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Abstract
We derive an upper bound for the time needed to implement a generic unitary 
transformation in a d dimensional quantum system using d control fields. We 
show that given the ability to control the diagonal elements of the Hamiltonian, 
which allows for implementing any unitary transformation under the premise 

of controllability, the time T needed is upper bounded by T ! πd2(d−1)
2gmin

 where 
gmin is the smallest coupling constant present in the system. We study the 
tightness of the bound by numerically investigating randomly generated 
systems, with specific focus on a system consisting of d energy levels that 
interact in a tight-binding like manner.

Keywords: quantum control, quantum information, speed limits

(Some figures may appear in colour only in the online journal)

1. Introduction

Controlling quantum systems through external classical fields on a time scale that is below 
the typical decoherence timescale is crucial for employing quantum mechanical features for 
future quantum devices. In particular, the length T of the classical pulses, sometimes referred 
to as the minimum gate time, used to implement a target unitary transformation Ug that allows 
to carry out a specific quantum information task should scale in a reasonable manner with the 
underlying Hilbert space dimension d. While lower bounds on T, known as quantum speed 
limits (for a detailed review we refer to [1], and works cited therein), give inherent limits on 
how fast unitary operations (states) can be implemented (prepared) through shaped classical 
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fields, such lower bounds do not yield much insights on how much time is at most needed to 
achieve this task. Thus, an upper bound on T is highly desirable. Such an upper bound should 
depend on the target unitary transformation, the Hamiltonian describing the quantum system 
under consideration, the number of controls available to implement the target transformation, 
and possible constraints, such as energy and bandwidth in the control fields. Clearly, if every 
matrix element of the Hamiltonian describing a d dimensional quantum system can be con-
trolled instantaneously and arbitrarily, every unitary transformation in the unitary group U(d) 
can be implemented instantaneously through d2 (unconstrained) classical fields controlling 
each matrix element. But what if we have only restricted access to the system under consider-
ation? How many controls, and which controls, then allow for implementing every Ug ∈ U(d) 
in a time at most O(poly(d))? Here we show that if the diagonal elements of the Hamiltonian 
describing a d dimensional quantum system can be generically controlled through classical 
fields, and if the system is controllable with these fields, the time to implement every unitary 
operations scales at most as O(d3). We note, however, that for qubit systems consisting of n 
qubits (i.e. d  =  2n) our upper bound scales exponentially in n. This should not be surprising, as 
the time T to implement a generic unitary transformation scales exponentially in the number 
of qubits, which can be traced back to the fact that most unitary operations cannot be imple-
mented efficiently, i.e. in a time that scales polynomially in the number of qubits [2]. For fur-
ther reading regarding time-optimal control and quantum computing we refer to the seminal 
works [3, 4], while an upper bound on T for qubit systems was developed in [5].

While in this work we mostly focus on networks determined by a set of basis states {|n⟩} 
describing a d dimensional quantum system, we also consider the generalization to networks 
consisting of qubits. Here the associated graph is not determined by a coupling between two 
kets, but instead by qubits coupled through an arbitrary two-body interaction term. Based on 
the number of CNOT gates needed to create a specific unitary transformation [6–8], we thus 
also provide an upper bound on T to implement a given Ug on a n-qubit network using 2n local 
controls.

One way to obtain an upper bound on T is to find a sequence of gates that corresponds 
to some application of the controls that allows for creating a generic unitary transforma-
tion. Upper bounding the corresponding time needed to implement the sequence then yields 
an upper bound for implementing a generic unitary transformation. This strategy has, for 
instance, been successfully applied for a n-qubit network to characterize the set of gates that 
can be implemented in a time at most polynomial in the number of qubits using 2n local 
controls [5]. Here we build up on the concepts developed in [5] and show for a d dimensional 
quantum system described by a Hamiltonian

H0 =
∑

n,m

gn,m|n⟩⟨m|, (1)

that if the associated graph is connected, the set of controls C = {|n⟩⟨n|}dn=1 allows for imple-
menting every Ug ∈ U(d) in a time which is upper bounded by

