise pressure gradient term available from LES as N =
p~10pLEs/0s (for notational consistency with Ref. [7]), and again considering the
momentum equation written with eddy viscosity and integrating once, yields

du

dy

[V + (D(y) ky)? a

> — = Ny + 2. (10)

We neglect the effects of pressure gradient on the eddy viscosity (see Ref. [23] as a
study where such effects are included). For a favorable pressure gradient (N < 0), for
there to be no sign changes in the slope of the velocity profile between the wall and
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y = Ay, the following must hold:

2
Uz

< & (11)

The normalized equation, after solving again the quadratic equation, reads:

da 1

— = | =1 \/1 A[D(y")ky'|2Re? A (1 N, 12

dy/ 2[D(y’)/£y’]2 < + + { (y )K'y] eTA( + XY )> ( )
where we have defined the pressure gradient parameter according to

— NAZ/

2
ur

(13)

and it is understood that the developments below require |x| < 1. The boundary
condition is, again, @(0) = 0. We initialize at y;” = 1073 or y/ = 1073Re_A. The
corresponding value of 4(y;) can be obtained from the quadratic expansion near the
origin now including pressure gradient:

_ﬁ EQ AN L2 /1/2 4
Mw—yy+2yy+m, or i(y;) = Rezp Vi T gxyi e (14)

The integration is done numerically as before, obtaining Rea = @(1). The operation is
repeated for a range of values of Re,a and x. The results are shown using symbols in
Fig. 2. The effect of pressure gradient can be more readily appreciated by comparing

108 . . . ]

10° 10’ 102 10° 10%

Figure 2. Symbols: numerical solution of Eq. 12 over a range of Reynolds numbers Re,a, for x = -0.8 (black
+), x = -0.4 (black triangles), x=0 (circles), x = -0.4 (blue triangles), x = -0.8 (blue +). Only the region
between 1 < Rea < 10% is shown for clarity. Lines: empirical fit given by Eqgs. 26 and 25. Solid line: x = 0,
dot-dashed lines: |x| = 0.4, dashed line: |x| = 0.8. Black: favorable pressure gradient (x < 0), blue lines: adverse
pressure gradient x > 0.

URL: http://mc.manuscriptcentral.com/tandf/jot Email: TJOT-peerreview@journals.tandf.co.uk

Page 6 of 25



Page 7 of 25

ONOULT A WN =

Journal of Turbulence

0.05 o 1 . " o o " .

posaesecsssacecsnanagng,

Ly

kasansnecsananeosomnmniEEaaS "

0.75¢

“ “ “ . “ -0.05 " " " " " " " "
-2 -1 0 1 2 3 4 5 6 7
10710 107 10" 10 107 10" 10 107 10 102 10" 10° 10" 102 10® 10* 10° 10° 107

(a) (b)

Figure 3. (a) Symbols: Ratio of friction Reynolds number as function Rea obtained from numerical integra-
tion, for: x = -0.8 (black squares), x = -0.4 (black triangles), x = -0.4 (blue triangles), x = -0.8 (blue squares).
The relative effect of pressure gradient is larger at lower Reynolds number. The lines are from an empirical
fit (Egs. 26,25.). (b) Relative error between numerical solution of Eq. 12 and empirical fit given by Egs. 26
and 25. Solid line: x = 0, dot-dashed lines: |x| = 0.4, dashed line: |x| = 0.8. Black: favorable pressure gradient
(x <0), blue lines: adverse pressure gradient x > 0.

to the x = 0 case, by plotting the ratio Re,a(Rea, x)/Re-a(Rena,0), see Fig. 3(a).

In order to “invert” these results we again propose an empirical fit that will now
also depend on x. We note that y = NA/u2, and since u, is not known a-priori, x
cannot be directly evaluated in LES. However since the effect of x on Re,a is relatively
weak, in LES we may evaluate x using

X~ — (15)

where u,¢ is based on Upgg only, i.e. u,q = UrpsReft(Rea)/Rea, using the fit of Eq.
7 that assuming x = 0 as a first guess:

NA, ( Rea >2
X & 4 16
UZes \RePy(Ren) (1)

In order to develop fits to the dependence of Re;a on Rea for x # 0, it is instructive
to consider the two asymptotic limits at low and high Rea. In the viscous range (i.e.
if Re;a << 10) we can obtain from Eq. 14 (using v/ = 1):

1
Rea = Reé2p <1 + QX) : (17)

But also, Rea = Re2,(x = 0), i.e. the value for xy = 0. We may obtain Rea via the
baseline fit in Eq. 7 for x = 0 at small Rea. Hence we write as the viscous limiting
behavior:

1\~ 1\ 12
Rerny = Rera(x =0) <1 + 2)() = Reflt (Ren) <1 + 2x> . (18)
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Next, we consider the limiting behavior of the solution in the inertial layer far above
the viscous region, i.e. when viscosity can be neglected. The ODE simplifies to

di  Rer 1
ﬁ A T+ xy NReTA< 5oX ) (19)

