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Abstract

In this essay, we explore a central problem of structural geology today, and in the foreseeable
future, which is the determination of constitutive laws governing rock deformation to produce
geologic structures. Although laboratory experiments provide much needed data and insights
about constitutive laws, these experiments cannot cover the range of conditions and
compositions relevant to the formation of geologic structures. We advocate that structural
geologists address this limitation by interpreting natural experiments, documented with field and
microstructural data, using continuum mechanical models that enable the deduction of
constitutive laws. To put this procedure into an historical context, we review the founding of
structural geology by James Hutton in the late 18™ century, and the seminal contributions to
continuum mechanics from Newton to Cauchy that provide the tools to model geologic
structures. The procedure is illustrated with two examples drawn from recent and on-going field
investigations of crustal and mantle lithologies. We conclude by pointing to future research
opportunities that will engage structural geologists in the pursuit of constitutive laws during the

21% century.
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1. Introduction

James Hutton (1726 — 1797) led a field trip along the east coast of Scotland in 1788. At
Siccar Point he described what now is called Hutton’s unconformity, where Devonian sandstone
lies on the upturned edges of Silurian sandstone (Figure 1). Fragments of the Silurian beds are
found in the basal conglomerate just above the unconformity. John Playfair (1748 — 1819),
Professor of Natural Philosophy at the University of Edinburgh, accompanied Hutton to Siccar

Point and provided the following commentary (McIntyre and McKirdy, 2012, p. 45):

“On us who saw these phenomena for the first time, the impression made will not
easily be forgotten. The palpable evidence presented to us [by Hutton] of one of
the most extraordinary and important facts in the natural history of the earth, gave
a reality and substance to those theoretical speculations, which, however
probable, had never till now been directly authenticated by the testimony of the
senses. We often said to ourselves, what clearer evidence could we have had of
the different formation of these rocks, and of the long interval which separated
their formation, had we actually seen them emerging from the bosom of the deep?
We felt ourselves necessarily carried back to the time when the [Silurian] schistus
on which we stood was yet at the bottom of the sea, and when the [Devonian]
sandstone before us was only beginning to be deposited, in the shape of sand or
mud, from the waters of a super-incumbent ocean. An epoch still more remote
presented itself, when even the most ancient of these rocks, instead of standing
upright in vertical beds, lay in horizontal planes at the bottom of the sea, and was
not yet disturbed by the immeasurable force which has burst asunder the solid

pavement of the globe.”
Church dogma, well known to Hutton and Playfair, reckoned the age of Earth to be 6,000
years, and recorded the only natural event that might disturb the “solid pavement of the
globe” as the biblical story of Noah’s flood. Challenging that dogma, Hutton used the

geometry of the juxtaposed sedimentary formations and kinematic reasoning to deduce
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their relative ages, and he used his principle of uniformitarianism to argue for much
longer time and much greater force. With these insights, and many others, Hutton
founded the scientific discipline of geology (McIntyre and McKirdy, 2012), and laid the

cornerstones for the sub-discipline of structural geology.

The “long interval” separating the formation of the juxtaposed sedimentary formations at
Siccar Point (Figure 1) has been quantified by sedimentologists, paleontologists, and
geochronologists over the ensuing two centuries (e.g. Brown et al., 2002). The upright Silurian
sandstones were deposited about 435 Ma, and the Devonian conglomerate and sandstones were
deposited about 370 Ma, so Hutton’s unconformity represents about 65 million years of
unrecorded geologic history. Today, the “immeasurable force” is routinely recorded using in-situ
stress measurement techniques (Amadei and Stephansson, 1997), and models constructed using
continuum mechanics (Ramsay and Lisle, 2000; Pollard and Fletcher, 2005; Turcotte and
Schubert, 2014) quantitatively account for the motions and forces involved in the formation of

structures like those described by Hutton.

Because Sir Isaac Newton (1642 — 1726) published The Principia in 1687 (Newton,
1999), 100 years before the field trip to Siccar Point, one might wonder why Hutton and his
colleagues did not relate the forces they imagined to the motions and relative motions they
deduced from outcrop observations? We presume they knew that Newton’s Second Law of
Mechanics provided the relationship, F = ma, between the force vector, F, applied to a particle of
mass m, and the resulting acceleration vector, a. However, the rocks at Siccar Point were
composed of a vast collection of particles, forming a continuous body in which every particle

was acted upon by its neighbors, and the entire collection of particles deformed due to some
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remotely applied forces. Thus, while Newton’s relationship may have seemed relevant to those

on the 1788 field trip. 1t would not have been obvious how to apply it.