T ! πd2(d − 1)
2gmin

, (2)

where gmin = minn̸=m{|gn,m|}. Thus, fixing a basis to represent the Hamiltonian H0 of the 
quantum system under consideration and controlling the diagonal elements of H0 allows for 
implementing every unitary transformation in a time that is upper bounded by (2), provided 
the system is fully controllable through the controls used. In fact we show that if the graph 
associated to (1) is connected, the controls C generate a fully controllable system and the time 
T to implement every unitary operation is upper bounded by (2).
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The work is organized as follows. We begin in section 2.1 by representing a quantum 
system described by the Hamiltonian (1) as a weighted and undirected graph. We show in sec-
tion 2.2 that we can reduce such a graph into a single-edge without a time cost using dynami-
cal decoupling. In section 3.1 we present our first result. Assuming the graph is connected, by 
propagating single-edge evolutions across a path connecting any pair of vertices, any interac-
tion between a pair of vertices can be created in a time linear in d. In section 3.2 we derive 
our main result (2). The obtained results rely on the assumption that the control fields corre-
sponding to the controls C are unconstrained, so that every unitary operation v = exp(−iαC) 
with C ∈ C can be implemented instantaneously. In section 4 we numerically study the tight-
ness of the derived upper bound by considering examples, followed by some econcluding 
remarks in section 5.

2. Preliminaries

We consider a d dimensional quantum control system evolving on the unitary group U(d) 
described by the Schrödinger equation for the time evolution operator

d
dt
U(t) = −iH(t)U(t), (3)

where we set ! = 1 and the time dependent Hamiltonian is given by

H(t) =
∑

n ̸=m

gn,m|n⟩⟨m|+
∑

n

fn(t)Pn. (4)

We refer to

H0 =
∑

n ̸=m

gn,m|n⟩⟨m|, (5)

as the drift Hamiltonian and the set of controls C = {Pn}dn=1 is given by orthonormal projec-
tions Pn = |n⟩⟨n|, where f n(t) are the corresponding control fields, which are throughout this 
work assumed to be unconstrained. Typically, the goal in quantum control is to shape the 
control fields in such a way that for some time T the solution U(T) to (3) is given by a desired 
unitary transformation Ug. We call the control system fully controllable if every Ug ∈ U(d) 
can be implemented through shaping the control fields. It is well known that the system is 
fully controllable iff the dynamical Lie algebra [9, 10] generated by the drift Hamiltonian 
and the set of controls spans the full space, i.e. the algebra u(d) consisting of d × d skew 
hermitian matrices. However, how much time T does it take to implement a generic unitary 
transformation? In order to derive the upper bound (2), we start by explaining how H0 can be 
represented as a weighted, undirected graph, and how the controls C can be used to instanta-
neously remove vertices from the graph.

2.1. Quantum control systems and graphs

We first note that we can rewrite the drift Hamiltonian as

H0 =
∑

n>m

|gn,m|(eiφn,m |n⟩⟨m|+ e−iφn,m |m⟩⟨n|), (6)

where the relative phases φn,m  can be removed by applying the unitary transformations 
v = exp(−iαC) with C ∈ C, which can be implemented instantaneously assuming that the 
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control fields f n(t) are unconstrained. We remark here that this assumption is a reasonable 
approximation in the case where the strength of the control fields can be made much larger 
than the typical energy scales of the systems being considered. Thus, in the case of uncon-
strained control fields removing the phases does not take time. Using the controls we can 
therefore map H0 given by (5) into the drift Hamiltonian

H0 =
∑

n>m

|gn,m|Bn,m,
 (7)

without a time cost, where we defined Bn,m = |n⟩⟨m|+ |m⟩⟨n|. In order to derive the bound 
(2) we can hence equivalently work with the drift Hamiltonian given by (7).

The operators Bn,m describe interactions between the states |n⟩ and |m⟩, whereas |gn,m| is the 
corresponding interaction strength. We can visualize these interactions through a weighted 
and undirected graph G(V ,E). The set of vertices V  correspond to the basis states {|n⟩} span-
ning the Hilbert space of the quantum system and are labeled by n, the set of edges E labeled 
by (n,m) describe interactions between vertices n and m, and the interaction strength |gn,m| 
corresponds to the weights. Later on we will also consider qubit graphs in which V  and E 
represent qubits and two-body interactions, respectively.

For a drift Hamiltonian H0 of the form (7) we denote the corresponding graph by G0(V0,E0). 
In order to upper bound the time to implement a generic target unitary transformation it is 
useful to introduce the complete graph GK(VK ,EK) which consists of |VK | = d vertices and 
|EK | = d(d−1)

2  edges.
We proceed by first showing how to remove edges from G0 instantaneously, followed by 

upper bounding the time to connect a generic pair of vertices, i.e. creating a generic Bn,m with 
(n,m) ∈ EK .

