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Abstract
A general quantum system may be steered by a control of either classical or quantum
nature and the latter scenario is particularly important in many quantum engineering
problems including coherent feedback and reservoir engineering. In this paper, we
consider a quantum system steered by a quantum controller and explore the underlying
Q–Q (quantum–quantum) control landscape features for the expectation value of an
arbitrary observable of the system, with the control being the engineered initial state of
the quantumcontroller. It is shown that theQ–Qcontrol landscape is inherently convex,
andhencedevoid of local suboptima.Distinct from the landscapes for quantumsystems
controlled by time-dependent classical fields, the controllability is not a prerequisite
for the Q–Q landscape to be trap-free, and there are no saddle points that generally
exist with a classical controller. However, the forms of Hamiltonian, the flexibility in
choosing initial state of the controller, as well as the control duration, can influence the
reachable optimal value on the landscape.Moreover, we show that the optimal solution
of the Q–Q control landscape can be readily extracted from a de facto landscape
observable playing the role of an effective “observer”. For illustration of the basic
Q–Q landscape principles, we consider the Jaynes–Cummings model depicting a two-
level atom in the presence of a cavity quantized radiation field.
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1 Introduction

Quantum optimal control theories and experiments [1,2] typically involve tailored
electromagnetic fields seeking the most favorable outcome of a specified physical or
chemical processes via optimization of the control fields [3,4]. In the past decade,
rigorous analyses of the quantum control landscape, defined as the expectation value
of a desired system observable as a function(al) of the control [5], have been made to
explain the widely observed experimental successes along with much larger numbers
of almost perfect optimal control simulations. This advance is important not only for
obtaining a good understanding of the landscape topology to establish the feasibility
of finding globally optimal controls, but ultimately also for developing more efficient
optimization algorithms exploiting these features. Of immediate relevance is the topo-
logical properties of the landscape critical points, where the landscape gradient with
respect to the control is zero. At issue is the possible appearance of suboptimal local
extrema as traps, which could halt a gradient search and impede reaching a global
optimum.

A general control problem entails a physical system and a control that steers the sys-
tem’s dynamics. Both the system and the control may be either Classical or Quantum
in nature, giving rise to a tetrad of control scenarios: C–C (a classical system steered
by a classical control), Q–C (a quantum system steered by a classical control), C–Q (a
classical system steered by a quantum control), and Q–Q (a quantum system steered
by another quantum system—a quantum controller). The C–C, Q–C and C–Q control
scenarios may be considered as approximations of the Q–Q control scenario, which
then forms the more fundamental case for better understanding three other scenar-
ios. Interestingly, the same tetrad of scenarios has been proposed in machine learning
sciences, where the data and the algorithm can be either Quantum or Classical [6–8].

Most control studies, as well as the corresponding landscape analyses, have been
done on the Q–C control scenario in the semiclassical limit. It has been proved that,
with unconstrained classical control fields, the landscape for a controllable finite-level
quantum system is almost always free of any local suboptima, thus all critical points
are either global maxima or global minima, or possibly saddle points [5,9]. Imposing
constraints on the properties of classical fields, for example, the pulse amplitude,
bandwidth, and length, may result in additional undesirable features on the landscape,
including possibly traps [10].

In this paper, we consider the Q–Q control landscape by taking a fully quantum
perspective, assuming that a quantum system A (herein the system) is directly coupled
to another quantum system B (the control), which can be arbitrarily manipulated
[11–15]. In principle, both A and B have different attributes, for example, being
quantized radiation fields in an optical cavity [16–20]), single atoms or spins, or bulk
material systems, etc., representing a plethora of Q–Q control processes. Specifically,
in the current Q–Q control scenario studied here, the initial density matrix of B is
used to indirectly control the evolution of A, in contrast to the semiclassical Q–C
perspective in which classical fields are used to control the quantum system. Many
quantumengineering problems can be classified into this scenario, e.g., (1) in quantum-
assisted optimization where the initial state of a quantum processor is considered as
the decision variable of a minimization problem [21], (2) in quantummetrology where
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the initial quantum state of the probe is used as the control to improve the precision
of measurement [6], (3) in a quantum interface where a flying single photon prepared
at some certain state is used to transfer quantum information to a standing qubit [22].

