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ABSTRACT
Motivated by the needs of wall modeled Large Eddy Simulation (LES), we introduce
fits to numerical solutions of the Reynolds Averaged Navier-Stokes equations in their
simplest near-wall, boundary layer approximation including a mixing-length model.
We formulate the problem such that independent and dependent dimensionless vari-
ables are those directly available in LES. We provide practical fits that encompass a
smooth transition between the viscous sublayer and inertial logarithmic layer, and
then progress first considering moderate pressure gradients as well as roughness ef-
fects under the assumption that the mixing-length is not a↵ected by the pressure
gradient. An alternative fit based on the empirical wall model (Nickels, J. Fluid
Mech. vol.512, pp. 217-239, 2004) is also provided, taking into account possible ef-
fects of pressure gradient on turbulence near-wall structure. We then consider the
case of large pressure gradients, both favorable and adverse, up to conditions of
separation, for both smooth and rough surfaces. The proposed fitting functions con-
stitute a generalized Moody chart, comply with analytical solutions valid in various
asymptotic regimes, and obviate the need for numerical iterative solution methods
or numerical integration of ordinary di↵erential equations during LES.

KEYWORDS
Turbulence, Wall Model, Large Eddy Simulations

1. Introduction

Wall-resolving Large-Eddy-Simulation (LES) of high Reynolds number wall-bounded
flows continues to be a challenge due largely to stringent near wall resolution require-
ments. A large number of grid points is required to resolve the inner, viscous dominated
region, and that number increases rapidly with Reynolds number. Conversely, wall
modeled LES exhibits a much weaker dependence on Reynolds number and is there-
fore a necessary choice when applying LES to high Reynolds number wall-bounded
flows. A variety of wall models have been developed for LES and reviews of many of
them can be found in Refs. [1–3]. The most frequently used wall model is the so-called
equilibrium wall model. There are typically three most commonly used approaches to
implement the equilibrium wall model, each valid in di↵erent Reynolds number ranges
and types of surfaces. (a) The rough-wall, high Reynolds number wall model, used
e.g. in [4–6]: The approach assumes that the streamwise mean velocity profile in a
direction normal to the surface (coordinate y) is given by hus(y)i = (u⌧/) log(y/z0),

a
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where z0 is the roughness length. Evaluated at a distance y = ∆y where the streamwise
velocity is known from LES (denoted as ULES = hus(∆y)i) it allows solving for u⌧ as
function of ULES, ∆y,  and z0. The assumption is that ∆y falls in the logarithmic
layer and that  and z0 are known (e.g.  = 0.4). (b) The smooth surface case at
finite Reynolds number: For flows over smooth surfaces, the equilibrium wall model
approach is based on the assumed profile hus(y)i = u⌧ [

−1 log(yu⌧/⌫)+B], providing a
transcendental equation for u⌧ which must be solved iteratively in a code. Specifically,
one solves ULES = u⌧ [−1 log(∆yu⌧/⌫) +B] for u⌧ , for given ULES, ∆y and ⌫ (typical
parameter values are  = 0.4 and B = 5). Again, this method assumes ∆y falls in the
logarithmic layer. If ∆y falls in the viscous sublayer (approaching wall resolved LES)
one must instead assume a linear profile [7], or one can use a smooth fit to the entire
profile such as the classic fit by Reichardt (1951) [8] or the recent work in Refs. [9–
11] including pressure gradient e↵ects. Typically the fitted solution is for the velocity
profile in inner units, which means that further iterative methods are needed to find
the friction velocity numerically. (c) Numerical integration of an ordinary di↵erential
equation (ODE method): Typically, if one wishes to ensure a smooth transition be-
tween the viscous and log-layer regions, to include additional physical e↵ects, or to
apply the approach to other variables such as temperature, a common approach is to
use numerical solution of an ODE [3]. For the case of an equilibrium layer the ODE
to be solved for the streamwise velocity reads

d

dy

✓
(⌫ + ⌫T )

dhus(y)i
dy

◆
= 0, (1)

subject to boundary conditions hus(0)i = 0 and hus(∆y)i = ULES. The turbulent eddy
viscosity ⌫T can be prescribed using a mixing length model including a van-Driest
damping function.

It would appear useful to cast the solution of this sort of ODE into an appropriate
dimensionless form, solve it numerically once and for all, and to provide useful fits to
the (inverse) solution that can be applied uniformly to a large number of LES cases.
One reason that many researchers opt for numerical solution is that the ODE itself
depends upon the unknown dimensional parameter u⌧ via the van-Driest damping
function and that when written in inner units as function of y+ the equation must be
integrated numerically up to a case-dependent position y

+ = ∆+ which itself depends
on the unknown value of u⌧ . In this note, we address this issue by rewriting the
equation in a non-standard dimensionless form in terms of two Reynolds numbers that
facilitates more general applicability for wall modeling. Another reason researchers
opt for numerical solution of the boundary layer equation is that it is then possible to
include additional physical e↵ects such as pressure gradient, which we shall address
here, or handle other fields such as temperature, which will not be covered.

The aims of this note are thus rather modest, namely to reformulate Eq. 1 in such
a way as to facilitate numerical integration and fitting of the results in the context
of wall-modeled LES (WMLES). Specifically, we fit the inverse of the solution to the
velocity profile, i.e. we will be able to find u⌧ = f(known variables) directly using
relatively simple function evaluations. We also aim to include pressure gradient ef-
fects and to merge the resulting fits smoothly to the equilibrium wall model approach
valid for rough-wall, very high Reynolds number boundary layers. This note does not
include implementation and applications in LES codes, but documents errors and dif-
ferences between the proposed fits and the full numerical solution of the corresponding
ODE (RANS) equations. Also, we do not address any of the other fundamental issues
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underlying wall modeling using the equilibrium wall model, such as the log-layer mis-
match and challenges associated with modeling non-equilibrium unsteady terms, issues
treated e.g. in Refs. [7,12–14].

It is hoped that the generalized fits provided (a kind of “generalized Moody di-
agram” for wall modeling in LES) can save computational resources and simplify
implementations of equilibrium wall models in LES.

2. Friction velocity for turbulent equilibrium flow over a smooth wall

We first focus on the simplest case of wall modeling in which we consider only the
streamwise direction (subscripts “s”) without pressure gradient or other acceleration
terms. We assume the streamwise velocity away from the wall is known, and denote it
by ULES = hus(∆y)i. The unknown to be determined is the friction velocity u⌧ , from
which the (kinematic) wall stress in the streamwise direction can then be evaluated
according to ⌧w = u

2
⌧ and oriented according to the usual approaches [1–3,6]. To cast

the problem into a dimensionless framework, we now define two Reynolds numbers:

Re∆ =
ULES∆y

⌫
and Re⌧∆ =

u⌧∆y

⌫
. (2)

In WMLES, Re∆ is the known input whereas Re⌧∆ = ∆+
y is the unknown output for

which we wish to solve and then obtain u⌧ .
Using the usual mixing length model, integrating Eq. 1 once and using the fact that

the stress tends to u
2
⌧ as y ! 0 we have

✓
⌫ + [D(y) y ]2

����
du

dy

����

◆
du

dy
= u

2

⌧ , (3)

where for notational simplicity henceforth we set u = husi. The traditional van Driest
damping function is included: D(y) = [1−exp(−y

+
/A

+)] with y
+ = (y/∆y)Re⌧∆, and

A
+ = 25 is a commonly used value. This formulation assumes that ∆y is sufficiently

small so as to not fall into the outer wake region of boundary layers. In WMLES, this
condition is typically met as long as more than O(10) grid-points are used to resolve
the boundary layer region. In the remainder of this note, we will continue making this
assumption.

