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ABSTRACT: In this Article, the recently developed multi-
model and NLP-based operability approaches are reviewed
and further developed in terms of theory, application, and
software infrastructure. Classical process operability concepts
are also revisited and contrasted with new extensions present
in both approaches. A focus is given on the comparison
between distinct measures of the operability index and the
handling of infeasible portions of the desired operating region.
For the software infrastructure outcome, a framework for the
development of process operability algorithms is provided. In
particular, generated codes from the studied approaches are
included in an open-source platform that will grant access of
the algorithms to researchers from academia and industry.
This platform has the purpose of dissemination and future improvement of process operability algorithms and methods. For the
development of a versatile process operability tool, the considered approaches are adapted to support process models of generic
dimensionalities. New contributions are also incorporated such as the conventional operability index calculation and other
methods to find optimal design regions. Nonlinear energy systems of different input × output dimensionalities (6 × 3, 7 × 3,
and 3 × 3) are addressed to demonstrate the applicability of the features available in the developed software tool to process
achievability analysis, intensification, and modularization.

1. INTRODUCTION

Environmental changes have challenged the way natural
resources are exploited by industry. Advances in catalysis,
materials, and process systems engineering strategies have given
rise to novel designs1,2 allowing more efficient and versatile
utilization of feedstocks and resources. Modular and intensified
systems are important examples of recent transformations in the
conceptualization of process design. These emerging technol-
ogies are typically first-of-a-kind designs and present limited
heuristics and guidelines associated with process operation. This
in turn can result in a design that is susceptible to control
infeasibilities.
A viable alternative to the sequential tasks of process design,

followed by the selection of control strategies, is the integration
of both tasks in early design stages. For this purpose, process
operability analysis has emerged as a tool to achieve this
integration through quantification of operational uncertainties,
disturbances, and constraint violations with the goal of assuring
optimality and feasibility.3 Specifically, the concept of
operability index (OI) was introduced as a measure of the
capability of a design to consider changes in operational
variables, while maintaining controlled variables within a desired
achievable range.3,4 This concept was widely applied to steady-
state systems to give insights in the process synthesis phase
about future plant operations.3−6

Dynamic operability approaches were also developed to
extend steady-state operability concepts in order to assess
transient output constraints.7−9 These approaches produced a
performance upper bound for achieving operating regions,
derived in terms of an idealized controller scenario.
Throughout the development of operability methods, input−

output mappings have always been present as an indispensable
technique to quantify achievability and controllability.10 When
performing this mapping, intrinsic challenges were brought into
the operability analysis such as space nonconvexities, non-
linearities, and system dimensionality. Historically, several
approaches were developed to tackle these challenges, mainly
either in the field of operability or in the field of flexibility such as
(i) surface-response-based techniques (kriging and surface
response methods),11,12 (ii) data-driven experiments and design
of experiments,11−14 (iii) simplicial approximation,15 (iv) high-
dimensional data-driven model representations,12,16 (v) multi-
parametric approaches,17,18 and (vi) metamodeling.19
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Recent publications employed another extension of the
conventional operability approach considering the design inputs
(physical dimensions) instead of the operational inputs of the
system.20−24 These approaches draw special attention when it
comes to finding emerging designs that employ the concepts of
process intensification (PI) and system modularization (SM).
Later approaches considered both design and operational inputs
to evaluate and rank competitive designs.10 These approaches
introduced an alternative measure of OI to systematically
analyze the achievability of PI targets in a modular design region
containing candidate designs for SM and PI. Nevertheless, for
the considered approaches, no comparison with traditional
measures of OI was established. The employed algorithms were
also limited to square systems up to 3 × 3 dimensionality,
corresponding to a gap in the operability literature.
Operability algorithms are usually tailored to address specific

applications, considering particular dimensionalities and ex-
pected system behavior. Thus, a common limitation is the
restricted applicability of the produced algorithms. Another
challenge comes from the fact that a very limited number of
algorithms and codes (if any) have been shared in the reported
process operability literature. Consequently, the reproducibility
and comprehensive comparison among distinct approaches are
hindered, restricting theoretical contributions to isolated
applications.
In this Article, current process operability approaches are

further developed in terms of theory to tackle a variety of system
dimensionalities and applications. The employed optimization
formulations are mathematically extended to also handle
nonsquare systems. The traditional measure of OI is
incorporated, allowing a formal comparison with recently
introduced alternative measures. A review of the current
approaches and traditional operability concepts and strategies
is also provided. Future developments are examined as
prospective avenues and challenges to be addressed.
For the software infrastructure contribution, the resulting

algorithms are structured and compiled as part of an open-
source MATLAB platform named “Process Operability App
Project” that will grant access to available operability algorithms
for the research community. The theoretical developments and
software tool are illustrated via applications that include the
direct methane aromatization membrane reactor (DMA-MR)
and cycling of the carbon capture and storage (CCS) subsystem
of a coal-fired power plant. Specific information about the
development of the algorithms for incorporation into the
operability tool is also presented throughout the Article.
This Article is structured as follows: section 2 contains

previous process operability developments; section 3 reviews
basic operability concepts; in section 4, current process
operability algorithms and new contributions are described;
section 5 shows the applications; and, in section 6, conclusions
and future developments are discussed.

2. PROCESS OPERABILITY: SUMMARY OF PRIOR
WORK

Process operability was originated for the assessment of linear
and nonlinear steady-state systems.3 The first studies described
fundamental system characteristics, achievability of desired
operating regions, and which possible changes in the design
could be considered for improvement of process operation. The
incorporation of process dynamics into operability consisted of a
complemental analysis that provided detailed information about
transient operation and applicability to specific control

strategies. It is important to note that, except for intrinsically
dynamic systems, the steady-state analysis is suggested as either
a primary or sole analysis, which can possibly be supplemented
by dynamic operability.9 A summary of prior work is given in the
following subsections.

2.1. Steady-State Analysis. The calculation of regions for
set point and disturbance rejection control motivated the
creation of the OI. Input−output mappings were employed to
describe inherent process behavior and facilitated the analysis of
nonlinear systems, which were not suitable to conventional
linear controllability measures. A systematic generalized
approach for both linear and nonlinear square systems enabled
the determination of necessary inputs to compensate for the
presence of disturbances and/or to achieve desired set points.
TheOI, in turn, quantified the capability of the system to comply
with both tasks of set point control and disturbance rejection.
The expansion to nonsquare systems was accomplished by

adopting concepts of optimization and interval control.25 With
fewer degrees of freedom, some of the controlled variables could
not be set point controlled but were able to be controlled within
a determined output interval. Conversely, with extra degrees of
freedom, optimization-based frameworks had to be employed
along with either economic or performance objectives to
accommodate the presence of additional input variables.6,26

