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Summary. The paper provides statistical theory and intuition for personalized PageRank (called
‘PPR’): a popular technique that samples a small community from a massive network.We study a
setting where the entire network is expensive to obtain thoroughly or to maintain, but we can start
from a seed node of interest and ‘crawl’ the network to find other nodes through their connections.
By crawling the graph in a designed way, the PPR vector can be approximated without querying
the entire massive graph, making it an alternative to snowball sampling. Using the degree-
corrected stochastic block model, we study whether the PPR vector can select nodes that belong
to the same block as the seed node. We provide a simple and interpretable form for the PPR
vector, highlighting its biases towards high degree nodes outside the target block.We examine a
simple adjustment based on node degrees and establish consistency results for PPR clustering
that allows for directed graphs.These results are enabled by recent technical advances showing
the elementwise convergence of eigenvectors.We illustrate the method with the massive Twitter
friendship graph, which we crawl by using the Twitter application programming interface.We find
that the adjusted and unadjusted PPR techniques are complementary approaches, where the
adjustment makes the results particularly localized around the seed node, and that the bias
adjustment greatly benefits from degree regularization.

Keywords: Community detection; Degree-corrected stochastic block model; Local clustering;
Network sampling; Personalized PageRank

1. Introduction

Much of the literature on graph sampling has treated the entire graph, or all of the people
in it, as the target population. However, in many settings, the target population is a small
community in the massive graph. For example, a key difficulty in studying social media is to
gather data that are sufficiently relevant for the scientific objective. A motivating example for
this paper is to sample the Twitter friendship graph for accounts that report and discuss current
political events. (See our website http://murmuration.wisc.edu, which does this.) This
corresponds to sampling and identifying multiple communities, each a potentially small part of
the massive network. In such an application, the graph is useful for two primary reasons. First,
via link tracing, we can find potential members of the target population. Second, the graph
connections are informative for identifying community membership. Throughout, we presume
that the sampling is initiated around a ‘seed node’ that belongs to the target community of
interest.

A personalized PageRank (called ‘PPR’) can be thought of as an alternative to snowball
sampling, which is a popular technique for gathering individuals close to the seed node. For
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some d ! 0, snowball sampling gathers all individuals who are d friends away from the seed.
This process has two competing flaws for our application which are addressed by PPR. First,
snowball sampling fails to account for the density of common friendships. For example, perhaps
i and j are both one friend removed from the seed, but i has 10 friends in common with the seed,
whereas j has only one friend in common. It seems natural to suppose that i is closer than j to the
seed. Hence, the metric for snowball sampling can be misleading. Second, the snowball sample
size grows very quickly with d. For example, under the ‘six degrees of separation’ phenomenon
(Watts and Strogatz, 1998; Newman et al., 2006), snowballing gathers the entire graph if d !6.

PPR gives a sample that is more localized around the seed node. The PPR vector is defined
as the stationary distribution of what we call a personalized random walk (Page et al., 1999).
At each step of the personalized random walk, the random walker returns to the seed node
with probability α, called the teleportation constant, and, with probability 1−α, the random
walker goes to an adjacent node that is chosen uniformly at random. Consider the stationary
distribution of this process as giving the inclusion probability for a sample of size 1. This is
the PPR vector. PPR naturally leads to a clustering algorithm, where the cluster is made up of
the nodes with a large inclusion probability. To approximate the PPR vector quickly, Berkhin
(2006) proposed an algorithm that examines only nodes with large inclusion probabilities (i.e.
nodes near the seed). As such, PPR is particularly useful for its computational efficiency—
the running time and the amount of data that it requires are nearly linear in the size of the
output cluster, which is typically much smaller than that of the entire graph. Because of the
local nature of the algorithm, it can be used to study large graphs such as Twitter where the
entire graph is not available, but where one can query to find the connections to any small set
of nodes.

One way to conduct local clustering is by exploring and ranking the nearby nodes of a
seed node (Andersen and Lang, 2006; Andersen and Peres, 2009; Alamgir and Von Luxburg,
2010; Gharan and Trevisan, 2012). Spielman and Teng (2004) pioneered local clustering by
defining nearness as the landing probability of a random walk starting from the seed node.
Their algorithm’s guarantee was improved in follow-up work by Andersen et al. (2006) which
proposed the use of an approximate PPR vector. Local algorithms can be applied recursively
to solve more complicated problems such as graph partitions (k-way partitions) (Spielman and
Teng, 1996; Karypis and Kumar, 1998) and have many fruitful applications (Jeh and Widom,
2003; Macropol et al., 2009; Liao et al., 2009; Gupta et al., 2013; Gleich, 2015), particularly
when it comes to sampling and studying massive graphs.

Along with the widespread use of PPR, there has been recent work to study its statistical
estimation properties under a statistical model with latent community structure. Beyond the
scope of local clustering, Kloumann et al. (2017) showed that the PPR vector is asymptotically
equivalent to optimal linear discriminant analysis under the stochastic block model (SBM)
(Holland et al., 1983), assuming a symmetry condition on the block structure. We add to this
statistical understanding of PPR by providing a simple and more general representation for
PPR vectors that allows for different block sizes, more than two blocks, degree heterogeneity
and directed edges. To understand the effects of heterogeneous node degrees, this paper uses the
degree-corrected stochastic block model (DCSBM) (Karrer and Newman, 2011) and examines
when the PPR clustering recovers nodes within the same block as the seed node (local cluster).
Breaking the symmetry that was imposed by Kloumann et al. (2017) reveals additional insight. In
particular, given a seed node in the first block, we show that PPR is likely to contain high degree
nodes outside that block. We study an adjustment that was previously proposed in Andersen
et al. (2006). We show how this adjustment can correct for the bias. We illustrate these ideas
with examples from the Twitter friendship graph.



Targeted Sampling from Massive Graphs 101

1.1. An illustrative example in social media
Local clustering using PPR is particularly well suited to studying current political events on
Twitter because

(a) the accounts that discuss politics or current events are a small part of the entire Twitter
graph,

(b) it is reasonable to believe that the accounts in our target population are well connected
to one another in the Twitter friendship graph and,

(c) although the entire Twitter graph is not publicly available, the way that PPR (algorithms
1 and 3 in Sections 2.1 and 3.2 respectively) queries the graph matches the Twitter
application programming interface protocol which is the primary mode of access for
researchers.

Although we do not suppose that the Twitter friendship graph is sampled from a DCSBM,
Twitter does have all of the heterogeneities that our results identify as important. The Twitter
friendship graph is composed of users who can freely follow others but will not necessarily be
followed back, or friended. Such asymmetry between following and friending forms a directed
graph where follower count indicates status—some popular or high status nodes command
millions of followers whereas the majority of nodes are followed by far fewer.

The theoretical results in this paper suggest that such degree heterogeneities will make the PPR
vector biased for detecting block memberships (theorem 1 in Section 3.1). We propose a way to
adjust for this bias (algorithm 2 in Section 2.1) and show that it is a consistent estimator (corollary
1 in Section 4). Not surprisingly, this section demonstrates that PPRs with and without the bias
adjustment give fundamentally different results on the Twitter graph. However, depending on
the application, the biases in the PPR vector might be advantageous. In this way, PPRs with
and without the bias adjustment are complementary, not competing, approaches.

Table 1. Top 15 handles by PPR clustering†

Rank @CNN @BreitbartNews @dailykos

1 CNN Breaking News Alex Marlow Hillary Clinton
2 CNN International AndrewBreitbart Stephen Colbert
3 Wolf Blitzer Big Hollywood Rachel Maddow MSNBC
4 Anderson Cooper Big Government Jake Tapper
5 Christiane Amanpour James O’Keefe Joy Reid
6 Pope Francis Sean Hannity Chris Hayes
7 Dr Sanjay Gupta Raheem Emma Gonzlez
8 CNNMoney Joel B. Pollak Markos Moulitsas
9 Jake Tapper Ann Coulter Maggie Haberman

10 Brian Stelter Allum Bokhari Sarah Silverman
11 CNN Newsroom Ben Kew Lin-Manuel Miranda
12 Dana Bash Brandon Darby Elizabeth Warren
13 CNN Politics Noah Dulis Jon Favreau
14 BBC Breaking News Michelle Malkin Michelle Obama
15 Brooke Baldwin Nate Church Bill Clinton

†Column names represent seed nodes, and the sampled nodes are ranked by PPR
values, with teleportation constant α=0:15 uniformly. Through the PPR vector, the
top 15 handles returned to each of the three seed nodes fit well with the characteristics
of the seed nodes. They are popular or high status handles either directly related to
the seed nodes or align with their political leanings. This shows the effectiveness of
clustering via the PPR vector. It also shows the PPR vector’s preference for highly
connected nodes.
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Table 2. Top 15 handles by adjusted PPR (with regularization) sampling†

Rank @CNN @BreitbartNews @dailykos

1 PowerZ Robert Two Thanks
2 Elissa Weldon Lee Peace Catherine Daligga
3 Tess Eastment Wynn Marlow exmearden
4 Chris Dawson Logan Churchwell Faith Gardner
5 carol kinstle Peter Schweizer Andrew Thornton
6 erinmclaughlin Breitbart Sports UnreasonableFridays
7 Taylor Ward Jon Fleischman DKos Top Comments
8 Jennifer Z. Deaton Nate Church 2016 relitigator
9 Pam Benson Daniel Nussbaum Daily Kos

10 amy entelis Noah Dulis Walter Einenkel
11 Grace Bohnhoff Jon David Kahn Candelaria Vargas
12 kate lazarus Breitbart California Mara Schechter
13 Newstron Ken Klukowski Emi Feldman
14 Becky Brittain pam key The Soulful Negress
15 CNN Ballot Bowl Auntie Hollywood Kim Soffen

†Column names represent seed nodes, and the sampled nodes are ranked by
adjusted PPR values, with teleportation constant α= 0:15 uniformly. After ad-
justment, PPR returns a more localized cluster. Instead of the highly visible public
faces of the three seed organizations, the individuals in this table serve a central
role to the internal organization (e.g. editors and writers). Depending on the
application, one might prefer the results in Table 1 or Table 2.