2.2. Dynamical decoupling: removing edges without a time cost

Dynamical decoupling allows for removing unwanted interactions of a Hamiltonian H0 by 
rapidly applying a set of unitary transformations V  [11, 12] in a Suzuki-Trotter type sequence,

Λt/n =
∏

v∈V

v† exp
(
−iH0

t
|V|n

)
v, (8)

which converges in the limit of infinitely fast operations (n → ∞) to a unitary operation 
U = exp(−iM(H0)t), where the map M is given by

M(·) = 1
|V|

∑

v∈V

v†(·)v. (9)

We remark here that such maps are typically studied in the context of Hamiltonian simulation 
(see e.g. [13]), dynamical decoupling (see e.g. [11, 12, 14]), and unital quantum channels with 
equal weights [2]. We further note that a concatenation M1(M2(H0)) = M̃(H0) yields again a 
map of the form (9), so that M̃ can be obtained by a sequence of the form (8).

Now, taking Vj = {1, vj} where vj = exp(−iπPj) = 1− 2Pj we have for H0 given by (7),

Mj(H0) = H0 − (PjH0 + H0Pj), (10)

so that Mj  maps the graph G0 into a subgraph in which the vertex j  is removed. Iteratively 
removing vertices by constructing concatenations of different Mj ’s therefore allows to map 
G0 into a subgraph containing only a single edge. We conclude that there always exists a set 
of unitary transformations generated by the controls C that allows for mapping the natural 
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evolution given by H0 into an evolution generated by |gn,m|Bn,m without a time cost [15]. Thus, 
for the control system defined by (4) any unitary operation of the form

Sn,m(α) = exp(−iαBn,m), (11)

with (n,m) ∈ E0 can be implemented through the controls in a time tn,m = α/|gn,m|. We note 
that within the subspace spanned by {|n⟩, |m⟩} the operation Sn,m(α) induces oscillations 
between the states |n⟩ and |m⟩, and for α = π/2 the states are swapped. Adopting the termi-
nology used in quantum information, we refer to the corresponding unitary transformation 
Sn,m(π/2) as a SWAP gate, noting that here two basis states are swapped rather than qubit 
states.

3. Results

So far we have shown that unitary operations generated by interactions Bn,m of the Hamiltonian 
(7) can be implemented in a time which is of the order of the inverse energy associacted with 
the interaction. However, how much time does it take to create interactions that are not present 
in H0? In order to upper bound the time to implement a unitary operation generated by such 
interactions, we now show how to upper bound the time to create arbitrary interactions.

3.1. Upper bounding the time to create interactions

From now on we assume that G0 is connected and upper bound the time to create a generic 
Sn,m with (n,m) ∈ EK , where EK is the set of edges of the complete graph GK. We establish the 
following lemma.

Lemma 1. Let the graph associated to the drift Hamiltonian (7) be connected and de-
note by gmin the smallest edge weight. Then for the control system (3) a unitary operation 
Sn,m(α) ∈ U(d) with (n,m) ∈ EK  of the form (11) can be implemented in a time tn,m which is 
upper bounded by

tn,m ! |α|+ π(d − 2)
gmin

. (12)

Proof. We relabel the vertices of G0 so that the vertices n and m are labeled by 1 and N 
and we consider a path connecting the vertices 1 and N by passing through connected verti-
ces 1, 2, · · · ,N , i.e. ( j, j+ 1) ∈ E0 where j = 1, · · ·N − 1. Using dynamical decoupling we 
can instantaneously reduce G0 to a single edge (1, 2), so that the SWAP gate S1,2(π/2) can 
be implemented in a time t1,2 = π

2|g1,2|. Then, iteratively reducing G0 to edges ( j, j+ 1) up to 
(N − 2,N − 1) allows for successively implementing SWAP gates on adjacent vertices, which 

permutes the vertices according to 12 · · ·N → 23 · · · (N − 1)1N. This takes τ = π
2
∑N−2

j=1
1

|gj,j+1| 
amount of time. We proceed by reducing G0 to the single edge (N − 1,N) and implement the 

operation SN−1,N(α), which takes tN−1,N = |α|
|gN−1,N | amount of time. Iteratively restoring the 

order of the vertices by performing (N − 2) SWAP operations so that S1,N(α) is effectively 
implemented takes time τ . Thus, the gate S1,N(α) can be implemented in a time

J Lee et alJ. Phys. A: Math. Theor. 53 (2020) 125304
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t1,N = tN−1,N + 2τ

