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CrossMark
Abstract
We derive an upper bound for the time needed to implement a generic unitary
transformation in a d dimensional quantum system using d control fields. We
show that given the ability to control the diagonal elements of the Hamiltonian,
which allows for implementing any unitary transformation under the premise

nd*(d—1)
28mi

of controllability, the time 7 needed is upper bounded by T < where

n

gmin 1S the smallest coupling constant present in the system. We study the
tightness of the bound by numerically investigating randomly generated
systems, with specific focus on a system consisting of d energy levels that
interact in a tight-binding like manner.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Controlling quantum systems through external classical fields on a time scale that is below
the typical decoherence timescale is crucial for employing quantum mechanical features for
future quantum devices. In particular, the length T of the classical pulses, sometimes referred
to as the minimum gate time, used to implement a target unitary transformation U, that allows
to carry out a specific quantum information task should scale in a reasonable manner with the
underlying Hilbert space dimension d. While lower bounds on 7, known as quantum speed
limits (for a detailed review we refer to [1], and works cited therein), give inherent limits on
how fast unitary operations (states) can be implemented (prepared) through shaped classical
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fields, such lower bounds do not yield much insights on how much time is at most needed to
achieve this task. Thus, an upper bound on 7'is highly desirable. Such an upper bound should
depend on the target unitary transformation, the Hamiltonian describing the quantum system
under consideration, the number of controls available to implement the target transformation,
and possible constraints, such as energy and bandwidth in the control fields. Clearly, if every
matrix element of the Hamiltonian describing a d dimensional quantum system can be con-
trolled instantaneously and arbitrarily, every unitary transformation in the unitary group U(d)
can be implemented instantaneously through ¢ (unconstrained) classical fields controlling
each matrix element. But what if we have only restricted access to the system under consider-
ation? How many controls, and which controls, then allow for implementing every U, € U(d)
in a time at most O(poly(d))? Here we show that if the diagonal elements of the Hamiltonian
describing a d dimensional quantum system can be generically controlled through classical
fields, and if the system is controllable with these fields, the time to implement every unitary
operations scales at most as O(d>). We note, however, that for qubit systems consisting of n
qubits (i.e. d = 2") our upper bound scales exponentially in n. This should not be surprising, as
the time 7 to implement a generic unitary transformation scales exponentially in the number
of qubits, which can be traced back to the fact that most unitary operations cannot be imple-
mented efficiently, i.e. in a time that scales polynomially in the number of qubits [2]. For fur-
ther reading regarding time-optimal control and quantum computing we refer to the seminal
works [3, 4], while an upper bound on T for qubit systems was developed in [5].

While in this work we mostly focus on networks determined by a set of basis states {|n)}
describing a d dimensional quantum system, we also consider the generalization to networks
consisting of qubits. Here the associated graph is not determined by a coupling between two
kets, but instead by qubits coupled through an arbitrary two-body interaction term. Based on
the number of CNOT gates needed to create a specific unitary transformation [6-8], we thus
also provide an upper bound on 7"to implement a given U, on a n-qubit network using 2z local
controls.

One way to obtain an upper bound on 7 is to find a sequence of gates that corresponds
to some application of the controls that allows for creating a generic unitary transforma-
tion. Upper bounding the corresponding time needed to implement the sequence then yields
an upper bound for implementing a generic unitary transformation. This strategy has, for
instance, been successfully applied for a n-qubit network to characterize the set of gates that
can be implemented in a time at most polynomial in the number of qubits using 2n local
controls [5]. Here we build up on the concepts developed in [5] and show for a d dimensional
quantum system described by a Hamiltonian

Hy = ;gn,rn|n><m|v (1)

that if the associated graph is connected, the set of controls C = {|n)(n|}9_, allows for imple-
menting every U, € U(d) in a time which is upper bounded by

< nd*(d — 1)

2g min
where gmin = min, 4y, {|g.m|}. Thus, fixing a basis to represent the Hamiltonian Hy of the
quantum system under consideration and controlling the diagonal elements of H allows for
implementing every unitary transformation in a time that is upper bounded by (2), provided
the system is fully controllable through the controls used. In fact we show that if the graph
associated to (1) is connected, the controls C generate a fully controllable system and the time
T to implement every unitary operation is upper bounded by (2).

