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Abstract
In low-pressure capacitively coupled discharges, a heating mode transition from a pressure-heating
dominated state to an Ohmic-heating dominated state is known by applying a small transverse
magnetic field. Here we demonstrate via particle-in-cell simulations and a moment analysis of the
Boltzmann equation that the enhancement of Ohmic heating is induced by the Hall current in the
E B direction. As the magnetic field increases, the Ohmic heating in the E B direction
dominates the total electron power absorption. The Ohmic heating induced by the Hall current can
be well approximated from the Ohmic heating of unmagnetized capacitively coupled discharges.

Supplementary material for this article is available online
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Capacitively coupled discharges are widely used for modern
plasma processing applications. One of the most important
issues of capacitively coupled plasmas (CCPs) is the mech-
anism of electron power absorption from radio-frequency (rf)
fields, also called ‘electron heating’. At high pressures, Ohmic
heating due to electron collisions with neutrals plays a primary
role. At low pressures, an additional ‘collisionless’ (also refer-
red to as stochastic) heating mechanism is required to sustain
the discharge [1]. According to the widely accepted hard wall
model [2], this ‘collisionless’ electron power absorption is from
the momentum transfer of electrons with the oscillating sheath.
Another explanation is the pressure heating due to the electron

pressure gradient [3, 4], which stems from the same basic
physical mechanism as the hard wall model [5]. The presence of
a transverse magnetic field can appreciably inhibit the motion of
electrons along the electric field. Turner et al [6] demonstrated a
heating mode transition from pressure heating to Ohmic heating
by applying a small transverse magnetic field of about 10 G.
Later, the discharge characteristics of magnetized CCPs were
investigated experimentally [7–9] and numerically [10, 11].
However, so far, the existed models can only explain part of the
heating mechanisms, there has been no self-consistent and
complete investigation of electron heating in magnetized CCPs.

In this work, we make use of a moment analysis of the
Boltzmann equation [12–14] to investigate the electron
heating in magnetized CCPs for the first time. This analysis
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does not use any ad hoc assumptions and therefore includes
all electron power absorption mechanisms. The magnetized
Boltzmann equation for electrons is
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where fe is the electron distribution function, v the velocity,
me and e the electron mass and charge, t the time, E and B the
electric and magnetic fields. Multiplying the Boltzmann
equation by v and integrating all terms of (1) over velocity
space, we obtain the momentum conservation equation for
electrons

r

G

P

¶
¶

+  = - + ´

-  +
¶
¶

«

u
u E u Bm n

t
m en

t

, 2

c

e e
e

e e e e e

e
e

( · ) ( )

·
( )⎛

⎝⎜
⎞
⎠⎟

where ne, ue,Ge,P
«

e and r¶ ¶t ce( ) are the electron density, drift
velocity, drift flux, pressure tensor and change of momentum
due to collisions, respectively (see supplementary materials for
detailed definitions is available online at stacks.iop.org/PSST/
28/09LT03/mmedia). In one-dimension, assuming an electric
field in the x-direction and a transverse magnetic field in the
y-direction, the total power absorption by electrons per
unit volume is given by = =J EP J Ex xabs e,· , where

= =E E E E E, , , 0, 0x y z x( ) ( ) and Je,x=−eneue,x is the elec-
tron current density in the x-direction. It should be noted that
there are strong Hall fields, EH,x=−ue,zBy in the x-direction
and EH,z= ue,xBy in the z-direction. However, the forces gen-
erated by the Hall fields do not contribute to the electron
heating. Multiplying each component of equation (2) in dif-
ferent directions with the corresponding drift velocities, we
obtain the electron mechanical energy conservation equations
in the x-, y-and z-directions. The contribution of Hall fields in
these equations are eliminated since ue,xEH,x+ ue,zEH,z= 0. The
sum of these equations gives the total electron mechanical
energy conservation equation

= + +P P P P , 3abs in press Ohmic ( )

where

å å

å

å
r

=
¶
¶

+ G
¶
¶

=
¶P
¶

=-
¶

¶

P m n u
u

t
m u

u

x

P u
x

P u
t

,

,

, 4

i
i

i

i
i x

i

i
i

xi

i
i

i

c

in e e e,
e,

e e, e,
e,

press e,
e,

Ohmic e,
e, ( )

⎛
⎝⎜

⎞
⎠⎟

are the electron heating from the inertial terms, the pressure
heating component and the Ohmic heating component,
=i x y z, , is the axis coordinate.

