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Abstract

A general quantum system may be steered by a control of either classical or quantum
nature and the latter scenario is particularly important in many quantum engineering
problems including coherent feedback and reservoir engineering. In this paper, we
consider a quantum system steered by a quantum controller and explore the underlying
Q-Q (quantum—quantum) control landscape features for the expectation value of an
arbitrary observable of the system, with the control being the engineered initial state of
the quantum controller. Itis shown that the Q—Q control landscape is inherently convex,
and hence devoid of local suboptima. Distinct from the landscapes for quantum systems
controlled by time-dependent classical fields, the controllability is not a prerequisite
for the Q—Q landscape to be trap-free, and there are no saddle points that generally
exist with a classical controller. However, the forms of Hamiltonian, the flexibility in
choosing initial state of the controller, as well as the control duration, can influence the
reachable optimal value on the landscape. Moreover, we show that the optimal solution
of the Q—Q control landscape can be readily extracted from a de facto landscape
observable playing the role of an effective “observer”. For illustration of the basic
Q-Q landscape principles, we consider the Jaynes—Cummings model depicting a two-
level atom in the presence of a cavity quantized radiation field.
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1 Introduction

Quantum optimal control theories and experiments [1,2] typically involve tailored
electromagnetic fields seeking the most favorable outcome of a specified physical or
chemical processes via optimization of the control fields [3,4]. In the past decade,
rigorous analyses of the quantum control landscape, defined as the expectation value
of a desired system observable as a function(al) of the control [5], have been made to
explain the widely observed experimental successes along with much larger numbers
of almost perfect optimal control simulations. This advance is important not only for
obtaining a good understanding of the landscape topology to establish the feasibility
of finding globally optimal controls, but ultimately also for developing more efficient
optimization algorithms exploiting these features. Of immediate relevance is the topo-
logical properties of the landscape critical points, where the landscape gradient with
respect to the control is zero. At issue is the possible appearance of suboptimal local
extrema as traps, which could halt a gradient search and impede reaching a global
optimum.

A general control problem entails a physical system and a control that steers the sys-
tem’s dynamics. Both the system and the control may be either Classical or Quantum
in nature, giving rise to a tetrad of control scenarios: C—C (a classical system steered
by a classical control), Q—C (a quantum system steered by a classical control), C-Q (a
classical system steered by a quantum control), and Q—Q (a quantum system steered
by another quantum system—a quantum controller). The C—C, Q—C and C-Q control
scenarios may be considered as approximations of the Q—Q control scenario, which
then forms the more fundamental case for better understanding three other scenar-
ios. Interestingly, the same tetrad of scenarios has been proposed in machine learning
sciences, where the data and the algorithm can be either Quantum or Classical [6—8].

Most control studies, as well as the corresponding landscape analyses, have been
done on the Q—C control scenario in the semiclassical limit. It has been proved that,
with unconstrained classical control fields, the landscape for a controllable finite-level
quantum system is almost always free of any local suboptima, thus all critical points
are either global maxima or global minima, or possibly saddle points [5,9]. Imposing
constraints on the properties of classical fields, for example, the pulse amplitude,
bandwidth, and length, may result in additional undesirable features on the landscape,
including possibly traps [10].

In this paper, we consider the Q—Q control landscape by taking a fully quantum
perspective, assuming that a quantum system A (herein the system) is directly coupled
to another quantum system B (the control), which can be arbitrarily manipulated
[11-15]. In principle, both A and B have different attributes, for example, being
quantized radiation fields in an optical cavity [16-20]), single atoms or spins, or bulk
material systems, etc., representing a plethora of Q—Q control processes. Specifically,
in the current Q—Q control scenario studied here, the initial density matrix of B is
used to indirectly control the evolution of A, in contrast to the semiclassical Q-C
perspective in which classical fields are used to control the quantum system. Many
quantum engineering problems can be classified into this scenario, e.g., (1) in quantum-
assisted optimization where the initial state of a quantum processor is considered as
the decision variable of a minimization problem [21], (2) in quantum metrology where
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the initial quantum state of the probe is used as the control to improve the precision
of measurement [6], (3) in a quantum interface where a flying single photon prepared
at some certain state is used to transfer quantum information to a standing qubit [22].

The paper will perform an analysis of the Q—Q landscape with the density matrix
of B considered as the control. The aim is to explore the fundamental Q—Q landscape
features rather than design a new optimization algorithm. In the following, we demon-
strate that the landscape expressed in the Q—Q context is convex without any additional
assumptions, thus rigorously free of any local traps or saddles. Furthermore, we show
that the Q—Q optimal solution can be directly extracted from a de facto “landscape
observable” that underlies the Q—Q control landscape defined as a function of the
initial density matrix of B.