; 2)
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The work is organized as follows. We begin in section 2.1 by representing a quantum
system described by the Hamiltonian (1) as a weighted and undirected graph. We show in sec-
tion 2.2 that we can reduce such a graph into a single-edge without a time cost using dynami-
cal decoupling. In section 3.1 we present our first result. Assuming the graph is connected, by
propagating single-edge evolutions across a path connecting any pair of vertices, any interac-
tion between a pair of vertices can be created in a time linear in d. In section 3.2 we derive
our main result (2). The obtained results rely on the assumption that the control fields corre-
sponding to the controls C are unconstrained, so that every unitary operation v = exp(—iaC)
with C € C can be implemented instantaneously. In section 4 we numerically study the tight-
ness of the derived upper bound by considering examples, followed by some econcluding
remarks in section 5.

2. Preliminaries

We consider a d dimensional quantum control system evolving on the unitary group U(d)
described by the Schrodinger equation for the time evolution operator

d U
dr
where we set 7 = 1 and the time dependent Hamiltonian is given by

H<t> = Zgn,m|n> <m| + an(t)Pn‘ (4)

n#m n

(1) = —iH()U(1), 3)

We refer to

Hy = %gmmlnﬂm" (5)

as the drift Hamiltonian and the set of controls C = {P,,}z:1 is given by orthonormal projec-
tions P, = |n)(n|, where f,() are the corresponding control fields, which are throughout this
work assumed to be unconstrained. Typically, the goal in quantum control is to shape the
control fields in such a way that for some time 7 the solution U(T) to (3) is given by a desired
unitary transformation U,. We call the control system fully controllable if every U, € U(d)
can be implemented through shaping the control fields. It is well known that the system is
fully controllable iff the dynamical Lie algebra [9, 10] generated by the drift Hamiltonian
and the set of controls spans the full space, i.e. the algebra u(d) consisting of d x d skew
hermitian matrices. However, how much time T does it take to implement a generic unitary
transformation? In order to derive the upper bound (2), we start by explaining how Hj can be
represented as a weighted, undirected graph, and how the controls C can be used to instanta-
neously remove vertices from the graph.

2.1. Quantum control systems and graphs

We first note that we can rewrite the drift Hamiltonian as
Ho = > lgnnl (€9 n) | + e m) (], ©
n>m

where the relative phases ¢,, can be removed by applying the unitary transformations
v = exp(—iaC) with C € C, which can be implemented instantaneously assuming that the
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control fields f,(f) are unconstrained. We remark here that this assumption is a reasonable
approximation in the case where the strength of the control fields can be made much larger
than the typical energy scales of the systems being considered. Thus, in the case of uncon-
strained control fields removing the phases does not take time. Using the controls we can
therefore map Hj given by (5) into the drift Hamiltonian

HO == Z |gn,m|Bn,ma
n>m (7)
without a time cost, where we defined B, = |n)({m| + |m){n|. In order to derive the bound
(2) we can hence equivalently work with the drift Hamiltonian given by (7).

The operators B, ,, describe interactions between the states |n) and |m), whereas |g,,,,| is the
corresponding interaction strength. We can visualize these interactions through a weighted
and undirected graph G(V, E). The set of vertices V correspond to the basis states {|n) } span-
ning the Hilbert space of the quantum system and are labeled by n, the set of edges E labeled
by (n,m) describe interactions between vertices n and m, and the interaction strength |g,, |
corresponds to the weights. Later on we will also consider qubit graphs in which V and E
represent qubits and two-body interactions, respectively.

For a drift Hamiltonian Hy of the form (7) we denote the corresponding graph by Go(Vo, Ep).
In order to upper bound the time to implement a generic target unitary transformation it is
useful to introduce the complete graph Gg(Vk, Ex) which consists of |Vk| = d vertices and

_ dd=1)
|Eg| = =5 edges.

We proceed by first showing how to remove edges from G instantaneously, followed by
upper bounding the time to connect a generic pair of vertices, i.e. creating a generic B, ,, with
(n,m) € Ek.