=
|α|

|gN−1,N |
+ π

N−2∑

j=1

1
|gj,j+1|

. (13)

Clearly, N is upper bounded by the total number of vertices present in G0, which is given by 
the dimension d of the quantum system. Introducing the smallest edge weight present in G0 
as gmin = min(n,m)∈E0{|gn,m|} we find that the time tn,m to implement a generic Sn,m(α) with 
(n,m) ∈ EK  is therefore upper bounded by (12). □ 

We remark here that the sequence of SWAP operations used to obtain (13) is not necessar-
ily time optimal. However, minimizing (13) over all paths connecting vertices n and m yields 
the tightest version of the obtained bound.

Instead of associating G0 with coupled states described by Bn,m, we can also consider the 
case where G0 describes a n-qubit network (i.e. here qubits represent vertices labeled by i 
and edges labeled by (i, j) are given by two body interaction terms) described by the drift 
Hamiltonian

H0 =
∑

i∈V ,
α∈{x,y,z}

ω(i)
α σ(i)

α +
∑

(i,j)∈E,
α,β∈{x,y,z}

g(i,j)α,βσ
(i)
α σ( j)

β ,
 (14)

where σ(i)
α  denote the Pauli spin operators acting only non-trivially on the ith qubit, and ω(i)

α  and 

g(i,j)α,β are energy splittings and coupling constants, respectively. If each qubit can be addressed 
with two orthogonal control fields described by the set of controls C = {σ(i)

x ,σ(i)
y }ni=1, as 

shown in [5] the time tcnoti,j  to implement a CNOT gate on qubits i and j  is upper bounded by,

tcnoti,j ! π

gmin

(
4 dist(i, j)− 3

4

)
. (15)

Here gmin is the smallest non-zero coupling constant present in the Hamiltonian (14) and 
dist(i, j) denotes the geodesic path distance between two qubits i and j  given as the smallest 
number of edges in a path connecting the two considered qubits, noting that dist(i, j) ! n− 1.

3.2. Upper bounding the time to implement generic unitary operations

In order to understand how to upper bound the evolution time of an arbitrary unitary, we can 
decompose it into elementary interactions (11) and local controls. In general, the number of 
terms in such decomposition is hard to characterize [16]. For the special case of decomposing 
an element of U ∈ U(d) we can however use the proof of decompositions of unitaries given 
in [2], which shows that

U = V1V2 . . .Vk,

where k ! d(d − 1)/2, and each Vk  acts nontrivially only on two specific levels nk,mk  (and is 
therefore isomorphic to an element of U(2)). By the Euler decomposition, we can furthermore 
decompose such an element into a gate sequence including rotations around z, which can be 
implemented through the controls C instantaneously, and into a rotation around x, which by 
equation (12) can maximally take a time of πd

gmin
. We therefore obtain our final result, which 

we summarize in the following theorem.

J Lee et alJ. Phys. A: Math. Theor. 53 (2020) 125304
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Theorem 1. Let the graph associated with the drift Hamiltonian (7) be connected and de-
note by gmin the smallest edge weight. Then for the control system (3) the time T to implement 
a unitary operation Ug ∈ U(d) is upper bounded by

T ! πd2(d − 1)
2gmin

. (16)

Remarkably, in contrast to the upper bound obtained in [5], the derived bound (16) is inde-
pendent of the target unitary transformation Ug as well as the accuracy of implementing Ug.

If we consider again a n-qubit network described by the drift Hamiltonian (14) and denote 
by NCNOT(Ug) the number of CNOT gates needed to create a specific gate Ug ∈ SU(2n) by 
locally controlling each qubit, according to (15) the time T(Ug) needed to create Ug is then 
upper bounded by

T(Ug) !
π(4n− 7)
4gmin

NCNOT(Ug). (17)

However, note that for creating every Ug ∈ SU(2n), the number of CNOT gates needed must 
scale exponentially in n, whereas the prefactors have been successively improved in the last 
decade [6–8].

4. Tightness of the bounds

In order to analyze the tightness of the obtained bounds, we compare the bounds (12) and 
(16) to previously derived lower bounds [17], as well as to minimum gate times obtained 
from numerical gate optimization using the GRAPE algorithm [18], which is included in the 
Python package QuTip [19]. Similar to the method utilized in [17], a population binary search 
algorithm is run over T until the gate error is smaller than 10−4.