To illustrate, Table 1 displays the top 15 handles ranked by the PPR vector (without adjust-
ment) for three different seed nodes: @CNN, @BreitbartNews and @dailykos, which are the
Twitter accounts of three types of media outlets that exhibit distinct political leanings (legacy
broadcast news, on-line right wing and on-line left wing). For @CNN, all top 15 handles ranked
by the PPR vector are its subsidiary accounts and its celebrity reporters and anchors (like Wolf
Blitzer and Anderson Cooper), except for one account, Pope Francis, who enjoys an extremely
larger following. The top 15 handles for @BreitbartNews are a mixed bag of influential con-
servatives (like Sean Hannity and Ann Coulter) and Breitbart’s editors or writers. However, the
top 15 handles returned to @dailykos by the PPR vector are all famous liberal personalities
who are not directly affiliated with Daily Kos, except one: its founder Markos Moulitsas. Those
people range from democratic politicians to liberal media personalities and journalists, such
as Hillary Clinton, Stephen Colbert and Rachel Maddow. All the handles align with the char-
acteristics of their respective media outlets, attesting to the clustering effectiveness. However,
it is worth noting that the top handles ranked by the PPR vector tend to be popular handles
with millions of followers. This shows that the PPR vector’s preference is for high in-degree
nodes.

In contrast, for each of the three seeds, adjusted PPR finds accounts that are more central to the
internal functioning of these organizations. Table 2 lists those accounts. The bias adjustment also
greatly benefits from a degree regularization (Qin and Rohe, 2013). For @CNN, those handles
include primarily its own staff, producers or journalists (like Elissa Weldon, Chris Dawson
and Grace Bohnhoff) and a freelance journalist (Tess Eastment). The pattern is similar for
@BreitbartNews and @dailykos, their top 15 handles including their own journalists and editors
as well as related writers, campaigners and activists. The general pattern is that the adjustment
returns editors, journalists and staff working within each media outlet. As such, the adjustment
is useful for identifying a more localized cluster.
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1.2. Main contributions
The main contributions of the paper are a simple and interpretable form for the PPR vector
and a statistical guarantee for clustering with the adjusted PPR vector.

(a) This paper reveals a simple two-stage form of the PPR vector under the population
(expectation) DCSBM. Consider the vth element of the PPR vector as the probability of
sampling node v in a sample of size 1 from the stationary distribution of the personalized
random walk. This inclusion probability is akin to stratified sampling:

The inclusion probability for node v is the product of two separate probabilities: first, the
probability that the personalized random walk samples any node in v’s block; second,
the probability that the personalized random walk selects node v, conditionally on
sampling that block.

Both of these probabilities have simple expressions. If there are K blocks in the graph,
then the blockwise probability comes from the PPR vector of a graph with K vertices,
with edge weights specified by the ‘block connection matrix’ in the DCSBM. The second
probability is proportional to the degree of node v. In addition to the population results,
theorem 2 in Section 4 demonstrates that, when the graph is random, the PPR vector
concentrates around its population (expectation) under certain conditions.

(b) This paper identifies two sources of bias of using a PPR vector for local clustering under
the DCSBM—the ancillary effects of heterogeneous node degrees and block degrees. With
this finding, the paper examines a simple bias adjustment that remedies the two biases
simultaneously and suggests conditions when the adjusted PPR can be used to return the
correct local cluster. In other words,

PPR clustering with the adjustment achieves the precise identification of the local clus-
ter, provided that the graph is sufficiently dense.

These results establish statistical performance (consistency) of PPR clustering under the
DCSBM, in the sparse regime where the minimum expected degree grows logarithmically
with the number of nodes in the network. Our results provide an elementwise perturbation
bound for PPR vectors, that allows the number of clusters to grow with the size of graphs,
and generalize to a directed graph setting as Google PageRank does.

The rest of the paper proceeds as follows. Section 2 formally introduces the PPR method and
some of the known results. Section 2 also introduces the DCSBM. Section 3 gives a population
analysis of the PPR clustering under directed block model graphs. Section 4 provides concentra-
tion results for the PPR vector when the graph is random and provides a statistical guarantee
on the PPR local clustering method. Section 5 presents several numerical results showing the
effectiveness of the PPR clustering. Section 6 illustrates the PPR clustering through the massive
Twitter friendship graph and demonstrates the benefits of a smoothing step in the PPR adjust-
ment.

2. Preliminaries

Throughout this paper, G= .V , E/ denotes an unweighted and connected graph, where E is the
edge set and V is the set of vertices indexed by 1, : : : , N. When G is an undirected and unweighted
graph, encode E into a binary adjacency matrix A∈{0, 1}N×N with Auv =Avu =1 if and only if
edge .u, v/ appears in E. Define a diagonal matrix D=diag.d1, : : : , dN/ and the graph transition
matrix P as follows:
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du =
∑
v∈V

Auv,

P =D−1A:

When G is a directed graph, the adjacency matrix A∈ {0, 1}N×N accordingly becomes asym-
metric with Auv =1 if and only if edge .u, v/∈E, and the graph transition matrix is defined as

P = .Dout/−1A,

where Dout =diag.dout
1 , : : : , dout

N / and dout
u =Σv∈V Auv is the number of edges leaving from node

u. In addition, define Din =diag.din
1 , : : : , din

N / where din
v =Σu∈V Auv is the number of edges point-

ing to node v.

2.1. Personalized PageRank and the local clustering algorithm
PPR is an extension of Google’s PageRank (Brin and Page, 1998; Haveliwala, 2003). To illustrate,
consider a personalized random walk (or originally called ‘surfing’) on the graph G = .V , E/
with a seed node v0 ∈V . At each step, the random walker either restarts from the seed node v0
with probability α (called the teleportation constant) or continues the random walk from the
current node to a neighbour uniformly at random. The PPR vector p∈ [0, 1]N is the stationary
distribution of this process, and thus the solution to the equation

pT =απT + .1−α/pTP , .1/

where P is the graph transition matrix, and π is the elementary unit vector in the direction of
seed node v0. Here p is a column vector normalized by a positive scalar such that its elements
sum to 1 and, without loss of generality, we set v0 =1 and thus π = .1, 0, : : : , 0/T.

In general, the preference vector π does not have to be an elementary unit vector, but any
probability distribution on V . For example, when π = .1=N, : : : , 1=N/T, PPR is equivalent to
ordinary PageRank. Moreover, the PPR vector is a linear function of the preference vector,
i.e. let p.π1/ and p.π2/ be two PPR vectors corresponding to two preference vectors π1 and π2
respectively. Then, for a new preference vector that is a convex combination of πi, the resulting
PPR vector is constructive of p.πi/:

p.w1π1 +w2π2/=w1 p.π1/+w2 p.π2/,

where wi ! 0 and w1 + w2 = 1. Define Π to be an N ×N matrix with repeating rows πT, and
let Q =αΠ+ .1−α/P ; then Q is the Markov transition matrix for the stochastic process and
equation (1) becomes pT =pTQ. Below are some useful properties of the PageRank vector (also
see Haveliwala (2003), Jeh and Widom (2003) and Appendix A).

Proposition 1. For any fixed α∈ .0, 1], the PPR vector p is
(a) the left leading eigenvector of Q, associated with the simple eigenvalue 1, and
(b) the infinite sum of landing probability {.Ps/Tπ}∞s=0 with weights φ={α.1−α/s}∞s=0,

pT =α
∞∑

s=0
.1−α/sπTPs: .2/

Berkhin (2006) gave an iterative algorithm based on proposition 1 to approximate the PPR
vector (that scales to large graphs); each update requires only neighbourhood information of
one visited vertex. A few lines of linear algebra show that the PPR vector is equivalent to the
solution to the linear system

pT =α′πT + .1−α′/pTW ,
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Table 3. Algorithm 1: approximate PPR vector (undirected) (Andersen et al., 2006)

Require: undirected graph G, preference vector π, teleportation constant α and tolerance ε
Initialize p←0, r←π, α′ ←α=.2−α/
while ∃ u∈V such that ru ! εdu do

uniformly sample a vertex u satisfying ru ! εdu
pu←pu +α′ru

for v : .u, v/∈E do
rv← rv + .1−α′/ru=.2du/

end for
ru← .1−α′/ru=2

end while
Return: ε-approximate PPR vector p

Table 4. Algorithm 2: PPR clustering (undirected)

Require: undirected graph G, seed node v0 and the desired size of local cluster n

Step 1: calculate the approximate PPR vector p (algorithm 1)
Step 2: adjust the PPR vector p by node degrees, pÅ

v←pv=dv
Step 3: rank all vertices according to the adjusted PPR vector pÅ

Return: local cluster—n top ranking nodes

where W = .I + P/=2 is the lazy graph transition matrix and α′ = α=.2−α/. Using this fact,
algorithm 1 (Table 3) approximates the PPR vector in running time of order {1=.εα/}, by
reaching at most 2={ε.1−α/} vertices. The following proposition gives a guarantee on the
approximation error for this algorithm in terms of the tolerance parameter and the degrees of
visited nodes.

