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Robust quantum control in games: An adversarial learning approach
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High-precision operation of quantum computing systems must be robust to uncertainties and noises in the
quantum hardware. We show that through a game played between the uncertainties (or noises) and the controls,
adversarial uncertainty samples can be generated to find highly robust controls through the search for Nash
equilibria. We propose a broad family of adversarial learning algorithms, namely a-GRAPE algorithms, which
includes two effective learning schemes referred to as the best-response approach and the better-response
approach within game-theoretic terminology, providing options for learning highly robust controls. Numerical
experiments demonstrate that the balance between fidelity and robustness depends on the details of the chosen
adversarial learning algorithm, which can effectively lead to a significant enhancement of control robustness

while attaining high fidelity.
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I. INTRODUCTION

Recent experimental breakthroughs in quantum computing
have signaled its commercialization in the foreseeable future
[1-3]. The demands involved require highly precise and stable
control techniques for the deterministic implementation of
quantum gates [4]. Generally, high precision is relatively
easy to achieve if a well-characterized model is available, for
example, using the highly efficient GRAPE (gradient ascent
pulse engineering) algorithm [5] and methodologies based on
reinforcement learning [6]. The real challenge is to maintain
high precision in the presence of realistic uncertainties and
noises in the model, i.e., finding both high-precision and
robust controls. In the literature, a variety of proposals has
been put forth for either online or offline searches for robust
quantum controls, e.g., stimulated Raman adiabatic passage
working to overcome pulse shape errors [7-9], dynamical
decoupling to fight against decoherence noises [10-13], and
differential evolution [14,15] as well as ensemble-based al-
gorithms [5,16] that aim to deal with a variety of noises and
uncertainties.

Recently, a class of robust control design methods have
been proposed [17-21]. It was shown that by Monte Carlo
sampling of the uncertainties or noises, the GRAPE algorithm
can be exploited to effectively improve the robustness against
linewidth broadening [17-19], amplitude errors of control
fields [18,19], coupling uncertainty [21], and clock noises
[22].

Most of the above approaches are based on improving the
robustness of a quantum control protocol quantified by the
average performance with respect to the system uncertainties
or noises to be suppressed. This measure is relatively easy
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to evaluate and hence to optimize. However, it is not the
unique choice nor necessarily the best. For example, fighting
against the worst-case performance was widely adopted in
the control of classical systems [23-26], which leads to a
class of min-max problems. The optimization with respect to
such an objective can effectively reduce the risk of failure,
which is demanded by fault-tolerant quantum computation.
The worst-case optimization for robust quantum controls was
first formulated in the control of molecular systems against
disturbance [27,28], and a theoretical analysis was later done
on the robust performance via the Dyson expansion [29].
However, there are very few algorithms for efficiently solving
the associated min-max problem. In [30-32], the so-called
H,, approach was applied to a class of linear quantum sys-
tems in the Heisenberg picture. In [33], sequential convex
programming (SCP) was proposed for solving the worst-case
robust optimization problem in a single-qubit system, which
decomposes the min-max problem into a sequence of convex
optimization procedures.

Since the min-max problem can be taken as an adversarial
game between the control and the uncertainties (or noises)
that attempt to affect the objective of the quantum system
(e.g., state or gate infidelity) in opposite directions, one can
introduce game-theoretic learning algorithms that seek Nash
equilibria (NE) [34]. Such ideas have been successfully used
in deep learning. As an example, for the Generative Adversar-
ial Nets (GAN) model, a large number of applications show
that the learning model can be trained to be more generaliz-
able by actively creating adversarial samples produced by a
discriminator neural network [35-38].

In this paper, we will extend game-theoretic ideas to the
design of robust quantum controls. Even if the Nash equi-
librium does not exist or is hard to reach, the robustness of
the control can still be enhanced by the learning process.
As the adversarial game has a close relationship with both
the fidelity and robustness, the game-based learning process
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can be adjusted flexibly to make a balance between the two
performance measures, forming a broad family of adversarial
learning algorithms. The remainder of this paper will be
arranged as follows. Section II presents a game-theoretic
analysis of the robust control problem. In Sec. III, we in-
troduce several adversarial learning control algorithms based
on the dynamic processes in the game theory of learning
and evolution. In Sec. IV, the effectiveness of the proposed
algorithms is illustrated through simulations of the control
design in two representative examples. Finally, concluding
remarks are made in Sec. V.