The paper will perform an analysis of the Q–Q landscape with the density matrix
of B considered as the control. The aim is to explore the fundamental Q–Q landscape
features rather than design a new optimization algorithm. In the following, we demon-
strate that the landscape expressed in the Q–Q context is convexwithout any additional
assumptions, thus rigorously free of any local traps or saddles. Furthermore, we show
that the Q–Q optimal solution can be directly extracted from a de facto “landscape
observable” that underlies the Q–Q control landscape defined as a function of the
initial density matrix of B.

The remainder of this paper is organized as follows. In Sect. 2, the Q–C and Q–Q
control systems are introduced. In Sect. 3, the Q–Q control landscape is defined and
proved to be convex. For illustration, Sect. 4 illustrates the basic Q–Q concepts with
the Jaynes–Cummings model in which either an atom or an cavity field can be taken
as a quantum controller. Finally, conclusions are made in Sect. 5.

2 From quantum-classical to quantum–quantum control systems

In the semiclassical Q–C scenario, the total Hamiltonian of a closed N -level quantum
system, A, interacting with external classical fields can be written as:

HQC (t) = H0
A +

∑

k

uk(t)Hk
A, (1)

where H0
A is the drift Hamiltonian and Hk

A is the dipole-like control Hamiltonian
associated with the k-th control field uk(t). The corresponding semiclassical unitary
propagator UQC (t) satisfies the time-dependent Schrödinger equation

U̇QC(t) = −i

[

H0
A +

∑

k

uk(t)Hk
A

]

UQC(t), UQC(0) = IN , (2)

where IN is an N -dimensional identity matrix. The density matrix ρA(t), i.e., the state
of A at t > 0, can then be written as ρA(t) = UQC (t)ρA(0)U

†
QC (t), where ρA(0) is

the initial state of A.
In the Q–Q scenario, the joint Hamiltonian of the composite system A/B can be

expressed as
HAB = H0

A ⊗ IB + IA ⊗ H0
B +

∑

k

Hk
A ⊗ Hk

B, (3)

where IA (IB) is the identity operator in the Hilbert space of A (B), which can be either
finite or infinite dimensional, H0

A (H0
B) is the Hamiltonian of A (B), and Hk

A (Hk
B) the

interactionHamiltonian associatedwith A (B). The unitary propagator associatedwith
the joint Hamiltonian HAB of the closed composite system A/B is simply UAB(t) =
exp(− i

! HABt). Initially, the composite system A/B may be in a separable state, i.e.,
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the initial joint density matrix ρ = ρA ⊗ ρB at t = 0, with ρA = ρA(0) denoting the
initial state of A (the system) and ρB = ρB(0) the initial state of B (the control), or in
an entangled state ρ subject to the constraint TrB(ρ) = ρA, i.e., the reduced density
matrix of A is still ρA. As soon as the initial state ρ is created, A and B will evolve in
unison in accordance with the joint Hamiltonian HAB and ρ(t) = UAB(t)ρ(0)U

†
AB(t)

will become entangled. The control scheme analyzed here assumes that the control B
can be prepared at any admissible quantum state [23,24], prior to its interaction with
A. In practice the manipulation or preparation of system B would be performed with
another control of some nature which is not explicitly present in the analysis here.
Even if this latter control is classical it would not change the resultant Q–Q interaction
and its associated landscape for analysis.