Proposition 2 (entrywise approximation error (Andersen et al., 2006)). Let p be a PPR vector,
and let pε ∈ [0, 1]N be an approximate PPR vector computed by algorithm 1 with a tolerance
ε> 0. For any vertex u that is sampled in algorithm 1,

|pu−pε
u|" εdu:

Proposition 2 ensures that, for any fixed graph, the approximate PPR vector is arbitrarily
close to the exact PPR vector, as long as the tolerance ε > 0 is sufficiently small. Appendix A
contains a proof of this proposition for completeness. Given a seed node in the graph, algorithm
2 (Table 4) uses the approximate PPR vector from algorithm 1 and returns a set of nodes with
the largest corresponding values in the adjusted personalized PageRank (called ‘APPR’) vector,
which is defined as

pÅ
v = pv

dv
, for v=1, 2, : : : , N:

The APPR vector was previously proposed in Andersen et al. (2006). Algorithm 1 and algorithm
2 operate on undirected graphs. We shall generalize them to directed graphs in Section 3 thanks
to a simplified and interpretable form for the PPR vector.

2.2. Stochastic block model
In an SBM, each node belongs to one of K blocks. The presence of each edge corresponds to
an independent Bernoulli random variable, where the probability of an edge between any two
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nodes depends only on the block memberships of two nodes (Holland et al., 1983). The formal
definition is as follows.

Definition 1. For a vertex set V ={1, 2, : : : , N}, let z :{1, 2, : : : , N}→{1, 2, : : : , K} partition
the N nodes into K blocks, so z.v/ is the block membership of vertex v. Let B be a K×K matrix
with all entries’ range in [0, 1]. Under the SBM, the probability of an edge between u and v is
Bz.u/z.v/, i.e.

Auv|z.u/, z.v/
ind:∼ Bernoulli.Bz.u/z.v//, for any u, v∈{1, 2, : : : , N}:

Under the ordinary SBM, nodes in the same block have the same expected degree. One
extension is the DCSBM, which adds a series of parameters (θv > 0 for every vertex v) to create
more heterogeneous node degrees (Karrer and Newman, 2011). Let B be a K×K matrix with
Bij > 0 for any i and j. Then the probability of an edge between u and v is θuθvBz.u/z.v/, i.e.

Auv|z.u/, z.v/
ind:∼ Bernoulli.θuθvBz.u/z.v//,

for u, v∈ {1, 2, : : : , N}. Since the θvs are arbitrary to a multiplicative constant which can be
absorbed into B, Karrer and Newman (2011) suggested imposing the constraint that the θvs sum
to 1 within each block, i.e.Σv:z.v/=iθv =1 for all i=1, 2, : : : , K. With this constraint, Bij represents
the expected number of edges between block i and j if i *= j, and twice that if i= j. Throughout
this paper, we presume that B is positive definite. This prevents scenarios where edges are unlikely
within blocks and more likely between blocks. (In such scenarios, local clustering needs to be
reimagined cautiously; see the on-line supplementary materials section S2 for additional details
about generalizations.) We also presume that all blocks are connected (we ignore any blocks that
are isolated from the seed). The DCSBM can be generalized to directed graphs by giving each
node two parameters, θin

v and θout
v , controlling its in-degree and out-degree respectively (Zhu

et al., 2013). Then, the presence of a directed edge from u to v, given the block memberships,
corresponds to an independent Bernoulli random variable:

Auv|z.u/, z.v/
ind:∼ Bernoulli.θout

u θin
v Bz.u/z.v//:

To make the model identifiable, we need to impose a structural constraint on the θins and θouts,
that both of them sum to 1 within each block:

∑
v:z.v/=i

θin
v =

∑
v:z.v/=i

θout
v =1, for any i=1, 2, : : : , K:

Because the off-diagonal elements of B can be interpreted as the expected number of edges
between blocks, we define the block in-degree and block out-degree to be the total number of
incoming edges and outgoing edges respectively, i.e. din

j =ΣK
i=1Bij, and dout

i =ΣK
j=1Bij.

3. Population analysis of PageRank

In this section, we analyse the PPR vector of the expected adjacency matrix under the DCSBM.
This provides a simple representation of the PPR vector that motivates

(a) the bias adjustment and
(b) the generalization of algorithm 1 and 2 to directed graphs.

We use three distinct typefaces to denote three classes of objects. A script typeface is given to
the population version of any observable quantities in random graphs, such as graph adjacency
matrix and node degrees (e.g. equation (3)). The normal typeface is given to unobserved model
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parameters, such as block membership and degree parameters θi. Bold is given to all block level
quantities and parameters like B and dout

i .
Define the population graph adjacency matrix,

=E{A|z.1/, z.2/, : : : , z.N/}, .3/

to be the expectation of random adjacency matrix A. Let Z∈{0, 1}N×K be the block membership
matrix with Zvi =1 if and only if vertex v belongs to block i, and define diagonal matrices Θin

and Θout with entries θin and θout respectively. Then, under the directed DCSBM with K blocks
and parameters {B, Z, Θin, Θout}, ∈RK×K can be compactly expressed as

=ΘoutZBZTΘin:

Accordingly, we define the population node degrees and the population transition matrix,
in
u = Σv∈V uv, out

v = Σu∈V uv and = . out/−1 , where in and out are the diagonal
matrices of the population node in-degrees in

u and out-degrees out
v respectively. Let be

the population PPR vector (i.e. the solution to the equation T =απT + .1−α/ T ) and let
Å = . in/−1 be the population APPR vector.
In addition, define the block transition matrix P∈RK×K as

P= .Dout/−1B, .4/

where Din ∈RK×K and Dout ∈RK×K are diagonal matrices of the block in-degrees din
i and out-

degrees dout
i .

3.1. A representation of personalized PageRank vectors
This section provides a simple and interpretable form for PPR vectors under the population
DCSBM. For this, we define the ‘blockwise’ PPR vector p∈RK to be the unique solution to the
linear system

pT =απT + .1−α/pTP, .5/

where π = ZTπ ∈RK is the blockwise preference vector and P is the block transition matrix
in equation (4). This treats the block connectivity matrix B as a weighted adjacency matrix of
blocks and the block of seed nodes as a seed block. To build up the relationship between PPR
and the blockwise PPR, the following theorem gives an explicit form for PPR vectors which
also reveals the sources of bias for local clustering.

Theorem 1 (explicit form of PPR vectors). Under the population directed DCSBM with K
blocks and parameters {B, Z, Θin, Θout},

(a) the population PPR vector ∈RN has elements

u =θin
u pz.u/

where p is the blockwise PPR vector in equation (5), and
(b) the population APPR vector Å ∈RN has elements

Å
u =pÅ

z.u/ .6/

where pÅ = .Din/−1p.

Theorem 1 demonstrates that the PPR vector decomposes into block-related information p
and node-specific informationΘ. Within each block, the PPR values are proportional to the node
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degree parameters θv and sum to the blockwise PPR value of the block. The proof of theorem
1 (Appendix A) relies on a key observation that the powers of the population transition matrix,

s for s=1, 2, : : : , have a similarly simple form and the node-specific information components
(i.e. z.v/ and θv) are invariant in s.

To justify the adjustment (step 2) in algorithm 2, we observe that the seed always has the
highest population APPR score. This turns out to be a key feature that facilitates the APPR
vector to recover a local cluster correctly, so we state it in the following lemma.

Lemma 1 (the largest entry of APPR vector). Under the population DCSBM, assume that
the minimum expected degree is positive, i.e. minv∈V v > 0. Then, for any fixed α > 0, the
population APPR vector Å has the strictly largest entry corresponding to the seed node,

Å
v0

> Å
v , for any v *=v0:

In contrast, this is not generally true for a PPR vector.

When α = 0 (i.e. no teleportation), the PPR vector becomes the limiting distribution of a
standard random walk and all entries of the APPR vector are equal (Appendix A). Lemma 1
(applied to blockwise PPR vectors) and theorem 1 together identify two sources of bias for PPR
vectors and suggest a justification for the degree adjustment, which we discuss in order.