We first develop a numerical integration by recasting this equation in terms of
dimensionless variables that can be expressed in terms of the dimensional parameters
known in LES (besides ULES), namely ∆y and ⌫:

y
0 =

y

∆y
, û(y0) =

u(y)∆y

⌫
. (4)

The equation then reads as follows:

dû

dy0
+ [D(y0) y0 ]2

✓
dû

dy0

◆2

= Re
2

⌧∆ (5)

(for now we assume a monotonic profile, where du/dy does not change sign). Solving

3
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Figure 1. (a) Blue crosses: numerical solution of Eq. 6 over wide range of conditions. Dark solid line: empirical

fit given by Eq. 7 with parameters given by Eqs. 8. (b) Relative error between numerical solution of Eq. 6 and

empirical fit given by Eq. 7.

the quadratic equation [15] casts it into a simple first-order ODE for û(y0):

dû

dy0
=

1

2[D(y0)y0]2

✓
−1 +

q
1 + 4[D(y0)y0]2Re2⌧∆

◆
, (6)

where D(y0) = 1− exp(−y
0
Re⌧∆/25) and with a single boundary condition û(0) = 0.

Since D(0) = 0, we initialize at y
+

i = 10−3 or y
0
i = 10−3

Re
−1

⌧∆. The corresponding
value of û(y0i) is obtained from the near wall behavior u(y) = (u2⌧/⌫) y or û(y0i) =
Re

2

⌧∆y
0
i. The integration is done numerically (MatlabTM ODE45), for a wide range

of given Re⌧∆, between 10−1 and 106. The forward integration is done until y0 = 1
is reached. The value obtained as a result, û(1), corresponds to the LES velocity
normalized by ∆ and ⌫. That is to say, we find Re∆ = û(1) as a result of the numerical
integration. Note that this approach is equivalent to expressing the ODE in terms of
y
+ and then integrating from y

+ = 0 up to y
+ = Re⌧∆, where Re⌧∆ could again be

prescribed. The results of the numerical integration are shown as symbols in Fig. 2(a)
in which Re∆ is plotted on the x-axis and the (imposed) parameter Re⌧∆ on the y-

axis. At small Reynolds numbers, the expected trend is Re⌧∆ ⇠ Re
1/2
∆

(∆y in viscous
region), whereas at high Re∆ the behavior is a slow approach to a linear behavior,
with sub-leading logarithmic corrections (from the inverse log-law).

Next, we aim to fit the numerical result using an empirical function. The fit function
should transitions smoothly between a 1/2 power law at low Re∆ towards a power law
with exponent β1 that is on the order of 0.8-1.0 at high Re∆, and which itself can be
chosen to depend upon Re∆. We use the approach proposed by Batchelor [16] in the
context of structure function transitions:

Re
fit

⌧∆(Re∆) = 4Re
β1

∆

h
1 + (3Re∆)

−β2

i(β1−1/2)/β2

. (7)

The transition sharpness is controlled by a parameter β2. Choosing constant values

β1 = 0.9, β2 = 1.2, 3 = 0.005, and 4 = 
β1−1/2
3

gives results with errors of around
5%. Making some of the parameters dependent on Re∆ leads to improved accuracy.

4
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Specifically, we choose

β1(Re∆) =
�
1 + 0.155Re

−0.03
∆

�−1
, β2(Re∆) = 1.7−

�
1 + 36Re

−0.75
∆

�−1
. (8)

The fit is displayed as solid line in Fig. 2(a), showing excellent agreement with the
numerical solution over many decades. The relative error is plotted in Fig. 2(b). The
errors for 0 < Re∆ < 107 (which should easily cover all practical applications of
WMLES) are below 1.2%. In WMLES, for a given velocity ULES, one evaluates Re∆,
then applies Eq. 7 and determines the friction velocity according to

u⌧ = Re
fit

⌧∆(Re∆)⇥
⌫

∆y
= ULES

Re
fit

⌧∆

Re∆
. (9)

Thus, Eq. 7 constitutes an equilibrium wall model for flow over smooth walls that
merges with the viscous behavior and does not require iteratively solving for u⌧ or
numerically integrating an ODE. It does not, however, include e↵ects of pressure gra-
dients, considered in the next sections.

3. E↵ects of mild pressure gradients over smooth walls

The topic of modifications to the law-of-the-wall and wall functions including pressure
gradient e↵ects has received considerable attention [11,17–25]. As an example, since
u⌧ ceases to be the only relevant velocity scale, an additive approach using another
velocity profile based on a “pressure velocity up” [9,11,17,20,23,25] has been proposed.
As written in [11,17,25] it leads to a downward shift of the mean velocity u

+ in the
inertial region for favorable pressure gradient (FPG) and an upward shift for adverse
pressure gradient (APG), qualitatively in agreement with the expectation that the
profile becomes steeper near the wall for FPG while being less steep for APG. Similar
trends are obtained when integrating the momentum equation (ODE) in the near
wall region including a pressure gradient while assuming that the eddy viscosity and
mixing lengths are una↵ected by pressure gradient. In this section we summarize the
approach of integrating the ODE and fit the corresponding inverse wall functions for
applications in which the pressure gradient is mild, far from separation and close to
equilibrium conditions. We underline, however, that the physics of pressure gradient
e↵ects on boundary layers presents a number of more subtle features (some of them
are recalled in Appendix A).

Defining the streamwise pressure gradient term available from LES as N =
⇢
−1

@p̃LES/@s (for notational consistency with Ref. [7]), and again considering the
momentum equation written with eddy viscosity and integrating once, yields


⌫ + (D(y) y]2

����
du

dy

����

◆
du

dy
= Ny + u

2

⌧ . (10)

We neglect the e↵ects of pressure gradient on the eddy viscosity (see Ref. [23] as a
study where such e↵ects are included). For a favorable pressure gradient (N < 0), for
there to be no sign changes in the slope of the velocity profile between the wall and

5
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y = ∆y, the following must hold:

|N | < u
2
⌧

∆y
. (11)

The normalized equation, after solving again the quadratic equation, reads:

dû

dy0
=

1

2[D(y0)y0]2

✓
−1 +

q
1 + 4[D(y0)y0]2Re2⌧∆(1 + χ y0 )

◆
, (12)

where we have defined the pressure gradient parameter according to

χ =
N∆y

u2⌧

(13)

and it is understood that the developments below require |χ| < 1. The boundary
condition is, again, û(0) = 0. We initialize at y

+

i = 10−3 or y
0
i = 10−3

Re
−1

⌧∆. The
corresponding value of û(y0i) can be obtained from the quadratic expansion near the
origin now including pressure gradient:

u(y) =
u
2
⌧

⌫
y +

N

2⌫
y
2 + ..., or û(y0i) = Re

2

⌧∆

✓
y
0
i +

1

2
χy

0
i
2
+ ...