4.1. d-level system

We first consider a quantum system consisting of d energy levels interacting in a tight-binding 
like manner described by the drift Hamiltonian

H0 = J
d−1∑

j=1

(|j⟩⟨j+ 1|+ |j+ 1⟩⟨j|), (18)

where J is the coupling strength chosen to be J = 1/
√

2(d − 1) so that ∥H0∥ = 1 with ∥ · ∥ 
being the Hilbert Schmidt norm. We assume that the energy levels |j⟩ can be controlled arbi-
trarily so that the set of controls is given by C = {|j⟩⟨j|}dj=1. The goal is to implement a SWAP 
operation (i.e. Ug = S1,d(π/2) ) between the first and the dth level. According to lemma 1, the 
time tswap1,d  needed to implement Ug is upper bounded by

tswap1,d ! π

2
(2d − 3)

√
2(d − 1). (19)

Based on the results in [17] with further details found in the appendix we can also lower bound 
tswap1,d  by

√
2(d − 1) ! tswap1,d . (20)

J Lee et alJ. Phys. A: Math. Theor. 53 (2020) 125304
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In figure 1 we plot the upper bound (black curve) and the lower bound (blue curve), as well 
as the minimum time T needed to implement the SWAP operation S1,d(π/2) obtained from 
numerical gate optimization using GRAPE (green curve) as a function of the number of levels 
d.

First we observe that the time obtained from numerical optimization lies between the upper 
and lower bounds, as expected. Furthermore, due to the fact that the upper bound in this sys-
tem scales as d3/2 while the lower bound scales as d, in terms of assessing the tightness of the 
bound with regard to scaling, the scaling of the upper bound deviates from the true scaling by 
at most d1/2, which is sub-linear.

4.2. Random graphs

We proceed by considering random drift Hamiltonians that correspond to random connected 
graphs. Throughout this section the couplings |gn,m| are chosen to be uniformly random in the 
interval [1, 2] so that gmin = 1 and we study the validity of the bounds (12) and (16) for quant um 
systems of dimension d ∈ [2, 6], noting that for a fixed d ∈ [2, 6] we have {1, 2, 6, 21, 112} dis-
tinct connected graph.

4.2.1. Single edge operations. We begin by studying the tightness of the bound (12) by con-
sidering random single edge operations Sn,m(α) by picking α uniformly random in [−π

2 ,
π
2 ] and 

10 random edges amongst all 
(
d
2

)
 of the complete graph. According to (12) for gmin = 1 the 

time tn,m to implement such a random Sn,m is then upper bounded by

tn,m ! π

(
d − 3

2

)
, (21)

which is shown as a function of d (black curve) in figure 2. The green and the orange curves 
correspond to the times to implement Sn,m obtained from numerical gate optimization, where 

Figure 1. Comparison of the time T as a function of d to implement a SWAP operation 
between the 1st and the dth level for the d-level system (18) obtained from numerical 
gate optimization using GRAPE, with the upper bound (black) given in (19) and the 
lower bound (blue) given in (20).

J Lee et alJ. Phys. A: Math. Theor. 53 (2020) 125304
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we plotted the average (green) taken over 10 randomly chosen Sn,m and the number of different 
distinct connected graphs for d ∈ [2, 6] (i.e. the average was taken over {10, 20, 60, 20, 1120} 
different runs), whereas the orange curve shows the maximum value.

From figure 2 we see that the upper bound is indeed above the maximum amongst random 
GRAPE runs. As expected, while the average over random single-edge operations tends to 
be lower than the upper bound, the maximum remains relatively close to the bound (21). 
Remarkably, all three data sets are linear in d, showing that the upper bound captures the scal-
ing of the minimum time reasonably well.

4.2.2. General behavior. Finally, we test the tightness of the upper bound (16) for the time T 
to implement generic unitary operations Ug ∈ U(d). For gmin = 1 we have,

T ! π

2
d2(d − 1). (22)

As in the single-edge operation case, for each dimension d we run the trials on every distinctly 
homeomorphic connected graph. We construct random unitary operations Ug = exp(−iH) by 
picking a random hermitian matrix H.

From the results in figure 3 we again note that the upper bound is indeed above the maxi-
mum amongst random GRAPE runs. Furthermore, we can see a ‘similar’ polynomial scaling 
for the maximum and the average times.