The Q–C control system, Eq. (2), can be taken as an approximation of the Q–
Q control system, Eq. (3), in the semiclassical limit when (1) the control B (here,
quantized photon fields) is sufficiently large or has other appropriate characteristics so
that it can be treated classically and (2) any back coupling of the system A on the control
B is negligible so that A (the system) and B (the control) are virtually disentangled
at all times [16,18]. This may be understood by rotating HAB via the transformation
Urot(t) = IA ⊗ exp(−i H0

Bt), giving rise to a time-dependent Hamiltonian, in the
mixed Schröpdinger/Heisenberg picture [16]:

H rot
AB(t) = H0

A ⊗ IB +
∑

k

Hk
A ⊗

[
U†
rot(t)H

k
BUrot(t)

]
. (4)

The semiclassical approximation naturally arises in the so-called large N limit [25]
(e.g., when the density matrix ρB is a coherent state with large mean photon number)
such that the variance of U †

tot(t)H
k
BUtot(t) is much smaller than its expectation value,

with
uk(t) = Tr

[
ρBU

†
rot(t)H

k
BUrot(t)

]
(5)

then playing the role of classical fields in the Q–C control system (2). The approx-
imation in Eq. 5 indicates that the semiclassical control {uk(t)} is actually inherited
from the initial state ρB of the controller B, which can be engineered in advance (e.g.,
coherent or squeezed states of a laser). Therefore, it is natural to take ρB as the control
variable, which can have arbitrary realizable states, in the Q–Q scenario.

3 The convex quantum–quantum control landscapes

In this section, after briefly reviewing the fundamental properties of the Q–C control
landscape, we define the Q–Q control landscape and prove its trap-free property using
convex optimization analysis.
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3.1 The Q–C control landscape

In the Q–C scenario, the dynamic control landscape of the observable OA is defined
as the functional of a classical field u(t), i.e.,

JQC[u(t)] = Tr[UQC(T )ρA(0)U
†
QC(T )OA], (6)

where ρA(0) is the initial density matrix of A. Alternatively, the kinematic landscape
can be defined as the function of the unitary propagator UQC(T ), i.e.,

JQC[UQC(T )] = Tr[UQC(T )ρA(0)U
†
QC(T )OA]. (7)

It has been shown that the dynamical landscape JQC[u(t)]has no traps upon satisfaction
of three basic assumptions:

(i) the system is controllable [26],
(ii) the local mapping δu(t) #→ δUQC(T ) bridging the kinematic and dynamical

landscapes is surjective at any control [9,27],
(iii) the control field u(t) is unconstrained, i.e., in practice there is sufficient freedom

in the control field to exploit assumptions (i) and (ii) [10].

The landscape topologies based on these assumptions have been the focus of many
previous studies [5]. We remark that assumptions (i) and (ii) can be shown as being
“almost always” satisfied [9,28], consistent with the fact that the semiclassical Q–C
landscape rarely exhibits traps.However, depending on the distributions of eigenvalues
of ρA(0) and OA, the landscape may possess saddle points [29].

3.2 The Q–Q control landscape

The Q–Q control objective, analogous to the Q–C one, is to optimize the expectation
value of the observableOA at time T , givenρA the initial state of A.However, instead of
tailoring the classical control field u(t) in the Q–C control scenario, the Q–Q objective
may be reached by tuning either the interaction with the two quantum systems [30]
or the initial state of the quantum controller, as demonstrated in this paper. Since the
interaction between quantum system is usually tuned by some classical parameters
[30], which can be categorized into the Q–C control scenario, it is more natural in this
paper to take the initial state as the control resource.

For a separable initial state ρA ⊗ ρB , the Q–Q landscape can be defined as

JQQ[ρB] = Tr[UAB(T )(ρA ⊗ ρB)U
†
AB(T )(OA ⊗ IB)], (8)

where the control ρB is a positive semi-definite matrix of trace one. Optimization of
the Q–Q landscape JQQ[ρB] can be posed as a semidefinite programming problem:

min JQQ[ρB]
subject to : TrρB = 1, ρB ≽ 0,

(9)
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Table 1 Summary of the
properties of control landscapes
in the Q–C and Q–C scenarios

Formulation Q–C Q–Q

Nature of control u(t) ρB

Landscape function Nonlinear linear

Landscape topology Trap-freea Convex, trap-freeb

aTrap-free upon satisfaction of three key assumptions, and possibly
with saddles
bNo saddles or other suboptimal critical points present

where, without loss of generality, we consider only the minimization problem. From
Eqs. (8) and (9), we note that (a) the landscape function JQQ is linear with respect to
the control variable ρB , thus both convex and concave, and (b) the admissible set of
ρB is a closed convex set.