◆
(14)

The integration is done numerically as before, obtaining Re∆ = û(1). The operation is
repeated for a range of values of Re⌧∆ and χ. The results are shown using symbols in
Fig. 2. The e↵ect of pressure gradient can be more readily appreciated by comparing

100 101 102 103 104

Re

100

101

102

103

R
e

(R
e
,
)

Figure 2. Symbols: numerical solution of Eq. 12 over a range of Reynolds numbers Re⌧�, for χ = -0.8 (black

+), χ = -0.4 (black triangles), χ=0 (circles), χ = -0.4 (blue triangles), χ = -0.8 (blue +). Only the region

between 1 < Re� < 10
4
is shown for clarity. Lines: empirical fit given by Eqs. 26 and 25. Solid line: χ = 0,

dot-dashed lines: |χ| = 0.4, dashed line: |χ| = 0.8. Black: favorable pressure gradient (χ  0), blue lines: adverse

pressure gradient χ > 0.
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Figure 3. (a) Symbols: Ratio of friction Reynolds number as function Re� obtained from numerical integra-

tion, for: χ = -0.8 (black squares), χ = -0.4 (black triangles), χ = -0.4 (blue triangles), χ = -0.8 (blue squares).

The relative e↵ect of pressure gradient is larger at lower Reynolds number. The lines are from an empirical

fit (Eqs. 26,25.). (b) Relative error between numerical solution of Eq. 12 and empirical fit given by Eqs. 26

and 25. Solid line: χ = 0, dot-dashed lines: |χ| = 0.4, dashed line: |χ| = 0.8. Black: favorable pressure gradient

(χ  0), blue lines: adverse pressure gradient χ > 0.

to the χ = 0 case, by plotting the ratio Re⌧∆(Re∆, χ)/Re⌧∆(Re∆, 0), see Fig. 3(a).
In order to “invert” these results we again propose an empirical fit that will now

also depend on χ. We note that χ = N∆/u
2
⌧ , and since u⌧ is not known a-priori, χ

cannot be directly evaluated in LES. However since the e↵ect of χ on Re⌧∆ is relatively
weak, in LES we may evaluate χ using

χ ⇡ N∆y

u2⌧0

, (15)

where u⌧0 is based on ULES only, i.e. u⌧0 = ULESRe
fit(Re∆)/Re∆, using the fit of Eq.

7 that assuming χ = 0 as a first guess:

χ ⇡ N∆y

U2

LES

✓
Re∆

Refit⌧∆(Re∆)

◆2

. (16)

In order to develop fits to the dependence of Re⌧∆ on Re∆ for χ 6= 0, it is instructive
to consider the two asymptotic limits at low and high Re∆. In the viscous range (i.e.
if Re⌧∆ << 10) we can obtain from Eq. 14 (using y

0 = 1):

Re∆ = Re
2

⌧∆

✓
1 +

1

2
χ

◆
. (17)

But also, Re∆ = Re
2

⌧∆(χ = 0), i.e. the value for χ = 0. We may obtain Re⌧∆ via the
baseline fit in Eq. 7 for χ = 0 at small Re∆. Hence we write as the viscous limiting
behavior:

Re⌧∆,v = Re⌧∆(χ = 0)

✓
1 +

1

2
χ

◆−1/2

= Re
fit

⌧∆(Re∆)

✓
1 +

1

2
χ

◆−1/2

. (18)
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Next, we consider the limiting behavior of the solution in the inertial layer far above
the viscous region, i.e. when viscosity can be neglected. The ODE simplifies to

dû

dy0
=

Re⌧∆

y0

p
1 + χ y0 ⇡ Re⌧∆

✓
1

y0
+

1

2
χ

◆
. (19)

where we have made the further assumption that |χ| << 1 so that
p
1 + χy0 ⇡ 1+ 1

2
χy

0.
Integration yields

û(y0) = Re⌧∆

✓
1


log y0 +

1

2
χy

0 + C1

◆
. (20)

Consistent with the Ansatz used in the integral wall model (iWMLES) of Ref. [7],
pressure gradient e↵ects are seen to add a linear term to the profile. Using the condition
that û(1) = ULES∆/⌫ = Re∆ yields

û(y0) = Re∆ −Re⌧∆

✓
1


log(1/y0) +

1

2
χ(1− y

0)

◆
. (21)

We recall that this assumes that ∆y is in the log-region, since molecular viscosity has
been neglected. Another condition must be invoked to determine Re⌧∆ given a value
of Re∆. Specifically we match with the viscous behavior

û(y0) = Re
2

⌧∆y
0
, (22)

at y+ = 11 or y0 = 11/Re⌧∆. We note that inclusion of the pressure gradient a↵ected
second-order term and matching at the height suggested by Nickels [19] yields only
a negligible corrections, and will be neglected. Isolating Re∆ and using the fact that
11− 

−1 log(11) = B for  = 0.4 and B = 5, we obtain

Re∆ = Re⌧∆

✓
1


logRe⌧∆ +B +

1

2
χ(1− 11/Re⌧∆)

◆
. (23)

We can also use this expression to deduce the asymptotic behavior at large Re⌧∆ by
using the already developed fit Re

fit

⌧∆(Re∆) as follows. Rewrite Eq. 23 as

Re
⇤
∆ ⌘ Re∆ −Re⌧∆

1

2
χ(1− 11/Re⌧∆) = Re⌧∆

✓
1


logRe⌧∆ +B

◆
. (24)

When applied to the logarithmic layer at large Re⌧∆, the fitting formula Eq. 7 can
be regarded as inverting this log-law. Thus it can now be applied in the inertial layer
according to Eq. 24 to solve for Re⌧∆ for a given Re

⇤
∆
, i.e. to obtain Re⌧∆,in =

Re
fit

⌧∆(Re
⇤
∆
) as function of Re

⇤
∆
, where Re

⇤
∆
takes the place of Re∆ in Eq. 7. Moreover,

to smoothly merge to zero when Re⌧∆ < 11 we multiply the entire additive term by a
factor that tends to zero when Re⌧∆ becomes smaller than O(10):

Re
⇤
∆ = Re∆ −Re

fit

⌧∆

1

2
χ

✓
1− 11

Refit⌧∆

◆"
1 +

✓
50

Refit⌧∆

◆2
#−1/2

. (25)
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Since the additive term depends upon the unknown value of Re⌧∆, it has been written
here in terms of the fitted value for χ = 0, i.e. Re

fit

⌧∆(Re∆) (Eq. 7). Next, we com-
bine the viscous and inertial functions Re⌧∆,v and Re⌧∆,in using a weighting function
✓(Re∆) = (1 + 0.0025Re∆)

−1 according to

Re
com

⌧∆ (Re∆, χ) = ✓(Re∆)Re
fit

⌧∆(Re∆)(1 + χ/2)−1/2 + [1− ✓(Re∆)]Re
fit

⌧∆(Re
⇤
∆). (26)

The lines in Figs. 4 and 3(a) show the results from using Re
com

⌧∆ (Re∆, χ) to predict
the friction Reynolds number ratio compared to the case with zero pressure gradient.
The relative error is shown in Figure 3(b), for various values of χ compared to the
results from the full numerical integration of the ODE. As can be seen, errors of no
more than 2.5 % are incurred. For |χ| < 0.4 the errors are below 1.5%.