The remainder of this paper is organized as follows. In Sect. 2, the Q—C and Q-Q
control systems are introduced. In Sect. 3, the Q—Q control landscape is defined and
proved to be convex. For illustration, Sect. 4 illustrates the basic Q—Q concepts with
the Jaynes—Cummings model in which either an atom or an cavity field can be taken
as a quantum controller. Finally, conclusions are made in Sect. 5.

2 From quantum-classical to quantum-quantum control systems

In the semiclassical Q—C scenario, the total Hamiltonian of a closed N-level quantum
system, A, interacting with external classical fields can be written as:

Hoc(t) = HY + Y ux(t)Hj, )
k

where Hg is the drift Hamiltonian and H /li is the dipole-like control Hamiltonian
associated with the k-th control field u (). The corresponding semiclassical unitary
propagator Ugc (t) satisfies the time-dependent Schrodinger equation

Ugc(t) = —i [Hg - Zuka)H};} Uqc(t),  Uqc(0) =1y, )
k

where [y is an N-dimensional identity matrix. The density matrix p4 (¢), i.e., the state
of A att > 0, can then be written as p4(7) = UQc(t)pA(O)UgC(t), where p4(0) is
the initial state of A.
In the Q—Q scenario, the joint Hamiltonian of the composite system A/B can be
expressed as
Hpap=Hy®lp+14® Hy + Y Hi ® Hf. 3)
k
where [4 (Ip) is the identity operator in the Hilbert space of A (B), which can be either
finite or infinite dimensional, Hg (Hg) is the Hamiltonian of A (B), and H ﬁ (H g) the
interaction Hamiltonian associated with A (B). The unitary propagator associated with
the joint Hamiltonian Hy4p of the closed composite system A/B is simply Uap(t) =
exp(—%H Apt). Initially, the composite system A/B may be in a separable state, i.e.,
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the initial joint density matrix p = pg ® pp att = 0, with p4 = p4(0) denoting the
initial state of A (the system) and pp = pp(0) the initial state of B (the control), or in
an entangled state p subject to the constraint Trp(p) = pa4, i.e., the reduced density
matrix of A is still p4. As soon as the initial state p is created, A and B will evolve in
unison in accordance with the joint Hamiltonian H4 g and p(¢) = Uap () p(0)U j\ (1)
will become entangled. The control scheme analyzed here assumes that the control B
can be prepared at any admissible quantum state [23,24], prior to its interaction with
A. In practice the manipulation or preparation of system B would be performed with
another control of some nature which is not explicitly present in the analysis here.
Even if this latter control is classical it would not change the resultant Q—Q interaction
and its associated landscape for analysis.

The Q-C control system, Eq. (2), can be taken as an approximation of the Q—
Q control system, Eq. (3), in the semiclassical limit when (1) the control B (here,
quantized photon fields) is sufficiently large or has other appropriate characteristics so
thatit can be treated classically and (2) any back coupling of the system A on the control
B is negligible so that A (the system) and B (the control) are virtually disentangled
at all times [16,18]. This may be understood by rotating H4p via the transformation
Uot(t) = 4 ® exp(—ngt), giving rise to a time-dependent Hamiltonian, in the
mixed Schropdinger/Heisenberg picture [16]:

H (0 = Hy @1+ HS @ [UL O Hy U] . *)
k

The semiclassical approximation naturally arises in the so-called large N limit [25]
(e.g., when the density matrix pp is a coherent state with large mean photon number)
such that the variance of Utf)t(t)H § Ut (t) is much smaller than its expectation value,
with

u(t) = Tr [ ppUL (O HE Urar (1) | 5)

then playing the role of classical fields in the Q—C control system (2). The approx-
imation in Eq. 5 indicates that the semiclassical control {u(¢)} is actually inherited
from the initial state pp of the controller B, which can be engineered in advance (e.g.,
coherent or squeezed states of a laser). Therefore, it is natural to take pp as the control
variable, which can have arbitrary realizable states, in the Q—Q scenario.

3 The convex quantum-quantum control landscapes
In this section, after briefly reviewing the fundamental properties of the Q—C control

landscape, we define the Q—Q control landscape and prove its trap-free property using
convex optimization analysis.