With conditions (a) and (b) above, and from the theory of convex optimization
[31], it is readily seen that the landscape JQQ[ρB] is trap-free, i.e., a local minimum
of JQQ[ρB] must also be a global one, because the admissible ρB’s form a convex
set. Note that this trap-free property holds under much milder conditions; in particular
the controller B does not need to be controllable (i.e., the states defined in (9) do
not need to be all reachable). As long as the admissible ρB’s form a convex set, e.g.,
the convex ball Bc = {ρB : 0 ≤ Tr(ρ2

B) ≤ c < 1} or the set of separable states
S = {ρB : ρB = ∑

k ρB1 ⊗ ρB2} when B is a bipartite system consisting of B1 and
B2, any local optimum must be also globally optimal.

The evident convexity of the control landscape JQQ, Eq. (8), in the Q–Q scenario
is in sharp contrast to its Q–C counterpart JQC, Eq. (7), which is a highly nonlinear
functional of the control field u(t). The control landscape properties in these two
different scenarios are summarized in Table 1. Unlike the Q–C landscape, there is no
controllability [14,15] requirement on the composite quantum system (see Eq. (3) for
the Q–Q landscape to be trap-free, but the forms of interactions Hk

A and Hk
B , in Eq. (3),

and initial states ρB , as well as final times T can influence the optimal value of JQQ
reachable in the Q–Q control scenario.

Since the function JQQ is linear, see condition (a), it is easy to prove that all level
sets (defined as the set of all controls associated with the same landscape function
value) of the Q–Q landscape must also be convex sets, and thus must be connected.
This can be seen from the fact that, given any two initial states ρB,1 and ρB,2 on the
same level set of the Q–Q landscape, i.e., JQQ[ρB,1] = JQQ[ρB,2] = J0, then any
convex combination of ρB,1 and ρB,2 will also be on the same level set since JQQ is
a linear function of ρB , i.e.,

JQQ[λρB,1 + (1 − λ)ρB,2] = λJQQ[ρB,1] + (1 − λ)JQQ[ρB,2]
= λJ0 + (1 − λ)J0 = J0, λ ∈ [0, 1]. (10)

The topology (especially connectivity) of level sets has been extensively studied in the
semiclassical Q–C context [32]. The level-set connectedness implies that all global
optimal solutions for the Q–Q landscape are not isolated into disconnected “islands”,
and thus the optimization can be easier because desired optimal solution characteristics
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(e.g., seeking a high degree of robustness to variations in ρB) can be homotopically
transformed from one local solution to another.

For an entangled initial state ρ of A/B, i.e., ρ cannot be separated as ρA ⊗ ρB , the
Q–Q landscape can instead be defined as

max/minJQQ[ρ] = Tr[UAB(T )ρU
†
AB(T )(OA ⊗ IB)], (11)

where the control ρ is the density matrix of the composite A/B quantum system, and
the optimization of the landscape JQQ[ρ] is subject to the following constraints:

TrB(ρ) = ρA, Trρ = 1, ρ ≽ 0. (12)

It can be easily verified that this circumstance also entails a convex optimization
problem, since it again involves a linear landscape function in a convex admissible set
of ρ, and thus the corresponding landscape JQQ[ρ] is free of local traps.

The formulation leading to the convexity ofQ–Q control landscape for two coupled,
otherwise isolated, quantum systems A and B can be readily extended to quantum
systems that are either (1) coupled to time-dependent external fields such that either the
Hamiltonian HA of A, or HB of B, or both, becomes time-dependent, or (2) surrounded
by a large baths such that the composite A/B system become an open system, because
the nature of convexity remains unchanged. In the former time-dependent case, the
unitary propagator UAB(T ) = exp(− i

! HABT ) in Eqs. (8) and (11) is replaced by its
time-ordered counterpart [33]

UAB(t) = T exp
[
− i

!

∫ T

0
HAB(t)dt

]
.