It must be stressed that these developments and fits are only valid for small χ,
|χ| << 1. For strong pressure gradient cases, the assumption of a monotonic velocity
profile below y = ∆y and a pressure-gradient independent eddy-viscosity [23] begin to
fail. The case of strong pressure gradients is considered in §5.

4. E↵ects of roughness with mild pressure gradients at very high Re�

The ‘infinite Reynolds number limit’ of rough wall equilibrium wall modeling based
on the profile u(y) = (u⌧/) log (y/z0), evaluated at y = ∆y, can be rewritten as the
‘infinite’ Reynolds number rough wall model:

Re
1
⌧∆ = Re∆



log(∆y/z0)
. (27)

In the high Reynolds number limit, the friction and LES velocities are linearly related
(the stress is quadratic with ULES), and in terms of the limiting behavior of the fits in
Eq. 7 this would correspond to β1 ! 1. Note that expression 27 is applicable only for
∆y >> z0 and that it does not include pressure gradient e↵ects.

Inclusion of pressure gradient can be done simply if one assumes that the eddy
viscosity scaling is una↵ected by pressure gradient in the case of rough walls. While
one should keep in mind the possible pitfalls of such an assumption (Appendix A),
we proceed anyhow given a lack of well-accepted wall models for pressure gradient
e↵ects including roughness e↵ects at high Reynolds numbers. The square root of the
momentum equation with the usual mixing length model neglecting viscous e↵ects
reads

(y)
du

dy
= u⌧

✓
1 + χ

y

∆y

◆1/2

⇡ u⌧

✓
1 +

χ

2

y

∆y

◆
, (28)

where the last step assumes |χ| << 1. Integrating and imposing u(y = ∆y) = ULES

yields:

u(y) = ULES − u⌧


1


log

✓
∆y

y

◆
+

χ

2

✓
1− y

∆y

◆�
. (29)

The definition of z0 is that u(z0) = 0, and assuming the same z0 is not a↵ected by
pressure gradient, we may use this condition to solve for u⌧ for a given ULES and z0/∆,
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Figure 4. (a) Lines: empirical fit from the universal fitting function Eq. 33 for χ = 0 for various values of

roughness: z0/∆ = 3⇥10
−2

(black line), z0/∆ = 10
−2

(blue dashed line), z0/∆ = 10
−3

(red line), z0/∆ = 10
−4

(black dot dashed line), z0/∆ = 3 ⇥ 10
−5

(green dashed line), smooth surface case with z0/∆ ! 0 (circles

and black line). (b) Wall model Moody diagram: Friction factor from universal fitting function for χ = 0 for

various values of roughness: z0/∆ = 3⇥ 10
−2

(black line), z0/∆ = 10
−2

(blue dashed line), z0/∆ = 10
−3

(red

line), z0/∆ = 10
−4

(black dot dashed line), z0/∆ = 3 ⇥ 10
−5

(green dashed line), smooth surface case with

z0/∆ ! 0 (circles and black line).

leading to

Re
1
⌧∆(Re∆, χ,∆/z0) = Re∆


1


log

✓
∆y

z0

◆
+

χ

2

✓
1− z0

∆y

◆�−1

. (30)

As before, to evaluate χ we can use the baseline friction velocity neglecting pressure
gradient, i.e.

u⌧0 = ULES

✓


log(∆y/z0)

◆
. (31)

for the rough wall case (Eq. 27). In general, to merge with the smooth wall behavior,
one would pick the larger of the two friction velocity estimates, so that we now define
the χ parameter as

χ =
N∆y

u2⌧0

, where u⌧0 = ULES max


Re

fit

⌧∆

Re∆
,



log(∆y/z0)

�
. (32)

As a reminder, the modeling validity is limited to |χ| << 1, so in practice the value
of χ can be clipped to lie in some subrange between -1 and 1.

Finally, we combine the smooth and rough surface behaviors into a universal fit
function with a fairly sharp transition as follows:

Re
uf

⌧∆(Re∆, χ, z0/∆) =
⇥
Re

1
⌧∆(Re∆, χx, z0/∆)6 +Re

com

⌧∆ (Re∆, χ)
6
⇤1/6

, (33)

where Re
com

⌧∆ is given by Eq. 26 and Re
1
⌧∆ by Eq. 30.

Figure 4(a) shows the results for χ = 0 for various values of the roughness parameter
z0/∆. Figure 4(b) shows the same result expressed in terms of the more familiar friction
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factor

c
wm

f =
u
2
⌧

1

2
U2

LES

= 2

✓
Re⌧∆

Re∆

◆2

, (34)

resulting in a ‘generalized wall model Moody diagram’.
Another way to display the behavior of the rough-wall fit is to compute the corre-

sponding velocity defect,

∆U
+ =

Us − Ur

u⌧
=

Re∆,s

Re⌧∆
−

Re∆,r

Re⌧∆
(35)

where for a given value of u⌧ , Ur is the velocity at y = ∆y corresponding to a rough
surface and Us for a smooth surface. The sand-grain roughness in viscous units is given
by the equivalency [26], valid in the fully rough regime:

U
+ =

1


log

y
+

z
+

0

=
1


log

y
+

k
+
s,1

+ 8.5 (36)

which implies that

k
+

s,1 = z
+

0
exp( 8.5) ⇡ 30 z+

0
= 30

z0

∆
Re⌧∆. (37)

To find ∆U
+, for a given k

+
s,1 and z0/∆, we first determine Re⌧∆ = 0.0333 k+s,1(∆/z0).

Then we invert the fit in Eq. 33 (using vpasolve from MatlabTM) to find Re∆,r for the
given z0/∆. A second inversion is used to find Re∆,s by using the fit with z0/∆ = 10−50,
i.e. smooth surface. Only results for which Re∆,s < 107 (the upper limit of accuracy
for the fit 33) are plotted. Figure 5(a) displays the result (we only consider χ = 0 in
this comparison). Comparing with Fig. 3 of Jimenez (2004) [26], it can be seen that
the fitting function provides realistic predictions not only of the asymptotic behaviors
at large and small k+s,1, but also for the fact that the transition becomes smoother for
small z0/∆ while it can be quite abrupt for larger z0/∆.

The e↵ects of mild pressure gradient are significant even at high Reynolds numbers
for the rough surface cases. In Fig. 5(b) the results are shown for z0/∆ = 3⇥ 10−2 at
various values of the pressure gradient parameter χ.