The insights necessary to apply Newtomian mechanics to that vast collection of particles
were being developed at about the same time (Malvern, 1969; Lai et al., 2009). In the middle of
the 18 century the spatial description of motion was introduced that provides the kinematic
framework for fluid dynamics, and now 1s associated with the work of Leonhard Euler (1707 —
1783). About that same time. the referential description of motion was introduced that provides
the kinematic framework for solid dynamics, and now 1s associated with the work of Joseph-
Louis Lagrange (1736 — 1813). In 1827, shortly after Huttons death, Augustine-Louis Cauchy
(1789 — 1857) introduced the general equations of motion for a continnous body and the stress
tensor, which accounts for the mechanical actions of particles on their neighbors. Cauchy’s First

and Second Laws of Motion are (e.g Pollard and Fletcher, 2005, Section 7.3):

Dt -x, )

where the operator D/Dt 15 the matenal time denivative. In these equations the dependent
variables are the velocity vector components. V,, and the stress tensor components, » i the
mdependent vanables are the spatial coordinates, X, . and time, . The only matenal property 1s
mass density, ¢ . and components of the gravitational acceleration vector are g;. The left side of

the first equation accounts for mass times acceleration, and the nght side accounts for the

resultant forces, so this 1s the embodiment of Newton's Second Law for the continnum.
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Cauchy’s Laws of Motion apply to all rock types under all possible conditions of
temperature, pressure, and rate of deformation in Earth’s lithosphere and asthenosphere. They
apply to rock that is brittle, ductile, or fluid, and to geologic structures of all types, including
fractures, faults, folds, fabrics, and intrusions. If used alone, they describe the mechanical
behavior of a rock mass that is isothermal and isochemical. In this brief essay, we focus on the
mechanical aspects of rock deformation, because they often dominate the other physical and
chemical processes operating during the formation of geologic structures, but we acknowledge
that heat and mass transport, and chemical reactions can be important parts of a comprehensive

analysis (Hobbs and Ord, 2014).

By the second half of the 19" century, what we now call continuum mechanics was
firmly established in the standard tool set of physicists and engineers to address the deformation
of elastic bodies and the flow of viscous fluids. While foundational in their generality, Cauchy’s
Laws of Motion are impractical to apply directly, because they contain too many dependent
variables (3 velocity components and 6 stress components). The key to applying these equations
is the introduction of constitutive laws, which define the relationship between stress and strain or
the rate of deformation. Constitutive laws not only introduce mechanical properties that can be
quantified for rock, they also reduce the number of dependent variables to equal the number of
equations. For example, by relating stress to the rate of deformation for a linear viscous fluid, the
stress components are eliminated from Cauchy’s Laws, which then become the three Navier-
Stokes equations for fluid dynamics, with only three dependent velocity components (e.g.

Pollard and Fletcher, 2005, Section 7.4).

Throughout the 20™ century, a building cohort of structural geologists exploited linear

elastic and linear viscous theory to investigate the deformation of rock during the formation of
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geologic structures (Johnson, 1970; Hubbert, 1972; Ramsay and Lisle, 2000). In parallel with
those investigations, laboratory studies of the mechanical properties of rock confirmed the
efficacy of the linear constitutive laws, but recognized and quantified significant non-linear

aspects of rock deformation (e.g., Griggs, 1939; Paterson, 1958; Kohlstedt and Goetze, 1974).

Rock mechanics laboratory studies typically are carried out on cylindrical rock samples,
rarely greater than a decimeter in length. They represent particular lithologies with a grain size
that usually is very small compared to the sample dimensions, so the samples are homogeneous
at the sample scale (Tullis and Tullis, 1986; Paterson and Wong, 2005; Jaeger et al., 2009).
Loading usually is axisymmetric with an axial stress that is the greatest compression and a radial
stress (confining pressure) that is the least compression. Pore fluid pressure less than the
confining pressure may be applied to jacketed samples. Some data is available from true triaxial
tests on cubic samples, but the cylindrical sample with axisymmetric loading is the standard.
Servo-controlled systems prescribe changes in loading, displacement, or displacement rate, as
well as temperature, confining and pore pressure. To obtain results on a human timescale, most
experiments are conducted at a strain rate greater than 107 s™', which requires ~12 days to
produce 10% strain in the sample. Shear zones in the lower crust and upper mantle, however,
likely develop under strain rates of 107% to 10"°s™ (e.g., Boettcher et al., 2007). To account for
this discrepancy, experimentalists strategically offset fast strain rates with high temperatures, and
flow laws constrained in the laboratory must be extrapolated across several orders of magnitude
before ultimately applying them to geologic structures (e.g., Paterson, 1987). While some of the
limited ranges of laboratory conditions will be expanded in the future, nature is not so

constrained.
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Structural geologists address many limitations of laboratory tests by interpreting natural
experiments, documented with field data, using mechanical models that enable the deduction of
governing constitutive laws and properties (e.g., Blirgmann and Pollard, 1994; Treagus, 1999;
Kenis et al., 2005; Hudleston and Treagus, 2010; Mancktelow and Pennacchioni, 2010; Grigull
et al., 2012). Microstructural analysis provides an additional tool for evaluating laboratory-
derived constitutive laws extrapolated to geologic conditions (e.g., Hirth et al., 2001; Cross et al.,
2015). In this paper, we illustrate the procedure with two examples drawn from recently
published (Section 2) and on-going (Section 3) field investigations of structures exhumed from
the mid-crust and upper mantle, respectively. We conclude by pointing to future research
opportunities that will engage structural geologists in the pursuit of constitutive laws during the

21% century.