KRY

where we have made the further assumption that [y| << 1 so that T+ xy’ ~ 1+ xy/.
Integration yields

1 1

a(y') = Resa < logy' + —xy + C’1> . (20)
K 2K

Consistent with the Ansatz used in the integral wall model (iWMLES) of Ref. [7],

pressure gradient effects are seen to add a linear term to the profile. Using the condition

that (1) = ULgsA/v = Rea yields

a(y') = Rea — Resa (i log(1/y') + ix(l = y’)> : (21)

We recall that this assumes that A, is in the log-region, since molecular viscosity has
been neglected. Another condition must be invoked to determine Re,;a given a value
of Rea. Specifically we match with the viscous behavior

a(y') = ReZny, (22)

at y* =11 or y' = 11/Re,;a. We note that inclusion of the pressure gradient affected
second-order term and matching at the height suggested by Nickels [19] yields only
a negligible corrections, and will be neglected. Isolating Rea and using the fact that
11 — ktlog(11) = B for k = 0.4 and B = 5, we obtain

1 1
Rea = Rern (K log Re;a + B + ﬂx(l — ll/ReTA)> . (23)

We can also use this expression to deduce the asymptotic behavior at large Re A by
using the already developed fit Rel (Rea) as follows. Rewrite Eq. 23 as

1 1
Rej, = Rea — ReTAﬂx(l —11/Re;a) = Rera < log Re, A + B) ) (24)
K

When applied to the logarithmic layer at large Re,a, the fitting formula Eq. 7 can
be regarded as inverting this log-law. Thus it can now be applied in the inertial layer
according to Eq. 24 to solve for Re,a for a given Rej, i.e. to obtain Re;ain =
ReﬁtA (Re}) as function of Rely, where Re}, takes the place of Rea in Eq. 7. Moreover,
to smoothly merge to zero when Re,a < 11 we multiply the entire additive term by a
factor that tends to zero when Re,a becomes smaller than O(10):

—-1/2
i} 1 11 50 \?
TA TA
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Since the additive term depends upon the unknown value of Re;a, it has been written
here in terms of the fitted value for x = 0, i.e. Rell (Rea) (Eq. 7). Next, we com-
bine the viscous and inertial functions Re,a , and Re;a in using a weighting function
O(Ren) = (14 0.0025Ren) ! according to

ReS3™ (Ren, x) = 0(Rea)Refly (Rea)(1 4 x/2) 7Y% + [1 — 6(Rea)] Refll (Rek). (26)
The lines in Figs. 4 and 3(a) show the results from using ReSX"(Rea, x) to predict
the friction Reynolds number ratio compared to the case with zero pressure gradient.
The relative error is shown in Figure 3(b), for various values of x compared to the
results from the full numerical integration of the ODE. As can be seen, errors of no
more than 2.5 % are incurred. For |x| < 0.4 the errors are below 1.5%.

It must be stressed that these developments and fits are only valid for small y,
|x| << 1. For strong pressure gradient cases, the assumption of a monotonic velocity
profile below y = A, and a pressure-gradient independent eddy-viscosity [23] begin to
fail. The case of strong pressure gradients is considered in §5.

4. Effects of roughness with mild pressure gradients at very high Rea

The ‘infinite Reynolds number limit’ of rough wall equilibrium wall modeling based
on the profile u(y) = (u-/k)log (y/z0), evaluated at y = A,, can be rewritten as the
‘infinite’ Reynolds number rough wall model:

KR

A = A og (A, /20)

(27)

In the high Reynolds number limit, the friction and LES velocities are linearly related
(the stress is quadratic with Upgg), and in terms of the limiting behavior of the fits in
Eq. 7 this would correspond to 51 — 1. Note that expression 27 is applicable only for
Ay >> 2y and that it does not include pressure gradient effects.

Inclusion of pressure gradient can be done simply if one assumes that the eddy
viscosity scaling is unaffected by pressure gradient in the case of rough walls. While
one should keep in mind the possible pitfalls of such an assumption (Appendix A),
we proceed anyhow given a lack of well-accepted wall models for pressure gradient
effects including roughness effects at high Reynolds numbers. The square root of the
momentum equation with the usual mixing length model neglecting viscous effects
reads

(m)d—u—u 1+x 2L 1/Q’Vu 142 2 (28)
Vay — """ Xa,) T 2 A, )’
where the last step assumes |x| << 1. Integrating and imposing u(y = A,) = Urgs
yields:
1 A X y
- [ —log (2) + X (1 L)), 2
u(y) = ULgs — u L Og( y > t3. ( Ay)] (29)