Whereas, in the latter open system case, the unitary propagator can be replaced by a
set of Kraus operators [34], which may limit the range of achievable JQQ, but do not
alter the linearity of the controller state ρB in the landscape function JQQ. Thus, in
both extensions, the convexity is still preserved with full assurance of the trap-free
property.

3.3 Optimal solutions for the Q–Q control landscape

A complete optimal solution for the landscape function minimization, Eq. (9), in the
Q–Q formulation can be obtained by recasting Eq. (8) as

JQQ[ρB] = Tr(ρBOB) (13)

where
OB := TrA[U †

AB(T )(OA ⊗ IB)UAB(T )(ρA ⊗ IB)] (14)

with TrA denoting the partial trace over A. Here OB defines a de facto landscape
observable associated with control landscape JQQ[ρB] in the Hilbert space spanned
by the density matrix ρB . All the necessary information ρA, OA and UAB(T ) for
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determining the landscape optimum resides in the single observableOB , which plays
the role of an effective “observer” enabling the landscape associated with the system
A to be extracted [35]. The upper and lower bounds of JQQ[ρB] in Eq. (13) can be
given in terms of the eigenvalues of OB , i.e., Omin

B ≤ Tr(ρBOB) ≤ Omax
B , where

Omax
B and Omin

B are the maximal and minimal eigenvalues of OB , respectively. The
bound values Omin

B and Omax
B depend on the initial state ρA and the observable OA

of the system and, the joint evolution UAB(T ). These bounds represent an important
feature of the Q–Q landscape since they characterize the ultimate limits that can be
produced by a quantum controller [36].

To reach the global maximum (minimum) of JQQ, ρB must coincide with the eigen-
state(s) of OB corresponding to its maximal (minimal) eigenvalue. For a general
degenerate extremal eigenvalue Omin

B , the landscape optimal solutions

ρ∗
B =

∑

i

pi |i⟩⟨i |, pi ≥ 0,
∑

i

pi = 1, (15)

form a convex set of mixed states, with {|i⟩} being the subspace of degenerate eigen-
states ofOB associated withO∗

B , thus leading to the optimal landscape function value
JQQ[ρ∗

B] = Omin
B . If the extremal eigenvalueOmin

B is nondegenerate, the optimal con-
trol ρ∗

B = |i⟩⟨i | can only be a pure state, which is an extremal point on the boundary
of the admissible set. We remark that in general, at the semiclassical Q–C dynamical
landscape optimum, there are infinitely many distinct control fields that require identi-
fication, of at least one field, by deterministic or stochastic searching algorithms [37].
In contrast, the optimal solution ρ∗

B of the Q–Q control landscape JQQ, Eq. (8), can
be determined directly from Eq. (15).

4 Illustration: Q–Q control landscape in the Jaynes–Cummingsmodel

As an illustration of the key principle in Sect. 3, we consider the Jaynes–Cummings
(JC) model [38] that depicts a two-level atom with a ground state |g⟩ and an excited
state |e⟩, in a quantized radiation field containing a single bosonicmodewith countably
infinite number states |n⟩, n = 0, 1, . . .. In the rotating wave approximation, the total
Hamiltonian of the JC model is written as

HAB = ω

2
σz + νa†a + Ω

2
(σ+a + σ−a†) (16)

where ω and ν are the frequencies of the atom and the field, respectively, and Ω is
the coupling strength. a† and a are the creation and annihilation operators of the field,
while σ+ = |e⟩⟨g|, σ− = |g⟩⟨e|, and σz = |e⟩⟨e| − |g⟩⟨g| are operators of the atom.
We remark that in the Q–Q scenario, either the atom or the cavity mode can be taken as
the quantum controller while the other is the system to be controlled. In the following,
we will analyze these two cases separately.
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4.1 Field controlled by atom

Consider the control landscape given in Eq. (9), where the initial state ρB of the atom
(B) is utilized as the control to manipulate the photon number (corresponding to the
observable OA = a†a) of the cavity field (A) that is initially prepared in an arbitrary
Fock state ρA = |n⟩⟨n|. Using Eq. (14), the resultant OB is a diagonal matrix with

OA = nI2 − 1
∆2 + 1

sin2
(

ΩT
2

√
∆2 + 1

)
σz (17)

where ∆ = ν−ω
Ω is a dimensionless parameter and T is the total evolution time. This

result shows that by properly choosing the initial state ρB of the atom, one can change
the photon number by at most ± 1

∆2+1 sin
2
(

ΩT
2

√
∆2 + 1

)
. Only when the atom and

the cavity is on resonance, i.e., ∆ = 0, and the time is chosen such that ΩT = π , can
the photon be added (or subtracted) by 1 when the control density matrix ρB = |g⟩⟨g|
(or ρB = |e⟩⟨e|).