2.2. Dynamical decoupling: removing edges without a time cost

Dynamical decoupling allows for removing unwanted interactions of a Hamiltonian Hy by
rapidly applying a set of unitary transformations V [11, 12] in a Suzuki-Trotter type sequence,

. t
Ay = H v exp (_1H0|V|n> v, (8)

veV

which converges in the limit of infinitely fast operations (n — 00) to a unitary operation
U = exp(—iM(Hy)t), where the map M is given by

MO = 2 YV ©)
|V| veV
We remark here that such maps are typically studied in the context of Hamiltonian simulation
(see e.g. [13]), dynamical decoupling (see e.g. [11, 12, 14]), and unital quantum channels with
equal weights [2]. We further note that a concatenation M; (M»(Hy)) = M(H,) yields again a
map of the form (9), so that M can be obtained by a sequence of the form (8).

Now, taking V; = {1,v;} where v; = exp(—inP;) = 1 — 2P; we have for H, given by (7),
Mj(Ho) = Ho — (PjHo + HoP;), (10)

so that M; maps the graph Gy into a subgraph in which the vertex j is removed. Iteratively
removing vertices by constructing concatenations of different M;’s therefore allows to map

Gy into a subgraph containing only a single edge. We conclude that there always exists a set
of unitary transformations generated by the controls C that allows for mapping the natural

4
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evolution given by Hy into an evolution generated by |g, . |Bn» Without a time cost [15]. Thus,
for the control system defined by (4) any unitary operation of the form

Sum(a) = exp(—iaB, ), (11)

with (n,m) € Ey can be implemented through the controls in a time #,,, = a/|gnm|. We note
that within the subspace spanned by {|n),|m)} the operation S, ,,(«) induces oscillations
between the states |n) and |m), and for o = /2 the states are swapped. Adopting the termi-
nology used in quantum information, we refer to the corresponding unitary transformation
Sum(m/2) as a SWAP gate, noting that here two basis states are swapped rather than qubit
states.

3. Results

So far we have shown that unitary operations generated by interactions B, ,, of the Hamiltonian
(7) can be implemented in a time which is of the order of the inverse energy associacted with
the interaction. However, how much time does it take to create interactions that are not present
in Hy? In order to upper bound the time to implement a unitary operation generated by such
interactions, we now show how to upper bound the time to create arbitrary interactions.

3.1. Upper bounding the time to create interactions

From now on we assume that Gy is connected and upper bound the time to create a generic
Sy with (n,m) € Eg, where Ek is the set of edges of the complete graph Gg. We establish the
following lemma.

Lemma 1. Let the graph associated to the drift Hamiltonian (7) be connected and de-
note by gmin the smallest edge weight. Then for the control system (3) a unitary operation
Snm(@) € U(d) with (n,m) € Ex of the form (11) can be implemented in a time t,,, which is
upper bounded by

< || +7r(d—2)'
&min

(12)

n,m

Proof. We relabel the vertices of Gy so that the vertices n and m are labeled by 1 and N
and we consider a path connecting the vertices 1 and N by passing through connected verti-
ces 1,2,--- ,N,ie. (j,j+ 1) € Ey where j=1,---N — 1. Using dynamical decoupling we
can instantaneously reduce Gy to a single edge (1,2), so that the SWAP gate S;,(7/2) can

be implemented in a time #;, = Meral Then, iteratively reducing G to edges (j,j + 1) up to

(N — 2,N — 1) allows for successively implementing SWAP gates on adjacent vertices, which
permutes the vertices accordingto12--- N — 23--- (N — 1)IN. Thistakes 7 = 5 JN:_IZ ‘g”lﬂ‘
amount of time. We proceed by reducing G to the single edge (N — 1, N) and implement the
|
lgv—1n]

order of the vertices by performing (N — 2) SWAP operations so that S; y(«) is effectively
implemented takes time 7. Thus, the gate S () can be implemented in a time

operation Sy_ (), which takes ty_y = amount of time. Iteratively restoring the
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Wy =ty_in+27
lal = 1 (13)

= — i .
lev—inl = (g

Clearly, N is upper bounded by the total number of vertices present in Gy, which is given by
the dimension d of the quantum system. Introducing the smallest edge weight present in Gy
as gmin = Min(ym)ck,{|gnm|} We find that the time #,, to implement a generic S, ,,(c) with
(n,m) € Ek is therefore upper bounded by (12). O

We remark here that the sequence of SWAP operations used to obtain (13) is not necessar-
ily time optimal. However, minimizing (13) over all paths connecting vertices n and m yields
the tightest version of the obtained bound.