(a) Both node degree heterogeneity Θ and block size imbalance D confound the identification
of local clusters by the PPR vector. In particular, suppose that vertex v belongs to a block
z.v/= i other than 1. The PPR vector assigns it a score θvpi, where pi is the blockwise PPR
of block i, and θv is the parameter specifically controlling the degree of v. Then, node v
may rank at the top, if θv is sufficiently large. Furthermore, lemma 1 implies that p1 is
not necessarily the largest because of block degree heterogeneity. Specifically, if block i
has an exceedingly high block degree, it is likely that fails to downrank node v vis-à-vis
those nodes of block 1.

(b) APPR removes the node and the block degree heterogeneity simultaneously and perfectly
recovers the local cluster. To see this, note that pÅ is the adjusted version of the blockwise
PPR vector. From lemma 1, pÅ

1 is the largest entry of pÅ. From equation (6), the APPR
vector assigns any vertex v a score pÅ

z.v/. Hence, nodes with the highest value of Å belong
to block 1, which is precisely the local cluster desired.

Note that the PPR vector can still be biased for local clustering even under the classical SBM.
To see this, set the matrix Θ to the identity matrix in theorem 1. In this case, the heterogeneous
block degrees still confound the PPR vector (Section 5.2); there is generally no guarantee for p1 to
appear on the top (because of lemma 1), unless there are further symmetry conditions. Kloumann
et al. (2017) used such a scenario. As a by-product of our analysis, we extend their results under
the DCSBM with the symmetric conditions (see the on-line supplementary materials section S3
to the paper).

3.2. Local clustering on directed graphs
In light of the clean form of PPR vectors under the DCSBM, one can modify algorithms 1
and 2 to operate on a directed graph accordingly. For this, note that the transition matrix of a
directed graph requires node out-degrees; hence algorithm 1 examines only the edges leaving
visited nodes. Consequently it suffices to replace the dus in algorithm 1 by dout

u s (algorithm 3:
Table 5). Proposition 2 applies to algorithm 3 as well, and one can approximate the PPR vector
provided that the out-degrees of visited nodes can be observed and the tolerance parameter ε>0
is sufficiently small.
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Table 5. Algorithm 3: approximate PPR vector (directed)

Require: directed graph G, preference vector π, teleportation constant α and tolerance ε
Initialize p←0, r←π, α′ ←α=.2−α/
while ∃ u∈V such that ru ! εdout

u do
sample a vertex u uniformly at random, satisfying ru ! εdout

u
pu←pu +α′ru

for v : .u, v/∈E do
rv← rv + .1−α′/ru=.2dout

u /
end for

ru← .1−α′/ru=2
end while

Return: ε-approximate PPR vector p

Table 6. Algorithm 4: PPR clustering (directed)

Require: directed graph G, seed node v0, the desired size of local cluster n and an
optional regularization parameter τ

Step 1: calculate the approximate PPR vector p (algorithm 3)
Step 2: adjust the PPR vector p with two options

(a) node in-degrees, pÅ
v←pv=din

v ,
(b) regularized node in-degrees, pτ

v←pv=.din
v + τ /

Step 3: rank all vertices according to the APPR vector pÅ or pτ

Return: local cluster—n top ranking nodes

To perform local clustering on a directed graph, algorithm 4 (Table 6) adjusts the approximate
PPR vectors from algorithm 3 by node in-degrees, i.e.

pÅ
v = pv

din
v

, for v=1, 2, : : : , N:

Another option is regularized adjustment, which produces the regularized PPR (RPPR) vector,

pτ
v = pv

din
v + τ

, for v=1, 2, : : : , N,

where τ > 0 is the regularization parameter. The regularized adjustment greatly stabilizes the
PPR clustering in practice, by removing nodes with extremely low in-degrees (see Section 6 for
more details). APPR for directed graphs is a local algorithm so long as din is available with a
local query, e.g. the Twitter friendship graph.

4. Personalized PageRank in random graphs

This section establishes several concentration results for the local clustering algorithm using
the APPR vector (algorithms 2 and 4) under the DCSBM. The results show that, if the graph
is generated from the DCSBM, then PPR clustering returns the desired local cluster with high
probability. Since, in algorithm 4, the calculation for PPR vectors relies on only node out-degrees
and the adjustment step solely utilizes node in-degrees, it is not difficult to distinguish din and
dout. Thus, we state the results in undirected graphs for simplicity. One can draw the analogous
conclusions for directed graphs by tracing the proof step by step.

We first present a useful tool that controls the entrywise errors of a PPR vector in random
graphs. Recall that is the stationary distribution of probability transition matrix =αΠ+
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.1−α/ . For any vector x∈Rn, define the vector infinity norm as ‖x‖∞= maxi |xi|. The fol-
lowing theorem bounds the entrywise error of the stationary distribution of .

Theorem 2 (concentration of the PPR vectors). Let G = .V , E/ be a graph of N vertices
generated from the DCSBM with K blocks and parameters {B, Z, Θ}. Let p and be the
PPR vector corresponding to random transition matrix P and its population version
respectively, with the same teleportation constant α. Let pÅ, Å∈ [0, 1]N be the adjusted PPR
vector of p and . Let δ be the average expected node degrees, i.e. δ =Σv∈V v=N. Assume
that ρ=maxv∈V v=minv∈V v is bounded by some finite constant and that

δ >c0.1−α/2 log.N/, .7/

for some sufficiently large constant c0 > 0. Then, with probability at least 1− .N−5/,

‖p− ‖∞
‖ ‖∞

" c1.1−α/

√{
log.N/

δ

}

and

‖pÅ− Å‖∞
‖ Å‖∞

" c2.1−α/

√{
log.N/

δ

}
,

for some sufficiently large constants c1, c2 > 0.

The proof of theorem 2 invokes the elementary eigenvector perturbation bound for asymmet-
ric matrices, an analogue to the celebrated Davis–Kahan sin.Θ/ theorem (Davis and Kahan,
1970), and the novel leave-one-out technique due to Chen et al. (2019). A detailed proof is given
in the on-line supplementary materials section S1 to the paper.

Theorem 2 demonstrates that, if the expected average degree δ exceeds .1−α/2 log.N/ to some
sufficiently large extent, then, with high probability, the random APPR vector concentrates
around the population APPR vector in terms of all entries. In fact, the concentration statement
holds for any valid preference vector π. Hence, the classic PageRank vector and some other
variants also enjoy the entrywise error bounds, so long as they can be written as the solution to
the linear system (1).

Next, we introduce a separation measure of the DCSBM. Recall that we can conduct a local
clustering task by selecting nodes ranked by the APPR vector pÅ. In the population version, it is
equivalent to distinguishing between pÅ

1 and pÅ
k , for all k =2, 3, : : : , K, which also characterizes

the distance from the desired local cluster (block 1) to its complement set (the other blocks).
Only if they are sufficiently separated can the local cluster be identifiable in the sample. Because
of lemma 1, we assume without loss of generality that the second block has the second highest
value in the ‘blockwise’ APPR vector, i.e. pÅ

1 > pÅ
2 ! pÅ

k for k = 3, 4, : : : , K. Then, we define the
separation measure ∆α ∈ .0, 1]:

∆α =
pÅ

1 −pÅ
2

pÅ
1

,

which turns out to be crucial in determining the sample complexity that is required to guarantee
the exact recovery. We remark that ∆α is an increasing function of the teleportation constant:
hence the subscript α.

With theorem 2 and the separation measure, we then give the following corollary that bounds
the accuracy of algorithm 2, in terms of graph edge density.



Targeted Sampling from Massive Graphs 111

Corollary 1 (exact recovery by APPR vector). For any seed nodes, let C⊂V be the local
cluster of n nodes returned by algorithm 2 with teleportation constant α and tolerance ε, and
⊂V be the nodes in the seed node’s block. Assume that ρ< c0, ε" c1.1−α/pÅ

1
√

{log.N/=δ},
and that

δ > 16c2

(
1−α

∆α

)2
log.N/, .8/

for some sufficiently large constants c0, c1, c2 > 0. If the desired size of the local cluster n=| |,
then, with probability at least 1− .N−5/, we have C = .

A proof of corollary 1 is presented in Appendix A. We make a few remarks.

(a) Corollary 1 demonstrates that algorithm 2 works under a sparse scenario, where the
number of edges is exceedingly small in proportion to the number of possible edges in the
network. To reach the entrywise control of the APPR vector and the sufficient separation
of local cluster from others, theorem 2 calls for the expected node degree δ to grow with
only a fraction (for any fixed teleportation constant α) of the logarithm of the size of the
network, log.N/. In other words, algorithm 2 requires a sample complexity (the number
of edges) of order

(
1−α

∆α

)2
N log.N/:

(b) The results show that α leverages between the sampling complexity and statistical perfor-
mance of PPR clustering. To see this, rearrange condition (8),

(
1−α

∆α

)2
<

c′δ

log.N/
,

for some sufficiently small constant c′> 0. As α increases, the left-hand side decreases to
0, thus making the condition more likely to hold. In contrast, as α increases, the tolerance
ε must decrease at rate .1−α/ to guarantee an entrywise control of pε that is analogous
to the form in theorem 2 (Appendix A). More intuitively, if ε does not decrease, then,
as α→ 1, algorithm 1 may terminate early without reaching all vertices in the desired
local cluster. In sum, algorithms 1 and 3 need at least [1={α.1−α/}] queries (see the
on-line supplementary materials section S2 for an example). This implies that we can
approach the conditions in corollary 1 by setting the teleportation constant sufficiently
large, whereas the computational burden can increase as α→1.