Operability analysis was then extended to consider design
variables. The method for verification of regions for set point
control and disturbance rejection was employed to find the
portion of the design space that minimized the process footprint,
cost, and achieved PI targets while respecting process
constraints.20−23 A nonlinear-programming (NLP)-based for-
mulation was considered to perform direct and inverse input−
output mapping calculations.
To obtain faster computational times, a multimodel variation

of this formulation adopted multiple linearized models to
represent the input−output mapping as a set of connected
input−output polytopes.24 The optimization formulation was
then cast as a mixed-integer linear programming (MILP)-based
problem. Nevertheless, both NLP-based and multimodel
approaches had as the main outcome an input point associated
with the most intensified modular design and no calculation of
the OI was initially performed.
A recent approach introduced a multilayer operability

framework to combine the tasks of finding intensified modular
designs and quantifying the system’s ability to achieve set point
control regions.10 This approach extended the multimodel
framework with MILP-based formulation not only to consider
an intensified modular point but also to evaluate candidate
designs in a modular design region using the OI, thus taking into
account process operation. Particularly, a newmethod for theOI
calculation was introduced as an alternative for the conventional
measures of length, volume, and hypervolume. This newmethod
quantified the achievability of output subregions and allowed the
calculation of the OI for output regions that are described by
shapes with small hypervolumes.
Although the use of the OI consisted of an effort reported for

the first time in the PI and SM operability literature, process
operability was left with two possible measures of OI, the
classical measure with hypervolumes and the newly introduced
measure in terms of subregions. As no guidance was provided
regarding the selection of OI measure, the formal comparison
between these two measures is still a gap. A common challenge
associated with operability approaches is the generation of
algorithms that tackle either square or nonsquare systems of

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.9b05181
Ind. Eng. Chem. Res. 2020, 59, 2457−2470

2458

http://dx.doi.org/10.1021/acs.iecr.9b05181


specific dimensionalities and thereby present restricted
reproducibility.
This Article explores the further development of the NLP-

based and the multilayer operability approaches. For compar-
ison between OI measures, the multilayer approach is
augmented by incorporating the conventional measure of OI.
To overcome the challenges of system dimensionality and
reproducibility, the NLP-based and multilayer approaches are
generalized to handle square and nonsquare systems with extra
degrees of freedom. The developed codes are included as part of
the Process Operability App Project, enabling the employment
of user-entered functions associated with the desired applica-
tions.
2.2. Dynamic Analysis. The study of the minimum time

required for a considered process to perform the tasks of set
point control and disturbance rejection incited the development
of dynamic operability.7,27 A dynamic form of the OI was
formulated, accounting for the desired dynamic performance
and intrinsic dynamic system behavior. In particular, the
dynamic OI provided insights about the system compatibility
with dynamically controlled operation, indicating whether
controllability should be further investigated or immediately
rejected due to the system’s inability to respond within a desired
operating time.
Later, other dynamic operability approaches addressed

problems with fewer degrees of freedom by adopting the ideas
of interval-controlled output variables.8 Particularly, the output
variables were analyzed during transient operation and the
outcome resulted in an output region represented by a funnel
with dynamic outputs constraints. In this Article, focus will be
given to steady-state operability analysis. A historical description
of dynamic operability can be found in ref 6.

3. PROCESS OPERABILITY: THE BASIC CONCEPT
The system dimensionality and objectives in the operability
analysis determine how major concepts can be adapted and
applied to each case. For example, when evaluating disturbance
rejection, the OI may be calculated from an input or output
perspective. In this section, generic operability concepts are
explained along with the particularities for steady-state
scenarios.
Set point operability is focused on the study of square systems.

Considering a system with m inputs, n states, p outputs, and q
disturbances, the following process model,M, may describe the
system behavior:

=

̇ =
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̇ ̇ =

̇ ̇ ≥
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ooooooooo
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x f x u d

y g x u d
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h x x y u u d

( , , )

( , , )

( , , , , , ) 0

( , , , , , ) 0

1

2 (1)

in which ∈ x n are the state variables, ∈ y p are the outputs,
∈ u m are the inputs and ∈ d q are the disturbances.

→+ + f : m n q n and →+ + g: m n q p are nonlinear maps. h1
and h2 are equality and inequality process constraints,
respectively. Furthermore, ẋ and u̇ represent time derivatives
associated with x and u, respectively.
With the above notation, three basic operability sets can be

readily defined, as follows.
Available Input Set (AIS). This set of available inputs may

be changed within a certain range according to accessibility. It

may represent operational inputs and/or design inputs.
Operational inputs are manipulated variables (MVs), the subject
of control studies, whereas design inputs are associated with
available designs (available material, dimensions, etc.).
Mathematically, the AIS is given by

= { ∈ | ≤ ≤ }u u u uAIS m min max (2)

When needed, the AIS can be distinguished by sets that solely
comprise design variables ( ∈ AIS m

des
des) or operational

variables ( ∈ AIS m
op

op), in which mdes and mop are the
dimensionalities of AISdes and AISop, respectively. In case both
types of input variables are present, the complete AIS is a result
of the Cartesian product AISdes × AISop with m = mdes + mop.

Desired Output Set (DOS). This set represents the desired
region of operation. It may be defined, for example, by process
constraints and desired production or efficiency. Mathemati-
cally, the DOS is given by

= { ∈ | ≤ ≤ }y y y yDOS p min max
(3)

Insights about the determination of the DOS may be given by
input−output mappings using the AIS and the Achievable
Output Set (AOS) defined below. For example, given an AIS
that represents available process conditions for MVs, an AOS
with achievable controlled variables can be generated through
direct mapping. By inspecting the generated AOS, achievable
zones may be analyzed for selecting the best operating output
region according to economic or environmental targets.
Experimental recommendations are also important factors in
the selection of the DOS; i.e., system pressure and temperature
limits should not be exceeded in order to preserve mechanical
and chemical integrity of structures (e.g., structure of metals for
catalysts, membranes, and so on).

Expected Disturbance Set (EDS). This set of expected
disturbances, also representing process uncertainties, is
mathematically defined as

= { ∈ | ≤ ≤ }d d d dEDS q min max (4)

For a system without perturbations (i.e., disturbances are kept in
their nominal values), the EDS is defined by

= dEDS N (5)

where ∈ dN q is a vector composed of fixed nominal values.
Considering the process modelM, the inverse modelM−1, and

the sets above, other operability sets can be calculated as
described below.

Achievable Output Set (AOS). This is a set of controlled
variables that the system can achieve for the considered AIS and
EDS. This set is generically defined as a function of inputs and
disturbances. For each disturbance scenario, d ∈ EDS, the AOS
can be obtained as follows:

= { ∈ | = ∈ }d y y M u d uAOS ( ) ( , ) and AISu
p

(6)

If disturbances are kept in their nominal values, the AOS is a
region described by

= { ∈ | = ∈ }d y y M u d uAOS ( ) ( , ) and AISu
N p N

(7)

When disturbance changes are present, the definition of the
AOS will depend on the regulatory action consideration. If no
disturbance rejection is considered, the AOS is the conservative
region where one can guarantee achievability despite the
presence of disturbances, which is described as
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= ∩ ∈ dAOS AOS ( )d uEDS (8)

Conversely, to verify achievability for cases in which
regulatory action is considered, the operability analysis can be
performed from the input perspective as described below by
studying the required input changes to compensate for the
presence of disturbances.
Desired Input Set (DIS). This is a set of required inputs

needed to achieve the entire DOS. It can be computed by
applying the inverse model to all the elements in the DOS. For
each d ∈ EDS, this set is generically described by

= { ∈ | ∈ }−d u M y d yDIS ( ) ( , ) and DOSy
m 1

(9)

Without disturbance changes, the DIS is an inverse mapping
of the AOS, calculated by using a fixed ∈ dN q for the
achievement of the entire DOS, described as follows:

= { ∈ | ∈ }−d u M y d yDIS ( ) ( , ) and DOSy
N m N1

(10)

When disturbance changes are considered, the DIS is
calculated by using the EDS and DOS, being enlarged to
account for the necessary input changes to compensate for the
presence of disturbances and achieve the DOS. In that case, the
DIS can be calculated to achieve the complete DOS region as