2. Probing constitutive laws for faulting under brittle-ductile

conditions

The brittle-ductile transition is an interval of Earth’s lithosphere where deformation
occurs by a combination of brittle (e.g., fracturing), crystal plastic (e.g., dislocation creep),
and/or solution mass transfer mechanisms (e.g., Kirby, 1983; Scholz, 1988). In
quartzofeldspathic continental crust, this zone occurs between depths corresponding to ~300°C
and ~450°C, where quartz deforms plastically around brittle feldspar porphyroclasts (e.g., Tullis,
2002; Passchier and Trouw, 2006). The brittle-ductile transition has long intrigued geoscientists,
because it hosts peak lithospheric strength (Brace and Kohlstedt, 1980; Kohlstedt et al., 1995)
and the foci for many large-magnitude earthquake ruptures (Sibson, 1982, 1983). Despite the

academic interest and direct relevance to seismic hazard analysis, significant uncertainty still
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surrounds fault mechanics in this region, due largely to the lack of constraints on appropriate

constitutive laws for mixed brittle and plastic mechanisms.

Ancient, exhumed faults offer windows into fault behavior under brittle-ductile
conditions. Over the last four decades, the Mount Abbot Quadrangle of the central Sierra
Nevada, California, has served as a key field site for such investigations. Here we focus on
meter-scale strike-slip faults in the Lake Edison granodiorite, located in the south-central part of
the quadrangle (Lockwood and Lydon, 1975). Offset dikes and xenoliths indicate left-lateral slip
for the majority of faults, which developed due to reactivation of pre-existing joints (Segall and
Pollard, 1983). Left and right steps commonly separate fault segments, producing regions of
enhanced extension and contraction, respectively (Segall and Pollard, 1980). In many cases,
extensional steps contain opening-mode fractures, while granodiorite within contractional steps
is strongly mylonitized (Biirgmann and Pollard, 1992, 1994). Microstructural analysis and
geobarometric data indicate deformation occurred at ~300-500°C under a confining pressure of
~250 MPa, consistent with the brittle-ductile transition (Griffith et al., 2008; Pennacchioni and

Zucchi, 2013; Nevitt et al., 2017a).

We targeted the Seven Gables outcrop (Figure 2) to serve as the foundation for a
mechanical model (Nevitt et al., 2014; Nevitt et al., 2017b). The outcrop contains a contractional
right step between two left-lateral fault segments offsetting a once-continuous leucocratic dike.
Stretch and rotation of the dike record finite deformation within the step, providing a valuable
benchmark for comparison with model results. In addition, a locally strong mylonitic fabric
developed in the dike and adjacent granodiorite within the step. We quantitatively determined the
fabric distribution by calculating the axial ratio and orientation of each visible mafic grain

(Figure 2B; Nevitt et al., 2017b). We consider grains with axial ratios 3 and trends consistent
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with the deformed dike and faults to represent the step-related fabric. This fabric is strongest in

the center of the step between the fault tips and decays outward, forming a sigmoidal pattern.

Microstructural analysis provides valuable insight into deformation mechanisms and
relevant constitutive laws. We analyzed samples of the dike and granodiorite collected outside
and inside the step, representative of the regional fabric and step-related fabric, respectively
(Nevitt et al., 2017b). An S-C mylonitic foliation (Lister and Snoke, 1984) developed both in the
granodiorite and dike within the step where the S-plane is defined primarily by a shape-preferred
orientation in recrystallized quartz. The C-plane is defined by aligned biotite grains in the
granodiorite and fine-grained feldspar grains in the dike. In both lithologies, the presence of
subgrains, interlobate grain boundaries, and a strong crystallographic preferred orientation
indicate quartz deformed by dislocation creep. Feldspar grains commonly contain microfractures,
but also exhibit bent twinning, flame perthite, and irregular grain boundaries, suggesting semi-
brittle deformation. In the granodiorite, biotite grew stably in pressure shadows of feldspar
porphyroclasts, indicative of pressure solution, and rarely kinked or fractured. Hornblende and
sphene deformed by brittle fracturing. Thus, deformation involved a complex combination of

mechanisms down to the grain-scale, further confounding the choice of constitutive law.