@ Springer



Journal of Mathematical Chemistry

3.1 The Q-C control landscape

In the Q-C scenario, the dynamic control landscape of the observable O4 is defined
as the functional of a classical field u(¢), i.e.,

Joclu(t)] = Tr[Uqc(T)pa(0) U (T) 041, (6)

where p4 (0) is the initial density matrix of A. Alternatively, the kinematic landscape
can be defined as the function of the unitary propagator Uqc(7), i.e.,

JoclUqc(T)] = Tr[UQc(T)PA(O)Ugc(T)OA]- )

Ithas been shown that the dynamical landscape Joc[u(#)] has no traps upon satisfaction
of three basic assumptions:

(i) the system is controllable [26],
(ii) the local mapping du(t) + SUqc(T) bridging the kinematic and dynamical
landscapes is surjective at any control [9,27],
(iii) the control field u(¢) is unconstrained, i.e., in practice there is sufficient freedom
in the control field to exploit assumptions (i) and (ii) [10].

The landscape topologies based on these assumptions have been the focus of many
previous studies [5]. We remark that assumptions (i) and (ii) can be shown as being
“almost always” satisfied [9,28], consistent with the fact that the semiclassical Q—C
landscape rarely exhibits traps. However, depending on the distributions of eigenvalues
of p4(0) and Oy, the landscape may possess saddle points [29].

3.2 The Q-Q control landscape

The Q-Q control objective, analogous to the Q—C one, is to optimize the expectation
value of the observable O 4 attime T, given p4 the initial state of A. However, instead of
tailoring the classical control field #(¢) in the Q—C control scenario, the Q—Q objective
may be reached by tuning either the interaction with the two quantum systems [30]
or the initial state of the quantum controller, as demonstrated in this paper. Since the
interaction between quantum system is usually tuned by some classical parameters
[30], which can be categorized into the Q—C control scenario, it is more natural in this
paper to take the initial state as the control resource.
For a separable initial state pg ® pp, the Q—Q landscape can be defined as

Joolpsl = TrlUag(T)(pa ® pp)U L 5(T) (04 ®1p)], (8)

where the control pp is a positive semi-definite matrix of trace one. Optimization of
the Q—Q landscape Joq[pp] can be posed as a semidefinite programming problem:

min Joqlesl )
subjectto: Trpp =1, pp =0,
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Table 1 Summary of the

Fi lati —C —
properties of control landscapes ormuiation Q QQ
in the Q—C and Q-C scenarios Nature of control u(t) 0B
Landscape function Nonlinear linear
Landscape topology Trap-free® Convex, trap—freeb

4Trap-free upon satisfaction of three key assumptions, and possibly
with saddles
PNo saddles or other suboptimal critical points present

where, without loss of generality, we consider only the minimization problem. From
Eqgs. (8) and (9), we note that (a) the landscape function Joq is /inear with respect to
the control variable pp, thus both convex and concave, and (b) the admissible set of
pp is a closed convex set.

With conditions (a) and (b) above, and from the theory of convex optimization
[31], it is readily seen that the landscape Joq[pg] is trap-free, i.e., a local minimum
of Joolpp] must also be a global one, because the admissible pp’s form a convex
set. Note that this trap-free property holds under much milder conditions; in particular
the controller B does not need to be controllable (i.e., the states defined in (9) do
not need to be all reachable). As long as the admissible pp’s form a convex set, e.g.,
the convex ball B, = {pp : 0 < Tr(,o%) < ¢ < 1} or the set of separable states
S ={pp:pp =D prB ® ps} when B is a bipartite system consisting of By and
B3, any local optimum must be also globally optimal.

The evident convexity of the control landscape Jqq, Eq. (8), in the Q—Q scenario
is in sharp contrast to its Q—C counterpart Joc, Eq. (7), which is a highly nonlinear
functional of the control field u(¢). The control landscape properties in these two
different scenarios are summarized in Table 1. Unlike the Q—C landscape, there is no
controllability [14,15] requirement on the composite quantum system (see Eq. (3) for
the Q—Q landscape to be trap-free, but the forms of interactions H ]g and H g, in Eq. (3),
and initial states pg, as well as final times 7 can influence the optimal value of Jgg
reachable in the Q—Q control scenario.