II. THE ZERO-SUM GAME BETWEEN CONTROL AND
UNCERTAINTY

Consider an N-dimensional quantum control system whose
unitary propagator obeys the following Schrodinger equation:

U(t;u,e): —iH[t;u, €lU(t;u,e€), (D)

where U(-) € CM*N represents the quantum gate operation
with the initial value being the identity matrix. The system’s
Hamiltonian H|[¢;u, €] is dependent on a vector of control
parameters u (e.g., in-phase and quadrature amplitudes, or
phases and amplitudes of laser pulses in the frequency do-
main) and a vector of uncertainty parameters € (e.g., environ-
mental noises or imprecisely identified parameters).
Let Uy be the target gate operation and

Llu, €] = N ?|U(T;u, €) — Us|? 2)

be the infidelity of the controlled gate under the control u
and the uncertainty €, where | - || is the Frobenius norm. The
robustness objective is to find a control # under which L[u, €]
is as small as possible for as many values of the uncertainty €
as possible.

A straightforward approach adopted in most existing stud-
ies is to minimize the average infidelity, i.e.,

ElL[u, €] = /L[u, €lpo(e)de, 3)

where pg(e€) is the probability density distribution of €. This
objective is relatively easy to estimate and thus to optimize,
but the resulting control may not be able to dictate all possible
cases of uncertainties due to a lack of control over the variance
of the infidelity (i.e., the infidelity can be high over certain
small ranges of uncertainties even if the average infidelity is
low).

To reduce the risk of encountering high infidelity, we
consider the worst-case performance instead of the average
performance, which leads to the following min-max problem:

min max L[u, €], 4)

which does not rely on the probability density distribution of
€. Once the worst-case infidelity is below the desired threshold
value, the risk of high infidelity can be effectively reduced.
From a game-theoretic point of view, the optimization pro-
cess can be taken as a game between two players, the control
u and the uncertainty €, in which u attempts to reduce the
gate infidelity while € tries to increase it. Namely, the payoff
functions for the control and the uncertainty are —L[u, €]

and L[u, €], respectively. Since the sum of the two players’
payoffs is always zero, it is called a zero-sum game. A robust
control is naturally associated with the NE point (u*, €*) of
the zero-sum game [34], at which each player is unable to go
any further by tuning merely # or merely €. That is to say, it
holds that

u* = argmin L[u, €] and € = argmax L[u*, €]. (5)
u €

A standard approach to search for such a strategy profile
is to alternately minimize (with respect to u#) and maximize
(with respect to €) the infidelity. Even if the NE does not
exist or is hard to reach, the robustness of the control may
still be enhanced during the process of fighting against the
adversarial samples of € that yield the worst performance.
In this spirit, a family of learning algorithms can be devised
in which the uncertainty parameters play a more active role
instead of just being averaged out. Since the algorithms are
fundamentally based on the gradient-based GRAPE algorithm
[5] applied in the minimization process for updating controls,
the adversarial learning algorithms to be presented below will
be termed as a-GRAPE, where “a” stands for “adversarial.”

III. THE DESIGN OF ADVERSARIAL LEARNING
CONTROL ALGORITHMS

In this section, we will propose two types of a-GRAPE
algorithms, namely, the best-response and better-response
approaches, for training highly robust controls via active
selection of adversarial samples.

A. Best-response approach

The simplest NE-seeking approach consists of rounds of
alternate optimization with the control and the uncertainty.
Suppose that we have obtained an adversarial sample €®
subject to the optimal control #®) in the kth round. In the
(k + 1)-th round, we first minimize L[u, e®)] with respect to
u using the GRAPE algorithm, which updates the control by
u**D_ Then, we update the adversarial sample of uncertainty
parameters by €%+ that maximizes L[u®+1, €] with respect
to €.