We developed a conceptual understanding of the step deformation through kinematic
models based on geometric constraints (Nevitt et al., 2014). Initially, the approximately planar
dike dipped 25° to the NE and was cross-cut by two right-stepping joints with 10 cm of overlap.
As the joints were reactivated as left-lateral faults, the dike segment within the step rotated
counterclockwise about a non-vertical axis, resulting in a 61° dip to the NNE. The fault tips

deflected outward from the step, accounting for extension in the direction orthogonal to the fault

10
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trends. Taking into account rotation about a non-vertical axis, the dike apparently maintained

constant volume during deformation.

This kinematic understanding provides the context for a mechanics-based finite element
model of the deformation (Nevitt et al., 2017b). Finite element analysis is a numerical method of
solving boundary value problems for partial differential equations, including the equations of
motion, in a continuum (Hughes, 2000). We used Abaqus/Standard
(https://www.3ds.com/products-services/simulia/products/abaqus/), a commercial quasi-static
solver, to construct and evaluate models that test the ability of various constitutive equations to
reproduce deformation documented in the Seven Gables outcrop. The starting fault and dike
geometries in the 2D plane strain model come directly from field measurements and the
kinematic reconstruction. The left and bottom boundaries are fixed in the x- and y-directions,
respectively, while loading is introduced in two steps (Figure 3A): (1) Isotropic lithostatic
pressure of 250 MPa; (2) Bulk contraction oblique to the faults to initiate left-lateral fault slip.
The orientation of bulk contraction relative to the faults is based on that of splay fractures
observed in the field, interpreted to indicate the orientation of the most compressive principle
stress. Fault slip is governed by the Coulomb criterion (Coulomb, 1773), in which the driving
shear stress must exceed a critical value related to the fault’s frictional strength and normal

stress.

With the same starting geometry, boundary conditions, and loading procedure, we ran the
model five times with different candidate constitutive laws for describing brittle-ductile
deformation: (1) Von Mises elastoplasticity, (2) Drucker-Prager elastoplasticity, (3) Viscoelastic
power law creep, (4) Coupled elastoviscoplasticity, and (5) Two-layer elastoviscoplasticity

(Nevitt et al., 2017b). Here, we focus on results from the first three models, which cover the

11
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range of representative results. Both elastoplasticity and viscoelasticity may produce permanent,
non-recoverable deformation. An important distinction between these two types of constitutive
laws is that elastoplasticity requires the stress state to meet a criterion for plastic yielding, while
viscous creep can occur under any stress state given enough time. The Von Mises (Von Mises,
1913) and Drucker-Prager (Drucker and Prager, 1952) yield criteria are commonly used to
characterize elastoplastic deformation in metals and geologic materials, respectively. While the
Von Mises criterion is independent of mean normal stress (i.e., pressure), yield strength in the

Drucker-Prager criterion increases with increasing mean normal stress.

Models implementing these elastoplastic and viscoelastic constitutive laws produce
distinct strain distributions (Figure 3C-E). Notably, the Von Mises model (Figure 3C) strictly
localizes shearing along the faults and within the step, while the Drucker-Prager model (Figure
3D) concentrates strain outside the step, and the viscoelastic model (Figure 3E) distributes
deformation more broadly across the model domain. The Von Mises model provides the closest
match to the outcrop deformation. Compared with outcrop measurements of dike rotation (44°),
stretch (3.3), and offset (30 cm), the model dike reaches values of 48°, 3.2, and 26 cm,
respectively. In addition, the model strain distribution mimics that observed in outcrop (Figure
2B), with strain sharply confined within the faults and the greatest magnitudes occurring
diagonally through the center of the fault step. Contrary to field observations, strain in the
Drucker-Prager elastoplastic model focuses near the fault tips outside the step and the fault tips
deflect inward toward the step’s center. The viscoelastic power law creep model, which required
a high strain rate of 10 s to prevent stress relaxation and stimulate fault slip, produces strain
both within and outside the step with the greatest values occurring nearly symmetrically about

each fault tip.
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From the comparison of field measurements and mechanical models, we determine that
brittle-ductile deformation occurs preferentially in regions of elevated mean normal stress (i.e.,
the contractional step) and elevated Mises equivalent stress. This invalidates the Drucker-Prager
yield criterion, which by definition inhibits plastic strain in regions of enhanced mean normal
stress, as a candidate for characterizing brittle-ductile deformation. In addition, power law creep
appears to be a poor choice, as it both requires unreasonably high strain rates (e.g., Rowe et al.,
2011) to achieve fault slip, and it produces an unrepresentative strain distribution. Models
incorporating both plasticity and creep (i.e., two-layer elastoviscoplasticity) can provide a close
match to the outcrop deformation, but the behavior is dominated by Von Mises yielding rather

than creep (Nevitt et al., 2017b).