= ∪ ∈ dDIS DIS ( )d yEDS (11)

Cases in which disturbances exist, but no regulatory action is
taken are usually addressed from the output perspective, by
restricting the AOS, as described above.
Calculations of the DIS can be prone to challenges, either

because of the complexity of the process model inversion or the
infeasibility of desired targets. Complex process models are
frequently present in nonlinear systems that require a nonlinear
model,M. Thus, for those cases, the derivation of M−1 may not
be straightforward. Other challenges are the presence of input−
output multiplicities, i.e., two or more input points generate the
same output, singularities, nonconvexities, and topological
discontinuities. The input and output spaces can be carefully
inspected in advance in order to avoid working on problematic
regions. Such inspection can be performed by using the
Operability App functionalities of input−output mapping and
the NLP-based approach for model inversion.
A possible source of infeasible desired operation comes from

the arbitrary selection of the DOS. The DOS is commonly
selected according to desired measures of production and
efficiency that may not be completely achievable. In this case,
portions of the DIS calculation are unachievable, since no input
points can be mapped to the infeasible outputs. In this Article,
linear and nonlinear optimization tools are explored in section 4
to enable the numerical computation ofM−1 and the handling of
possible infeasible points.
With the calculated sets above, determinations of OI can take

place. Without regulatory action, the AOS is utilized as the basis
to quantify the system’s achievability of a desired operating
region. With the obtained AOS (eq 8), the OI is associated with
servo operation and, when distinction is needed, it is denoted as
servo-OI. The servo-OI is described as

μ
μ

= ∩
OI

(AOS DOS)
(DOS) (12)

in which μ indicates the quantification of regions. For 1-
dimensional cases, it can be a measure of length; for 2-
dimensional cases, area; for 3-dimensional-cases, volume; and

for n-dimensional cases, hypervolume. Alternative quantifica-
tions of these regions have also been reported in the recent
literature considering the achievement of DOS subregions.10 A
comparison between the volumetric measure and the measure
with subregions is provided in section 5.
Without disturbances and perturbations, the servo-OI can

also be calculated from the inputs perspective by substituting the
DOS and the AOS in eq 12 with DIS and AIS, respectively, i.e.,
μ(AIS ∩ DIS)/μ(DIS). Similarly, when disturbances are
present, the quantification of the OI is also performed from
the inputs perspective but called regulatory or overall-OI, as it
indicates the system’s ability to reject disturbances and
simultaneously achieve the DOS.
For nonsquare systems with more outputs than inputs, the

aforementioned concepts can be adapted for interval operability.
The study of output constraints is of particular importance for
approaches that address this variation of process operability.
More information about interval operability can be found in ref
28.

4. OPERABILITY ALGORITHMS
In the past few years, classical operability algorithms have been
extended for the design of emerging energy systems.10,20,22

These systems are usually not only characterized by a strong
nonlinear behavior but also by highly constrained environments.
As an example, novel intensified technologies have been
developed for modular natural gas utilization, and current
operability algorithms can play an important role by ensuring
optimal and feasible operation of such technologies.10,23

The optimization-based algorithms (NLP and MILP)
formulated in recent operability approaches are discussed
here. These algorithms are further developed, being generalized
in terms of dimensionality and applicability to nonsquare cases.
As software contribution, all of the developed codes are
compiled as part of the open-source process operability
platform, which is used for the applications in section 5. Then,
a perspective from how traditional operability challenges are
tackled is given along with a description of the algorithms.

4.1. NLP-Based Approach. The NLP-based operability
approach has a solid foundation on the calculations of the DIS.
As an alternative to the analytical calculation of M−1, an NLP-
based optimization problem is formulated, aiming to obtain the
elements in the AIS that can achieve a determined DOS.
Originally created for square systems, this algorithm can also be
applied to nonsquare systems with extra degrees of freedom.
Previous applications contained optimization levels that were
focused on obtaining an intensified input point associated with
modular dimensions and an optimal nominal operation.
Nevertheless, the robust calculations ofM−1(DOS) are versatile
and suitable for other operability purposes.
The concepts of feasible DIS (DIS*) and feasible DOS

(DOS*) are introduced to tackle situations in which not all the
desired output points are achievable. The DIS* elements are
mapped to DOS* elements, and these sets are the outcome of
the optimization formulation. The DOS* is the closest set in
terms of distance to the initially defined DOS; and the DIS* is
the set with the correspondent input elements, obtained through
mapping of the DIS*, as DIS* = M−1(DOS*).
The employed optimization formulation initially considers a

DOS given by output ranges. This DOS is discretized,
generating a set of desired output elements. Then, an error
minimization problem is posed, in which, the objective function
is to minimize the distance between the feasible and the desired
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output elements. With the notation for m × n × p systems
adopted in section 3, this minimization problem is described
below for each jth element of the discretized DOS, yj ∈ DOS.

ϕ ρ= *
*

y yP1: min ( , )j u j j
j (13)

subject to

≤ * ≤

* ≤

* =

u u u

c u

c u

nonlinear model (eq 1)

( ) 0

( ) 0

j

j

j

min max

1

2

in which yj is an element of the discretized DOS, yj* is an element
of DOS*, uj* is an element of DIS*,M(uj*) = yj*, whereM is the
nonlinear process model defined above, ρ is the relative distance
function between yj ∈ DOS and yj* ∈ DOS*, umin and umax are
the lower and upper inputs bounds, respectively, c1 is an optional
set of linear and nonlinear inequality constraints, and c2 is an
optional set of linear and nonlinear equality constraints. Note
that the lower and upper input bounds can be set outside of the
AIS limits to obtain feasible elements outside of the original
available limits. Here, the following form of distance function ρ
is considered:

∑ρ * = − *
=

y y y y y( , ) (( )/ )j j
i

p

i j i j i j
1

, , ,
2

(14)

in which the subscript i indicates the coordinates of yj =
(yi,j)i∈{1,2,...,p} and yj* = (yi,j*)i∈{1,2,...,p} ∈ DOS*. Note that other
metrics could be applied to define this distance, such as absolute
value and other norms.
After the feasible sets are obtained, another optimization level

can be applied. Employing DIS* and DOS*, the following
problem is formulated to attain a determined target (for
instance, performance, cost, PI targets, environmental targets,
and so on):

φΩ = * *
*

u yP2: max ( , )
u (15)

subject to

* ∈ *
* ∈ *
u
y

DIS
DOS

in which u* and y* are elements of the DIS* and DOS*,
respectively, and φ(u*, y*) is a generic objective function that
can represent any of the aforementioned targets. For many cases,
this optimization level is translated to a selection of elements
from P1, allowing an easy inclusion of bound constraints and
linear or nonlinear constraints.
Updated developments for this approach consisted of

simultaneously solving the problems P1 and P2 by elaborating
a bilevel optimization formulation that combines the inverse
model calculation and the attainment of desired targets in
tandem. Computer parallelization has also been added to the
bilevel formulation as a way to increase the speed of nonlinear
calculations. For details on these developments see ref 20.
Both P1 and P2 are generalized here in the introduced

Operability App to receive any process model and system
dimensionality. The codes are written in MATLAB with the
embedded nonlinear solver “fminsearch”. Validations of this tool

are done by using square and nonsquare systems with extra
degrees of freedom. In particular, in section 5, an example using a
nonsquare system of dimensionality 7 × 3 can be found.