5. Conclusions

We have derived an upper bound for the time T to implement a generic unitary transformation 
on a quantum system in which the diagonal element (in a given basis) can be controlled arbi-
trarily. This was achieved by first describing the considered system as an undirected and con-
nected graph, followed by showing that edges of the graph can be removed without a time cost 

Figure 2. Comparison of the time T to implement a random single edge operation given 
by (11) on a quantum system of dimension d described by a randomly chosen connected 
graph obtained from numerical gate optimization using GRAPE, with the upper bound 
(black) given in (21). The green curves shows the average over {10, 20, 60, 20, 1120} 
with each value corresponding to a fixed d ∈ [2, 6] and the orange curve shows the 
maximum value. Further details can be found in the main body of the manuscript.

J Lee et alJ. Phys. A: Math. Theor. 53 (2020) 125304
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using a decoupling sequence generated by the controlled diagonal elements. Afterwards we 
showed in lemma 1 that the time to implement unitary operations generated by generic edges 
of the complete graph scales at most linearly in the dimension of the system. Consequently, 
every unitary transformation can be implemented in a time at most O(d3), which was sum-
marized in theorem 1. It is interesting to note that the corresponding upper bound on T given 
in (16) is independent of the target unitary transformation and the accuracy the unitary trans-
formation is implemented.

Based on the results in [5] we also derived an upper bound for the time to create a unitary 
transformation in a qubit network in which each qubit can be locally controlled in terms of the 
number of CNOT gates needed to create the unitary transformation.

By considering examples we numerically studied the tightness of the obtained bounds and 
found that the bounds capture the system size dependence of T remarkably well.

One of the key assumptions in this works was to assume that the control fields are uncon-
strained so that interactions can be removed instantaneously through a decoupling sequence. 
Recently, however, it was shown [20] that under some assumptions on the drift Hamiltonian 
even limited control fields can yield a desirable scaling of the minimum time for implement-
ing unitary transformations. It would be interesting to combine the approaches used in [20] 
with the results obtained here to characterize the number and the type of controls needed to 
efficiently control quantum systems.
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Figure 3. Comparison of the time T to implement a random unitary operation on a 
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given in (16). The green curves shows the average over {10, 20, 60, 20, 1120} with each 
value corresponding to a fixed d ∈ [2, 6] and the orange curve shows the maximum 
value. Further details can be found in the main body of the manuscript.
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Appendix. A lower bound for the d-level system

Using the results obtained in [17] we show here that for the controlled d-level system described 
by

H(t) = J
d−1∑

j=1

(|j⟩⟨j+ 1|+ |j+ 1⟩⟨j|) +
d∑

j=1

fj(t)|j⟩⟨j|,
 (A.1)

where J = 1√
2(d−1)

, the time T to implement a SWAP operation

Ug = exp
(
−i

π

2
(|1⟩⟨d|+ |d⟩⟨1|)

)
, (A.2)

between the 1st and the dth levels is lower bounded by
√
2(d − 1) ! T . (A.3)

From [17] we have that in general for a control system of the form

H(t) = H0 +
n∑

k=1

fk(t)Hk, (A.4)

evolving on the unitary group U(d) the time T to implement a generic Ug ∈ U(d) is lower 
bounded by

max
V∈

⋂
k Stab(iHk)

∥[Ug,V]∥
∥[H0,V]∥

! T , (A.5)

valid for any unitarily invariant norm where Stab(iHk) denotes the stabilizer of iHk  defined as 
Stab(x) = {U ∈ U(d) |U†xU = x} for some x ∈ u(d).

For the d-level control system the intersection of the stabilizers is given by 
V = diag(eiθ1 , . . . , eiθd) so that using the Hilbert Schmidt norm defined as ∥A∥ =

√
Tr{A†A} 

yields

∥[Ug,V]∥2

∥[H0,V]∥2
=

1
J2

· 1− cos (θ1 − θd)

d − 1− (cos (θ1 − θ2) + . . .+ cos (θd − θd−1))
.

By defining xi ≡ θi − θi+1 and

S(x1, · · · , xd−1) ≡
1− cos(

∑d−1
i=1 xi)

1− 1
d−1

∑d−1
i=1 cos(xi)

, (A.6)

the maximization in (A.5) is then equivalent to maximizing S(x1, · · · , xd−1) over all xi. We 
claim that this quantity is maximized when xi  =  0 for all i, which implies that V  is given by 
the identity (up to a global phase). To see this we set xi  =  x for all i and take the limit,

lim
x→0

S(x) = (d − 1)2,

which is indeed the maximum. We therefore have 2(d − 1)2 ! T2 , which yields the desired 
result (A.3).
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