With these new constraints, we further investigated fault behavior under brittle-ductile
conditions by constructing finite element models with multiple fault steps and Von Mises
elastoplastic behavior (Nevitt and Pollard, 2017). In agreement with mapped fault systems in the
Mount Abbot Quadrangle, we found that modeled oftf-fault plastic yielding enhanced fault tip
interaction and slip transfer. This allows faults to attain greater slip magnitudes and gradients
than for modeled faults in a linear elastic medium or for natural faults active at Earth’s surface
(e.g., Dawers et al., 1993), where a frictional rheology given by Byerlee’s law is expected. Thus,
the combined methodology of geologic observations and continuum mechanics illuminates new

and significant characteristics of fault behavior at the base of the seismogenic zone.
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3. Constraints on multiphase constitutive laws for upper mantle

deformation

Plate boundary deformation below the brittle-ductile transition is dominated by bulk
plastic flow that facilitates shear localization (e.g., Scholz, 1988). Such deformation is essential
to plate tectonics, since the relative motions of rigid lithospheric plates require localized
deformation at their boundaries. Because most lithospheric material consists of the upper mantle,
constraining flow laws (i.e., constitutive laws defining viscous flow) for peridotite and its
constituent minerals, olivine and pyroxene, is crucial to understanding the mechanics driving

plate motions and the strength of the lithospheric mantle.

While laboratory experiments have significantly advanced knowledge of olivine
constitutive behavior (e.g., Hirth and Kohlstedt, 2003), flow laws for other mantle materials
remain poorly constrained. Experiments on orthopyroxene face the challenges of obtaining
suitable starting material and working at restricted pressure-temperature conditions to prevent
low-pressure polymorphs (e.g., Raleigh et al., 1971; Skemer and Karato, 2007; Bystricky et al.,
2016). For polyphase materials (e.g., peridotite), laboratory conditions are similarly limited due
to chemical interaction and partial melting (Ji and Xia, 2002). Even for olivine, while strains up
to ~20 have been achieved in experiments (e.g., Hansen et al., 2014), naturally deformed samples
can reach much greater magnitudes (Figure 4). Hence, field studies of naturally deformed
peridotite are necessary to test the appropriateness of laboratory-derived flow laws under mantle

conditions over geologic timescales.

The Josephine Peridotite in the western Klamath Mountains, Oregon, is a prime field site

for studying constitutive laws governing mantle deformation, along with mechanisms leading to
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shear localization. The Fresno Bench section of this obducted peridotite massifis a 1 km wide
glacial step that contains >10 well-exposed, small-scale shear zones (Figure 4, Supporting
Material). The shear zones share broadly similar compositions, consisting mainly of harzburgite
(~70% olivine, 30% orthopyroxene) with some interlayered dunite (100% olivine). Melt is
evident in the center of some shear zones, either as gabbro veins, pyroxenite veins, or dunite.
Strain can be measured due to the presence of a pyroxene foliation that has relief on outcrops due
to preferential weathering of olivine relative to pyroxene (Figure 4A). As the presence of a strain
marker in peridotite is unusual, this locality provides unique constraints on deformation of
olivine and pyroxene under natural conditions (e.g., Loney and Himmelberg, 1976; Kelemen and

Dick, 1995; Warren et al., 2008).

Mapped deflections of the pyroxene foliation (Figure 4B) combined with kinematic
techniques traditional to structural geology (e.g., Ramsay, 1980) have been used to calculate
strain profiles across each shear zone (Figure 4C). Shear zone width ranges from 2.5 m to 60 m
and maximum strain ranges from 1.6 to > 64 (Supporting Material). Interestingly, some shear
zones are characterized by asymmetric strain profiles, possibly indicating interaction between
neighboring structures. Deformation features observed in these shear zones may provide
important insight into the micromechanics and governing constitutive laws for shear localization.
For example, Skemer et al. (2013) compared measurements from Shear Zone P to results of a 1D
numerical model that incorporated an empirical flow law, an analytical solution to the diffusion
equation, and an empirical function for viscous anisotropy. By varying water content and viscous
anisotropy in the model, they determined that strain localization required at least two
micromechanical processes (i.e., water weakening and the development of lattice preferred

orientation).
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Microstructural and compositional variations among the shear zones provide additional
insight into the role of grain size, melt, water content, secondary phase abundance, and mineral
alignment (i.e., viscous anisotropy) on constitutive behavior (Warren et al., 2008; Skemer et al.,
2010; Recanati et al., 2012; Skemer et al., 2013; Hansen and Warren, 2015). Here we use data
from these shear zones to evaluate the application of laboratory-derived constitutive laws for
olivine aggregates (i.e., dunite) to multiphase aggregates (i.e., harzburgite). The misfit between
predictions from laboratory-derived laws and observations of natural samples suggests that
continuum mechanics modeling may improve constraints on constitutive behavior and could be
used to expand the 1D analysis of shear localization by Skemer et al. (2013) to higher

dimensions.