4.2. Multimodel Approach. The multimodel approach
applies space discretization techniques to represent the input−
output mapping as multiple linearized models. These models are
structured as connected input−output polytopes, facilitating the
computation of space intersections and hypervolumes. The
inverse model and other calculations are performed in terms of
polytopes and barycentric interpolations, resulting in a reduced
computational time in comparison to the NLP-based operability
approaches.10,24

Generally, the multimodel approach is applied to obtain
specific optimized points or regions containing design
candidates. Calculations of OI are performed and used to
systematically rank competing designs. For example, when SM
and PI targets are adopted, the outcome is a modular design
region containing potential designs that are ranked by using the
OI. In this subsection, the multimodel approach is reviewed, and
the new contributions are described. Such contributions include
the approach generalization in terms of dimensionality, the
incorporation of the conventional measure of OI and improve-
ments in the search region for competing designs.

4.2.1. Multimodel Representation. The generation of the
first set of polytopes is the initial task to obtain the multimodel
representation. Either elements of the AIS or AOS can be used
to generate these polytopes. The expected geometrical shapes of
these sets indicate that the AIS is better suited for this task. As
described in eq 2, the AIS is usually created from ranges, which
most of the time allows this set to be evenly decomposed into
smaller subsets. Conversely, the AOS has an unpredictable shape
and its decomposition into finer subsets may not always be
applicable for systematic methods of space discretization.
Then, to obtain the multimodel representation, mesh and

triangulation techniques are applied to the AIS elements,
generating a set of polytopes. Since each input point has an
output counterpart, corresponding output polytopes are there-
fore also generated. Each kth pair of connected polytopes is
represented as follows:

= { }P u u u u, , ..., , ...,k
u

k k j k J k1, 2, , , (16)

= { }P y y y y, , ..., , ...,k
y

k k j k J k1, 2, , , (17)

in which Pk
u and Pk

y are input and output connected polytopes,
∈ uj k

m
, and ∈ yj k

p
, are the vertices of the input and output

polytopes, respectively, J is the total number of vertices, the
subscript j is associated with index of elements, and the subscript
k is associated with the action of numbering the obtained paired
polytopes.
Here, if triangulation techniques are applied after evenly

dividing the AIS, the grid elements will be divided into polytopes
withm + 1 vertices, holding the property of always being convex.
If p = m, the property of convexity will also hold for the output
polytopes, while for p ≠ m, the same cannot be inferred. Note
that overlaps among obtained output polytopes are likely to
happen and must be considered for calculations of hypervolume
and intersections.
Assuming a total number ofK polytopes, the AIS and AOS can

be represented as follows.

= { | ∈ }P k SAIS k
u

(18)
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= { | ∈ }P k SAOS k
y

(19)

in which S = {1, 2, ..., k, ..., K} is the set with counts for each
connected polytope.
4.2.2. MILP-Based Iterative Approach. The MILP-based

iterative algorithm is employed to obtain a specific optimized
point or a region containing design candidates that achieve
chosen targets and objectives. Space resolution is gradually
increased while a given objective function is minimized. The
objective function can incorporate targets such as SM, PI,
product purity, efficiency, environmental aims and so on.
Meaningful applications of this method are associated with
situations in which the AIS is composed by design inputs and
operational inputs are fixed at a certain nominal point.10

In each iteration of this algorithm, one MILP-based problem
is solved to select the connected pair of polytopes that minimizes
the objective function. The achievement of the DOS and the
consideration of possible process constraints are incorporated
before the solution of the MILP-problem, lowering the number
of available polytopes for the optimization problem. As the
algorithm moves along, input limits are redefined and smaller
polytopes are obtained, promoting a gradual increase in space
resolution.
This process can be repeated until the solution stops

changing. A measure of relative error and the maximum number
of iterations are used for convergence. For this configuration, the
outcome of the algorithm is the optimized input−output point.
Alternatively, the region containing designs candidates can be

obtained. Two options are considered for this application and
improvement of the framework. The first option is to manually
set the input region around the optimized input point, which
gives more freedom to users who desire to set specific ranges.
The second option is to systematically reduce the size of the
analyzed AIS to a certain percentage of the original AIS. For the
latter, the direction in which the AIS is zoomed in is the one that
minimizes the objective function.
The MILP-based formulation is mathematically described

below.

χ φ= u ymin ( , )
W b, linear

k k (20)
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in which φlinear is a linearized objective function, Wk =
(wj,k)j∈{1,2,...,J} represents the weight of each of vertex j, J is the
total number of vertices in each polytope, k, Pk

u, and Pk
y, represent

k connected polytopes from the multimodel representation, u
and y are the interpolated points associated with the AIS and

AOS, respectively, bk is a binary variable assigned to each pair of
polytopes, S′ ⊆ S is the index of polytopes that do not have an
empty intersection with the DOS and with the feasible region, c1
and c2 are optional linear inequalities and equalities, respectively,
and ulb,uub, ylb, and yub are optional bound constraints associated
with u and y, respectively. Additional details about iterative
algorithm and the multimodel representation are available in ref
10.
Once one design or a design region is considered, calculations

of the OI are performed to evaluate and possibly rank competing
designs. The AIS with design variables is augmented to account
for the effect of manipulated variables, and systematic
calculations of the OI as a function of designs are performed.
The sequential actions of finding a design region and then
ranking its elements using the OI define what is referred in
previous work and in this Article as the “multilayer operability
framework”.10

4.2.3. OI Calculation. The multimodel approach originally
employs the measure of OI in terms of subregions. First, the
DOS is evenly fragmented into a set of subregions. Then, the
intersection AOS ∩ DOS is calculated by using computational
geometry tools.29 Each subregion of the DOS is considered to be
achieved if there exists at least a point from the calculated
intersection that is inside the subregion. The ratio obtained
between the number of achieved DOS subregions and the total
number of DOS subregions defines this measure of OI. The
number of divisions of the DOS is a parameter that can be
changed to increase or decrease the number of subregions. For
ranking competing designs, it is recommended to have enough
divisions so that differences in the calculated values of OI can be
detected.
In this Article, the conventional measure of OI is also

incorporated into the multimodel approach for comparison
purposes. For such a case, the computational geometry tools are
employed to obtain the hypervolumes of the sets DOS and AOS
∩DOS. The volume of AOS∩DOS is calculated by using the set
complement (DOS\(AOS ∩ DOS) = {y ∈ DOS|y ∉ AOS ∩
DOS}), to overcome the possible presence of overlaps in the
output polytopes.
These twomeasures of OI and the algorithms described above

are included in the developed Operability App. In the app,
previous algorithms developed for square systems are extended
to address nonsquare cases. Also, codes are generalized to accept
any number of dimensionalities and the MILP-based
formulation is mathematically adapted to accommodate this
change. Scripts are created for the tasks of evenly dividing n-
dimensional spaces and performing n-dimensional triangula-
tions. For the latter task, previous limitations in calculations for
polytopes with up to 3 dimensions are overcome by adopting the
MATLAB subroutine “delaunayn” for 4-dimensional and higher
triangulations. The developed tool is tested for combinations of
square and nonsquare systems with sets up to 5 dimensions.