5. Simulation studies

This section compares the PPR vector and the APPR vector. The results show the effectiveness
and robustness of the APPR vector in detecting a local cluster. Experiment 1 utilizes the DCSBM
with a power law degree distribution and investigates the effects of heterogeneous node degrees.
Experiment 2 uses the SBM with unequal block sizes to study the influences of heterogeneous
block degrees. Experiment 3 generates networks from the SBM with equal block sizes and
varying edge density to examine the efficacy of PPR methods in sparse graphs.

In all simulations, we employ the block connectivity matrix B with homogeneous diagonal
elements Bii = b1 and homogeneous off-diagonal elements Bij = b2 for any i *= j. Define the
signal-to-noise ratio to be the expected number of in-block edges divided by the expected number
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of out-block edges, i.e. b1={b2.K−1/}, where K is the number of blocks. In particular, we set
the signal-to-noise ratio to 1.5 and choose a teleportation constant of α=0:15 throughout the
section. Additional simulation results (illustrating theorem 2) are available from the on-line
supplementary materials section S2.

5.1. Experiment 1
Experiment 1 illustrates how node degree heterogeneity affects the discriminant power in iden-
tifying a local cluster by using a PPR vector or an APPR vector. The results also illustrate the
advantages of having multiple seed nodes. The Θ-parameters from the DCSBM are drawn from
the power law distribution with lower bound xmin = 1 and shape parameter β = 2:5. Random
networks were sampled from the DCSBM with K = 3, N = 1500 and equal block sampling
proportions:

z.v/
IID∼ multinomial. 1

3 , 1
3 , 1

3 /,

for vertex v = 1, 2, : : : , N, whose expected average degree δ is set to 105. The PPR vector is
calculated with one or 10 seeds randomly chosen from block 1.

Fig. 1 plots PPR values (Figs 1(a) and 1(b)) and APPR values (Figs 1(c) and 1(d)) of a random
graph generated from the DCSBM, excluding seed node(s). Figs 1(a) and 1(c) contrast the PPR
and APPR when there is only one seed node and Figs 1(b) and 1(d) compare two vectors when
10 seed nodes are used. The vertices from the local block in the SBM are coloured in blue and the
others are in yellow. The nodes are ordered first by block and then by node degree parameters
θ (left is larger). A horizontal line is drawn for each block indicating the median of the APPR
values within that block.

With one seed node (Figs 1(a) and 1(c)), the scatter plots have two clouds within each block.
The upper cloud contains the immediate neighbours of the seed node. This separation disappears
when multiple seed nodes are used (Figs 1(b) and 1(d)). To see the effect of node heterogeneity,
the skewed distribution of PPR values in each block demonstrates its bias towards high degree
nodes inside and outside the seed nodes block in the SBM. In contrast, APPR values are evenly
distributed within blocks, verifying that the APPR vector removes the effects of node degree
heterogeneity.

5.2. Experiment 2
Experiment 2 compares PPR and APPR under the SBM with block degree heterogeneity. A
number of random networks were sampled from the SBM with K = 3, N = 900 and geometric
block sampling proportions:

z.v/
IID∼ multinomial.1, b, b2/, .9/

where b∈ {1:0, 1:2, 1:4, 1:6, 1:8, 2:0}. When b is larger, the population of nodes in each block
becomes more unbalanced and thus induces greater block degree heterogeneity. The block
connectivity matrix B is configured as described at the beginning of this section. The expected
average degree δ is set to 70. For each sampled network, the size of the first block is assumed
known to algorithm 2. The PPR vector is calculated exactly in place of the approximation PPR
vector (step 1), with one seed randomly chosen from the first block.

Fig. 2(a) displays the PPR vector on an example network with b = 1:4, demonstrating its
preference towards the high degree block (the third block) over local clusters. Fig. 2(b) depicts
the APPR vector on the same network. Given the size of the first block, we measure the accuracy
by the proportion of vertices belonging to the first block in the cluster returned. Fig. 2(c) shows
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Fig. 1. Comparison of (a), (b) PPR and (c), (d) APPR under the DCSBM with (a), (c) one seed node and
(b), (d) 10 seed nodes: , local cluster; , other clusters; , median of APPR values within each cluster

the accuracy of PPR and APPR for six values of b (i.e. the geometric ratio in distribution (9))
where each point is the average of 100 sampled networks. The comparison demonstrates that the
APPR vector corrects the bias of PPR caused by block heterogeneity. Moreover, block degree
heterogeneity degrades the performance of both PPR and APPR. Note that APPR outperforms
PPR even when b = 1; this is probably because, even when nodes have equal expected degrees
in the SBM, the actual node degrees will be heterogeneous because of the randomness in the
sampled graph. In a finite graph, this variability is enough to give APPR an advantage over
PPR. Asymptotically, this advantage should fade away (Kloumann et al., 2017).

5.3. Experiment 3
Experiment 3 investigates the performance of PPR and APPR under the SBM where there is no



114 F. Chen, Y. Zhang and K. Rohe

(a)

0 200 400 600 800
Index

PP
R

5x
10

−4
2x

10
−3

5x
10

−3

(c)

1.0 1.2 1.4 1.6 1.8 2.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Geometric Ratio

Ac
cu

ra
cy

(d)

20 40 60 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Expected Average Degree

Ac
cu

ra
cy

(b)

5x
10

−5
2x

10
−5

10
−4

0 200 400 600 800
Index

AP
PR

Fig. 2. (a) Simulated network generated from the classic SBM of three blocks with block degree hetero-
geneity ( , median of PPR values within each cluster), (b) comparison of performance for PPR ( ) and
APPR ( ) under the SBM with different levels of block degree heterogeneity and (c) comparison of perfor-
mance for PPR ( ) and APPR ( ) under the four-parameters SBM with different sparsity: error bars are drawn
by using the standard deviation

heterogeneity in the expected node degrees or block degrees. A number of random networks were
sampled from the four-parameter SBM .K = 3, N = 900, b1 = 0:6, b2 = 0:2/ (Rohe et al., 2011).
Under the four-parameter SBM, each of K blocks has equal size in expectation, N=K, and the
probability of a connection between two nodes is b2 if they are in two separate blocks, or b1
if in the same block. In addition, the expected average degree varies: δ∈{15, 30, 45, 60, 75, 90}.
For every setting, the results are averaged over 100 samples of the network. The PPR vector is
calculated with one seed randomly chosen from block 1. Fig. 2(d) contrasts the accuracy of PPR
and APPR against six values of expected average degree, showing that, when the sampled graph
has minimal degree heterogeneity, the adjusted PPR vector has only slightly higher accuracy
than the PPR vector.
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6. A sample of Twitter

In this section, we provide a more detailed case-study to illustrate the properties of different PPR
vectors. We obtain a local cluster of nodes around the seed node @NBCPolitics (NBC Politics) in
the Twitter friendship graph. In the Twitter graph, the nodes are called handles or accounts (e.g.
@NBCPolitics) and, if Twitter handle i follows Twitter handle j, then we define this as a directed
edge .i, j/ pointing from i to j. Affiliated with NBC News, NBC Politics specializes in political
news coverage and had over 470000 followers on Twitter (in-degree) and follows 145 handles
(out-degree) in December 2018. A brief look through @NBCPolitics’s following list reveals that
it follows a wide range of accounts, from television programmes, reporters and editors affiliated
with the National Broadcasting Company (NBC), to media accounts and journalists of other
news outlets as well as politicians.

Data on following and handle profile information were collected through the standard Twitter
search application programming interface. We queried the Twitter friendship graph starting
from the seed node @NBCPolitics, using algorithm 3 with teleportation constant α = 0:15
and termination parameter ε= 10−7, ending up with 5840 surrounding handles. Through this
exercise, we intend to illustrate the properties and applications of local clustering by using PPR,
APPR and RPPR vectors, where we set the regularization parameter τ to 100.

We first present the results of PPR. As Table 7 shows, the top 30 handles (except @NBCPol-
itics) with the highest PPR values are a combination of

(a) NBC’s news-related programmes such as NBC News, TODAY and Meet the Press,
(b) NBC’s political reporters, anchors and editors, from well-known figures like Chuck Todd

and Andrea Mitchell to less-known figures like Pete Williams (Justice Correspondent)
and Mark Murray (Senior Political Editor);

(c) other mainstream news outlets such as the Wall Street Journal, POLITICO and TIME,
and

(d) prominent public figures and politicians like Melania Trump, Bill Clinton and John
McCain.