4.2 Atom controlled by field

Consider the opposite case that the atom (A) is controlled by the quantized field (B)
(e.g., in a superconducting resonator [39]), where the initial state ρB of the quantized
field is utilized as the control to optimize the transition probability from the ground to
an excited state in the atom, i.e., we specify that ρA = |g⟩⟨g| and OA = |e⟩⟨e|. Using
Eq. (14), the resultant OB is a diagonal matrix with

⟨n|OB |n⟩ = n
∆2 + n

sin2
(

ΩT
2

√
∆2 + n

)
(18)

for n = 0, 1, 2, . . .. The eigenvalues ofOB are distributedwithin the interval [0, 1], the
maximum and minimum among which will determine the range of the landscape JQQ
defined by Eq. 13 and we have ΩT = (2k+1)π√

∆2+n
, k = 0, 1, 2, . . .. In the on-resonance

case of∆ = 0, when only one eigenvalue of the matrixOB is 1, then the full transition
from |g⟩ to |e⟩ can be accomplished by the control ρ∗

B = |n⟩⟨n| at time t = T . If
there are multiple eigenvalues equal to 1, the optimal control state can be any density
matrix over the corresponding subspace of Fock states. In the off-resonance case that
∆ ̸= 0, however, the upper bound for the eigenvalues of OB is always less than 1 for
any finite n, and the full transition may only be asymptotically approached in the limit
that n → ∞, i.e., at infinite field strength; however, the landscape is still convex, thus
trap-free even without access to a maximum yield.

Suppose that quantized field states with the photon number up to value Nph form a
convex subset of all admissible physical states. As stated above, the resulting convex
optimization is always trap-free, no matter how limited the control resource is (e.g.,
when Nph is a finite integer). Owing to the diagonal structure ofOB , JQQ = ⟨n|OB |n⟩
is maximized in the eigenspace of OB associated with its largest eigenvalue. The
optimal controller state is associated with the highest eigenvalue of OB .
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Fig. 1 (color online). State transition |g⟩ → |e⟩ in a truncated JC model: the optimal controller state at
different ΩT , with first Nph levels of the quantized field selected as the control resource. The frequency
detuning ∆ = (ν − ω)/Ω is set to a ∆ = 0 (on-resonance) and b ∆ = 1 (off-resonance). In the on-
resonance case, perfect state transfer can be achieved (Jmax

QQ = 1) and there exists one (ΩT = π/2) or
multiple (ΩT = π ) optimal controller states. In the off-resonance case, there is only one optimal controller
state and no perfect state transfer from |g⟩ to |e⟩. Note that the “local peak” to the left in b is not a trap, as
the plot is with respect to the photon number and not the control ρB

As an example we take Nph = 10 and plot the yield JQQ at each Fock state from
n = 0 to n = 10 in Fig. 1, among which the highest peak indicates the global
maximum. In the on-resonance case ∆ = 0, there exists only one maximum |4⟩⟨4|
when ΩT = π/2, that achieves perfect state transfer JQQ = 1. However, when
ΩT = π , JQQ = 1 at both |1⟩⟨1| and |9⟩⟨9|, which implies that the optimal controller
state can be any superposition or classical mixture of the two states, as discussed
above. In the off-resonance case with ∆ = 1, there is only one optimal (i.e., maximal)
value for JQQ for both ΩT = π/2 at state |4⟩⟨4| and ΩT = π at state |8⟩⟨8|. It is
also easy to see that the uniqueness of optimal state holds for any finite Nph. Figure 2
shows the numerical results using the CVX, convex optimization package [40] for the
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Fig. 2 (color online). Convex optimization of quantized field states with Nph = 10, where the field is
on resonance with the atom. In a ΩT = π/2, and the searches finds an optimal mixed state at ρB =
0.5|1⟩⟨1| + 0.5|9⟩⟨9|. In b ΩT = π , the search finds the optimal state at ρB = |4⟩⟨4|. The insets show the
finally obtained density matrix elements of ρB