4.3. Process Operability App. The software infrastructure
contribution in this Article is an open-source platform named
“Process Operability App Project”. The above-described
algorithms are structured and compiled in the form of a
MATLAB app. A significant effort was dedicated to make the
involved scripts as generic as possible, by both addressing a
variety of system dimensionalities and writing codes as a
function of user-defined process models, sets and configurations.
In addition to the inclusion of the algorithms, a user interface

is developed to allow a versatile user-friendly utilization of the
developed tools. The NLP-based and the multimodel
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approaches are accessible through functionalities such as (i)
generate input−output points, (ii) obtain the multimodel
representation, (iii) calculate OI, (iv) find a feasible DIS, and
(v) obtain an optimal design or a design region. All the
computational geometry calculations in the app are performed
by using MPT.29 In terms of dimensionality limitations,
preliminary tests indicate that the NLP-based approach is
essentially restricted by computational time and the multimodel
approach currently handles calculations involving polytopes
with up to 5 dimensions. New releases will pursue the increase in
system dimensionality and optimization of computational time
with the objective of tackling problems of increasing complexity.
More information can be found in the app documentation
provided in the Web site mentioned below.
This initiative aims not only to aid process systems

applications with the use of operability approaches but also to
promote dissemination and discussion in academia and industry
toward the improvement of the process operability field. The
Process Operability App Project can be accessed at https://
fernandolima.faculty.wvu.edu/operability-app where the down-
load of the Process Operability App and additional information
are available.

5. APPLICATIONS

To demonstrate the capability of the developed tools,
applications for both the NLP-based and multimodel
approaches are selected. The DMA-MR and the cycling of a
CCS subsystem of a coal-fired power plant are complex energy
systems considered for this task. Both systems have been the
focus of recent studies in the reported literature: the DMA-MR
has been employed for modular natural gas utilization;10,30 and
the CCS, as part of an effort to integrate coal-fired power plants
to renewable energy.31

5.1. DMA-MR Application. By converting methane to the
fuel hydrogen and to the value-added chemical benzene, the
DMA-MR is a candidate energy system for the modular
utilization of natural gas. The modularization of this system
potentially benefits the on-site utilization of the shale gas
formations in remote locations, eliminating the need for
expensive pipelines and elaborate industrial infrastructure
usually present in the conventional large-scale processes. Here,
PI and SM are enabled by the combination of reaction and
separation. This process integration strategy promotes
enhanced reactivity by shifting the reaction equilibrium toward
the products, which simultaneously induces footprint reduction
by combining the two unit operations.
For operability applications, previously developed work

addressed the DMA-MR modeling from experimental data,
considering the nonoxidative conversion of methane as a two-
step reaction mechanism.32,33 Catalysis and membrane trans-
port studies were employed to obtain adequate reaction kinetics
that were suitable to membrane reactors models constituted by a
set of ordinary differential equations (ODEs).30 Figure 1 below
shows a schematic cocurrent configuration of the DMA-MR.
The following two-step reaction mechanism is considered for

the DMA-MR.

+ = − ′F r k C k
C

C
2CH C H 2H

C
4 2 4 2 1 1 CH 1

C H H
2

CH
4

2 4 2

4

(21)

+ = − ′F r k C k
C C

C
3C H C H 3H2 4 6 6 2 2 2 C H 2

C H H
3

C H
22 4

6 6 2

2 4

(22)

in which C stands for species concentrations, k1 and k2 are the
reactions rate constants for first and second steps, respectively,
and the prime indicates inverse reaction rate constant.
The generated ODE set from molar balances in the tube and

shell can be found in ref 23. Refer to ref 10 for the overall
parameters that allow reproducibility of this model (rate
constant values, dimensions, nominal values, etc.).
The input and output spaces of this system were already

prescreened in previous work.10,23 This activity consisted of the
primary study of the system behavior, which is not addressed in
this Article. The outcome is the selection of the sets AIS and
AOS and the determination of the DOS. Specifically, in the
previous work, the AOS was inspected, and operating output
zones corresponding to the highest achievable benzene
production and methane conversion were considered. Then,
the DOS was determined on the basis of the obtained zones and
other experimental indications associated with properties of the
membrane and conditions of the reaction.
A total of eight inputs and four outputs is considered for the

DMA-MR applications presented in this Article. Tables 1 and 2

show the design and operational input variables and the
corresponding available ranges, respectively. Table 3 shows the
output variables and the corresponding desired ranges. Each of
the studied subsystems have input and output sets of distinct

Figure 1. Co-current DMA-MR schematic.

Table 1. Design Input Variables and Available Ranges

design input variable available range

reactor length (cm) 10−100
tube diameter (cm) 0.5−2.0
selectivity (−) 300 to 1 × 105

permeance (mol/(s m2 atm 1/4)) 1 × 10−4 to 1 × 10−2

Table 2. Operational Input Variables and Available Ranges

operational input variable available range

methane feed (cm3/min) 7−9
temperature (°C) 800−1000
sweep gas feed (cm3/min) 9−11
tube pressure (atm) 1.00−1.12

Table 3. Output Variables and Desired Ranges

output variable desired range

benzene production (mg/h) 20−25
methane conversion (%) 35−45
hydrogen production (mg/h) 3−6
cost factor (−) 0−100
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dimensionalities composed by variables and ranges presented in
Tables 1, 2, and 3.
For the modularization of the reactor, the minimization of the

process footprint and achievement of PI targets while respecting
process constraints are considered. This task is translated to an
optimization formulation that is inserted in both NLP- and
MILP-based algorithms. The objective function of process
footprint, f, is described by the sum of membrane area and
reactor volume as follows:

π π= +f L D DL D L( , )
4

2

(23)

in which L is the reactor length and D is the tube diameter.
One of the employed process constraints is the L/D ratio that

assures plug-flow operation,34 also given as a function of reactor
length and tube diameter as follows.

≥L
D

30
(24)

Other constraints are included either as bound or inequality
constraints as needed, and they are described in each of the
applications.
Regarding the utilization of operability algorithms, each of the

approaches explored in section 4 is considered for the
corresponding DMA-MR subsystem. At first, the multimodel
approach is applied to a 6 × 3 subsystem employing the
multilayer framework. Then, the NLP-based approach is applied
to a 7 × 3 subsystem by using the P1 and P2 formulations. The
details of these two applications are discussed below.
5.1.1. DMA-MR Application: 6 × 3 Subsystem. The

multilayer framework is employed here to obtain a modular
design region and rank designs inside such a region using
calculated values of OI. In the first layer of the framework, the
MILP-based iterative algorithm is used to find the modular
design region, and, in the second layer, calculations of the OI are
carried out for the two distinct measures of OI. Then, the
obtained results are compared and analyzed for suitability to
future applications.
Here, a previously addressed DMA-MR subsystem is

considered.10 The modular design region is constructed from
an optimal design point provided by the iterative MILP-based
algorithm. Important distinctions from previous work corre-
spond to (i) introduction of the conventional OI measure in
terms of hypervolume to the multimodel approach, (ii)
comparison between such a measure of OI and the OI in
terms of subregions, and (iii) utilization of the Operability App
containing a new set of generalized and improved codes.
For the composition of the 6 × 3 subsystem, the ∈ AIS 6

comprises three design and three operational inputs. The sets
∈ AISdes

3 and ∈ AISop
3 are employed to distinguish the

two types of inputs. The input variables are selected from Tables
1 and 2 and structured as follows:

=

=

= −

u

u

u

Reactor length (cm)

Tube diameter (cm)

Selectivity ( )

des,1
def

des,2
def

des,3
def

(25)

=

= °

=

u

u

u

Methane feed (cm /min)

Temperature ( C)