In light of NBC’s status as a mainstream news outlet and the political focus of @NBCPolitics,
such results make sound sense. It must also be noted that all the top 30 handles are direct friends
of @NBCPolitics’s and have at least tens of thousands of followers. The median follower count is
1.4 million, suggesting high in-degrees. In fact, the pattern that is observed in the top 30 extends
to the top 200 handles with the highest PPR values, which include NBC’s own programmes,
journalists, editors and staff, fellow mainstream media outlets and their staff, and prominent
public figures, politicians and government institutions (see the on-line supplementary materials
section S4). The median in-degree of the top 200 handles is around 184000, though there are
four handles with fewer than 1000 followers. One important thing to note is that, among the top
200 handles, the first 139 are all directly followed by @NBCPolitics, with handles having high
in-degrees generally ranked higher than those having low in-degrees (although @NBCPolitics
follows 145 handles, six of them might have privacy protection that has prevented us from
accessing their information). The remaining handles that are on the list, although not directly
followed by @NBCPolitics, include five handles that are associated with NBC, from its news
anchor Lester Holt to its News International President. However, the majority of those indirectly
followed by @NBCPolitics are mainly high profile political and public figures (like President
Trump, Vice-President Pence, Hillary Clinton and Stephen Colbert), government organizations
(like the White House Office of Cabinet Affairs and National Security Council) and mainstream
news outlets (like the New York Times, Cable News Network and the Associated Press) and well-
known journalists (like John Dickerson and Anderson Cooper). We can thus conclude that the
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Table 7. Top 30 handles of PPR with seed node @NBCPolitics and the teleportation constant α D 0.15 in
December 2018†

Rank Name Followers Description

1 Melania Trump 11242283 This account is run by the Office of First Lady Melania : : :
2 The White House 17625630 Welcome to @WhiteHouse!: follow for the latest from : : :
3 Chuck Todd 2032038 Moderator of @meetthepress and @nbcnews political : : :
4 NBC News 6280551 The leading source of global news and info for more than: : :
5 NBC Nightly News 962290 Breaking news, in-depth reporting, context on news from: : :
6 Andrea Mitchell 1737764 NBC News Chief Foreign Affairs Correspondent/ : : :
7 Savannah Guthrie 881669 Mom to Vale & Charley, TODAY Co-Anchor, : : :
8 Joe Scarborough 2521215 With Malice Toward None
9 MSNBC 2261911 The place for in-depth analysis, political commentary : : :

10 Rachel Maddow MSNBC 9498076 I see political people : : :
11 Breaking News 9223158
12 NBC News First Read 53847 The first place for news and analysis from the @NBC: : :
13 TODAY 4276453 America’s favorite morning show | Snapchat: todayshow
14 Meet the Press 566713 Meet the Press is the longest-running television show : : :
15 The Wall Street Journal 16188842 Breaking news and features from the WSJ
16 Pete Williams 70062 NBC News Justice Correspondent: covers US Supreme : : :
17 Mark Murray 97571 Mark Murray is the senior political editor for NBC : : :
18 POLITICO 3695835 Nobody knows politics like POLITICO: got a news tip : : :
19 Katy Tur 587474 MSNBC anchor @2pm, NBC News correspondent, : : :
20 Bill Clinton 10697521 Founder, Clinton Foundation and 42nd President of the : : :
21 Kasie Hunt 381704 @NBCNews Capitol Hill Correspondent: host, : : :
22 TIME 15584815 Breaking news and current events from around the globe:: : :
23 Kelly O’Donnell 195765 White House Correspondent @NBCNews Veteran of : : :
24 John McCain 3181773 Memorial account for U.S. Senator John McCain, : : :
25 Peter Alexander 283522 @NBCNews White House Correspondent/Weekend : : :
26 Hallie Jackson 359099 Chief White House Correspondent/@NBCNews/ : : :
27 Kristen Welker 182244 @NBCNews White House Correspondent: links and : : :
28 Carrie Dann 37119 @NBCNews / @NBCPolitics: RTs not endorsements
29 Willie Geist 807536 Host @NBC #SundayTODAY, Co-Host @Morning Joe: : :
30 Morning Joe 563650 Live tweet during the show!: links to must-read op-eds : : :

†Through the PPR vector, the top 30 handles returned to @NBCPolitics include NBC’s news-related programmes
and celebrity reporters and comparable mainstream media outlets, as well as prominent political and public figures
and institutions. Such results line up with its status as a mainstream political news source, demonstrating clustering
effectiveness. Those Twitter handles tend to have millions of followers, showing the PPR vector’s bias towards high
in-degree.

PPR vector is biased towards popular accounts followed directly by the seed node or indirectly
by its friends, reflecting the popular Twitter handles that are followed by them. This property of
the PPR vector can be harnessed by researchers who are interested in identifying the upstream
of a handle, i.e. those Twitter elites who are followed by and might influence the seed node and
by extension its followers.

In contrast, the APPR vector upweights handles that are much less popular (i.e. those with
low in-degrees). As shown in Table 8, the 30 handles with the highest APPR values include
NBC’s reporters, writers, editors, producers and programmes, all of whom have a few hundred
to a few thousand followers. The 30 handles also include those unaffiliated with NBC, such as
the director of a non-profit (Enroll America), the director of digital programming at National
Geographic and @CNNPolitics’s editor. All of them are professionally related to the seed node.
This testifies to the applicability of APPR for locating an idiosyncratic local cluster around a
seed node. However, more than half (17) of the 30 handles are obscure and not directly followed
by @NBCPolitics. The reason why they appear on the list is probably that they have just one and
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Table 8. Top 30 handles of APPR with seed node @NBCPolitics and the teleportation constant αD 0.15 in
December 2018†

Rank Name Followers Description

1 Stephanie Palla 198 Enroll America National Regional Director : : :
2 Jennifer Sizemore 386
3 Alissa Swango 441 Director of Digital Programming at @natgeo: all things : : :
4 Making a Difference 670 @NBCNightlyNews’ popular feature profiles ordinary : : :
5 Ron Whittemore 1
6 Svante Stockselius 3
7 Greg Martin 1161 Political Booking Producer at @nbcnews @todayshow
8 Area Man 1 I am Area Man. I pwn your news feed
9 CELESTIA ROBINSON 2

10 NBC Field Notes 1390 NBC News correspondents and http://t.co/1eSopOQt8s : : :
11 rob adams 2
12 JL 2
13 David Kelsey 1
14 Hank Morris 1
15 Jesse Marks 1
16 Brayden Rainey 1
17 child of the tiger 3 Yet another activist twitter, fighting all those fun : : :
18 Julie Swango 4
19 Author Dianne Kube 7 Dianne Kube is an Author with a passion, for family, : : :
20 Consider the Source 7
21 Adam Edelman 2341 Political reporter @nbcnews: Wisconsin native, : : :
22 Phil McCausland 2519 @NBCNews Digital reporter focused on the rural-urban : : :
23 Corky Siemaszko 2538 Senior Writer at NBC News Digital (former NY Daily : : :
24 Sam Petulla 2588 Editor @cnnpolitics: Usually looking for datasets : : :
25 Ken Strickland 2693 NBC News Washington Bureau Chief
26 Mike Mullen 7
27 Elyse PG 2697 White House producer @nbcnews |@USCAnnenberg alum : : :
28 A. Johnson 2 Change your thoughts & you change your world: -Normal : : :
29 Steve Fenton 4
30 Dobe Pitty Mami 13

†Through the APPR vector, the top 30 handles returned to @NBCPolitics include some relevant handles (NBC’s
news team and their counterparts in other mainstream news organizations) and many obscure handles (handles
with few followers and no profile descriptions). This results from the APPR vector’s bias towards extreme low
degree and introduces noise to the clustering results.

at most a dozen followers (recall that APPR divides by in-degree). In fact, 160 of the top 200
handles are not direct friends of @NBCPolitics; the median in-degree of the top 200 handles is
merely 8 (on-line supplementary materials section S4). Those handles might have ended up on
the list through a combination of luck and, more importantly, their extremely low in-degrees.
In this regard, noise can be introduced by the APPR vector because it prioritizes handles with
extremely low in-degrees that are possibly several degrees separated from the seed node.

To reduce noise, we applied a regularization step to the APPR vector to remove those ‘distant’
and small nodes while preserving the close and relevant nodes. In Table 9, the majority of the top
30 handles with the highest regularized APPR (i.e. RPPR) values have three- or four-digit num-
bers of followers. Similarly to the APPR results, they include NBC’s news crew. But the difference
is that the overwhelming majority (18) of the top 30 handles work at NBC. Some handles who
work for other news organizations (e.g. Sam Petulla at @cnnpolitics and Emmanuelle Saliba at
@Euronews) might have previously worked at NBC or have a close connection with its news
team. Even the four handles that are not directly followed by @NBCPolitics are interesting—
they are non-profit organizations (NYC Clothing Bank and Voices United) and a news-related
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Table 9. Top 30 handles of RPPR with seed node @NBCPolitics and the teleportation constant αD0.15 in
December 2018†

Rank Name Followers Description

1 Stephanie Palla 198 Enroll America National Regional Director http://t.co/X6jJIE : : :
2 Jennifer Sizemore 386
3 Alissa Swango 441 Director of Digital Programming at @natgeo: all things food : : :
4 Making a Difference 670 @NBCNightlyNews’ popular feature profiles ordinary people do : : :
5 Greg Martin 1161 Political Booking Producer at @nbcnews @todayshow
6 NBC Field Notes 1390 NBC News correspondents and http://t.co/1eSopOQt8s reporters : : :
7 Adam Edelman 2341 Political reporter @nbcnews: Wisconsin native, Bestchester : : :
8 Phil McCausland 2519 @NBCNews Digital reporter focused on the rural-urban divide : : :
9 Corky Siemaszko 2538 Senior Writer at NBC News Digital (former NY Daily News : : :