5. Strong pressure gradients and flow separation on smooth surfaces

The prior sections considered the limit of small χ. When the friction velocity decreases,
such as approaching separation in adverse pressure gradient cases (N > 0) or for strong
favorable pressure gradient −N∆ >> u

2
⌧ , the magnitude of the parameter χ can

easily exceed unity and the preceding derivations and approximations loose validity.
Moreover, when N becomes more dynamically relevant, scaling it with friction velocity
which is itself an unknown in WMLES becomes more problematic. It is then necessary
to non-dimensionalize the pressure gradient using the truly independent parameters,
∆ and ⌫. We thus define  p = N∆3

/⌫
2 for finite Reynolds numbers (the very high

Reynolds number limit is treated in the next section). It is related to χ as χ =  p/Re
2

⌧∆
and with the other common pressure gradient parameter p+x = N⌫/u

3
⌧ =  p/Re

3

⌧∆. In
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Figure 5. (a) Roughness function ∆U+
, as function of sand-grain roughness in viscous units k+s,1, for χ = 0

for various values of roughness: z0/∆ = 10
−1

(red circles and line), z0/∆ = 3 ⇥ 10
−2

(blue crosses and dot-

dashed line), z0/∆ = 10
−2

(green squares and dashed line), z0/∆ = 3 ⇥ 10
−3

(purple triangles and line),

z0/∆ = 3⇥ 10
−3

(orange pluses and dot-dashed line), z0/∆ = 3⇥ 10
−4

(red circles and dot-dashed line) and

z0/∆ = 10
−4

(purple squares and dashed line). Only values for which the resulting Re�,s for smooth surfaces

is Re�,s < 10
7
(limits of fit) are shown. (b) Wall model Moody diagram for single roughness value at various

pressure gradients. Universal fitting function for Re⌧� as function of Re� for z0/∆ = 3 ⇥ 10
−2

for various

values of χ: χ = −0.8 (black line), χ = −0.4 (blue dashed line), χ = 0 (red line), χ = 0.4 (black dot dashed

line), and χ = 0.8 (green dashed line), smooth surface ( z0/∆ ! 0) with χ = 0 (circles and black line).

order to determine the relationship between velocity and wall stress including strong
pressure gradients, we use Eq. 12 but rewritten according to

dû

dy0
=

1

2[Dc(y0)y0]2

✓
−s+

q
1 + 4 s [Dc(y0)y0]2(Re2⌧∆ +  py

0)

◆
, (38)

where, for  p < 0, the possibility exists that Re
2

⌧∆/(− p) < 1 leading to a change in
sign of the profile slope. For consistency with the absolute value of eddy-viscosity, for
 p < 0 one must choose s = +1 for 0 < y

0  −Re
2

⌧∆/ p and s = −1 for −Re
2

⌧∆/ p <

y
0  1. For  p > 0, s = +1. Moreover, at large pressure gradients, the van Driest

damping function must be corrected. Here we use the classic Cebeci correction [27] as
listed in the analysis of Ref. [28]:

Dc(y
0) = 1− exp

⇣
−y

0
Re⌧∆ [1 + 11.8 p /Re

3

⌧∆]
1/2
+

A
−1

⌘
. (39)

At this point Eq. 38 is again integrated numerically for a range of values of  p and
Re⌧∆, and the results are shown in Fig. 6.

The horizontal lines for  p < 0 where Re⌧∆ ! Re⌧∆−min( p) becomes independent
of Re∆ correspond to the regime where the wall stress is purely determined by the
favorable pressure gradient, i.e. where the relevant velocity scale is up as used in the
modeling e.g. by [11,17]. Conversely, the blue vertical lines denote the approach to
flow separation: At increasing positive  p, there is a minimum velocity ULES, and a
minimum Re∆ (Re∆−min( p)) required for a non-zero positive wall stress. If Re∆ falls
below this critical value, the flow has separated (or has reverse direction at the wall,
a case not covered here).

In order to fit these results, we first note that one may approximate, for  p < 0,

12

Page 12 of 25

URL: http://mc.manuscriptcentral.com/tandf/jot  Email: TJOT-peerreview@journals.tandf.co.uk

Journal of Turbulence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
10-2 10-1 100 101 102 103 104 105 106 107

Re

10-2
10-1
100
101
102
103
104
105
106

R
e

(R
e
,
p)

Figure 6. Solid lines: numerical solution of Eq. 38 over a range of Reynolds numbers Re⌧�, for negative

pressure gradients (black lines) and positive ones (blue lines). The baseline  p = 0 case is shown with circles.

The values are (from top to bottom):  p = −2⇥ 10
7,−2⇥ 10

6,−2⇥ 10
5,−2⇥ 10

4,−2⇥ 10
3,−2⇥ 10

2,−2⇥
10

1,−2,−0.2,−0.02, 0, 0.02, 0.2, 2, 20, 2⇥10
2, 2⇥10

3, 2⇥10
4, 2⇥10

5, 2⇥10
6, 2⇥10

7
. Dot-dashed lines: empirical

fit given by Eqs. 42 and 43.

the limiting asymptote as:

Re⌧∆−min( p) = 1.5 (− p)
0.39

"
1 +

✓
1000

(− p)

◆2
#−0.055

. (40)

For  p > 0 the asymptote for Re∆ can be fitted as:

Re∆−min( p) = 2.5 0.54
p

 
1 +


30

 p

�1/2!−0.88

. (41)

Then the fitting functions are given by:

Re
pres

⌧∆ =
⇣
(Re⌧∆−min( p))

p( p) + (Re
fit

⌧∆)
p( p)

⌘1/p( p)

, for  p < 0, (42)

where p( p) = 2.5− 0.6 [1 + tanh(2 log10(− p)− 6)], while

Re
pres

⌧∆ = Re
fit

⌧∆

✓
1− 1

1 + (log[Re∆/Re∆−min( p)])1.9

◆
for  p > 0 and Re∆ > Re∆−min,

(43)
and Re

pres

⌧∆ = 0 if Re∆  Re∆−min. The fits are shown with dot-dashed lines in Fig.
6. Overall, the agreement is very good except in some regions for  p > 0 where the
slopes are very large.
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6. Strong pressure gradients and flow separation in fully rough regime:

Lastly, we wish to include the case of high Reynolds number fully rough surfaces in-
cluding strong pressure gradients. Here we again use Eq. 28 but without assuming that
χ << 1 to allow for strong pressure gradients. However, unlike the situations treated
earlier, now that viscosity is no longer a relevant parameter and since u⌧ does not nec-
essarily scale linearly with ULES, it is not useful to introduce the Reynolds numbers
Re∆ and Re⌧∆. Instead, we use a dependent variable similar to the friction coefficient,
the ratio ⇥ = u⌧/ULES (as shorthand for

p
cwm

f
/2), since the only known velocity

scale available for scaling is ULES. Similarly, for the pressure gradient parameter, we
have only one possible choice, namely  p = N∆y/U

2

LES
. Again using y

0 = y/∆y, we
rewrite the ODE to be solved according to

du
0

dy0
=

1

y0
⇥

✓
1 +

 p

⇥2
y
0
◆1/2

for  p ≥ 0, or y0 <
⇥2

(− p)
when  p < 0 , (44)

du
0

dy0
= − 1

y0
⇥

✓
−

1 +

 p

⇥2
y
0
�◆1/2

for  p < 0 and y
0
>

⇥2

(− p)

where now u
0 = u/ULES. The problem can be solved by integrating this equation

between y
0 = z0/∆y (where u

0 = 0) and y
0 = 1 and, for a given pressure gradient

parameter  p, find the value of ⇥ for which the integral yields u0(1) = 1. Eq. 44 admits
analytical solutions with di↵erent forms (square roots, atanh(..) and atan(..) depending
on the signs of  p), see for instance Ref. [18]. One can then set those solutions equal
to 1 and solve numerically for ⇥. The analytical solutions rely on cancellations near
y
0 ! ⇥2

/| p| that are difficult to capture accurately in a subsequent numerical solution
procedure. Hence it was found simpler to integrate Eqs. 44 numerically (MatlabTM’s
ODE45) and then find ⇥ using a bisection method. The procedure is repeated for a
range of pressure and roughness parameters,  p and z0/∆y, respectively. Since for the
zero-pressure gradient standard case the solution is ⇥ = / log(∆y/z0), we plot the
numerically obtained solution ⇥(z0/∆0, p) as function of 1/ log(∆y/z0) in Fig. 7.