Sweep gas feed (cm /min)

op,1
def 3

op,2
def

op,3
def 3

(26)

in which udes = (udes,1, udes,2, udes,3) and, similarly, uop = (uop,1,
uop,2, uop,3). For example, (15, 0.5, 300) ∈ AISdes is a design
element associated with reactor length of 15 cm, tube diameter
of 0.5 cm, and selectivity of 300.
With the variables and notation above along with the ranges

from Tables 1 and 2, the AISdes, AISop, and the complete AIS are
sets, given by

= { ∈ | ≤ ≤ × }u uAIS (10, 0.5, 300) (100, 2.0, 1 10 )des des
3

des
5

(27)

= { ∈ | ≤ ≤ }u uAIS (7, 800, 9) (9, 1000, 11)op op
3

op

(28)

= { ∈ | ≤ ≤ }u u u u u uAIS ( , ) ( , )6
des
min

op
min

des
max

op
max

(29)

in which (udes
min, uop

min) = (10, 0.5, 300, 7, 800, 9) and (udes
max, uop

max) =
100, 2, 1 × 105, 9, 1000, 11).
The AOS contains three outputs, being also a set in 3. The

generation of the AOS can be obtained through direct mapping
of the AIS elements using the process model (M). Taking Table
3 as a reference and considering the AIS described by eqs 27−29,
the following structure and definition of the AOS are obtained:

=

=

=

y

y

y

Benzene production (mg/h)

Methane conversion (%)

Hydrogen production (mg/h)

1
def

2
def

3
def

(30)

= { ∈ | = ∈ }y y M u uAOS ( ) and AIS3
(31)

in which y = (y1, y2, y3).
The calculation of AOS is not needed for the tasks defined in

this application. Since the AOS was already inspected in
previous work, a focus is given here on the portions of the AOS
that intersect the DOS. Considering the above structure of
output variables and the desired ranges in Table 3, the DOS is
given by

= { ∈ | ≤ ≤ }y yDOS (20, 35, 3) (25, 45, 6)3
(32)

Given the dimensionality of the above-defined sets, the
utilization of the multilayer framework results in the sequential
analysis of square systems. In the first layer of the framework, to
obtain the modular design region, the operational inputs are
fixed at a nominal operation point uop

N ∈ AISop, defined as uop
N =

(8, 900, 10). The AIS is thus limited in this layer, resulting in the
subset {(udes, uop

N ) ∈ AIS|udes ∈ AISdes}, simplified to eq 33.

= × uAIS AIS N
layer des op1 (33)

Note that AISlayer1 can be treated as a 3-dimensional set, as only
three coordinates associated with AISdes can be changed. As a
result, a 3 × 3 square system containing design inputs and
outputs associated with a fixed operation is analyzed in the first
layer of this framework.
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To define the MILP formulation that takes place in the first
layer (eq 20), the footprint from eq 23 is linearized10 and the
nonlinear inequality constraint from eq 24 is simplymanipulated
to assume a linear form. The final form of the objective function
including the linearized footprint and inequality constraint are
described by eqs 34 and 35, respectively.

φ = +u u u( ) 0.5625 12.5linear des,1 des,2 (34)

− + ≤u u30 0des,1 des,2 (35)

For insertion in the Operability App, eqs 34 and 35 are
rewritten according to the accepted generalized format.

Objective function entries meet the form of
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑA uy , while

equalities and inequalities meet ≤
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑA uy b, in which A and b are

used to represent one or multiple linear equations. After this
final modification, the obtained equations can be inputted to the
Operability App.
The remaining entries for the first layer are the process model,

the user-inputted sets, AIS andDOS, and the expected size of the
modular design region. The DMA-MR process model is
allocated in a MATLAB script and then uploaded to the app.
The AIS and DOS are also entered. The option of manually
entering a design region around the optimal design is selected
for this case.
As a result, the operability app provides the optimal design

point udes
opt = (17.03, 0.50, 300). A design region is created around

udes
opt. Values that would be more reasonable for construction/
manufacturing can guide the selection of design ranges,10

generating the following modular design region:

= { ∈ | ≤ ≤ }u uMDR (16, 0.50, 500) (18, 0.60, 1500)des
3

des

(36)

The evaluations of OI are then performed in the second layer
of the framework. The activity of fixing uop

N ∈ AISop is reversed
and for each element udes

MDR ∈ MDR, the subset of the AIS
{(udes

MDR, uop) ∈ AIS|uop ∈ AISop}, is simplified to

= ×uAIS AISlayer des
MDR

op2 (37)

Note that AISlayer2 has properties similar to those of AISlayer1,
consisting of a set that can be seen as 3-dimensional. A 3 × 3
square system that has operational inputs and outputs and is
associated with a design is thus analyzed in this layer of the
framework. While AISlayer1 consisted of one set associated with

the operation uop
N , AISlayer2 represents multiple 3 × 3 mappings,

each of them associated with one design udes
MDR ∈ MDR.

For the calculations of OI, each of these 3 × 3 mappings
generates a value of OI. To obtain elements udes

MDR∈MDR,MDR
is discretized. As a result, values OI = OI(udes

MDR) are obtained.
For each udes

MDR ∈MDR, the associated AISop × AOS mapping
undergoes discretization and triangulation, being described by
the multimodel representation (in eqs 18 and 19). For the OI in
terms of subregions, the DOS is discretized to generate
subregions of the DOS. For the volumetric OI calculation, the
DOS is kept as it is.
In the Operability App, the uploaded process model and DOS

are used. Grids of 11, 3, and 5 elements in each dimension are
employed for the discretization of MDR, AISlayer2, and DOS,
respectively. Justification about the resolution provided by these
grids can be found in ref 10.

The app is run twice, first with the measure of OI in terms of
subregions and then in terms of volume. For each measure, the
complete rank using OI(udes

MDR) is obtained for each element
udes
MDR ∈ MDR. Figures 2 and 3 depict the classification of the
modular region MDR using OI in terms of subregions and
volume, respectively.

The OI measures using subregions are clearly higher, ranging
from 0 to 25%. The measures using volume range from 0 to
approximately 0.3%. This difference in magnitude happens
because the subregions only require the presence of one point of
the AOS to be considered achieved. Therefore, the proportion of
achieved subregions tend to be higher than the proportion of
achieved volume.
Analyzing the distribution of values of OI inside MDR,

Figures 2 and 3 show that both measures present similar trends.
Larger membrane reactors provide higher OIs and thus more
achievability of the DOS. This classification using OI is in
accordance with previous applications of the multimodel
framework for this subsystem,10 showing that the Operability
App is able to successfully reproduce existing and improved
algorithms.
The differences in the magnitude of OI do not significantly

affect the selection of the design with maximum achievability for
this application. However, they show that the interpretation of
OI in terms of volume may be misleading in some cases. The
shape of the AOS is key to understand why this measure can
have such low values.
The design of highest OI is selected and the shape of the AOS

is analyzed for both calculations of OI. Figures 4 and 5 show the
achievement of DOS in terms of subregions and volume,
associated with maximum values of OI of 25% and 0.324%,

Figure 2. Classification of MDR using OI in terms of subregions.