Utilizing game-theory terminology, we call such an adver-
sarial learning process a best-response approach because each
player chooses its best strategy against the opponent [39].
However, for most robust quantum control problems, the best-
response strategy can hardly reach a pure NE. This conclusion
follows from the facts that a NE requires L[u*, €] = 0 for all
admissible €, as the control is assumed to have fully adequate
resources (e.g., bandwidth) such that min, L[u, €] = 0 for any
€, and that this condition is hard to satisfy in practice unless €
is only allowed to vary over a very small domain. Since a min-
max problem possesses a NE when the minimization problem
is convex and maximization problem is concave, a viable
strategy is to seek a mixed NE in a enlarged domain, where
the uncertainty € is allowed to adopt mixed strategies, i.e.,
instead of picking a single adversarial sample, we generate a
distribution of adversarial samples. Mathematically, this leads
to the following min-max problem:

min max /L[u,e]p(e)de, (6)
u  p(e)eP
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where the maximization is performed over the space of prob-
ability density distributions P. The mixed NE [u*, p*(€)]
satisfies

u* = argmin/L[u, €]p*(e)de,
u

pi(e) = argmax/L[u*, €]p(e)de.
ple)

The advantage of searching for a mixed NE is that its existence
is more likely ensured by the linear dependence in p(€) and
hence a mixed NE is easier to find.

However, problem (6) is computationally much more ex-
pensive than problem (4) because the search space for the
maximization part is much larger. In practice, this issue can be
relaxed by approximating the optimal probability distribution
in order to simplify the maximization process.

Here, we propose that the optimal distribution p(e) can
be approximated by exploiting adversarial samples found in
the past rounds. In particular, we perform the maximization
process in the same way as the above best-response approach
and approximate the optimal probability distribution in the
(k + 1)-th round as

k
1 .
(D () ny & )
P (e) X E d(e —€7) @)
Jj=1
using the historic adversarial samples €, €®, ..., €® in the

past k rounds. Consequently, in the following minimization
process, the objective function based on the distribution (7)
can be written as the average infidelity over the k adversarial
samples,

k
Jlu, Byl = % > Liu. €7, (8)

j=1

where B, = {eV, ..., e®)}.

In practice, the approximation (7) can be chosen more
flexibly. For example, one does not have to use all historic
adversarial samples in (8) because it will be too costly when k
is large and the early samples are likely less adversarial. Thus,
we keep only the latest few samples, i.e., let the algorithm
utilize only a finite number, say s, of adversarial samples (see
Algorithm 1 for a summary). In this scenario, the originally
discussed best-response approach can be taken as a special
case with memory size s = 1.

B. Better-response approach

In the above best-response approach, the minimization
process is usually efficient as long as the control resources
(e.g., bandwidth, pulse energy, etc.) are abundant, owing to
the underlying nice control landscape topology over which
almost all locally optimal controls are actually globally op-
timal [40,41]. However, the generation of adversarial samples
is much harder because the maximization process is usually
nonconcave. Here, we relax this problem by choosing strong,
but not necessarily the strongest adversarial samples for the
training of robust controls. In this regard, we call this method
a better-response approach.

Algorithm 1. best-response a-GRAPE

Initialize:
an initial control u®;
an initial uncertainty sample set By = {0};
a set memory size s.
Repeat:
(1) Use the GRAPE algorithm to update the
control by the optimal solution of minimizing
J[u, Bk—l]y i.e.,

u® = argminJ(u, Bi_],
u
in which #*~1 is taken as the initial guess for
the GRAPE algorithm. Here, £ is an index to

the current number of round.
(2) Generate a new adversarial sample by

e® = arg max Llu®, e].
€

(3) Update:
if |Bk| < s, then By =B, U {G(k)},
else
B, = {e(k)’ e*k=b €(k7s+1)}'

End: if the stopping criteria are satisfied.

The simplest way to search for better-response adversarial
samples is to randomly choose a batch of uncertainty samples,
calculate their corresponding cost, and keep the worst few
members among them for the adversarial training in the
next round (see Algorithm 2 for a description). The batch
size of the samples should be sufficiently large so that the
chosen adversarial samples have members close to the worst-
case samples, but not too large to maintain computational
efficiency. Naturally, the better-response approach relying on
random sampling usually takes more rounds of gaming, but
each round can be much faster when the batch is not very
large. Moreover, the randomness of sample batches in the
better-response approach may bring additional benefits for the
search to get away from unwanted false worst-case traps.