Since the function Jqq is linear, see condition (a), it is easy to prove that all [evel
sets (defined as the set of all controls associated with the same landscape function
value) of the Q—Q landscape must also be convex sets, and thus must be connected.
This can be seen from the fact that, given any two initial states pp | and pp 2 on the
same level set of the Q-Q landscape, i.e., Jogoles,1]1 = Jooles,2] = Jo, then any
convex combination of pg | and pp > will also be on the same level set since Jqq is
a linear function of pp, i.c.,

Joglrep,1 + (1 = A)pp 2] = AJogles,1]1+ (1 — A)Jooles,2]
— Ao+ =MJo=Jo, *e0,1].  (10)

The topology (especially connectivity) of level sets has been extensively studied in the
semiclassical Q—C context [32]. The level-set connectedness implies that all global
optimal solutions for the Q—Q landscape are not isolated into disconnected “islands”,
and thus the optimization can be easier because desired optimal solution characteristics

@ Springer



Journal of Mathematical Chemistry

(e.g., seeking a high degree of robustness to variations in pp) can be homotopically
transformed from one local solution to another.

For an entangled initial state p of A/B, i.e., p cannot be separated as p4 ® pp, the
Q—Q landscape can instead be defined as

max /minJoqlp] = Tr{Uap(T)pU} 5(T)(04 @ )], (an

where the control p is the density matrix of the composite A/B quantum system, and
the optimization of the landscape Jog[p] is subject to the following constraints:

Trp(p) = pa, Trp=1, p>=0. (12)

It can be easily verified that this circumstance also entails a convex optimization
problem, since it again involves a linear landscape function in a convex admissible set
of p, and thus the corresponding landscape Jqog[p] is free of local traps.

The formulation leading to the convexity of Q—Q control landscape for two coupled,
otherwise isolated, quantum systems A and B can be readily extended to quantum
systems that are either (1) coupled to time-dependent external fields such that either the
Hamiltonian H4 of A, or Hp of B, or both, becomes time-dependent, or (2) surrounded
by alarge baths such that the composite A/B system become an open system, because
the nature of convexity remains unchanged. In the former time-dependent case, the
unitary propagator Uap(T) = exp(—%HAB T) in Egs. (8) and (11) is replaced by its
time-ordered counterpart [33]

i T
Uap(t) =T exp [_ﬁfo HAB(t)dt].

Whereas, in the latter open system case, the unitary propagator can be replaced by a
set of Kraus operators [34], which may limit the range of achievable Jqq, but do not
alter the linearity of the controller state pp in the landscape function Jgq. Thus, in
both extensions, the convexity is still preserved with full assurance of the trap-free

property.
3.3 Optimal solutions for the Q-Q control landscape

A complete optimal solution for the landscape function minimization, Eq. (9), in the
Q-Q formulation can be obtained by recasting Eq. (8) as

Joolpsl = Tr(ppOp) (13)
where
Op :=TralU} 4(T)(04 @ Ig)Uap(T)(pa & I5)] (14)

with Tr4 denoting the partial trace over A. Here Op defines a de facto landscape
observable associated with control landscape Jog[pg] in the Hilbert space spanned
by the density matrix pp. All the necessary information p4, O4 and Uap(T) for
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determining the landscape optimum resides in the single observable Op, which plays
the role of an effective “observer” enabling the landscape associated with the system
A to be extracted [35]. The upper and lower bounds of Jogleg] in Eq. (13) can be
given in terms of the eigenvalues of Og, i.e., Ogﬁ“ < Tr(ppOp) < OF™, where
O™ and O™ are the maximal and minimal eigenvalues of Op, respectively. The
bound values O™ and OF** depend on the initial state p4 and the observable O4
of the system and, the joint evolution U4 g (T). These bounds represent an important
feature of the Q—Q landscape since they characterize the ultimate limits that can be
produced by a quantum controller [36].

To reach the global maximum (minimum) of Joq, pp must coincide with the eigen-
state(s) of Op corresponding to its maximal (minimal) eigenvalue. For a general

degenerate extremal eigenvalue Ogi“, the landscape optimal solutions

pp =Y pilidil, pi=0, > pi=1, (15)
i i

form a convex set of mixed states, with {|i)} being the subspace of degenerate eigen-
states of Op associated with O%, thus leading to the optimal landscape function value
Joolpg] = OF'™. If the extremal eigenvalue O™ is nondegenerate, the optimal con-
trol pj = |i)(i| can only be a pure state, which is an extremal point on the boundary
of the admissible set. We remark that in general, at the semiclassical Q—C dynamical
landscape optimum, there are infinitely many distinct control fields that require identi-
fication, of at least one field, by deterministic or stochastic searching algorithms [37].
In contrast, the optimal solution pj of the Q-Q control landscape Joq, Eq. (8), can
be determined directly from Eq. (15).