Figure 3. Classification of MDR using OI in terms of volume.
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respectively. The corresponding design is udes = (18, 0.5, 1500)
for both cases.
Note from Figures 4 and 5 that the intersections AOS ∩DOS

are given by distinct regions. In Figure 4, the intersection is
represented by subregions, whereas in Figure 5, the actual
volumes of the intersection and DOS are employed. The visual
comparison between the intersections supports the fact that it is
easier to achieve portions of subregions of the DOS than
portions of DOS in terms of actual volume.
Therefore, the DMA-MR is one example of system in which

process integration results in an AOS that almost does not have
volume, although it is generated in a 3-dimensional space. For
this situation, the volumetric OI may indicate a percentual
achievability very small (less than 1%). Nevertheless, as seen
from the measure in terms of subregions, the AISop can be
enough to ensure achievability of portions of the DOS, being
suitable for future analysis of set point control.
A conclusion is that cases in which the AOS shape is too

irregular are susceptible to difficulties in the measure of OI in
terms of volume/hypervolume. The measure using subregions
provides insights about achievability, being recommended for
situations in which the AOS is unknown or presents a strong
nonlinear and/or nonconvex behavior. Conversely, if the entire

volume of the DOS is desired to be achieved, then the measure
of OI that employs hypervolumes is recommended.

5.1.2. DMA-MR Application: 7 × 3 Subsystem. To select the
design and the nominal operation that achieve PI targets and
minimize process footprint, the NLP-based approach is applied
to a 7 × 3 DMA-MR subsystem. The formulation P1 is
employed for the determination of the feasible DOS (DOS*),
and P2, for the selection of the best input−output point
associated with the described goals. This example correspond to
a modified case-study presented in ref 35, which addresses the
same subsystem but with distinct objectives.
For building the ∈ AIS 7, four operational inputs and three

design inputs are selected. With the same notation as in eqs
25−29 and information from Tables 1 and 2, the AIS is
structured as follows:

=

=

=

= −

u

u

u

u

Reactor length (cm)

Tube diameter (cm)

Permeance (mol/(s m atm ))

Selectivity ( )
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(38)

=

=
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(39)

= { ∈ | × ≤

≤ × × }

−

−

u uAIS (10, 0.5, 1 10 , 300)

(100, 2.0, 1 10 , 1 10 )
des des

4 4
des

2 5 (40)

= { ∈ | ≤ ≤ }u uAIS (7, 9, 1.00) (9, 11, 1.12)op op
3

op

(41)

= { ∈ | ≤ ≤ }u u u u u uAIS ( , ) ( , )7
des
min

op
min

des
max

op
max

(42)

in which (udes
min, uop

min) = (10, 0.5, 1 × 10−4, 300, 7, 9, 1.00) and
(udes

max, uop
max) = (100, 2.0, 1 × 10−2, 1 × 105, 9, 11, 1.12).

The set ∈ AOS 3 has three outputs and, as in the previous
application, can be obtained through direct mapping of the AIS
elements using the process model, M. Here, the complete
generation of output points is also not needed, since the input−
output space has already been prescreened for the selection of
the DOS in previous work. With Table 3 as a reference, the
outputs and the DOS are defined as follows:

=

=

= −

y

y

y

Benzene production (mg/h)

Methane conversion (%)

Cost factor ( )

1
def

2
def

3
def

(43)

= { ∈ | ≤ ≤ }y yDOS (20, 35, 0) (25, 45, 100)3
(44)

In the Operability App, the above AIS and DOS are entered.
As in the previous application, the process model is uploaded in
the form of a MATLAB script. The nonlinear objective function
is inputted as in eq 23, while the process constraint is inputted as
in eq 35. To obtain elements in the DOS, a discretization is

Figure 4. Calculation of output sets in terms of subregions.

Figure 5. Calculation of output sets in terms of volume.
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employed by informing the Operability App the size of the grid.
For being a value that provides a good resolution, a desired grid
of 10 elements in each dimension is entered in the app. As
additional configuration, the option of generating a solution
inside the AIS and DOS is selected.
After running, the Operability App generates the sets DOS*

and DIS* as well as the input−output data point that minimizes
the process footprint. Figure 6 depicts the DOS* and the

selected intensified point, as well the color-coded footprint. The
inputs and outputs of the selected intensified design and
nominal operation correspond to u = (16.4, 0.544, 9.97 × 10−3,
2.44 × 104, 7.40, 10.95, 1.002) and y = (20.9, 35.9, 33.7)
respectively.
An important observation from Figure 6 is that the complete

DOS is not achievable. Combinations of high cost factor,
benzene production, and methane conversion can be achieved
by reactors of large footprints. As the cost factor decreases, the
achievability of the DOS is limited. This behavior is expected as
the reduction in cost factor is associated with membranes of
lower quality, lower catalyst mass, and smaller reactors.21 The
direct relationship between cost factor and footprint derives
from the fact that the size of the reactor proportionally affects its
associated cost.
As a comparison with previously applied 2 × 2 and 3 × 3

similar subsystems that employed the same objectives, one can
notice that the obtained modular design is even smaller. For
both previous cases, reported values of reactor length and tube
diameter consisted of about 17 and 0.57 cm.10,23,24 The further
reduction in size here is mainly due to the inclusion of
operational variables, which present contrasting values with the
nominal operation of previously addressed applications, fixed at
8 cm3/min for methane feed, 10 cm3/min for sweep gas feed,
and 1 atm of tube pressure.
5.2. Cycling of a CCS Unit Application. With the

increasing penetration of renewable energy into the power
grid, traditional coal-based technologies have to be gradually
integrated with wind, solar, and other clean energy sources. The
retrofit of existing plants consists of an important example of
how these new forms of energy can be coordinated with reliable
conventional technologies.
For this application, a CCS unit is analyzed for implementa-

tion in a coal-fired power plant. Particularly, to achieve the
required power demand, the intermittent behavior of solar and
wind energy can be integrated with the generation of energy
from coal. A consequent cycling profile is needed from the

perspective of the coal-fired power plant, producing variable
amounts of flue gas in a day. The CCS unit receives and treats
this flue gas, capturing and thereby limiting the emissions of
CO2.
A candidate design of the CCS unit is analyzed here,

considering the ranges of MV’s and expected amounts of flue
gas. The goal of this operability analysis is to determine the
maximum CO2 capture for the employed design and provide
insights for possible improvements in operation and design.
Here, no quantification of OI is performed, but instead, the
input−output mapping with a focus on finding the AOS is
explored through the Operability App.
For the CCS system, the selected inputs are exclusively

operational, i.e., AIS = AISop. Besides the flue gas flow rate from
the coal-fired power plant, two streams of the CCS are selected.
They are associated with the carbon absorption and stripping by
the aqueous monoethanolamine (MEA) solvent. The outputs
are variables associated with the carbon capture, including the
amount of employed solvent and overall work of the CCS unit.
Table 4 shows the input variables and selected ranges. Eqs 45

and 46 describe the inputs’ structure and the AIS, respectively.
Eqs 47 and 48 present the outputs’ structure and the
corresponding AOS.

=

=

=

u

u

u

Flue gas flow rate (kmol/s)

Lean MEA solvent flow rate (kmol/s)

Low pressure steam flow rate (kmol/s)

1
def

2
def

3
def

(45)

= { ∈ | ≤

≤ }

u uAIS (3.34, 9.51, 1.33)

(3.70, 10.75, 1.47)

3

(46)

=

=

=

y

y

y

CO capture rate (%)

Lean solvent CO loading (mol /mol )

CCS overall work (kW)

1
def

2

2
def

2 CO MEA

3
def

2

(47)

= { ∈ | = ∈ }y y M u uAOS ( ) and AIS3
(48)

in which M refers to the process model, which is the reduced-
order model briefly described below.
The three input variables are assumed to be within the ranges

that are also adopted to obtain the reduced-order models for the
coal-fired power plant. The reduced model for the CCS unit is
obtained from previously developed work, by employing system
identification techniques. Details about these techniques, the
process flowsheet and the cycling operation can be found in ref
36.
For this study, the flue gas flow rate variable is assumed to be a

measured disturbance, as it comes from upstream units of the

Figure 6. DOS* (color coded points) and intensified point for DMA-
MR 7 × 3 application.