We use a custom developed code, ASTRA, which based
on the electrostatic implicit particle-in-cell algorithm with
Monte Carlo collisions (PIC/MCC), for all the simulations
described here. The simulation is in one-dimension, with an
electrode separation of L= 5 cm. A rf source with a voltage
amplitude of 150 V and a frequency of 15MHz is connected

to the left electrode, the right electrode is grounded. To
simplify the analysis, the external circuit, secondary electron
emission and electron reflection are not considered. The
neutral gas is argon, uniformly distributed in space with a
temperature of 300 K and a pressure of 10 mTorr. The cross
sections of charged particles with neutrals are taken from
[15]. The description of the ASTRA code, the benchmark
with [16], as well as the details of simulations can be found in
the supplementary materials.

Figure 1 shows the spatial profiles of time-averaged
power absorption for various transverse magnetic fields. In all
cases the power absorption Pabs from the sum of each heating

Figure 1. Spatial profiles of time-averaged electron power absorption
for transverse magnetic fields of 0, 10, and 20 G. The electrode
separation is 50 mm and the pressure is 10 mTorr.
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component matches well with the power absorption directly
calculated from á ñJ E· . The contribution from inertial terms
can be neglected for all magnetic fields, similar to the case of
unmagnetized CCPs [13, 14]. Without the magnetic field, the
heating peaks in the sheath region and approaches zero in the
bulk region. As the magnetic field increases, a net heating in
the bulk region appears. These phenomena have previously
been observed [17] and attributed to a reduction in the
effective mean free path of the electrons. Now, by decom-
posing the electron heating into different components, we
confirm that the bulk heating in magnetized CCPs is mainly
contributed by the Ohmic heating.

Figure 2 demonstrates the variations of each heating
component as a function of the magnetic field, the heating
components are space- and time-averaged. As the magnetic
field increases, the Ohmic heating rises and the pressure
heating declines, resulting in a heating mode transition, which
has been predicted by the pressure heating model under the
similar discharge parameters [6]. From equation (4) it can be
seen that the electron heating in magnetized discharges can be
decomposed into components in different directions, which
are also shown figure 2. In one-dimension simulation with an
electric field in the x-direction and a transverse magnetic field
in the y-direction, only the heating components along the
electric field (x-direction) and along the ´E B direction (z-
direction) contribute to the electron power absorption, the
heating along the magnetic field (y-direction) can be neglec-
ted and is not shown. Without the magnetic field the heating
components in the ´E B direction are also zero, as shown in
figure 2, therefore the heating components in figure 1(a) are
equal to the corresponding x-direction components. The
spatial profiles of POhmic,x at other magnetic fields are all
similar to that shown in figure 1(a) (data not shown), and
change little with the magnetic fields. The enhancement of
Ohmic heating at stronger magnetic fields is a contribution in

the z-direction, i.e. the ´E B direction. In addition, as the
magnetic field increases, the Ohmic heating in the ´E B
direction dominates the total electron power absorption.

The Ohmic heating is induced from the momentum
change due to electron-neutral collisions. To understand the
enhancement of Ohmic heating in the z-direction, we consider
the approximated form of collision term [18, 19]
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where νeff is the effective electron momentum transfer
collision frequency. The standard approach of using

òn s= n vf vdm g m e
3 instead of νeff can significantly under-

estimate the true collision frequency [20], where ng is the
neutral gas density and σm is the cross-section of electron-
neutral momentum transfer collisions. Here we define an
effective electron momentum transfer collision frequency
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denote the time and space average. Reconstructing
equation (5) yields the standard form of Ohmic heating
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Figure 3 illustrates the space- and time-resolved electron
power absorption components during one RF period T at

Figure 2. Electron heating components as a function of transverse
magnetic field.