10 Sam Petulla 2588 Editor @cnnpolitics: usually looking for datasets; you can : : :
11 Ken Strickland 2693 NBC News Washington Bureau Chief
12 Elyse PG 2697 White House producer @nbcnews |@USCAnnenberg alum | LA kid : : :
13 Hasani Gittens 3002 Level 29 Mage: senior News Ed. @NBCNews; sheriff of Nattahna : : :
14 Scott Foster 3464 Senior Producer, Washington @NBCNEWS @TODAYshow
15 Zach Haberman 3693 Lead Breaking News Editor, @NBCNews: previously had other jobs : : :
16 Emmanuelle Saliba 4004 Head of Social Media Strategy @Euronews | Launched #THECUBE : : :
17 Alex Johnson 4371 News, data and analysis for @NBCNews; data geek; : : :
18 Savannah Sellers 4637 News junkie: host of NBC’s "Stay Tuned" on Snapchat : : :
19 NYC Clothing Bank 154 We distribute new, never-worn clothing and merchandise : : :
20 Shaquille Brewster 5362 @NBCNews Producer/Politics | @HowardU Alum| Journalist : : :
21 Joey Scarborough 6277 NBC News Social Media Editor: New York Daily News Alum; RTs : : :
22 Jane C. Timm 6478 @nbcnews political reporter and fact checker: more fun than : : :
23 Anthony Terrell 6827 Emmy Award winning journalist: political observer; covered : : :
24 NBC News Videos 7838 The latest video from http://t.co/xPyvMOTEF6
25 Libby Leist 7946 Executive Producer @todayshow
26 Voices United 310 Voices United is a non profit educational organization : : :
27 Social Headlines 344 Daily roundup of top social media and networking stories
28 James Miklaszewski 337 Writer, Photographer, Editor, Director, Producer, Newshound : : :
29 Courtney Kube 9494 NBC News National Security & Military Reporter : : :
30 Bob Corker 10042 Serving Tennesseans in the U.S. Senate

†Through the RPPR vector, the top 30 handles returned to @NBCPolitics include much fewer low in-degree and
obscure handles and many more moderately connected nodes that are relevant to @NBCPolitics, including its
reporters and editors and media professionals from other organizations.

individual or organization (James Miklaszewski and Social Headlines). This pattern can also
be observed in the top 200 handles, 72 of whom are directly followed by @NBCPolitics. The
overwhelming majority of those who are directly followed by it are affiliated with NBC, com-
prising its day-to-day news team, who enjoy much less publicity than the celebrity reporters. The
remaining 128 of them, who are not directly followed by @NBCPolitics, actually also include 20
of NBC’s journalists and staff, such as Ray Farmer (NBC News photographer) and Jim Mik-
laszewski (Chief Pentagon Correspondent for NBC News). Others are non-profit organizations
like Vets Helping Heroes and professionals from other news organizations or companies such
as the Wall Street Journal, National Football League Network and Microsoft, who might have
worked for NBC or have a close connection with it. Although there still appear to be obscure
handles with few followers, they decrease significantly in number—the median in-degree of the
top 200 handles is 340 (on-line supplementary materials section S4): a precipitous drop from
that of the top PPR handles yet not too small compared with that of the top APPR handles.
We thus conclude that the regularized APPR vector returns a local cluster with little noise,
reflecting a seed node’s close circles, either directly or indirectly related.
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To evaluate the influence of the desired cluster size n on the results based on different PPR
vectors, we compare the local clusters of PPR, APPR and RPPR by varying sample size. Define
the in-and-out ratio of local cluster C⊂V as the proportion of edges inside C among all edges
that are connected to C:

2
∑

u,v∈C
Auv

∑
u∈C

din
u +dout

u

:

A higher in-and-out ratio indicates a more internally connected sample. Fig. 3(b) shows the
effectiveness of APPR and RPPR in producing a compact local cluster. When the sample size is
bigger than 100, the connectedness of the local cluster produced by RPPR stabilizes; the greater
the sample size, the more densely connected a cluster that APPR would produce. However, PPR
is easily susceptible to the inclusion of popular nodes. In this case, a sharp drop of the in-and-out
ratio for PPR when the sample size reaches around 140 is caused by inclusions of highly popular
accounts @POTUS (President Trump) and @realDonaldTrump (Donald J. Trump).

The PPR clustering is fairly robust to the choice of teleportation constant, despite the size
of local cluster. To illustrate this, we also performed the same pipeline of analysis with the seed
@NBCPolitics while varying the value of α (e.g. 0.05, 0.25 and 0.33) in parallel. We observed that
those local clusters returned by algorithm 4 all share a great portion of members in common.
For example, there are 280 (93.3%) overlapping members between two targeted samples of
size n = 300, using α = 0:15 and α = 0:25 respectively. These suggest a low sensitivity to the
teleportation constant (see the on-line supplementary materials section S2).

Fig. 3(a) depicts the behaviours of PPR, APPR and RPPR. Each handle queried in this
sampling is displayed as a dot, with the y-axis representing the PPR value and x-axis the number
of followers (i.e. in-degree). Top handles with the highest PPR values are above the blue broken
line, which tend to concentrate on the right-hand end of the x-axis and thus are biased towards
high in-degrees. Top handles with the highest APPR values are dots to the left of the yellow
chain curve, which gather on the left-hand end of the x-axis and thus in favour of low in-degrees.
Regularized APPR, by purple dots, excludes the very low degree nodes and very high degree
nodes. As the empirical results show, these three vectors can be thought of as lenses through
which we view the local structure of a given Twitter handle with varying foci, rendering high,
moderate and low in-degree blocks and serving different needs and purposes.

7. Discussion

This paper studies the PPR vector under the DCSBM and PPR clustering in massive block model
graphs. We establish some consistency results for this method and examine its performance
through analysis of Twitter friendship graph. As shown in the results, the PPR vectors with and
without adjustment have distinct properties and can be used to sample a massive graph effectively
for various purposes. However, there are limitations that are worthy of future investigations.

In Section 3, we provide a representation of the PPR vector under the DCSBM and its
extension into directed graphs. The result does not impose extra structural restrictions on the
model parameters, except that B corresponds to a strongly connected blockwise graph. We
consider a positive definite connectivity matrix particularly so that it is intuitive to conceive the
notion of a local cluster. In practice (and many of our experiments; see the on-line supplementary
materials section S2), however, a PPR-type algorithm appears to continue working for a broader
range of B (e.g. singular or indefinite), provided that the teleportation constant is sufficiently
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Fig. 3. (a) Illustration of 5840 Twitter handles examined by algorithm 3 and three samples of size 200
by PPR, APPR and RPPR (each dot represents a user in Twitter) ( , top 200 handles by PPR vector
(vertices above the line are PPR’s sample); , sample returned by algorithm 4 given n D 200 (vertices
above this boundary correspond to APPR’s sample); , sample of RPPR; , boundary of this sample)
and (b) in-and-out ratio of local clusters identified by PPR ( ), APPR ( ) and RPPR ( ), as the sample sizes
vary (a higher in-and-out ratio indicates a more internally connected cluster)
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large (e.g. α > 0:1). It is unclear yet what is the minimum constraint needed on B for the PPR
clustering to function. In addition, the DCSBM does have its limits. For example, the model
fails to capture either mixed block membership or popularity features which are potentially
informative in real world networks. The behaviour of a PPR vector under other extensions of
SBMs, such as the mixed membership SBM and popularity-adjusted block model, remains
unknown (Airoldi et al., 2008; Sengupta and Chen, 2018). Future studies on the PPR vector
under these models could shed further light on the PPR clustering and offer more practical
guidelines on their application.

In Section 4, we proved the consistency of PPR clustering, requiring the average expected node
degree to grow of the order of log.N/, which hits the boundary between the theoretical guarantees
and the realistic observation. In contrast, scale-free networks such as the preferential attachment
model (Barabási and Albert, 1999) have finite expected node degrees. Future investigations into
variants of PPR that could possibly overcome this limitation yet ensure a fine local cluster
discovery would be particularly interesting and useful.

In Section 6, we introduce the regularized version of the APPR (the RPPR) vector, with a
series of empirical evidence showing its efficacy in targeted sampling. Although the results appear
promising, theoretical guarantees for this technique remain unexplored. For some mathematical
analyses, one may resort to the techniques that were used in Le et al. (2016). It has previously
been shown that the regularized graph Laplacian (or transition matrix) enjoys finite sample
convergence properties, which facilitate the consistency of many regularized spectral methods.
It thus is a reasonable conjecture that RPPR vectors are also suitable for local clustering.

An R implementation of PPR clustering is available from https://github.com/
RoheLab/aPPR.
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Appendix A:Technical proofs

A.1. Proof of proposition 1
We apply the Perron–Frobenius theorem for the first part (Perron, 1907; Frobenius, 1912) and complete
the proof by construction.