Outcrop observations and microstructural analyses of harzburgite and dunite indicate that
olivine deformation occurred by dislocation-accommodated grain boundary sliding (disGBS)
(Hansen and Warren, 2015). Laboratory experiments (Bystricky et al., 2016) and field
observations (Tikoff et al., 2010) indicate greater viscosity for pyroxene compared to olivine.
However, interlayered harzburgite and dunite are co-deformed in one of the Josephine shear
zones with no macroscopic evidence (e.g., boudinage or folding) for a viscosity difference
between the two lithologies. Hansen and Warren (2015) observed that olivine grain size
decreases with increasing pyroxene fraction in the shear zone, following a Zener pinning
relationship (Linckens et al., 2014). Thus, they concluded that olivine deformed by a grain-size
sensitive mechanism, in which viscosity decreases with decreasing grain size. This would
account for the approximately uniform viscosity of the dunite and harzburgite with the decreased
olivine viscosity due to grain size reduction in the harzburgite offsetting the higher viscosity

expected from the presence of pyroxene. Olivine microstructural data for the Josephine shear

16



350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

zones plot within the laboratory-determined disGBS field, but only when assuming anhydrous

conditions (Figure SA; Hansen and Warren, 2015).

Our estimates of olivine water content, however, suggest relatively hydrous conditions
during deformation, with olivine containing 200—600 ppm H/Si (equivalent to 13—38 ppm H,0)
across the Fresno Bench outcrop (Kumamoto, 2018). Using hydrous olivine flow laws at the
estimated depth (~30 km) and temperature (~1000°C) conditions of Josephine Peridotite
deformation, the differential stress required for wet disGBS is unreasonably high (>1 GPa;
Ohuchi et al., 2015). Instead, the Josephine data plot across the intersection of the wet diffusion
and dislocation creep fields (Figure 5B), with deformation accommodated by 10-60% diffusion
creep and 40-90% dislocation creep. This combination of mechanisms allows for some
deformation to be accommodated by a grain-size sensitive mechanism (i.e., diffusion creep),
which matches the outcrop and microstructural observations, while accommodation by
dislocation creep can account for the occurrence of an olivine lattice preferred orientation.
However, as the contribution of diffusion creep increases, the olivine fabric strength should
decrease (e.g., Warren and Hirth, 2006). In contrast, Hansen and Warren (2015) observed a
constant fabric strength with varying grain size and modal pyroxene. Hence, the Josephine
Peridotite microstructural data further suggest that deformation was accommodated by wet

disGBS, despite the mismatch with existing laboratory data for this mechanism.

The discrepancy between microstructural observations of deformed peridotites and the
empirical disGBS flow law indicates that additional factors are needed in the extrapolation to
natural conditions. The wet disGBS flow law is calibrated by a limited number of high pressure
(1.5-6.7 GPa) experiments on olivine aggregates (Ohuchi et al., 2015), but refinement of the

parameters is unlikely to expand the field to the lower stresses in Figure 5B. Experiments
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conducted at lower pressure (300 MPa) have found no evidence for disGBS in hydrous olivine
(Tasaka et al., 2016). Instead, we suggest that the discrepancy may be related to the polyphase
nature of natural peridotite. Hirth and Kohlstedt (2003) suggested that wet disGBS does not
occur because dislocation climb is enhanced by the presence of water. However, the presence of
pyroxene may require increased activation of grain boundary sliding to accommodate
deformation, if the occurrence of mixed phase boundaries (e.g., olivine-orthopyroxene) offsets
the enhanced mobility of dislocations when water is present. Thus, wet disGBS may be active

over an expanded range of conditions for olivine-pyroxene aggregates than for pure olivine.

Quantification of constitutive behavior in this system is necessary to constrain strength.
The Josephine data correspond to a strain rate approximately one order of magnitude faster
assuming hydrous rather than anhydrous deformation conditions (Figure 5). Further weakening
would be expected for hydrous polyphase disGBS relative to hydrous dislocation creep, which
would enhance shear localization. Fundamentally, extrapolating flow laws from laboratory to
natural conditions relies on the assumption that the same microphysical processes control
rheological behavior in both settings (e.g., Hirth and Kohlstedt, 2003), and microstructural

analysis provides a tool to test this assumption (e.g., Wallis et al., 2017).

We suggest that continuum mechanics provides an additional tool to search for
multiphase flow laws that reproduce field observations. Similar to the example in Section 2, a
numerical experiment could be designed in which the model geometry and boundary conditions
are derived directly from detailed field maps of the Josephine shear zones. Application of novel
techniques, such as photogrammetry (e.g., Bemis et al., 2014), may allow three-dimensional
structures to be extracted from this outcrop to provide a similar level of constraints as is currently

available for the Seven Gables outcrop. By prescribing a remote displacement boundary
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condition consistent with field measurements and applying representative pressure-temperature
conditions, the constitutive law and input parameters could be varied to compare the resulting
deformation with that recorded by the strain profiles. These models could be evaluated against
future experimental data, as new types of experiments (e.g., Cyprych et al., 2016; Cross &
Skemer, 2017; Zhao et al., 2017) lead to improved constraints on the extrapolation of single-
phase flow laws to the multiphase domain. Additionally, this methodology could reveal how
ductile shear zones interact with each other, potentially accounting for the observed asymmetric
strain profiles in Figure 4C. Ultimately, this type of modeling is important for understanding how

plate boundaries form in the mantle, for example at oceanic transform faults.