The definition of zq is that u(zp) = 0, and assuming the same zg is not affected by
pressure gradient, we may use this condition to solve for u, for a given Urgg and zo/A,
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Figure 4. (a) Lines: empirical fit from the universal fitting function Eq. 33 for x = 0 for various values of
roughness: zo/A = 3x 1072 (black line), zo/A = 10~2 (blue dashed line), z0/A = 1073 (red line), zo/A = 10—+
(black dot dashed line), 29/A = 3 x 107° (green dashed line), smooth surface case with zo/A — 0 (circles
and black line). (b) Wall model Moody diagram: Friction factor from universal fitting function for x = 0 for
various values of roughness: zo/A = 3 x 1072 (black line), zo/A = 102 (blue dashed line), z0/A = 1073 (red
line), z0/A = 10~* (black dot dashed line), z0/A = 3 x 10~° (green dashed line), smooth surface case with
z0/A — 0 (circles and black line).

leading to

. B 1 Ay X 20\
ReZA(Rea, x,AJz0) = Rea [n log (Zo) + o (1 — A—y . (30)

As before, to evaluate x we can use the baseline friction velocity neglecting pressure
gradient, i.e.

uro = ULgs <m> - (31)

for the rough wall case (Eq. 27). In general, to merge with the smooth wall behavior,
one would pick the larger of the two friction velocity estimates, so that we now define
the x parameter as

NA, {ReﬁtA K ]
= ,  where wu,;9= Upgs max = . 32
u?, 07 FLES Rea 7 log(Ay/20) (32)

As a reminder, the modeling validity is limited to |x| << 1, so in practice the value
of x can be clipped to lie in some subrange between -1 and 1.

Finally, we combine the smooth and rough surface behaviors into a universal fit
function with a fairly sharp transition as follows:

m 1/6
Re™\(Rea, X, 20/A) = [ReSX(Ren, Xas 20/A)° + Re™(Rea, x)°]®,  (33)

where Ref\" is given by Eq. 26 and Re2} by Eq. 30.
Figure 4(a) shows the results for y = 0 for various values of the roughness parameter
z0/A. Figure 4(b) shows the same result expressed in terms of the more familiar friction

10
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factor

- u? Re;n\?
= lU; =2 ( Rena ) ) (34)
2YLES

resulting in a ‘generalized wall model Moody diagram’.
Another way to display the behavior of the rough-wall fit is to compute the corre-
sponding velocity defect,

Us — Uy o ReA,s _ ReA,r

AUT = =
Ur Rera Rera

(35)

where for a given value of u,, U; is the velocity at y = A, corresponding to a rough
surface and Us for a smooth surface. The sand-grain roughness in viscous units is given
by the equivalency [26], valid in the fully rough regime:

+ +

Y

1 Y 1
U+:7]~O 7:710 +8~5 36
K & za' K & k;:oo (36)
which implies that
k:;foo = zo+ exp(k 8.5) ~ 30 ZO+ =30 % Re . (37)

To find AU, for a given kf  and z/A, we first determine Re,a = 0.0333 k{ (A /z).
Then we invert the fit in Eq. 33 (using vpasolve from Matlab™) to find Ren , for the
given z9/A. A second inversion is used to find Rea s by using the fit with zo/A = 107,
i.e. smooth surface. Only results for which Rea s < 107 (the upper limit of accuracy
for the fit 33) are plotted. Figure 5(a) displays the result (we only consider xy = 0 in
this comparison). Comparing with Fig. 3 of Jimenez (2004) [26], it can be seen that
the fitting function provides realistic predictions not only of the asymptotic behaviors
at large and small k;foo, but also for the fact that the transition becomes smoother for
small zg/A while it can be quite abrupt for larger zo/A.

The effects of mild pressure gradient are significant even at high Reynolds numbers
for the rough surface cases. In Fig. 5(b) the results are shown for z9/A = 3 x 1072 at
various values of the pressure gradient parameter Y.

5. Strong pressure gradients and flow separation on smooth surfaces

The prior sections considered the limit of small y. When the friction velocity decreases,
such as approaching separation in adverse pressure gradient cases (N > 0) or for strong
favorable pressure gradient —NA >> u2, the magnitude of the parameter y can
easily exceed unity and the preceding derivations and approximations loose validity.
Moreover, when N becomes more dynamically relevant, scaling it with friction velocity
which is itself an unknown in WMLES becomes more problematic. It is then necessary
to non-dimensionalize the pressure gradient using the truly independent parameters,
A and v. We thus define ¢, = N A3 /v? for finite Reynolds numbers (the very high
Reynolds number limit is treated in the next section). It is related to x as x = 1,/ ReZ,
and with the other common pressure gradient parameter p;- = Nv/ ui =p/ Rei A-In
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Figure 5. (a) Roughness function AU, as function of sand-grain roughness in viscous units k;foo, for x =0
for various values of roughness: zo/A = 107! (red circles and line), 20/A = 3 x 1072 (blue crosses and dot-
dashed line), zo/A = 1072 (green squares and dashed line), z0/A = 3 x 1073 (purple triangles and line),
20/A = 3 x 103 (orange pluses and dot-dashed line), zo/A = 3 x 10~ (red circles and dot-dashed line) and
20/A = 10~* (purple squares and dashed line). Only values for which the resulting Rea s for smooth surfaces
is Rea s < 107 (limits of fit) are shown. (b) Wall model Moody diagram for single roughness value at various
pressure gradients. Universal fitting function for Re,a as function of Rea for zo/A = 3 x 10~2 for various
values of x: x = —0.8 (black line), x = —0.4 (blue dashed line), x = 0 (red line), x = 0.4 (black dot dashed
line), and x = 0.8 (green dashed line), smooth surface ( zo/A — 0) with x = 0 (circles and black line).