Figure 3. Space- and time-resolved electron power absorptions
during one RF period at 10 G.
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10 G. The upper part in figures 3(a) and (b), where
x/L=0.5–1, is the Ohmic heating calculated directly from
the PIC simulation, the lower part of x/L=0–0.5 is calcu-
lated from equation (6). The results obtained by different
methods show good consistency. The spatio-temporal
dynamics of Ohmic heating is well described by equation (6),
confirming that the enhancement of Ohmic heating in the z-
direction is induced by the Hall current Je,z. The Ohmic
heating in the bulk region in the z-direction is several times
greater than that in the x-direction, due to the Ohmic heating
is proportional to Je, which is stronger in the z-direction (see
figure 4 later). The phase shift of Ohmic heating in the x- and
z-directions is caused by the currents as well. Figures 3(c) and
(d) also gives the space- and time-resolved pressure heating
and the sum of all heating components. Although the tem-
poral variation of pressure heating is one order of magnitude
higher than the Ohmic heating, the electron cooling during the
sheath collapse phase counteracts the heating during the
sheath expansion phase, resulting in a lower time-averaged
power absorption than the Ohmic heating.

To understand the spatio-temporal behavior of the Ohmic
heating, figure 4 gives the space- and time-resolved electron
conduction currents at 10 G. The currents Je,x and Je,z are
spatially uniform in the bulk region and approximate a
sinusoidal change over time. At the midplane of the dis-
charge, the electric field Ex varied sinusoidally with an
amplitude of about 0.7 V cm−1 (data not shown), the magn-
etic field B, collision frequency νeff and electron density ne are
nearly constant, therefore the conduction current at the

midplane can be approximated as [18]
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are the plasma dielectric perpendicular to the electric field and
along the ´E B direction. In equation (8), ω is the voltage
frequency, ωpe the electron plasma frequency, and
ωce=eB/me the electron gyration frequency. The obtained
current amplitudes Jx̃ and Jz̃ are about 12 and 23 Am−2, and
there is a phase shift of about 0.7π between Je,x and Je,z. These
results match well with figures 4(a) and (b), and explain the
enhanced bulk heating and the phase shift of Ohmic heating
in the z-direction. Since the Ohmic heating is approximately
proportional to Je

2, the ratio of x- to z-direction Ohmic heating
can be estimated from J Jz x

2 2∣ ˜ ∣ ∣ ˜ ∣ . For the electron mechanical
energy conservation in the ´E B direction, the inertial and
pressure heating terms can be neglected as shown in figure 2,
we have the space- and time-averaged power absorption

n= GJ Bu m ux z z ze, e, e eff e, e, . Reconstructing it and using
equation (7), we have
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Figure 4(c) shows a good proportional relationship between
the ratio of z- to x-direction Ohmic heating and
ωce
2 /(ω2+νeff

2 ) up to 50 G. Recall that the Ohmic heating
along the electric field change little with the magnetic field,
the Ohmic heating induced by the Hall current in the ´E B
direction, which becomes the dominant heating component as
the magnetic field increases, can be well approximated from
the unmagnetized CCPs.

Figure 5 shows the time-averaged electron energy dis-
tribution functions (EEDFs) at magnetic fields of 0 and 50 G.
A transition from bi-Maxwellian type to Druyvesteyn-like
type is observed as applying a transverse magnetic field. At a

Figure 4. Space- and time-resolved electron conduction currents
(a) Je,x and (b) Je,z, as well as (c) the ratio of x- to z-direction Ohmic
heating and w w n+ce

2 2
eff
2( ) as a function of magnetic field.

Figure 5. Time-averaged EEDFs at magnetic fields of 0 and 50 G.
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low pressure of 10 mTorr, without the magnetic field, the
energetic electrons entering the sheath are effectively heated
through collisionless heating, while the low energy electrons
in the bulk gain energy through Ohmic heating, resulting in a
bi-Maxwellian distribution. With a transverse magnetic field,
the mean free path of electrons is reduced, the collision fre-
quency is improved, resulting in a suppression of the nonlocal
electron motion which causes the EEDF grouping.

In summary, we have studied the enhancement of Ohmic
heating in a magnetized CCP based on PIC simulations and a
moment analysis of the Boltzmann equation, which self-con-
sistently considers all the electron power absorption mechan-
isms and provides a comprehensive understanding of this
complex phenomenon. We demonstrate that the enhanced
Ohmic heating is induced by the Hall current in the ´E B
direction, which plays a major role as the magnetic field
increases. The spatio-temporal dynamics of Ohmic heating in
this direction is well described by the analytical formula of
Ohmic heating with the Hall current. The ratio of Ohmic
heating in different directions can be well approximated from
the electron gyration, the voltage, and the collision frequencies,
implying that the electron heating of a magnetized CCP dis-
charge can be estimated from the unmagnetized CCPs.
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