(a) First, we show that Q is a Markov transition matrix by modifying G= .V , E/. For this, we shrink the
weights of every existing edge by a factor 1−α and add an edge-weighted α between seed node v0
and all nodes in the graph. Then Q represents the new graph G′.V , E′/, which is strongly connected
by construction. Hence Q is irreducible.

The PPR vector p is all positive. To see this, note that the equation pT =pTQ implies that p is a
stationary distribution for the standard random walk on G′. Since G′ is strongly connected, it
follows that the stationary distribution must be all positive.

From the Perron–Frobenius theorem, the only all positive eigenvector of a non-negative irredu-
cible matrix is associated with the leading eigenvalue, which is 1 in our case. Since the leading
eigenvalue of a non-negative irreducible matrix is simple, we conclude that p is unique.

(b) We finish the proof by constructing an explicit form of the PPR vector. Let Rα =αΣ∞s=0.1−α/sPs:
The infinite sum converges for α∈ .0, 1]. Then, p=RT

απ satisfies the definition of the PPR vector,

απT + .1−α/πTRαP =απT + .1−α/πT
{

α
∞∑

s=0
.1−α/sPs

}
P



122 F. Chen, Y. Zhang and K. Rohe

=απT +α
∞∑

s=1
.1−α/sπTPs

=πTRα:

Since the solution is unique, we have p=RT
απ.

A.2. Proof of proposition 2
Algorithm 1 maintains two vectors, pε and r, by transporting probability mass from r to pε at each updating
step. Note that the termination criterion implies that ru < εdu for any u sampled; thus it suffices to prove
that

|pu−pε
u|! ru:

For a fixed α, let p.x/ be the PPR vector with preference vector x∈RN satisfying xi " 0 and ‖x‖1 ! 1.
Then p.π/ is the exact PPR vector as in equation (2). Since p.x/TP =p.xTP/, we have (Jeh and Widom,
2003)

p.x/=αx+ .1−α/p.PTx/: .10/

We argue that pε +p.r/ is invariant in updating steps. To see this, suppose that .pε/′ and r′ are the results
of performing one update on pε and r after sampling node u. We have

.pε/′ =pε +αrueu,
r′ = r− rueu + .1−α/ruPTeu,

where eu is the unit vector on the direction of u. Then,

p.r/=p.r− rueu/+p.rueu/
.i/=p.r− rueu/+αrueu + .1−α/p.ruPTeu/
.ii/=p{r− rueu + .1−α/ruPTeu}+αrueu

=p.r′/+ .pε/′ −pε,

where equality (i) is applying equation (10) at x= rueu and equality (ii) comes from the linearity of a PPR
vector in the preference vector.

The desired result follows from recognizing that pε +p.r/ is initially 0 +p.π/ and that, when the algo-
rithm terminates, [p.r/]u ! ru for any sampled u.

Remark 1. If εd1 > 1, algorithm 1 terminates after the first round and simply outputs p=0. Under this
circumstance, proposition 2 still holds, because |pu−pε

u|! |pu|+ |pε
u|!1.

A.3. Lemmas for the degree-corrected stochastic block model
Lemma 2 (properties of the DCSBM). Under the population directed DCSBM with K blocks and
parameters {B, Z, Θin, Θout},

(a) Din =ZT inZ, and Dout =ZT outZ , and
(b) in

v =θin
v din

z.v/, and out
v =θout

v dout
z.v/.

Proof. Result (a) is an alternative way of writing the definition. For result (b), we prove the first equa-
tion. Recall that, for any i, Σu:z.u/=iθout

u =1; then, by definition,

in
v =

∑
u

θout
u θin

v Bz.u/z.v/ =θin
v

K∑
j=1

(
Bjz.v/

∑
u:z.u/=j

θout
u

)
=θin

v din
z.v/:

Remark 2. Since ZTΘinZ = IK, result (a) implies that . in/−1ΘinZ =Z.Din/−1.

Lemma 3 (explicit form of and its powers). Under the population directed DCSBM with K blocks
and parameters {B, Z, Θin, Θout}, the population graph transition is the product
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=ZPZTΘin,

and its matrix powers are
k =ZPkZTΘin:

Proof. By definition and lemma 2, part (b), for any u, v∈V ,

uv = .θout
u dout

z.u//
−1θout

u θin
v Bz.u/z.v/ =θin

v Bz.u/z.v/=dout
z.u/ =θin

v Pz.u/z.v/:

For the powers of , noting that ZTΘinZ = IK,
2 =ZPZTΘinZPZTΘin =ZP2ZTΘin:

The result desired follows from the principle of induction on the kth power.

A.4. Proof of theorem 1
By proposition 1 and lemma 3, we have

=α
∞∑

s=0
.1−α/s. s/Tπ

=α
∞∑

s=0
.1−α/sΘinZ.Ps/TZTπ

=ΘinZ

{
α
∞∑

s=0
.1−α/s.Ps/Tπ

}

=ΘinZp:

In addition, it follows from lemma 2, part (a), that

Å = . in/−1 = . in/−1ΘinZp=Z.Din/−1p=ZpÆ:

This completes the proof.

A.5. Proof of lemma 1
For any α > 0, the PPR vector with seed node v0 = 1 is the solution to the equation T = T , where

=αΠ+ .1−α/ . Define a sequence of probability distributions s ∈RN such that s = . s/T 0, where
0 is an arbitrary initial probability distribution. Then, lims→∞

s = . For simplicity, we assume that 0

is close to , i.e., for any "> 0 and s"0,

‖ s− ‖∞<"=2: .11/

This can be achieved by finding an integer S."/ that is sufficiently large and setting 0 = S .
We first claim that

max
u*=1

s+1
u

u

! .1−α/ max
u∈V

s
u

u

: .12/

In fact, for any u *=1,

s+1
u =α1{u=1} + .1−α/

∑
v∈V

vu

v

s
v

! .1−α/

(∑
v∈V

vu

)
max
v∈V

s
v

v

= .1−α/ u max
v∈V

s
v

v

:

We then show that s
1= 1 > s

v= v for any v *= 1 by contradiction. Suppose otherwise that s
1= 1 !

maxu*=1
s
u= u; then equation (11) implies that, for any s′,
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s′
1

1
!

s
1 + "

1
!max

u*=1

s
u

u

+ "

1
!max

u*=1

s′
u + "

u

+ "

1
!max

u*=1

s′
u

u

+ 2"

min
,

where min =minv∈V v. Hence, maxu∈V
s′
u = u !maxu*=1

s′
u = u +2"= min. In addition, applying equa-

tion (12) recursively we have

max
u∈V

s
u

u

=max
u*=1

s
u

u

!.1−α/ max
u∈V

s−1
u

u

!.1−α/

(
max
u*=1

s−1
u

u

+ 2"

min

)

!.1−α/s max
u∈V

0
u

u

+ 2"

min

s−1∑
t=1

.1−α/t :

The inequality means that, if min > 0 is fixed, s
u can be arbitrarily small when s→∞, which contradicts

the fact that is a probability distribution. This completes the proof.

Remark 3. When the teleportation constant is 0, the PPR vector becomes the stationary probability
distribution of a standard random walk:

(
1∑

i i

, 2∑
i i

, : : : , N∑
i i

)
:

After adjusting by node degrees, every entry becomes identical (1=Σi i). Lemma 1 is intuitive, recognizing
that the teleportation introduces a particular favour of the seed node.

Remark 4. When the edges are weighted (non-negative), the stationary distribution of a random walk
is still proportional to node degrees, if one defines the degree as the sum of edge weights incident to the
node (Lovász, 1993). Note also that the stationary distribution of a random walk in a directed graph is
characterized by the in-degree of nodes (Ghoshal and Barabási, 2011; Lu et al., 2013). The conclusion and
a modified proof apply to directed or weighted graphs.

A.6. Proof of corollary 1
The algorithm ranks all vertices according to pεÅ, and the population local cluster can be explicitly written
as

={v∈V : Å
v =pÅ

1 }:

It suffices to show that

pεÅ
v >pεÅ

u , for ∀ v∈ , u∈V\ ,

where pεÅ
v =pε

v=dv. For this, we apply the triangle inequality and obtain

pεÅ
v −pεÅ

u

‖ Å‖∞
"

Å
v − Å

u

‖ Å‖∞
− |pÅ

v − Å
v |

‖ Å‖∞
− |pÅ

u − Å
u |

‖ Å‖∞
− |pεÅ

u −pÅ
u |

‖ Å‖∞
− |pεÅ

v −pÅ
v |

‖ Å‖∞

"∆− 2‖pÅ− Å‖∞
‖ Å‖∞

− 2‖pεÅ−pÅ‖∞
‖ Å‖∞

:

Since ∆α ! 1, assumption (8) contains condition (7) in theorem 2, which together with proposition 2
implies that

‖pÅ− Å‖∞
‖ Å‖∞

<
1
4
∆,
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‖pεÅ−pÅ‖∞
‖ Å‖∞

<
1
4
∆,

if ∆2δ= log.N/ is sufficiently large. These collectively imply that pÅ
v >pÅ

u as desired.
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