Table 4. Input Variables and Available Ranges for CCS
Application

input variable available range

flue gas flow rate (kmol/s) 3.34−3.70
lean MEA solvent flow rate (kmol/s) 9.51−10.75
low pressure steam flow rate (kmol/s) 1.33−1.47
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coal-fired power plant, and the other two are manipulated
variables. Here, u1 is not assigned to the EDS as it is assumed to
be controlled by other portions of the plant. Moreover, this
variable has a specific expected profile that has higher values in
the periods of morning and night when solar energy generation
is low and energy demand is high.36

With the Operability App, the reduced order model is
uploaded, and the input variable ranges are discretized. The
plant behavior is simulated for several combinations of inputs
within the formed grid, generating the input−output mapping
shown in Figure 7. In this figure, the color code indicates the
correspondence between the mapped input and output points.
For each value u1 of the flue gas flow rate, the ranges of lean

solvent flow rate and low-pressure steam flow rate can be
combined to form a 2-dimensional space of possibilities where
these two manipulated variables can be set. In Figure 7, such
spaces are represented in the AIS by “flat sheets” of color blue,
light blue, green, yellow, and so on.
The corresponding outputs are also in sheet surfaces that are

distributed in the AOS. For low values of the flue gas flow rate
(dark blue points in Figure 7), the achievable space is a surface
located in an AOS region of higher CO2 capture rate and smaller
values for the lean solvent CO2 loading and CCS overall work.
Conversely, high values of the flue gas flow rate (red points in

Figure 7) generate an AOS surface in which the CO2 capture rate
is lower and the lean solvent CO2 loading and CCS overall work
are higher. This behavior indicates that the considered design is
capable of achieving higher CO2 capture rates with smaller
operating costs as expected when lower amounts of flue gas have
to be processed; while higher amounts of flue gas limit the
achievable CO2 capture rates and increase the operating cost of
the unit associated with the lean solvent CO2 loading and CCS
overall work.
To quantify the limited achievability for the CO2 capture rate,

the worst-case scenario for the variable u1 (corresponding to the
flue gas flow rate of around 3.7 kmol/s) is analyzed. Figure 7
contains a highlighted point that corresponds to a possible
maximumCO2 capture rate for this scenario. Note that when the
CCS unit receives a flue gas flow rate at its highest expected
value, the MVs of the lean solvent flow rate and low-pressure
steam flow rate can be set to their corresponding upper limits to
achieve a maximum CO2 capture of around 90.7%.
To further verify the limitation on CO2 capture rates of the

CCS design, a DOS is first set to a minimum value of CO2
capture rate of 90% and then slightly increased to a rate of 92%.
The input−output mapping is converted to the multimodel
representation and, for each case, the achievability of the DOS is
evaluated. The DIS is also calculated for each case, consisting of

Figure 7. Input−output mapping of CCS unit.

Figure 8. Steady-state achievability of 90% of CO2 capture rate.
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the input region that would be needed to achieve the analyzed
DOS. For both DOS’s, the Operability App is employed to
perform the analysis and generate the plots.
Figure 8 shows the operability analysis for a CO2 capture rate

equal to or higher than 90%. In this figure, the red and blue
regions refer to the portions that achieve and do not achieve the
CO2 capture goal, respectively. The higher the values of flue gas
flow rate, the more restricted is the available region to achieve
the desired CO2 capture rate of 90%. Moreover, the needed
values for the MVs of lean solvent flow rate and low-pressure
steam flow rate are more limited and closer to their upper
bounds as the flue gas flow rate increases.
Figure 9 depicts a similar study for the desired CO2 capture

rate of 92%. By inspecting the AIS regions, it is possible to see
that for values of flue gas flow rate in the range around 3.62−3.7
kmol/s, there are no combinations of lean solvent flow rate and
low-pressure steam flow rate that can take the system response
to the DOS (all combinations are in blue, outside of the DIS).
Therefore, for this flue gas configuration, the CCS design is not
capable of achieving the CO2 capture rate of 92%.
From the employed operability analysis, considering all flue

gas flow rate scenarios, the current CCS design is able to achieve
the standard CO2 capture rate of 90% with the available ranges
of lean solvent and low-pressure steam flow rates. However, this
CCS design is not able to achieve CO2 capture rates above 91%
for all the flue gas flow rate scenarios. To enable higher CO2
capture rates, process design changes would have to considered
such as enlarging the available ranges of MVs or changing the
CCS design, for instance, by increasing the number of separation
trains. The operability method and Operability App can thus
provide insights on how these modifications could be
performed.

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this Article, a review of current process operability algorithms
was provided. The most recent algorithms were further
developed and adapted to be compiled as part of an open-
source operability platform. This platform grants access to
operability approaches and algorithms, motivating the dissem-
ination of these algorithms and improvements in the process
operability field. The developed Operability App in MATLAB
corresponds to the first effort to include contributions of other

researchers that have worked in operability in the past or intend
to do in the future.
The addressed applications showed versatility of the

developed Operability App, which can reproduce previous
literature results, easily switch from one setting to another and
tackle new process models. The comparison of measures of OI
indicated that specific cases may not be compatible to the
original interpretation of the OI in terms of volume and
hypervolume, being suitable for the alterative measure using
DOS subregions. To deal with the challenge of infeasible DOS
regions, the feasible DOS, DOS*, was found and later used for
the determination of the design and nominal operation that
achieve SM and PI targets while respecting process constraints.
The CCS application associated with the coal-fired power plant
cycling demonstrated how reduced-order or surrogate models
can be employed for achievability analysis, generating mean-
ingful results without necessarily employing OI calculations.
Although the multimodel and NLP-based approaches were

generalized in terms of dimensionalities and process model
nature, it is still not clear what would be the upper limit in the
capability of the employed algorithms. There is also the
possibility of including other process operability algorithms
associated with process dynamics and interval-control. Tract-
ability for higher dimensionalities and the consideration of
systems that must be operated around singularities or
discontinuous spaces are highlighted as potential critical
limitations for the evaluation of existing operability algorithms.
Improvements regarding theory and software infrastructure

consist of other future directions. The inclusion of the EDS can
be done by considering the process stochastic behavior, allowing
operability to be a tool for interfacing design and control under
uncertainty. Both the multimodel and NLP-based approaches
would benefit from other input−output system representations,
especially for the representation of high-dimensional processes.
Particular extensions are suitable to the MILP-based algorithms,
such as the examination of other ways to increase space
resolution and the adaptation to mixed-integer nonlinear
programming (MINLP)-based formulations.
Prospective directions toward the incorporation of process

operability concepts into other areas are also considered. Both
dynamic and steady-state process operability concepts could be
integrated with operator advisory systems, enabling the
improvement of plant operation. There is also an opportunity

Figure 9. Steady-state achievability of 92% of CO2 capture rate.
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to integrate process operability with real-time model-based
control algorithms such as dynamic real-time optimization
(DRTO).
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