Instead of associating Gy with coupled states described by B, ,, we can also consider the
case where Gy describes a n-qubit network (i.e. here qubits represent vertices labeled by i
and edges labeled by (i,j) are given by two body interaction terms) described by the drift

Hamiltonian
( ) (i)
Z w + Z 8a.,8 U JB ’ (14)

iev, (ij) EE,
ae{xyz} a.BE{xy.c}

where a((l) denote the Pauli spin operators acting only non-trivially on the ith qubit, and w&) and

g(a”; are energy splittings and coupling constants, respectively. If each qubit can be addressed

with two orthogonal control fields described by the set of controls C = {O’x , 0 (i)}l’.‘zl, as
shown in [5] the time tﬁ]‘?"‘ to implement a CNOT gate on qubits i and j is upper bounded by,

T [ 4dist(i,j) — 3)
grot ¢ D (22 T 2 15
! &min < 4 ( )

Here gmin is the smallest non-zero coupling constant present in the Hamiltonian (14) and
dist(,) denotes the geodesic path distance between two qubits i and j given as the smallest
number of edges in a path connecting the two considered qubits, noting that dist(,j) < n — 1.

3.2. Upper bounding the time to implement generic unitary operations

In order to understand how to upper bound the evolution time of an arbitrary unitary, we can
decompose it into elementary interactions (11) and local controls. In general, the number of
terms in such decomposition is hard to characterize [16]. For the special case of decomposing
an element of U € U(d) we can however use the proof of decompositions of unitaries given
in [2], which shows that

U=VV,...V,

where k < d(d — 1)/2, and each V; acts nontrivially only on two specific levels n, my, (and is
therefore isomorphic to an element of U(2)). By the Euler decomposition, we can furthermore
decompose such an element into a gate sequence including rotations around z, which can be
implemented through the controls C instantaneously, and into a rotation around x, which by
equation (12) can maximally take a time of ﬁ. We therefore obtain our final result, which
we summarize in the following theorem.
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Theorem 1. Let the graph associated with the drift Hamiltonian (7) be connected and de-
note by gmin the smallest edge weight. Then for the control system (3) the time T to implement
a unitary operation U, € U(d) is upper bounded by

rd*(d —1)

T <
h 2gmin

(16)

Remarkably, in contrast to the upper bound obtained in [5], the derived bound (16) is inde-
pendent of the target unitary transformation U, as well as the accuracy of implementing U,.

If we consider again a n-qubit network described by the drift Hamiltonian (14) and denote
by Nenor(Ug) the number of CNOT gates needed to create a specific gate U, € SU(2") by
locally controlling each qubit, according to (15) the time 7(U,) needed to create U, is then
upper bounded by

w(4n —17)

T(U,) <
( g) 4gmin

Nenor(Uy). a7

However, note that for creating every U, € SU(2"), the number of CNOT gates needed must
scale exponentially in n, whereas the prefactors have been successively improved in the last
decade [6-8].

4. Tightness of the bounds

In order to analyze the tightness of the obtained bounds, we compare the bounds (12) and
(16) to previously derived lower bounds [17], as well as to minimum gate times obtained
from numerical gate optimization using the GRAPE algorithm [18], which is included in the
Python package QuTip [19]. Similar to the method utilized in [17], a population binary search
algorithm is run over 7 until the gate error is smaller than 10~%.