Algorithm 2. better-response a-GRAPE

Initialize:
an initial control u©;
asetratior,r € (0, 1).
Repeat:

(1) Randomly generate M uncertainty samples,
compute the corresponding infidelity, and form
an adversarial sample set denoted as By by
retaining the first rM worst ones, where k
denotes the current number of round.

(2) Use the GRAPE algorithm to update the
control by

u® = argmin J[u, B,],
u
where u*~1 is taken as the initial guess for the

GRAPE algorithm.
End: if the stopping criteria are satisfied.




GE, DING, RABITZ, AND WU

PHYSICAL REVIEW A 101, 052317 (2020)

IV. SIMULATION RESULTS

To illustrate the above game-based adversarial learning
strategies for the robust control design, we simulate two quan-
tum gate synthesis examples in this section. As will be seen
in the simulations, the best-response approach can effectively
suppress the worst-case performance, but does not always lead
to good performance in high-precision regimes, where the
better-response approach is more effective. That is to say, the
best-response and the better-response approaches do not mean
the best performance and the better performance, respectively,
and which approach performs satisfactorily depends on case-
specific requirements.

A. Two-qubit system

We first consider a quantum two-qubit gate control prob-
lem in a system of two superconducting transmon qubits.
The two qubits are dispersively coupled with strength g, but
in practice it may deviate from this value. We also consider
the uncertainty of the Rabi driving fields that may shift. The
system Hamiltonian is as follows:

2
H(t) = (14 €)go1. ® 02 + Y (1 +¢)
i=1

X [up (t)oi + ui)'(t)oi)']a

where g =10 MHz is the identified qubit-qubit coupling
strength, with €y being the error in the coupling constant;
u;,; and u;, are the control functions which are delivered to
the ith qubit through the same control line; and €; and €;
represent the fluctuations in control fields. The dimensionless
three uncertainty parameters are all assumed to be bounded by
le;] < 0.2. In the simulation, the time duration of the control
pulses is chosen as T = 300 ns, which is evenly divided into
100 intervals over which the control fields are piecewise
constant. The target Uy is set as the controlled-NOT gate.

In the simulations, we set the initial controls to be uy, () =
Ap cos(wit + @) and uyy (1) = Ay sin(wit + ¢y ), where Ay,
wg, and ¢y are randomly chosen. In the best-response ap-
proach, we apply the standard genetic algorithm in MATLAB
to seek strongly adversarial samples with up to 10® gen-
erations and the termination tolerance being 10~* on the
function value (TolFun). In each round, we use s = 10 his-
toric adversarial samples to train the control function with a
quasi-Newton algorithm (MATLAB routine fminunc, TolFun =
10718, Maxlter = 10%). In the better-response approach, we
uniformly generate M = 100 random uncertainty samples in
each round and keep the first 10% (i.e., r = 0.1) worst ones as
adversarial samples for training the control where the means
is the same as above. Figure 1 shows the resulting learning
curves, namely, the achieved worst-case infidelity L,,,x versus
the number of rounds, as well as the corresponding minimized
average infidelity Jn;, over the selected adversarial samples
versus the number of rounds. The robustness of the controls
can be directly seen from the curves of worst-case infidelity,
which are all enhanced during the optimization. The L.y
curve is initially far from the Jp;, curve, but the gap is quickly
reduced after several rounds of gaming. In the best-response
approach, the gap is almost closed, showing that the optimized

(a) Best-response a-GRAPE
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FIG. 1. The learning curves of a-GRAPE for robust controls
of the two-qubit system. The red (upper) line corresponds to the
worst-case infidelity, while the blue (lower) one corresponds to the
minimized average infidelity over selected adversarial samples in
cases (a) the best-response approach with memory size s = 10 and
(b) the better-response approach with M = 100 and r = 0.1.

control and uncertainty samples are likely close to a mixed
NE. In the better-response approach, the gap still remains
large after 2000 rounds. For both approaches, the control ro-
bustness is still enhanced by the game, with the (approximate)
worst-case infidelity decreased to the level of 1072.