above resonance cases. The optimization is with respect the controller state ρB , which
finds optimal solutions without being trapped as expected from the formal analysis.

5 Conclusions

In conclusion, this paper provides a fully quantum (Q–Q) formulation for the control
landscape aiming to optimize the expectationvalue of anobservable associatedwith the
system. The system A and the control B are both treated quantummechanically, which
together undergo free evolution governed by the joint time-independent Hamiltonian
of the coupled quantum systems. The control consists of the initial density matrix
ρB of B, which may be prepared by any available means. Within this framework,
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optimization over the landscape JQQ[ρB]with respect to the densitymatrixρB presents
a convex problemwith a convex admissible set of controls. Therefore, the Q–Q control
landscape is rigorously free of any suboptimal local extrema as either traps or saddles if
no additional constraints are imposed on ρB to violate its convexity. The mathematical
simplicity of the Q–Q control problem permits ready extraction of the landscape
optimal solutions ρ∗

B from a de facto landscape observable, and it has been shown
that the landscape optimum can always be achieved by some pure (or mixed, for
general cases) initial state ρ∗

B of the control. The conclusions here imply that the
search for optimal solutions over a Q–Q control landscape in the laboratory will be
efficient provided that an appropriate initial state of the control can be prepared. Full
exploitation of this option may call for advanced technological capabilities, and the
analysis here will be compelling for such developments.

As a step towards better understanding of controlling generic quantum systems,
this work explores the Q–Q scenario to broaden the scope and foundation of existing
control landscape studies. The disparate control landscape properties in the Q–C, C–
Q and C–C scenarios can be understood as rooted in taking the appropriate classical
limit [18,25] of either or both of quantum systems in the Q–Q scenario. However,
the detailed nature of making these transitions remains a challenge for the future as
they need to also provide insight into the landscape topological feature involved (e.g.,
what is the origin of the saddle features in many Q–C landscapes [41–43]). Further
theoretical studies of the properties of these additional landscapes are also of practical
importance, with the common C–C scenario only partially explored to date [44],
while the C–Q scenario has yet to be physically defined. A full understanding of these
issues appears complex to unravel but fundamentally important, and we expect that
the present Q–Q landscape analysis may provide a foundation for future research to
draw together the full tetrad of classical and quantum mechanical control scenarios in
a seamless fashion. Additionally, there are other Q–Q control scenarios for exploration
as mentioned in the introduction.

We emphasize that the objective of this work is a fundamental exploration of the Q–
Q landscape features, including the evident distinction from that of theQ–C landscape.
Practical laboratory implementation of Q–Q control calls for a detailed assessment in
each particular scenario, which is beyond the scope of the present work. However, we
note that the Q–Q control regime is most relevant when the quantum system A can be
controlled, quickly and efficiently, via its interaction with the quantum controller B.
At present time the Q–C control offers the most accessible laboratory scenario, but
the compelling Q–Q regime offers an operationally compelling option, as evolving
technologies more readily permit. Besides considering the initial density matrix of B
as the control, the Q–Q control scenario can be also constructed in other ways that
include taking the interaction Hamiltonian Hk

B [in Eq. (3)] as control variables. In the
unrestricted case that the latter operators are allowed to be non-constant , arbitrary
functions of time, we obtain a mathematically equivalent Q–C control landscape by
taking the system and the controller as a joint closed quantum system. The time-
dependent matrix elements of Hk

B can thus be taken as independent control functions.
The corresponding landscape is expected to be trap-free [9], although not convex. The
case that all Hk

B are restricted to be time-independent is also non-convex, and we leave
this case to future studies.
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