order to determine the relationship between velocity and wall stress including strong
pressure gradients, we use Eq. 12 but rewritten according to

= spyare (s T D PR ) ) (39

where, for 1, < 0, the possibility exists that Re?, /(—,) < 1 leading to a change in
sign of the profile slope. For consistency with the absolute value of eddy-viscosity, for
¥p < 0 one must choose s = +1 for 0 <y’ < —Re2, /1, and s = —1 for —Re2, /1, <
y" < 1. For ¢, > 0, s = +1. Moreover, at large pressure gradients, the van Driest
damping function must be corrected. Here we use the classic Cebeci correction [27] as
listed in the analysis of Ref. [28]:

Do) = 1 — exp (fy'ReTA 1+ 1184,/ ReiA]lfA—l) . (39)

At this point Eq. 38 is again integrated numerically for a range of values of 1, and
Re,a, and the results are shown in Fig. 6.

The horizontal lines for ¥, < 0 where Re;A — Rera—min(p) becomes independent
of Rea correspond to the regime where the wall stress is purely determined by the
favorable pressure gradient, i.e. where the relevant velocity scale is u, as used in the
modeling e.g. by [11,17]. Conversely, the blue vertical lines denote the approach to
flow separation: At increasing positive 1, there is a minimum velocity Upgs, and a
minimum Rea (Rea_min(1p)) required for a non-zero positive wall stress. If Ren falls
below this critical value, the flow has separated (or has reverse direction at the wall,
a case not covered here).

In order to fit these results, we first note that one may approximate, for v, < 0,
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Figure 6. Solid lines: numerical solution of Eq. 38 over a range of Reynolds numbers Re,a, for negative
pressure gradients (black lines) and positive ones (blue lines). The baseline 1, = 0 case is shown with circles.
The values are (from top to bottom): ¥, = —2 x 107, —2 x 10%, —2 x 10%, -2 x 10%, -2 x 103, -2 x 102, -2 x
10t, =2, 0.2, —0.02,0, 0.02,0.2,2,20,2x 102, 2x 103, 2x 10%,2x 10%,2x 10%, 2x 107. Dot-dashed lines: empirical
fit given by Eqgs. 42 and 43.

the limiting asymptote as:

1000 \2 —0.055
Rera—min(p) = 1.5 (=1,)"% |1+ ( > . (40)
(—=¢p)
For v, > 0 the asymptote for Rea can be fitted as:
—0.88
0.54 3012
Rea—min(vp) = 2.5, 14 |— . (41)
¥p
Then the fitting functions are given by:
res 1/p(¢p)
RePS = ((Resammin(p)"07) + (REENP) 7 for gy <0, (42)

where p(1,) = 2.5 — 0.6 [1 + tanh(2log;o(—1p) — 6)], while

. 1
ReP™ — R fit <1 _ ) f >0 d R > R —min>
cra = Hera (1 105 Ren /Reain (a1 ) 107 = 0 and fiea 6? )
43

and Reﬁzes = 0 if Ren < ReA_min- The fits are shown with dot-dashed lines in Fig.
6. Overall, the agreement is very good except in some regions for v, > 0 where the
slopes are very large.
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6. Strong pressure gradients and flow separation in fully rough regime:

Lastly, we wish to include the case of high Reynolds number fully rough surfaces in-
cluding strong pressure gradients. Here we again use Eq. 28 but without assuming that
x << 1 to allow for strong pressure gradients. However, unlike the situations treated
earlier, now that viscosity is no longer a relevant parameter and since u, does not nec-
essarily scale linearly with Upgg, it is not useful to introduce the Reynolds numbers
Rea and Re;a. Instead, we use a dependent variable similar to the friction coefficient,
the ratio © = u,/Urgs (as shorthand for y/cf™/2), since the only known velocity
scale available for scaling is Upgg. Similarly, for the pressure gradient parameter, we
have only one possible choice, namely ¥, = NA,/Ufpg. Again using y' = y/A,, we
rewrite the ODE to be solved according to

2

du' 1 v, \'/?
Y- "o <1+ py') for U, >0, ory < when ¥, <0, (44)

d?/ B "‘?y/ @ (_\I’p)
du! 1 T 1/2 0?
T o(-|14 22y for W, <0 and ¢/
@~ Ry ( [*921’]) or Tr= ey =Ty

where now «' = u/Upgs. The problem can be solved by integrating this equation
between y' = zo/A, (where v’ = 0) and y’ = 1 and, for a given pressure gradient
parameter W, find the value of © for which the integral yields «'(1) = 1. Eq. 44 admits
analytical solutions with different forms (square roots, atanh(..) and atan(..) depending
on the signs of ¥),), see for instance Ref. [18]. One can then set those solutions equal
to 1 and solve numerically for ©. The analytical solutions rely on cancellations near
y' — ©2%/|W,| that are difficult to capture accurately in a subsequent numerical solution
procedure. Hence it was found simpler to integrate Eqs. 44 numerically (Matlab™s
ODE45) and then find © using a bisection method. The procedure is repeated for a
range of pressure and roughness parameters, ¥, and zo/A,, respectively. Since for the
zero-pressure gradient standard case the solution is © = x/log(A,/2), we plot the
numerically obtained solution ©(zo/Ag, ¥;,) as function of 1/log(A,/20) in Fig. 7.

