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SUMMARY 
Increasing demand for advanced materials that are essential to emerging 
technologies calls for synthetic methods which can easily generate polymers 
with complex structures. Multiblock copolymers display a range of material 
properties depending on the length and number of polymer blocks. Currently, 
there remains a lack of polymerization processes that can easily synthesize 
these multiblock structures. Herein, we report the in situ synthesis of 
multiblock copolymers by controlling the incorporation of vinyl ether and 
acrylate monomers with electrochemical and photochemical stimuli, 
respectively. To achieve this, we developed a cationic polymerization where 
polymer chain growth is controlled through the reversible electrochemical 
oxidation of the polymer chain end and coupled this with a compatible 
photocontrolled radical polymerization. This process was used to generate 
higher-order multiblock copolymers wherein the number of blocks and the 
length of each segment is controlled on demand by the two stimuli. This 
method, which lends itself toward automation, will aid in accelerating the rate 
at which next generation materials are discovered.  

 

 
INTRODUCTION 
Polymer properties are determined not only by the structures of the parent monomers but 

also by the final macromolecular structure. There have been numerous studies of block 

copolymers showing that the composition, length, and total number of blocks can be used 

to tune the final material function.1-4 On this basis, there is a demand to develop methods 

to synthesize block copolymers with precise structural complexity to identify materials for 

next generation applications. To accelerate this discovery process, we envisaged an 

automated system where one could input any desired multiblock copolymer structure and 

automatically synthesize it from a single solution of reagents. This type of system would 

enable the facile formation of a library of block polymers with control over the number of 

blocks, as well as the length of each individual block in the material. To achieve this, we 

need a method where the selectivity for monomer incorporation could be controlled and 

switched during the polymerization to give the desired structure. 

 

Externally regulated polymerizations (e.g., thermal,5-7 chemical,8-13 mechanochemical,14-17 

electrochemical,18-22 and photochemical23-33) offer an opportunity to control monomer 

selectivity at a growing polymer chain end.34 Taking advantage of this strategy, the 

Byers11,21 and Diaconescu12,13 groups have independently developed chemically and 

electrochemically controlled ring opening polymerizations (ROP) that allow switching 

between incorporation of lactones and epoxides. Utilizing a combination of thermal and 

photochemical stimuli, You and coworkers35 developed a polymerization wherein ROP of 

thiiranes  could be interconverted with radical reversible addition-fragmentation chain 

transfer (RAFT) polymerization of acrylamides. 

 













 

 

 

synthesis of penta- and hexablock copolymers composed of methyl acrylate and isobutyl 

vinyl ether, which were previously inaccessible by any previous methodologies (Figure 5c). 

Significantly, the size of each block can be controlled by  the length of application and 

intensity (i.e., current density or light intensity) of each stimulus, while the number of 

blocks is dictated by the number of times the two stimuli are switched. The control offered 

by this method paves the way toward generating libraries of block polymer structures 

through automated switching of the applied stimuli. 

 

 
Conclusion 
In conclusion, we have developed a system that enables switching of polymerization 

mechanisms, and thereby monomer selectivity in situ using two external stimuli, visible 

light and electrical potential. To achieve this goal, we designed an electrochemical cationic 

polymerization mediated by ferrocene. Pairing this electrochemical cationic polymerization 

with a photochemical radical polymerization enabled us to successfully switch 

polymerization mechanism in situ. A variety of well-defined multiblock copolymers were 

synthesized where the final structure was dictated by the order and duration of the applied 

stimuli. This new switchable polymerization demonstrates the power of pairing two 

orthogonal, external stimuli and will facilitate the synthesis of advanced polymer structures 

in a one-pot process; thus, accelerating the discovery of next-generation materials. 
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