4 lllustration: Q-Q control landscape in the Jaynes-Cummings model

As an illustration of the key principle in Sect. 3, we consider the Jaynes—Cummings
(JC) model [38] that depicts a two-level atom with a ground state |g) and an excited
state |e), in a quantized radiation field containing a single bosonic mode with countably
infinite number states |n), n = 0, 1, .. .. In the rotating wave approximation, the total
Hamiltonian of the JC model is written as

ot T §2 T
Hpp = So0.+va'a+ S (ora+o-a) (16)

where @ and v are the frequencies of the atom and the field, respectively, and 2 is
the coupling strength. ' and a are the creation and annihilation operators of the field,
while o+ = |e)(g|, o— = |g){e|, and o, = |e)(e|] — |g)(g| are operators of the atom.
We remark that in the Q—Q scenario, either the atom or the cavity mode can be taken as
the quantum controller while the other is the system to be controlled. In the following,
we will analyze these two cases separately.
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4.1 Field controlled by atom

Consider the control landscape given in Eq. (9), where the initial state pp of the atom
(B) is utilized as the control to manipulate the photon number (corresponding to the
observable 04 = a'a) of the cavity field (A) that is initially prepared in an arbitrary
Fock state p4 = |n)(n|. Using Eq. (14), the resultant Op is a diagonal matrix with

1 QT
04 =nl, — sin? <—\/A2 + 1) o, (17)

AZ 41 2

where A = *5 is a dimensionless parameter and 7' is the total evolution time. This

result shows that by properly choosing the initial state pp of the atom, one can change
the photon number by at most & L sin? (%v A2+ 1). Only when the atom and

A241
the cavity is on resonance, i.e., A = 0, and the time is chosen such that 27 = =, can
the photon be added (or subtracted) by 1 when the control density matrix pp = |g)(g]|

(or pp = |e)(el).
4.2 Atom controlled by field

Consider the opposite case that the atom (A) is controlled by the quantized field (B)
(e.g., in a superconducting resonator [39]), where the initial state pp of the quantized
field is utilized as the control to optimize the transition probability from the ground to
an excited state in the atom, i.e., we specify that p4 = |g)(g| and O4 = |e)(e|. Using
Eq. (14), the resultant Op is a diagonal matrix with

nlOpln) = — sin2<ﬂ\/A2+n> (18)

A2 4 n 2

forn =0, 1, 2, .... The eigenvalues of Op are distributed within the interval [0, 1], the
maximum and minimum among which will determine the range of the landscape Jog
defined by Eq. 13 and we have 27T = %, k=0,1,2,....In the on-resonance
case of A = 0, when only one eigenvalue of the matrix Op is 1, then the full transition
from |g) to |e) can be accomplished by the control pj; = |n)(n| at time t = T. If
there are multiple eigenvalues equal to 1, the optimal control state can be any density
matrix over the corresponding subspace of Fock states. In the off-resonance case that
A # 0, however, the upper bound for the eigenvalues of Op is always less than 1 for
any finite n, and the full transition may only be asymptotically approached in the limit
that n — o0, i.e., at infinite field strength; however, the landscape is still convex, thus
trap-free even without access to a maximum yield.

Suppose that quantized field states with the photon number up to value Ny, form a
convex subset of all admissible physical states. As stated above, the resulting convex
optimization is always trap-free, no matter how limited the control resource is (e.g.,
when Npy, is a finite integer). Owing to the diagonal structure of O, Jog = (n|Op|n)
is maximized in the eigenspace of Op associated with its largest eigenvalue. The
optimal controller state is associated with the highest eigenvalue of Op.
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Fig. 1 (color online). State transition |g) — [e) in a truncated JC model: the optimal controller state at
different 27, with first Npp levels of the quantized field selected as the control resource. The frequency
detuning A = (v — w)/$2 is set to a A = 0 (on-resonance) and b A = 1 (off-resonance). In the on-
resonance case, perfect state transfer can be achieved (J 53 = 1) and there exists one (27 = m/2) or
multiple (27 = 7) optimal controller states. In the off-resonance case, there is only one optimal controller
state and no perfect state transfer from |g) to |e). Note that the “local peak™ to the left in b is not a trap, as
the plot is with respect to the photon number and not the control pp