4. Discussion: Future research opportunities

The methodology outlined above — combining field and microstructural measurements
with mechanical models to deduce constitutive laws — is likely to provide important insights into
outstanding questions in structural geology and tectonics. The open questions of how rheology
varies throughout Earth’s lithosphere, and how this variation influences fault and shear zone
behavior (e.g., Huntington et al., 2017), may be approached using a multitude of focused studies

of exhumed and active structures alike.

Geoscientists generally agree that constitutive laws vary gradually in space and time
through transitional regions (e.g., the brittle-ductile transition), rather than the abrupt change
typically depicted by strength-depth diagrams (e.g., Scholz, 1988). Quantifying and
characterizing these changes, however, has proven challenging. One possible approach would be
to consider a series of outcrop exposures along a major fault system that was differentially

exhumed, such as the Salzach-Ennstal-Mariazell-Puchberg fault system in Austria (Cole et al.,
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2007; Frost et al., 2011). Alternatively, one could identify a series of isolated outcrop-scale
structures in a common lithology (e.g., granite), each exhumed from a different depth near and
within the brittle-ductile transition. In either case, the naturally deformed structures and
microstructures could inform a mechanical model to deduce representative constitutive laws and

conditions, similar to the example discussed in Section 2.

Constitutive laws also are poorly constrained near Earth’s surface, particularly within
unconsolidated materials, such as soil or alluvium. Within this region, structural geologists have
paid particular attention to secondary, echelon fractures that commonly form above ruptured
strike-slip faults, referred to as “Riedel Shears” (e.g., Lin and Chiba, 2017). The criterion used to
explain and interpret these features is Mohr-Coulomb failure (Tchalenko, 1970; Price and
Cosgrove, 1990), which requires the fractures to form in shear. However, these fractures
commonly preserve both opening and shear components, and may be related to tensile stresses
near the fault tip (Martel and Boger, 1998). Thus, the origin and relevant constitutive laws for
this deformation remain ambiguous. Though clay box experiments have reproduced Riedel
fractures (e.g., Tchalenko, 1970), they are limited to length scales far smaller than what is
observed in nature, which is problematic for both fracture scaling and pressure-dependent plastic
yielding (e.g., Mohr-Coulomb). Another topic that recently piqued the interest of structural
geologists is the physics controlling “off-fault deformation,” the proportion of shear deformation
accommodated by distributed mechanisms rather than discrete fault slip (e.g., Oskin et al., 2012).
We propose that both of these topics could be addressed through mechanical models constrained

by field measurements of recently activated faults.

Under all lithospheric conditions, it remains unclear how the constitutive properties of

faults and shear zones evolve through time (e.g., Dolan and Haravitch, 2014; Erickson et al.,
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2017). For example, do fault zones become weaker or stronger as they mature? One could adopt
a space-for-time approach to addressing this problem. In a uniform lithology, evaluating the
relative strength of fault zones with varying amounts of cumulative slip would reveal whether
more mature faults are stronger or weaker. This analysis would be enhanced by a combination of

laboratory experiments, microstructural analysis, and mechanical models compared to field data.

Each of these research avenues will benefit from ongoing progress in mapping and
computational capabilities. For example, recent advances in high-resolution imaging techniques
— such as structure-from-motion photogrammetry (James and Robson, 2012; Westoby et al.,
2012), optical image correlation (Leprince et al., 2007), and mobile laser scanning (Brooks et al.,
2013) — allow for rapid, detailed mapping of structures across wide regions (e.g., Johnson et al.,
2014; Milliner et al., 2015; Brooks et al., 2017). Increased computational power permits models
with complex, non-linear constitutive laws that previously were impractical. In addition,
continuum mechanical modeling packages — including open-source options (e.g., PyLith;
https://geodynamics.org/cig/software/pylith) — are increasingly available, with improved

documentation, support, and tutorials that ease the learning curve for new and experienced users.