In developing a fit, we aim to comply with the limiting scaling that when the
roughness becomes small and zy/A less important in determining u, based on Uygs,
we expect © ~ |¥,|'/? since the only velocity scale left is then (NA,)/2. A functional
form that provides reasonable approximation is given by

—1/4

(45)
where ay = 1.15 |\I'p|1/2. The lines in Fig. 7 indicate the fitting function. The dif-
ferences between the fit and the numerical solution are shown in Fig. 8. As can be
seen, the fit is less accurate than for the fits of the viscous solutions introduced in the
previous sections. In the range 107> < 29/A < 0.1 and |¥,| < 0.07 for ¥, < 0 or
|¥,| < 0.02 for ¥, > 0, errors are below 8 x 1073 for ©. The relative error in the fit
for |¥,| < 0.01 is shown in Fig. 8(b) with relative errors below 8%.

it B K o /
S} (ZO/Aya ‘I’p) = log(Ay/zo) Slgn(\pr) |\ij| gy
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Figure 7. Symbols: numerical solution of Eq. 44 (integration and solving the condition «/(1) = 1 for ©).
Black symbols and lines: ¥, < 0, blue symbols and lines: ¥; > 0. From top to bottom, the values are ¥, =
-0.07, -0.04, -0.03, -0.02, -0.01, -0.003, -0.001, 0.0001, 0.001, 0.003, 0.01, 0.02. Lines: empirical fit given by Eq.
45.

7. Combined viscous and rough surface fitting function for strong
pressure gradients

Before combining the fully rough-surface fitting function presented in the last section
with the finite viscosity fits, it is of interest to first present the (infinite Reynolds
number) rough-surface fit in terms of the parameters used for smooth walls to compare
the results. To this effect we evaluate

Re n(Ren,p, 20/A) = Rea O (20/A,, U, = 1,/ ReX). (46)

Results are shown in Fig. 9(a). The expected invariance of Re;a/Rea with constant
U, =1/ ReQA for any given zg/A is apparent in the figure’s “translatability” along its
diagonal. The slight wiggles and non-monotonicity seen in the fits near the transition
(e.g. the dashed line for Rea = 10 and Re,a = 500, 1), = —2 x 10~°) are caused by
imperfections of the proposed fitting function Eq. 45 (the errors shown in Fig. 8) and
could be improved further although the complex dependencies with the 2 parameters
make finding improved fits challenging. Training a neural net may be fruitful in this
context, now that the physical trends are clearly identified.

It is interesting to note that similar to the viscous case, for large favorable pres-
sure gradients and low Rea, Re;a becomes independent on Rea (i.e. for a fixed v
and Ay, the wall stress becomes independent of the velocity Upgs). In this limit the
velocity scale is provided by the imposed pressure gradient that drives the flow. For
a fixed pressure gradient the wall stress increases with roughness, as expected. For
adverse pressure gradients, the results show that there are conditions of sudden drop
in wall stress, corresponding to incipient separation. That is to say, if the pressure
gradient is adverse and the velocity Upgg sufficiently low the stress drops to zero. In-
terestingly, we see that increased roughness enables lower velocities before separation
occurs, consistent with the “golf ball dimples effect”.
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Figure 8. (a) Differences between the numerical solution for © = u,/Urgs as function of z9/A and ¥, and
the empirical fit given by Eq. 45. Lines: ¥, = —0.07 (black line), ¥, = —0.04 (black dashed line): ¥, = —0.03
(black dot dashed), ¥, = —0.02 (black dotted line), ¥}, = —0.01 (red dot-dashed line), ¥, = —0.003 (red
solid), ¥, = —0.001 (red dashed), ¥, = 0.0001 (blue dotted), ¥, = 0.003 (blue dot dashed), ¥, = 0.01 (blue
dashed) and ¥, = 0.02 (blue solid). (b) Relative error for the cases |¥p| < 0.01 and 1/log(Ay/z0 > 0.1 (i.e.
20/Ay > exp(—10) = 4.5 x 107?); same line types as in (a).