In developing a fit, we aim to comply with the limiting scaling that when the
roughness becomes small and z0/∆ less important in determining u⌧ based on ULES,
we expect ⇥ ⇠ | p|1/2 since the only velocity scale left is then (N∆y)

1/2. A functional
form that provides reasonable approximation is given by

⇥fit(z0/∆y, p) =


log(∆y/z0)
− sign( p)

q
| p| ↵ 

"
1 +

✓
2.2

↵ 

1

log(∆y/z0)

◆−4
#−1/4

,

(45)
where ↵ = 1.15 | p|1/2. The lines in Fig. 7 indicate the fitting function. The dif-
ferences between the fit and the numerical solution are shown in Fig. 8. As can be
seen, the fit is less accurate than for the fits of the viscous solutions introduced in the
previous sections. In the range 10−5

< z0/∆ < 0.1 and | p| < 0.07 for  p < 0 or
| p| < 0.02 for  p > 0, errors are below 8 ⇥ 10−3 for ⇥. The relative error in the fit
for | p|  0.01 is shown in Fig. 8(b) with relative errors below 8%.
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Figure 7. Symbols: numerical solution of Eq. 44 (integration and solving the condition u0
(1) = 1 for ⇥).

Black symbols and lines:  p < 0, blue symbols and lines:  p > 0. From top to bottom, the values are  p =

-0.07, -0.04, -0.03, -0.02, -0.01, -0.003, -0.001, 0.0001, 0.001, 0.003, 0.01, 0.02. Lines: empirical fit given by Eq.

45.

7. Combined viscous and rough surface fitting function for strong
pressure gradients

Before combining the fully rough-surface fitting function presented in the last section
with the finite viscosity fits, it is of interest to first present the (infinite Reynolds
number) rough-surface fit in terms of the parameters used for smooth walls to compare
the results. To this e↵ect we evaluate

Re⌧∆(Re∆,  p, z0/∆) = Re∆ ⇥fit(z0/∆y, p =  p/Re
2

∆). (46)

Results are shown in Fig. 9(a). The expected invariance of Re⌧∆/Re∆ with constant
 p =  p/Re

2

∆
for any given z0/∆ is apparent in the figure’s “translatability” along its

diagonal. The slight wiggles and non-monotonicity seen in the fits near the transition
(e.g. the dashed line for Re∆ = 103 and Re⌧∆ = 500,  p = −2⇥ 10−5) are caused by
imperfections of the proposed fitting function Eq. 45 (the errors shown in Fig. 8) and
could be improved further although the complex dependencies with the 2 parameters
make finding improved fits challenging. Training a neural net may be fruitful in this
context, now that the physical trends are clearly identified.

It is interesting to note that similar to the viscous case, for large favorable pres-
sure gradients and low Re∆, Re⌧∆ becomes independent on Re∆ (i.e. for a fixed ⌫

and ∆y, the wall stress becomes independent of the velocity ULES). In this limit the
velocity scale is provided by the imposed pressure gradient that drives the flow. For
a fixed pressure gradient the wall stress increases with roughness, as expected. For
adverse pressure gradients, the results show that there are conditions of sudden drop
in wall stress, corresponding to incipient separation. That is to say, if the pressure
gradient is adverse and the velocity ULES sufficiently low the stress drops to zero. In-
terestingly, we see that increased roughness enables lower velocities before separation
occurs, consistent with the “golf ball dimples e↵ect”.
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Figure 8. (a) Di↵erences between the numerical solution for ⇥ = u⌧/ULES as function of z0/∆ and  p and

the empirical fit given by Eq. 45. Lines:  p = −0.07 (black line),  p = −0.04 (black dashed line):  p = −0.03
(black dot dashed),  p = −0.02 (black dotted line),  p = −0.01 (red dot-dashed line),  p = −0.003 (red

solid),  p = −0.001 (red dashed),  p = 0.0001 (blue dotted),  p = 0.003 (blue dot dashed),  p = 0.01 (blue

dashed) and  p = 0.02 (blue solid). (b) Relative error for the cases | p|  0.01 and 1/ log(∆y/z0 > 0.1 (i.e.

z0/∆y > exp(−10) = 4.5⇥ 10
−5

); same line types as in (a).

Finally, we combine the finite Reynolds number smooth surface and rough wall
infinite Reynolds number fits by choosing the largest of the two, with a relatively
sharp transition among the two (similar to Eq. 33):

Re
ufs

⌧∆(Re∆,  p, z0/∆y) =
⇣
Re

pres

⌧∆ (Re∆,  p)
6 +Re∆⇥fit(z0/∆y,  p/Re

2

∆)
6

⌘1/6
. (47)

The results in Fig. 9(b) show how viscous e↵ects overwhelm the lower roughness
e↵ects in the lower Reynolds number regimes. The afore-mentioned trends (constant
Re⌧∆ asymptote for strong favorable pressure gradient and separation for adverse
pressure gradient cases) still hold, but viscous e↵ects provide a lower bound for Re⌧∆

compared to the small roughness, small z0/∆ cases (i.e. when z
+

0
becomes small).

Finally, the same results as in Fig. 9(b) are presented in the more familiar ‘friction
factor’ form, by plotting the corresponding c

wm

f
= 2(Re

ufs

⌧∆/Re∆)
2 as function of Re∆

for various values of  p and z0/∆y. The familiar bend towards fully rough horizontal
lines at high Re∆ is again visible. The favorable pressure gradient e↵ects are note-
worthy, with a steep Re

−2

∆
scaling at lower Re∆ values, caused by a Re∆-independent

asymptote for Re⌧∆ at large favorable pressure gradient. In that limit, the expected
c
wm

f
⇠ | p|1/2 can also be observed.

8. Conclusions

The main results of this note are the baseline fit of Eq. 7 and the comprehensive fit
for strong pressure gradients and roughness, in Eq. 47. For convenience the entire
set of fitting functions proposed herein are summarized in appendix B. These fitting
functions enable efficient evaluation of friction velocity and wall stress in WMLES, uni-
fying smooth wall and rough wall behaviors, including e↵ects of moderate or strong
pressure gradients, as well as smoothly merging towards the viscous sublayer. The
fits for moderate pressure gradients can be considered very accurate (maximum rela-
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Figure 9. (a) Fitting function (Eq. 45) for the fully rough surfaces and for strong adverse and favorable

pressure gradients expressed using viscosity dependent parameters Re� and  p. Re⌧ = Re�⇥
fit
(z0/∆y , p =

 p/Re2�). 8 groups of 4 lines show results for 8 pressure gradient parameters: For favorable cases (black lines,

groups from top to bottom):  p = −2⇥ 10
−7

, −2⇥ 10
−5

, −2⇥ 10
−3

, -20, -0.2; for adverse pressure gradients

(blue lines, groups from left to right):  p = +0.20, 20, 2 ⇥ 10
4
and 2 ⇥ 10

7
. For each group, the di↵erent

line types denote di↵erent roughnesses: z0/∆y = 10
−4

(dotted), z0/∆y = 10
−3

(dot-dashed), z0/∆y = 10
−2

(dashed lines) and z0/∆y = 10
−1

(solid lines). As reference, open circles denote the smooth ZPG case. (b)