5. Conclusions

While the disciplines of structural geology and continuum mechanics both were founded
in the 18" century, the two fields saw little interaction over the next ~200 years. As a result,
numerous outstanding questions remain in structural geology related to the mechanics of rock
deformation. Crucial to mechanical analyses is the choice of constitutive law: the relationship
between stress and strain, or stress and rate of deformation. Laboratory investigations have made

great strides toward determining appropriate constitutive laws for geologic materials. By
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necessity, however, they are limited spatially, temporally, compositionally, and
thermodynamically compared to conditions found in nature. Here, we have advocated for the use
of continuum mechanical models, informed by field measurements and microstructural analysis,
to evaluate representative constitutive laws under conditions ranging from Earth’s surface to the
upper mantle. Future research will benefit from continuing technological advances in our
capacity to both map geologic structures and model complex geologic processes encountered

throughout the lithosphere.
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713 Figures and Captions

714

Hutton’s

unconformity
715
716 Figure 1. Hutton’s unconformity at Siccar Point, Scotland. Vertical Silurian strata are overlain
717 by a basal conglomerate and the gently inclined Devonian strata. Dashed yellow line marks
718 angular unconformity, a 65 Ma hiatus in time. Photograph ©Lorne Gill/SNH.
719

28



720

Density

721

722 Figure 2. Seven Gables outcrop (37°19 27.08 N 118°5039.52 W). (A) Orthorectified photo
723 with faults and dike outlined in black and white, respectively. (B) Normalized density

724 distribution of fault-related fabric, defined by mafic grains with aspect ratios >3 and orientations
725 between 260-305°, as determined using the MATLAB image analysis toolbox. Modified from
726 Nevitt et al. (2017b).

727

29



A B

l l 2?0 lVIlF’a l l (rotated 35° counterclockwise from A)
o y -—
9 I—» X .
o c
- )
‘ﬁ’ o g
1
50 B )\ ., %
o g o
o -~ —
5m
QO  —— -

728
729 Figure 3. Finite element model set-up and results. (A) Dimensions, geometry, and boundary
730 conditions employed in each model. Dike and faults are represented by white and black lines,

731  respectively. First, the model equilibrates to a lithostatic pressure of 250 MPa. Then, the model is
732 contracted at a 35° angle to the faults to instigate fault slip. This is done by displacing the right
733 model boundary by 60 cm in the negative-x direction (indicated by red arrows). (B) Detailed
734 view of the geometry and mesh in the center of model domain. Note that the model is rotated 35°
735 counterclockwise relative to (A) for a view analogous to Figure 2. (C-E) Maximum logarithmic
736  strain for (C) Von Mises elastoplasticity, (D) Drucker-Prager elastoplasticity, and (E) Power-law
737 creep viscoelasticity. Please refer to Nevitt et al. (2017b) for parameters used.
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739
740 Figure 4. (A) Outcrop photo of shear zone B (max strain of 6.5) in the Josephine Peridotite.
741 Dashed white lines indicate the deflection of pyroxene foliation. (B) Structural cross-section of
742 shear zone P, perpendicular to the shear plane. Orange lines indicate the measured strike of
743 pyroxene foliation. Grey dashed lines represent the schematic deflection of foliation across the
744 shear zone. (C) Strain profiles as a function of distance for 6 shear zones, based on field
745 measurements of pyroxene foliation projected onto the X-Y structural section perpendicular to
746 the shear plane. Half-width is calculated as the distance in the positive direction from the
747 location of maximum shear strain at which shear strain decreases below 0.2. In SZA and SZG,
748 strain is capped at 65 and 30, respectively, due to sub-vertical foliation measurements. Data are
749 from Warren et al. (2008), Skemer et al. (2010), Recanati et al. (2012), and our new data
750 (Supporting Material).
751
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754
755 Figure 5. Comparison of microstructural data from three shear zones (SZA, SZG, and SZP;
756 strain profiles are shown in Figure 4) to laboratory-derived olivine flow laws. Deformation
757 mechanism maps are for (A) anhydrous and (B) hydrous (400 ppm H/Si or 25 ppm H,0)
758 conditions at 1000°C and 1 GPa (30 km depth). Shading indicates the relative contribution of
759 grain size-sensitive deformation mechanisms: disGBS in (A) and diffusion creep in (B). Flow
760 laws are from Hirth and Kohlstedt (2003) and Hansen et al. (2011), with the wet flow laws
761 adjusted for the revised water calibration of Bell et al. (2003). Stress for the Josephine Peridotite
762 samples is calculated using the subgrain size piezometer of Toriumi (1979), with the grain size
763 piezometer (Karato et al., 1980; Van der Wal et al., 1993) shown for comparison. Data for
764 Josephine samples are from Skemer et al. (2010), Hansen and Warren (2015), and Kumamoto
765 (2018).
766
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constrain constitutive laws not accessible in the laboratory,” for submission to Journal of

Structural Geology.

Highlights

e Natural structures provide bases for mechanical models to test constitutive laws

e Methodology is applicable in all lithologies throughout the lithosphere

¢ Granodiorite exhumed from mid-crust shows plastic yielding enhances fault slip

e Deformation observed in exhumed mantle conflicts with empirical constitutive laws

e Technological advances will propel this methodology throughout the 21% century