As discussed above, neither the average performance nor
the worst-case performance is the unique measure for quan-
tifying the control robustness. To better evaluate the overall
performance of an optimized control, we calculate and display
the cumulative probability distribution function (cdf) F(I)
of the gate infidelity, i.e., the probability for the infidelity
being smaller than [/, in Fig. 2. Here, we also compare the
a-GRAPE algorithms with the recently proposed b-GRAPE
algorithm [21] (see Appendix for details) for robust control
design subject to the average infidelity [i.e., Eq. (3)]. In the
simulations, the b-GRAPE algorithm is run by 1 million
iterations having the minibatch size n,, = 1 and a learning
rate « = 0.002, while the a-GRAPE algorithms are run by 844
rounds in the best-response approach and 1504 rounds in the
better-response approach.

The cdf curve can be used to evaluate the control ro-
bustness from two perspectives. First, given a desired value
of gate infidelity /y (e.g., the threshold error for quantum
error correction), the cumulative probability F(ly) gives the
confidence that the control can suppress the error below the
value [y. Second, given an expected confidence Fy (say, 90%),
the cdf can tell us at which threshold value [i.e., [ such
that F'(lp) = Fy] the control can guarantee the confidence. As
will be seen below, the robustness performance may vary at
different levels of desired infidelity or expected confidence.

Figure 2 clearly shows that the controls optimized by the
a-GRAPE algorithms, especially by the better-response ap-
proach, are much more robust as almost the entire cdf curves



ROBUST QUANTUM CONTROL IN GAMES: AN ...

PHYSICAL REVIEW A 101, 052317 (2020)

S
— -b-GRAPE S
—a-GRAPE (best.resp.) 4
50.8 |- a-GRAPE(better.resp.) ! |
3 ’
3
806 1
o
(0]
=
w0471 1
=
€
>
So2f |
0 e > - :
10® 10™ 10? 10°
Infidelity

FIG. 2. For the two-qubit system, the cumulative probability
functions F (/) of the gate infidelity / under the controls opti-
mized with b-GRAPE (batch size n,,, = 1), best-response a-GRAPE
(memory size s = 10), and better-response a-GRAPE (M = 100
and r = 0.1).

are higher than that generated with the b-GRAPE algorithm
(i.e., with greater confidence at each value of infidelity). For
example, as seen in Table I, the control optimized with the
better-response a-GRAPE can suppress the gate error below
1073 with a high confidence of 82.5%, while the control
optimized with b-GRAPE has only 43.1% confidence. At the
higher-precision level (i.e., infidelity lower than 10™%), the
better-response approach still maintains 34.2% confidence,
while the control optimized with b-GRAPE provides only
3.7% confidence. The performance of the best-response a-
GRAPE is only a little poorer than b-GRAPE in the high-
precision regime, but much higher in the low-precision to
medium-precision regime (i.e., infidelity in ~1073-1072).
Additionally, the best-response a-GRAPE achieves a lower
worst-case infidelity than that achieved by the better-response
a-GRAPE, which is consistent with the finding from the Ly,
curves in Fig. 1. However, the best-response a-GRAPE has
a poorer performance in the high-precision regime than the
better-response a-GRAPE, which is also indicated by the
Jmin curves displayed in Fig. 1. The comparison between
different algorithms shows that there is no unique criterion for
evaluating the control robustness. An optimized control may
achieve satisfactory precision (e.g., infidelity in ~1073-1072)
over a large regime of uncertainties, but the highest precision
it can achieve may be poor. In practice, one may need a

TABLE I. The two rows list the confidence for the gate infidelity
to be below 1072 and 1074,

a-GRAPE
b-GRAPE Best response Better response
1073 43.1% 68.1% 82.5%
1074 3.7% 2.8% 34.2%
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FIG. 3. The worst-case infidelity vs the number of rounds in
best-response a-GRAPE optimization of the three-qubit system with
different memory sizes.

balance between the high precision and the robust regions,
especially using limited control resources.

B. Three-qubit system

To see more clearly how the control performance relies on
the uncertainties and algorithmic parameters, we simulate a
three-qubit system with two uncertainty parameters, whose
Hamiltonian is

H(t) = Ji2(1 + €1)01,02; + J23(1 + €2)02,03;

3
+ ) k()01 + 1ty ()0 ],
k=1

where the nominal coupling constants are Jjp, = Jy; =
10 MHz. The uncertainty parameters €; and €, (i.e., identifi-
cation errors of the coupling constants) are bounded by |¢;| <
0.2. In the simulation, the target unitary operation is selected
as the Toffoli gate. The time period [0, T'], where T = 1 us, is
evenly divided into 100 intervals, over which the control fields
are piecewise constant. In the following simulations, the initial
controls are set as specified in the two-qubit example.