Fitting function combining fully rough and smooth surface results, i.e. Reufs⌧�(Re�,  p, z0/∆y) (lines same as

in (a).
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Figure 10. Generalized Moody diagram for wall modeled LES combining smooth and rough wall results,

including strong pressure gradient and near-separation regimes. Line types same as in Fig. 9 .

tive errors below 2%), while those for strong pressure gradients involve larger errors
(possibly up to 8% in some very strong pressure gradient cases with large roughness,
for which the underlying RANS model is expected to be inaccurate anyhow). It is
important to recall that the fits proposed herein are based on classic mixing length
RANS modeling to determine the mean velocity profile from the simplified boundary
layer momentum equation, thus inheriting the drawbacks associated with the various
underlying assumptions.
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In order to highlight the subtleties and possible di↵erences due to limitations of the
standard mixing length RANS model, a further alternate fit is provided in Appendix
A based on the empirical wall model of Ref. [19] in which the turbulence structure is
known to be directly a↵ected by pressure gradient. In some parameter ranges and for
mild pressure gradients, the model (and fitted wall function) corresponds to a non-
intuitive e↵ect on the relationship between near wall velocities and wall stress. As
discussed in Ref. [29] there even exists the possibility that such subtle trends in near-
wall regions arising from imposed body forces (such as N here) cannot be described
by any local eddy-viscosity closure.

The fits are proposed here to facilitate and unify implementation in LES codes.
However, we believe that explicit expressions not only assist LES implementation but
also help to better understand the relevance of various physical e↵ects and asymptotic
limits. When using a classic wall-functions approach in WMLES these e↵ects are typ-
ically hidden from view since the models are based on assumed velocity profiles that
need to be numerically inverted (or numerically integrated using the ODE approach)
on the fly. Viewing the entirety of the regimes explicitly as presented here, with the
dimensionless wall stress as a purely dependent variable with all independent vari-
ables left as properly known dimensionless inputs provides, we believe, an interesting
perspective to classical wall modeling.
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Appendix A: Alternate fit forNickels’ model at mild pressure gradients

As noted by Nickels (2004) [19] when examining data from FPG [30] and APG [31]
boundary layers the e↵ect in the inner portion appears to be opposite of predictions
of the eddy-viscosity model. Specifically, data seem to suggest a downward shift for
APG and upward shift for FPG. This line of study was further pursued in Refs. [21,24]
who noted the surprising resilience of the standard log-law from being modified due
to pressure gradients. As a synthesis, Nickels proposed a generalized law of the wall
including pressure gradient e↵ects that also uses a wall distance yc representing the
pressure-gradient dependent height from the wall where the viscous and turbulent
layers transition. In this model, the pressure gradient is represented by the parameter

p
+

x =
N⌫

u3⌧

= χRe
−1

⌧∆. (48)

Nickels’ model for the velocity profile reads

u
+(y) = y

+

c

⇥
1−

�
1 + 2z + 0.5(3− p

+

x y
+

c )z
2 − 1.5p+x y

+

c z
3
�
e
−3z

⇤
+

p
1 + p

+
x y

+
c

6
log[1+(az)6],

(49)
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where z = y/yc, a = 0.75 (Nickels used a = 0.6 but 0.75 has to be used for consistency
with  = 0.4 and B = 5 used elsewhere in this paper). Above, y+c is obtained from
solving

p
+

x y
+

c
3
+ y

+

c
2
= 122. (50)

For present purposes, the solution to Eq. 50 can be fitted using a tanh function to
capture the main behavior near p+x ⇠ 0 but avoiding unphysical divergences when p

+
x

is large:

y
+

c = 12− 5 tanh(12.4 p+x ). (51)

Using our nomenclature related to wall modeling, the above expression evaluated
at y = ∆y can be written as

Re∆ = Re⌧∆ y
+

c

⇥
1−

�
1 + 2z + 0.5(3− p

+

x y
+

c )z
2 − 1.5p+x y

+

c z
3
�
e
−3z

⇤
+ ...

..+

p
1 + p

+
x y

+
c

6
log[1 + (0.75z)6], (52)

with z = Re⌧∆/y
+
c . For a range of χ and Re⌧∆ values, we evaluate Re∆ and plot Re⌧∆

as function of Re∆ in Fig 11. The result is similar to Fig. 4 but for the middle region
where some non-monotonic behavior can be seen where curves cross. The di↵erences
can be appreciated more clearly in Fig. 12(a) where the ratio to the case with χ = 0
is shown. Near Re∆ ⇠ 200 the behavior is non-monotonic and there exists a region
in which indeed APG yields larger wall stress (Re⌧∆) for a given velocity (Re∆) and
FPG a lower one, as described by the fit proposed by Nickels and consistent with data
from Refs. [30,31].

Aiming to fit these results, we propose slight modifications to the basic fit provided
in Eq. 7. Since the asymptotic viscous and log-layer regimes are the same, only the
transition behavior parameter β2 is modified slightly for the ZPG (χ = 0) baseline
case used to evaluate Re

fit

⌧∆(Re∆):

β2(Re∆) = 1.7−
�
1 + 36Re

−0.65
∆

�−1
. (53)

Including the Nickels model for pressure gradients, the final form of the proposed fit
reads:

Re
nic

⌧∆ = Re
fit

⌧∆(Re∆)
h
✓(1 + χ/2)−1/2 + 1− ✓ + γ(Re∆, χ)

i
, (54)

where ✓ is given again by ✓(Re∆) = (1 + 0.0025Re∆)
−1, and

γ(Re∆, χ) = ↵(χ) exp


−(log10Re∆ − µ(χ))2

2σ2(χ)

�
, (55)

and the other parameters are fitted to avoid unphysical limits at large χ: ↵(χ) =
0.0296 + 0.15 tanh(χ − 0.2), µ(χ) = 2.25 − 0.4 tanh(0.9χ), and σ(χ) = 0.5 +
0.1 tanh(χ/0.05). The solid lines in Figs. 11 and 12(a) show the resulting fits. The

19

Page 19 of 25

URL: http://mc.manuscriptcentral.com/tandf/jot  Email: TJOT-peerreview@journals.tandf.co.uk

Journal of Turbulence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
100 101 102 103

Re

100

101

102

R
e

(R
e
,
)

Figure 11. Symbols: Results from Eq. 52 over a range of Reynolds numbers Re⌧�, for χ = -0.8 (black +),

χ = -0.4 (black triangles), χ=0 (circles), χ = -0.4 (blue triangles), χ = -0.8 (blue +). Only the region between

1 < Re� < 3000 is shown for clarity. Lines: empirical fit given by Eq. 54. Solid line: χ = 0, dot-dashed lines:

|χ| = 0.4, dashed line: |χ| = 0.8. Black: favorable pressure gradient (χ  0), blue lines: adverse pressure gradient

χ > 0. Recall that p+x = χ/Re⌧�.

relative errors are shown in Fig. 12(b), falling below 2%. Hence, for applications in
which the subtle pressure gradient e↵ects as described in Refs. [19,21] are to be in-
cluded instead of those arising from the standard eddy-viscosity assumption, Re

nic

∆
can

be used instead of Re
com

∆
.