Finally, we combine the finite Reynolds number smooth surface and rough wall
infinite Reynolds number fits by choosing the largest of the two, with a relatively
sharp transition among the two (similar to Eq. 33):

ufs A ) = pres 6 fit A 2\6 1/6
ReTA(R6A7fl/}p7ZO/ y)* Req—A (ReA,wp) + Rea ©"(20/ y,wp/ReA) . (47)

The results in Fig. 9(b) show how viscous effects overwhelm the lower roughness
effects in the lower Reynolds number regimes. The afore-mentioned trends (constant
Re,a asymptote for strong favorable pressure gradient and separation for adverse
pressure gradient cases) still hold, but viscous effects provide a lower bound for Re,a
compared to the small roughness, small 2g/A cases (i.e. when 27 becomes small).

Finally, the same results as in Fig. 9(b) are presented in the more familiar ‘friction
factor’ form, by plotting the corresponding cf™ = 2(Re$fAS /Rep)? as function of Rea
for various values of ¢, and z9/A,. The familiar bend towards fully rough horizontal
lines at high Rea is again visible. The favorable pressure gradient effects are note-
worthy, with a steep ReZQ scaling at lower Rea values, caused by a Rea-independent
asymptote for Re,a at large favorable pressure gradient. In that limit, the expected
™ ~ [1h,|'/? can also be observed.

8. Conclusions

The main results of this note are the baseline fit of Eq. 7 and the comprehensive fit
for strong pressure gradients and roughness, in Eq. 47. For convenience the entire
set of fitting functions proposed herein are summarized in appendix B. These fitting
functions enable efficient evaluation of friction velocity and wall stress in WMLES, uni-
fying smooth wall and rough wall behaviors, including effects of moderate or strong
pressure gradients, as well as smoothly merging towards the viscous sublayer. The
fits for moderate pressure gradients can be considered very accurate (maximum rela-
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Figure 9. (a) Fitting function (Eq. 45) for the fully rough surfaces and for strong adverse and favorable

pressure gradients expressed using viscosity dependent parameters Rea and 1. Rer = Rea @ﬁt(zo/Ay, vy, =
wp/RezA). 8 groups of 4 lines show results for 8 pressure gradient parameters: For favorable cases (black lines,
groups from top to bottom): ¢, = —2 X 1077, —2 x 107%, —2 x 1073, -20, -0.2; for adverse pressure gradients
(blue lines, groups from left to right): 1, = +0.20, 20, 2 x 10* and 2 x 107. For each group, the different
line types denote different roughnesses: zo/A, = 10~% (dotted), z0/A, = 1073 (dot-dashed), z9/Ay = 1072
(dashed lines) and z9/A, = 10! (solid lines). As reference, open circles denote the smooth ZPG case. (b)
Fitting function combining fully rough and smooth surface results, i.e. Re“lch A(Rena,¥p, 20/Ay) (lines same as
in (a).

_4 |
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Figure 10. Generalized Moody diagram for wall modeled LES combining smooth and rough wall results,
including strong pressure gradient and near-separation regimes. Line types same as in Fig. 9 .

tive errors below 2%), while those for strong pressure gradients involve larger errors
(possibly up to 8% in some very strong pressure gradient cases with large roughness,
for which the underlying RANS model is expected to be inaccurate anyhow). It is
important to recall that the fits proposed herein are based on classic mixing length
RANS modeling to determine the mean velocity profile from the simplified boundary
layer momentum equation, thus inheriting the drawbacks associated with the various
underlying assumptions.
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In order to highlight the subtleties and possible differences due to limitations of the
standard mixing length RANS model, a further alternate fit is provided in Appendix
A based on the empirical wall model of Ref. [19] in which the turbulence structure is
known to be directly affected by pressure gradient. In some parameter ranges and for
mild pressure gradients, the model (and fitted wall function) corresponds to a non-
intuitive effect on the relationship between near wall velocities and wall stress. As
discussed in Ref. [29] there even exists the possibility that such subtle trends in near-
wall regions arising from imposed body forces (such as N here) cannot be described
by any local eddy-viscosity closure.

The fits are proposed here to facilitate and unify implementation in LES codes.
However, we believe that explicit expressions not only assist LES implementation but
also help to better understand the relevance of various physical effects and asymptotic
limits. When using a classic wall-functions approach in WMLES these effects are typ-
ically hidden from view since the models are based on assumed velocity profiles that
need to be numerically inverted (or numerically integrated using the ODE approach)
on the fly. Viewing the entirety of the regimes explicitly as presented here, with the
dimensionless wall stress as a purely dependent variable with all independent vari-
ables left as properly known dimensionless inputs provides, we believe, an interesting
perspective to classical wall modeling.

Acknowledgments

The author thanks M. Fowler, Y. Hue, G. Narasimhan, T. Zaki, P. Luchini, J. Larsson
and X.I.A. Yang for many insightful conversations and comments on the topic of wall
modeling for LES. Financial support for the present work was provided by the National
Science Foundation (grant # CBET-1738918) and the Office of Naval Research (grant
# N00014-17-1-2937).