4.1. d-level system

We first consider a quantum system consisting of d energy levels interacting in a tight-binding
like manner described by the drift Hamiltonian

d—1
Ho =Y (NG + 11+ li+ 1§D, (18)
j=1

where J is the coupling strength chosen to be J = 1/4/2(d — 1) so that ||[Hy|| = 1 with || - ||
being the Hilbert Schmidt norm. We assume that the energy levels |j) can be controlled arbi-
trarily so that the set of controls is given by C = {]j)(j|}\_,. The goal is to implement a SWAP
operation (i.e. U, = S 4(7/2) ) between the first and the dth level. According to lemma 1, the

time #};* needed to implement U, is upper bounded by

W ™
1’ < 5(2d=3)y2(d - 1), (19)

Based on the results in [ 17] with further details found in the appendix we can also lower bound
£ by

Vald— 1) < . (20)
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250
Upper bound
—&—  Numerical optimization
200 Lower bound

150
=

100

50

Figure 1. Comparison of the time 7 as a function of d to implement a SWAP operation
between the 1st and the dth level for the d-level system (18) obtained from numerical
gate optimization using GRAPE, with the upper bound (black) given in (19) and the
lower bound (blue) given in (20).

In figure 1 we plot the upper bound (black curve) and the lower bound (blue curve), as well
as the minimum time 7 needed to implement the SWAP operation S 4(7/2) obtained from
numerical gate optimization using GRAPE (green curve) as a function of the number of levels
d.

First we observe that the time obtained from numerical optimization lies between the upper
and lower bounds, as expected. Furthermore, due to the fact that the upper bound in this sys-
tem scales as d** while the lower bound scales as d, in terms of assessing the tightness of the
bound with regard to scaling, the scaling of the upper bound deviates from the true scaling by
at most d"2, which is sub-linear.

4.2. Random graphs

We proceed by considering random drift Hamiltonians that correspond to random connected
graphs. Throughout this section the couplings |g, | are chosen to be uniformly random in the
interval [1, 2] so that g, = 1and we study the validity of the bounds (12) and (16) for quantum
systems of dimension d € [2, 6], noting that for a fixed d € [2, 6] we have {1,2,6,21, 112} dis-
tinct connected graph.

4.2.1. Single edge operations. We begin by studying the tightness of the bound (12) by con-
sidering random single edge operations S, (cv) by picking o uniformly random in[—7%, 7] and

10 random edges amongst all (;i) of the complete graph. According to (12) for g, = 1 the

time f,,, to implement such a random S, ,, is then upper bounded by

3
< - —
Inn < T (d 2) ) 2y

which is shown as a function of d (black curve) in figure 2. The green and the orange curves
correspond to the times to implement S, ,, obtained from numerical gate optimization, where

8



J. Phys. A: Math. Theor. 53 (2020) 125304 JLeeetal

15

Upper bound
—A—  Maximum value
—O—  Average value

Figure 2. Comparison of the time 7 to implement a random single edge operation given
by (11) on a quantum system of dimension d described by a randomly chosen connected
graph obtained from numerical gate optimization using GRAPE, with the upper bound
(black) given in (21). The green curves shows the average over {10, 20, 60, 20, 1120}
with each value corresponding to a fixed d € [2,6] and the orange curve shows the
maximum value. Further details can be found in the main body of the manuscript.

we plotted the average (green) taken over 10 randomly chosen S, ,, and the number of different
distinct connected graphs for d € [2, 6] (i.e. the average was taken over {10, 20, 60, 20, 1120}
different runs), whereas the orange curve shows the maximum value.

From figure 2 we see that the upper bound is indeed above the maximum amongst random
GRAPE runs. As expected, while the average over random single-edge operations tends to
be lower than the upper bound, the maximum remains relatively close to the bound (21).
Remarkably, all three data sets are linear in d, showing that the upper bound captures the scal-
ing of the minimum time reasonably well.

4.2.2. General behavior. Finally, we test the tightness of the upper bound (16) for the time 7
to implement generic unitary operations U, € U(d). For gpmin = 1 we have,

T < gdz(d— 1). 22)
Asinthe single-edge operation case, for each dimension d we run the trials on every distinctly
homeomorphic connected graph. We construct random unitary operations U, = exp(—iH) by
picking a random hermitian matrix H.
From the results in figure 3 we again note that the upper bound is indeed above the maxi-
mum amongst random GRAPE runs. Furthermore, we can see a ‘similar’ polynomial scaling
for the maximum and the average times.