As an example we take Npp = 10 and plot the yield Jgq at each Fock state from
n = 0ton = 10 in Fig. 1, among which the highest peak indicates the global
maximum. In the on-resonance case A = 0, there exists only one maximum |4) (4|
when 27T = /2, that achieves perfect state transfer /oo = 1. However, when
T =m, Jog = 1 atboth [1)(1] and |9) (9], which implies that the optimal controller
state can be any superposition or classical mixture of the two states, as discussed
above. In the off-resonance case with A = 1, there is only one optimal (i.e., maximal)
value for Jgq for both 2T = 7 /2 at state |[4)(4| and 2T = m at state |8)(8|. It is
also easy to see that the uniqueness of optimal state holds for any finite Npp. Figure 2
shows the numerical results using the CVX, convex optimization package [40] for the
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Fig. 2 (color online). Convex optimization of quantized field states with Npp = 10, where the field is
on resonance with the atom. In a 27 = /2, and the searches finds an optimal mixed state at pp =
0.5[1)(1] +0.5|9)(9|. In b 2T = 7, the search finds the optimal state at pg = |4)(4|. The insets show the
finally obtained density matrix elements of pp

above resonance cases. The optimization is with respect the controller state pp, which
finds optimal solutions without being trapped as expected from the formal analysis.

5 Conclusions

In conclusion, this paper provides a fully quantum (Q—-Q) formulation for the control
landscape aiming to optimize the expectation value of an observable associated with the
system. The system A and the control B are both treated quantum mechanically, which
together undergo free evolution governed by the joint time-independent Hamiltonian
of the coupled quantum systems. The control consists of the initial density matrix
pp of B, which may be prepared by any available means. Within this framework,
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optimization over the landscape Joq[ o] withrespect to the density matrix pp presents
aconvex problem with a convex admissible set of controls. Therefore, the Q—Q control
landscape is rigorously free of any suboptimal local extrema as either traps or saddles if
no additional constraints are imposed on pp to violate its convexity. The mathematical
simplicity of the Q—Q control problem permits ready extraction of the landscape
optimal solutions p} from a de facto landscape observable, and it has been shown
that the landscape optimum can always be achieved by some pure (or mixed, for
general cases) initial state pj of the control. The conclusions here imply that the
search for optimal solutions over a Q—Q control landscape in the laboratory will be
efficient provided that an appropriate initial state of the control can be prepared. Full
exploitation of this option may call for advanced technological capabilities, and the
analysis here will be compelling for such developments.

As a step towards better understanding of controlling generic quantum systems,
this work explores the Q—Q scenario to broaden the scope and foundation of existing
control landscape studies. The disparate control landscape properties in the Q-C, C—
Q and C—C scenarios can be understood as rooted in taking the appropriate classical
limit [18,25] of either or both of quantum systems in the Q—Q scenario. However,
the detailed nature of making these transitions remains a challenge for the future as
they need to also provide insight into the landscape topological feature involved (e.g.,
what is the origin of the saddle features in many Q—C landscapes [41-43]). Further
theoretical studies of the properties of these additional landscapes are also of practical
importance, with the common C—C scenario only partially explored to date [44],
while the C—Q scenario has yet to be physically defined. A full understanding of these
issues appears complex to unravel but fundamentally important, and we expect that
the present Q—Q landscape analysis may provide a foundation for future research to
draw together the full tetrad of classical and quantum mechanical control scenarios in
a seamless fashion. Additionally, there are other Q—Q control scenarios for exploration
as mentioned in the introduction.

We emphasize that the objective of this work is a fundamental exploration of the Q—
Q landscape features, including the evident distinction from that of the Q—C landscape.
Practical laboratory implementation of Q—Q control calls for a detailed assessment in
each particular scenario, which is beyond the scope of the present work. However, we
note that the Q—Q control regime is most relevant when the quantum system A can be
controlled, quickly and efficiently, via its interaction with the quantum controller B.
At present time the Q—C control offers the most accessible laboratory scenario, but
the compelling Q—Q regime offers an operationally compelling option, as evolving
technologies more readily permit. Besides considering the initial density matrix of B
as the control, the Q—Q control scenario can be also constructed in other ways that
include taking the interaction Hamiltonian H 11§ [in Eq. (3)] as control variables. In the
unrestricted case that the latter operators are allowed to be non-constant , arbitrary
functions of time, we obtain a mathematically equivalent Q—C control landscape by
taking the system and the controller as a joint closed quantum system. The time-
dependent matrix elements of H § can thus be taken as independent control functions.
The corresponding landscape is expected to be trap-free [9], although not convex. The
case that all H g are restricted to be time-independent is also non-convex, and we leave
this case to future studies.
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