Appendix A: Alternate fit forNickels’ model at mild pressure gradients

As noted by Nickels (2004) [19] when examining data from FPG [30] and APG [31]
boundary layers the effect in the inner portion appears to be opposite of predictions
of the eddy-viscosity model. Specifically, data seem to suggest a downward shift for
APG and upward shift for FPG. This line of study was further pursued in Refs. [21,24]
who noted the surprising resilience of the standard log-law from being modified due
to pressure gradients. As a synthesis, Nickels proposed a generalized law of the wall
including pressure gradient effects that also uses a wall distance y. representing the
pressure-gradient dependent height from the wall where the viscous and turbulent
layers transition. In this model, the pressure gradient is represented by the parameter

— = x Re_,. (48)

Nickels’ model for the velocity profile reads

V1+piyd

ut(y) =yf [1 — (1 +22405(3— pjyj)zQ — 1.5p:jyjz3) 6731—‘1- br

(49)
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where z = y/y., a = 0.75 (Nickels used @ = 0.6 but 0.75 has to be used for consistency
with k = 0.4 and B = 5 used elsewhere in this paper). Above, y! is obtained from
solving

3 2
iyl oyt =122 (50)

For present purposes, the solution to Eq. 50 can be fitted using a tanh function to
capture the main behavior near p} ~ 0 but avoiding unphysical divergences when p;
is large:

yt =12 — 5 tanh(12.4p}). (51)

Using our nomenclature related to wall modeling, the above expression evaluated
at y = Ay can be written as

Rea = Rea yf [1— (14224053 - pry)z? — 1.5p;yjz3) 6732} + ..

\/1+p$yil

o og[1 + (0.752)%, (52)

.+

with z = Re,a/yl. For a range of x and Re,a values, we evaluate Rea and plot Re,a
as function of Rea in Fig 11. The result is similar to Fig. 4 but for the middle region
where some non-monotonic behavior can be seen where curves cross. The differences
can be appreciated more clearly in Fig. 12(a) where the ratio to the case with xy =0
is shown. Near Rea ~ 200 the behavior is non-monotonic and there exists a region
in which indeed APG yields larger wall stress (Re,a) for a given velocity (Rea) and
FPG a lower one, as described by the fit proposed by Nickels and consistent with data
from Refs. [30,31].

Aiming to fit these results, we propose slight modifications to the basic fit provided
in Eq. 7. Since the asymptotic viscous and log-layer regimes are the same, only the
transition behavior parameter (o is modified slightly for the ZPG (x = 0) baseline
case used to evaluate ReEtA(ReA):

Ba(Rea) = 1.7 — (1 4 36Re;*6%) . (53)

Including the Nickels model for pressure gradients, the final form of the proposed fit
reads:

Re = Refiy (Rea) |01+ x/2)72 4+ 1= 0+ 9(Rea, x)] (54)

where 6 is given again by 6(Rea) = (1 + 0.0025Rea) !, and

(55)

(logyg Rea — u(x))z] ,

v(Rea, x) = a(x) exp {— 20%(x)

and the other parameters are fitted to avoid unphysical limits at large x: a(x) =
0.0296 + 0.15tanh(x — 0.2), u(x) = 2.25 — 0.4tanh(0.9x), and o(x) = 0.5 +
0.1 tanh(x/0.05). The solid lines in Figs. 11 and 12(a) show the resulting fits. The

19

URL: http://mc.manuscriptcentral.com/tandf/jot Email: TJOT-peerreview@journals.tandf.co.uk



ONOULT A WN =

Journal of Turbulence

10° 10" 102 10°

Figure 11. Symbols: Results from Eq. 52 over a range of Reynolds numbers Re,a, for x = -0.8 (black +),
X = -0.4 (black triangles), x=0 (circles), x = -0.4 (blue triangles), x = -0.8 (blue +). Only the region between
1 < Rea < 3000 is shown for clarity. Lines: empirical fit given by Eq. 54. Solid line: x = 0, dot-dashed lines:
|x| = 0.4, dashed line: |x| = 0.8. Black: favorable pressure gradient (x < 0), blue lines: adverse pressure gradient
x > 0. Recall that p} = x/Re,a.

relative errors are shown in Fig. 12(b), falling below 2%. Hence, for applications in
which the subtle pressure gradient effects as described in Refs. [19,21] are to be in-
cluded instead of those arising from the standard eddy-viscosity assumption, Re}® can

be used instead of Re®X™.

Appendix B: Summary of fitting functions

For convenience, we here reproduce all of the equations required in practice to im-
plement the wall model fits presented in this paper. With inputs Upgs, Ay and fluid
viscosity v, evaluate

UesA
Rep = -2,
v

For the simplest applications (no pressure gradient, no roughness), Eq. 7 for ReEtA
then provides the baseline version of the wall model.