Appendix B: Summary of fitting functions

For convenience, we here reproduce all of the equations required in practice to im-
plement the wall model fits presented in this paper. With inputs ULES, ∆y and fluid
viscosity ⌫, evaluate

Re∆ =
ULES∆y

⌫
.

For the simplest applications (no pressure gradient, no roughness), Eq. 7 for Re
fit

⌧∆
then provides the baseline version of the wall model.

For inclusion of mild pressure gradient without roughness, using ⇢
−1

@pLES/@s, ∆y

and the baseline friction velocity from 7, evaluate χ from

χ =
N∆y

U2

LES

✓
Re∆

Refit⌧∆

◆2

and then the combined model Re
com

⌧∆ according to Eq. 26 provides the model outcome.
For inclusion of roughness in the fully rough regime, one would evaluate χ according
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Figure 12. (a) Symbols: Ratio of friction Reynolds number as function Re� from Nickels’ model, for: χ =

-0.8 (black squares), χ = -0.4 (black triangles), χ = -0.4 (blue triangles), χ = -0.8 (blue squares). The relative

e↵ect of pressure gradient is larger at lower Reynolds number. The lines are from an empirical fit (Eq. 54).

(b) Relative error between the Nickels model (inverse of Eq. 52) and empirical fit given by Eq. 54. Solid line:

χ = 0, dot-dashed lines: |χ| = 0.4, dashed line: |χ| = 0.8. Black: favorable pressure gradient (χ  0), blue lines:

adverse pressure gradient χ > 0.

to

χ =
N∆y

U2

LES

✓
1


log(∆y/z0)

◆2

and evaluate the friction Reynolds number according to Eq. 30. For inclusion of rough-
ness as well as mild pressure gradients and viscous e↵ects, evaluate χ using Eq. 32,
rewritten as

χ =
N∆y

U2

LES

min


Re∆

Refit⌧∆

,
1


log(∆y/z0)

�2
.

To ensure validity of the fits and derivations, in practice χ may have to be clipped to
fall between −1 and +1, i.e. use sign(χ)min(|χ|, 1). Then, one determines Re

uf

⌧∆ from
Eq. 33. For strong pressure gradients the pressure parameter is given by

 p =
N∆3

⌫2
(56)

and the friction Reynolds number must be obtained as Re
pres

⌧∆ given by Eqs. 42 and
43 for smooth surfaces and from Eq. 47 when combined to include the rough surface
case. The friction velocity can then be obtained as

u⌧ = ULES

Re
xyz

⌧∆

Re∆
(57)

where Re
xyz

⌧∆ is either Re
fit

⌧∆, Re
com

⌧∆ , Re
1
⌧∆, Re

uf

⌧∆, Re
pres

⌧∆ , Re
ufs

⌧∆ depending on the case
considered.
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FUNCTION Re
uf

⌧∆= Re
uf

⌧∆(Re∆, χ, z0/∆)

Check: 0 < Re∆ < 107, |χ| < 1, 0 < z0/∆y < 0.1.

β1 = [1 + 0.155/Re
0.03
∆ ]−1

, β2 = 1.7− [1 + 36/Re
0.75
∆ ]−1

,

 = 0.40 , 3 = 0.005 , 4 = 
β1−1/2
3

,

Re
fit

⌧∆ = 4Re
β1

∆
[1 + (3Re∆)

−β2 ](β1−1/2)/β2 . (58)

To include mild pressure gradients:

Re⌧∆,v = (1 + 0.5χ)−1/2
Re

fit

⌧∆ ,

Re
⇤
∆ = Re∆ − χ

2
Re

fit

⌧∆ (1− 11/Re
fit

⌧∆) [1 + (50/Re
fit

⌧∆)
2]−1/2

,

β
⇤
1 = [1 + 0.155/Re

⇤
∆

0.03]−1
, β

⇤
2 = 1.7− [1 + 36/Re

⇤
∆

0.75]−1
,


⇤
4 = 

β⇤
1−1/2

3
,

Re⌧∆,in = 
⇤
4 (Re

⇤
∆)

β⇤
1 [1 + (3Re

⇤
∆)

−β⇤
2 ](β

⇤
1−1/2)/β⇤

2 ,

✓ = (1 +Re∆/400)
−1

,

Re
com

⌧∆ = ✓ Re⌧∆,v + (1− ✓) Re⌧∆,in. (59)

To merge with rough-wall representations:

Re
1
⌧∆ = Re∆


1


log(∆/z0) +

χx

2
(1− z0/∆)

�−1

, (60)

Re
uf

⌧∆ =
h
(Re

com

⌧∆ )6 + (Re
1
⌧∆)

6

i1/6
. (61)

For applications of the Nickels model discussed in Appendix A, Re
com

⌧∆ above can be
replaced by Re

nic

⌧∆ (Eq. 54), for the case of smooth walls.
For strong pressure gradients, the following fits can be used (with accuracy of a few

% in most cases, but including errors of up to 8% for some cases with roughness, see
Fig. 8):
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FUNCTION Re
ufs

⌧∆= Re
ufs

⌧∆(Re∆,  p, z0/∆)

Check: 0 < Re∆ < 107, 5⇥ 10−5
< z0/∆y < 0.1.

β1 = [1 + 0.155/Re
0.03
∆ ]−1

, β2 = 1.7− [1 + 36/Re
0.75
∆ ]−1

,

 = 0.40 , 3 = 0.005 , 4 = 
β1−1/2
3

,

Re
fit

⌧∆ = 4Re
β1

∆
[1 + (3Re∆)

−β2 ](β1−1/2)/β2 .

To include strong pressure gradients (smooth surface):

For  p < 0 : Re⌧∆−min( p) = 1.5 (− p)
0.39

"
1 +

✓
1000

(− p)

◆2
#−0.055

,

p( p) = 2.5− 0.6 [1 + tanh(2(log10(− p)− 6))] ,

Re
pres

⌧∆ =
⇣
(Re⌧∆−min( p))

p( p) + (Re
fit

⌧∆)
p( p)

⌘1/p( p)

.

For  p > 0 : Re∆−min( p) = 2.5 0.54
p

 
1 +


30

 p

�1/2!−0.88

,

For Re∆ > Re∆−min :Re
pres

⌧∆ = Re
fit

⌧∆

✓
1− 1

(1 + log[Re∆/Re∆−min( p)])1.9

◆
.

For Re∆  Re∆−min :Re
pres

⌧∆ = 0.

To merge with rough-wall representations:

 p =  p/Re
2

∆, ↵ = 1.15 | p|1/2,

⇥fit =


log(∆y/z0)
−sign( p)

q
| p| ↵ 

"
1 +

✓
2.2

↵ 

1

log(∆y/z0)

◆−4
#−1/4

,

Re
ufs

⌧∆ =

�
Re

pres

⌧∆

�6
+

⇣
Re∆ ⇥fit

⌘6
�1/6

. (62)

The latter most ‘universal’ fit contains all of the above special cases for strong
pressure gradient and can thus be implemented without having to specify cases ahead
of time (although for weak pressure gradients the fit for Re⌧∆

uf can be considered of
higher accuracy in representing the RANS solutions).
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