5. Conclusions

We have derived an upper bound for the time 7 to implement a generic unitary transformation
on a quantum system in which the diagonal element (in a given basis) can be controlled arbi-
trarily. This was achieved by first describing the considered system as an undirected and con-
nected graph, followed by showing that edges of the graph can be removed without a time cost

9
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300

Upper bound

—#——  Maximum value
—&—  Average value

200

100

2 3 4 5 6
d

Figure 3. Comparison of the time 7" to implement a random unitary operation on a
quantum system of dimension d described by a randomly chosen connected graph
obtained from numerical gate optimization using GRAPE, with the upper bound (black)
given in (16). The green curves shows the average over {10, 20, 60, 20, 1120} with each
value corresponding to a fixed d € [2,6] and the orange curve shows the maximum
value. Further details can be found in the main body of the manuscript.

using a decoupling sequence generated by the controlled diagonal elements. Afterwards we
showed in lemma 1 that the time to implement unitary operations generated by generic edges
of the complete graph scales at most linearly in the dimension of the system. Consequently,
every unitary transformation can be implemented in a time at most O(d?), which was sum-
marized in theorem 1. It is interesting to note that the corresponding upper bound on 7 given
in (16) is independent of the target unitary transformation and the accuracy the unitary trans-
formation is implemented.

Based on the results in [5] we also derived an upper bound for the time to create a unitary
transformation in a qubit network in which each qubit can be locally controlled in terms of the
number of CNOT gates needed to create the unitary transformation.

By considering examples we numerically studied the tightness of the obtained bounds and
found that the bounds capture the system size dependence of T remarkably well.

One of the key assumptions in this works was to assume that the control fields are uncon-
strained so that interactions can be removed instantaneously through a decoupling sequence.
Recently, however, it was shown [20] that under some assumptions on the drift Hamiltonian
even limited control fields can yield a desirable scaling of the minimum time for implement-
ing unitary transformations. It would be interesting to combine the approaches used in [20]
with the results obtained here to characterize the number and the type of controls needed to
efficiently control quantum systems.
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Appendix. A lower bound for the d-level system

Using the results obtained in [17] we show here that for the controlled d-level system described
by

d—1
H@) =7 ) NG+ 1+ 1+ 1)) +ZJ§
= = (A.1)
where J = 2(d 5 , the time 7 to implement a SWAP operation
Up = exp (—i5 (1)l +[d)1])) (A2)
between the 1st and the dth levels is lower bounded by

V2(d—1)<T. (A.3)

From [17] we have that in general for a control system of the form

H(t) =Ho+ Y _fi(t)Hy, (A4)
k=1

evolving on the unitary group U(d) the time T to implement a generic U, € U(d) is lower
bounded by

[[Ug, VI

Mre 7 < 7, A5
verysesim) | [Ho, V]| (A.5)

valid for any unitarily invariant norm where Stab(iH;) denotes the stabilizer of iH; defined as
Stab(x) = {U € U(d) | UTxU = x} for some x € u(d).

For the d-level control system the intersection of the stabilizers is given by
V = diag(el?, . .., e!%) so that using the Hilbert Schmidt norm defined as ||A|| = \/Tr{AfA}
yields

U VP _ 1 1= cos (01 — 0)
I[Ho, V]|I?  J> d—1—(cos(0y —02)+...4+cos(0g—04-1))

By defining x; = 6; — ;11 and

1- cos(z:d*l1 Xi)
11— —— Z - ' cos(x;)

the maximization in (A.5) is then equlvalent to maximizing S(xy,--- ,x4—1) over all x;. We
claim that this quantity is maximized when x; = O for all i, which implies that V is given by
the identity (up to a global phase). To see this we set x; = x for all i and take the limit,

lim S(x) = (d — 1),
x—0

S(xy, -y Xq—1) (A.6)

which is indeed the maximum. We therefore have 2(d — 1)* < T2, which yields the desired
result (A.3).
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