For inclusion of mild pressure gradient without roughness, using p~'0prrs/9s, A,
and the baseline friction velocity from 7, evaluate y from

NA, < Rea >2
X =772
Ugs ReﬁtA

and then the combined model Ref\" according to Eq. 26 provides the model outcome.
For inclusion of roughness in the fully rough regime, one would evaluate x according

20

URL: http://mc.manuscriptcentral.com/tandf/jot Email: TJOT-peerreview@journals.tandf.co.uk

Page 20 of 25



Page 21 of 25

ONOULT A WN =

Journal of Turbulence

* P =0.02 sttt sttt i
10° 10" 102 10% 10* 10° 10® 107 102 10" 10° 10" 102 10 10* 10° 10° 107

ReA ReA

(a) (b)

107

Figure 12. (a) Symbols: Ratio of friction Reynolds number as function Rea from Nickels’ model, for: x =
-0.8 (black squares), x = -0.4 (black triangles), x = -0.4 (blue triangles), x = -0.8 (blue squares). The relative
effect of pressure gradient is larger at lower Reynolds number. The lines are from an empirical fit (Eq. 54).
(b) Relative error between the Nickels model (inverse of Eq. 52) and empirical fit given by Eq. 54. Solid line:
X = 0, dot-dashed lines: |x| = 0.4, dashed line: |x| = 0.8. Black: favorable pressure gradient (x < 0), blue lines:
adverse pressure gradient x > 0.

to

NA, (1 2
= — log(A
X Ufes <“ ol y/ZO)>

and evaluate the friction Reynolds number according to Eq. 30. For inclusion of rough-
ness as well as mild pressure gradients and viscous effects, evaluate x using Eq. 32,
rewritten as

NA, ,[ReA 1
X = min —

Ufks Rely
To ensure validity of the fits and derivations, in practice y may have to be clipped to
fall between —1 and +1, i.e. use sign(x) min(]x/,1). Then, one determines Re% from
Eq. 33. For strong pressure gradients the pressure parameter is given by

NA3
¢p = 2

(56)

v

and the friction Reynolds number must be obtained as ReP® given by Eqs. 42 and
43 for smooth surfaces and from Eq. 47 when combined to include the rough surface
case. The friction velocity can then be obtained as

XyZ
ReTA
Re A

Ur = ULES (57)

XYz

where ReY is either Refll,, ReS%, Re%\, Rel, ReP\*, Re'} depending on the case
considered.
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FUNCTION Re\= Rel\ (Ren, x, z0/A)

Check: 0 < Rea <107, |x| <1, 0< z/A, <0.1.

B =[140.155/ReX®™ 1 By =1.7—[1+36/Re%™ 7",
ko =040, r3=0005, ry=rr"?,
ReEtA _— Reil 1+ (HsRBA)*ﬁz](Blfl/Q)/ﬁz. (58)

To include mild pressure gradients:
Rerny=(1+05x)""/? Relly
Rej = Rea — o Refy (1 11/Refy) [L + (50/Refy)*) /2,
Bi
K1
Reran = K} (REA) [1+ (kyRel) )5 -1/
0 = (14 Rea/400)~ ",
Ref\" =0 Rernn + (1—6) Rerain. (59)

[1+0.155/Rex ™", B3 = 1.7 — [1+36/Rey "™,
B;-1/2
K3 ,

To merge with rough-wall representations:
1 -1
Re2)\ = Rea [H log(A/z) + )2(':(1 - zo/A)] ) (60)
uf com\6 oo \6 Y

Retty = [(Rest)® + (Rez)®] . (61)
For applications of the Nickels model discussed in Appendix A, Re\" above can be
replaced by ReX{ (Eq. 54), for the case of smooth walls.

For strong pressure gradients, the following fits can be used (with accuracy of a few

% in most cases, but including errors of up to 8% for some cases with roughness, see
Fig. 8):
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FUNCTION Re“R= Re'R (Rea, 1y, 20/A)

Check: 0 < Rea <107, 5x 1075 < z/A, < 0.1.

B =[140.155/Re%X®"" | By =1.7—[1+36/ReX™] ",
ko =040, k3=0005, ry=roV?,
Reflt, = k4 Rei] [1+ (k3Ren)P2)Br=1/2)/B2

To include strong pressure gradients (smooth surface):
—0.055

2
For ¢, <0 RerA—min(1p) = 1.5 (—1,)*3 |1+ < 1000 > |
(_1/’17)

P(¢p) = 2.5 = 0.6[1 + tanh(2(logio(—4p) — 6))],

res /(i)
ReEAe = ((ReTAfmin('l/}p))p(wp) =+ (RGEZ)p(¢I')> .
5071/2\ 705
For > 0 Rea min(tp) = 25605 1+ Lﬂ] )
p
1
. res h N ﬁt
For Rea > Reammin BeX pteen (1 Tt 1og[ReA/ReAmin(¢p)])1~9> '

For Rep < Rea_min :RePN” = 0.

To merge with rough-wall representations:

U, = ,/ReA, ay = 1.15|T,|'/2,

1-1/4
@ K , 22 1
S —— L 14 (===
O = oty o | (32 ) ] ’
611/6
Re — [(Re$§5)6 + (ReA @ﬁt) } . (62)

The latter most ‘universal’ fit contains all of the above special cases for strong
pressure gradient and can thus be implemented without having to specify cases ahead
of time (although for weak pressure gradients the fit for Re, A" can be considered of
higher accuracy in representing the RANS solutions).
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