The previous illustration with the two-qubit system showed
that the controls optimized by the a-GRAPE algorithms could
improve the worst-case performance, and here we want to see
how the performance depends on the parameters, e.g., s and
r. We first compare the best-response a-GRAPE optimization
processes with different memory sizes s = 1, 10, and 15. The
learning curves are shown in Fig. 3 in which the minimization
curves are not displayed because the worst-case performance
is only related with the maximization curve. It can be seen
that the algorithm converges faster and finds more robust con-
trols when using more, but not too many, historic adversarial
samples. For example, the worst-case infidelity reaches 1072
after only seven rounds when s = 10, which converges faster
than the case s = 1, and the worst infidelity is much lower.
However, the case s = 15 performs less satisfactorily than the
case s = 10. This is reasonable because elder historic samples
tend to be less adversarial due to the fading-memory effect.
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FIG. 4. The worst-case infidelity vs the number of rounds in
better-response a-GRAPE optimization of the three-qubit system
with r = 0.01, 0.05, and 0.1.

For the better-response approach, we choose M = 100 and
compare the performance under r = 0.01, 0.05, and 0.1,
where the true worst-case infidelity in each round is estimated
by 2000 independent random samples. Similar to the case
of the best-response approach, the simulation results (see
the learning curves in Fig. 4) show that the robustness of
the optimized controls can be improved by using adequately
many adversarial samples, but too many will not bring further
improvement.

Since there are only two uncertainty parameters in this
example, we can plot a three-dimensional (3D) landscape to
show how the infidelity varies with them, from which we
can evaluate the overall robustness. In Fig. 5, we display
3D plots under controls optimized with the algorithms b-

102 5 b-GRAPE

1073 4
>
o]
he]
=, 4
£10 GRAPE (best.resp.)

1078 4

- 0.2
02 g4 o o o
-0.1 0.1
02 02
61 62

FIG. 5. The infidelity vs uncertainty parameters under controls
obtained from b-GRAPE (the gray curve) with n,, =1 and o =
0.002, best-response a-GRAPE (the red curve) with memory size
s = 10, and better-response a-GRAPE (the blue curve) with ratio
r = 0.05, respectively.

Algorithm 3. relaxed best/better-response a-GRAPE

Initialize:
an initial control u;
a set memory size s or ratio r;
an initial adversarial sample set B.
Repeat:
(1) Randomly generate m uncertainty samples, and
select the worst one or the first rm worst ones.
(2) Do the following GRAPE optimization for n
iterations:

$
u<~u—aoa-—Ju,B].
Su

Here, o represents the learning rate.
(3) Update the adversarial sample set B as
described in Algorithm 1 or 2.
End: if the stopping criteria are satisfied.

GRAPE (after 2 million iterations), best-response a-GRAPE
(after 629 rounds), and better-response a-GRAPE (after 1986
rounds). The comparison shows that both a-GRAPE algo-
rithms outperform the b-GRAPE algorithm, as most of their
landscape surfaces are below that of b-GRAPE. The best-
response a-GRAPE achieves the lowest worst-case infidelity
and effectively suppresses almost the entire landscape down
below the level of L = 10~3. However, its overall performance
in the higher-precision regime (e.g., L = 10™*) is poorer than
the better-response a-GRAPE.

In addition to the best-response and better-response ap-
proaches, the a-GRAPE algorithms can be designed more
flexibly such that it still works efficiently when the uncertainty
vector € is of a large scale. For example, we may also perform
the minimization process in a relaxed manner. As described
in Algorithm 3, we may update the control by only a few
gradient-descent iterations (or stop at some prescribed error
threshold) without having to reach the ultimate minimum,
which responds better but not best to the adversarial samples.
The maximization part can be done either with the best-
response or better-response approaches. In this regard, the
SCP algorithm [33] can be considered as a special case of the
relaxed better-response approach with fixed sampled uncer-
tainties and carefully selected learning rates. It is noteworthy
that as the minimization and maximization are related to the
fidelity and the robustness, respectively, the balance between
the two performance indexes can be adjusted flexibly via
relaxing the two optimization processes.

To assess the feasibility of this idea, we apply the re-
laxed best-response (with s =5, n =20, and m = 20) and
relaxed better-response (with r = 0.25, n = 30, and m = 20)
a-GRAPE algorithms to the same three-qubit example. As
shown in Fig. 6, where the control robustness is evaluated by
the cumulative probability functions, the relaxed a-GRAPE
algorithms can also greatly outperform the b-GRAPE algo-
rithm. Compared to their unrelaxed counterparts, the relaxed
best-response and relaxed better-response a-GRAPE algo-
rithms are not only faster, but also more robust in the high-
precision regime (e.g., near the infidelity level 1074).

In the comparisons above, although the a-GRAPE
approaches outperform the b-GRAPE algorithm, the
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FIG. 6. The cumulative probability vs infidelity under the cor-
responding controls used in Fig. 5 and the ones obtained from the
relaxed best-response approach run by 10 995 rounds and the relaxed
better-response algorithm run by 3850 rounds.

corresponding computational overhead is also higher. To
better illustrate the advantage of the a-GRAPE algorithms,
especially the relaxed a-GRAPE approaches, we compare the
algorithms with the same wall time (24 hours) for different
initial controls. The results are shown in Fig. 7. The cdf
curves show that the two relaxed a-GRAPE approaches (in
particular, the relaxed best-response a-GRAPE approach)
usually perform much better than the b-GRAPE algorithm.
Here, we note that the adopted controls in the relaxed
a-GRAPE approaches are not the ones optimized in the
last iteration, but the ones that lead to the lowest average
infidelity.

1 e
- .
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FIG. 7. The cumulative probability vs infidelity under the cor-
responding controls optimized by the three algorithms for different
initial seeds.

Algorithm 4. b-GRAPE

Initialize:

an initial control u®;

an initial momentum v® = 0;

a set minibatch size n,,;,.

Repeat:

(1) Randomly select a subset S; of the uncertainty
sample with |S|; = n,,;, where k denotes the
current number of round.

(2) Update the control by

u® = & 4 y®,
with
*) -1 _ ¢ 8 (k=1)
v =l ——ZS—L[u ,€].
b Sy u

Here, o represents the learning rate and the
weight parameter A is chosen to be 0.9 in this
paper.

End: if the stopping criteria are satisfied.

V. CONCLUSION

We have proposed a family of adversarial learning algo-
rithms, including the best-response and better-response ap-
proaches, for the design of robust controls for quantum sys-
tems. The algorithms are subject to the optimization of worst-
case gate infidelity, which can be treated and resolved from a
game-theoretic perspective. Numerical simulations show that
these a-GRAPE algorithms can achieve high control robust-
ness. In particular, the best-response approach can effectively
suppress the error over a larger domain at a satisfactory level
of precision, but in the extremely high-precision regime, the
better-response approach is superior. Both approaches have
their regimes of practical utility depending on the application-
specific requirement of the control. We also demonstrate that
a family of a-GRAPE algorithms can be expanded by relaxing
the maximization and minimization processes.

It should be noted that although a-GRAPE usually outper-
forms b-GRAPE, the computational burden is also heavier,
and the tuning of algorithm parameters (e.g., memory sizes,
batch sizes, ratios or learning rates) is application specific.
Further studies are needed to deduce how to optimize the
choices of these parameters, or even in an adaptive fashion.

As we remarked, we did not require the existence of Nash
equilibria (NE) as an appropriate adversarial algorithm can
enhance the robustness no matter whether or not the NE
exists. In our simulations, it appears that a mixed NE is
more likely approached in the best-response a-GRAPE with
a larger memory size. From a theoretical perspective, a better
understanding of the existence of a NE will be useful to attain.
This topic will be explored in future studies.
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APPENDIX: b-GRAPE ALGORITHM

The b-GRAPE algorithm presented in [21] is a stochastic
gradient algorithm. The optimization process follows the gra-

dient evaluated with randomly chosen batches of samples, so
that the uncertainties can be effectively used to improve the
robustness. Here, “b” stands for the “batch”. The b-GRAPE
algorithm is described in Algorithm 4.
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