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Abstract

Single-cell DNA sequencing technologies are enabling the study of mutations and their

evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been

implicated in the development and progression of various types of cancer. A wide array of

methods for CNA detection has been either developed specifically for or adapted to single-

cell DNA sequencing data. Understanding the strengths and limitations that are unique to

each of these methods is very important for obtaining accurate copy number profiles from

single-cell DNA sequencing data. We benchmarked three widely used methods–Ginkgo,

HMMcopy, and CopyNumber–on simulated as well as real datasets. To facilitate this, we

developed a novel simulator of single-cell genome evolution in the presence of CNAs. Fur-

thermore, to assess performance on empirical data where the ground truth is unknown,

we introduce a phylogeny-based measure for identifying potentially erroneous inferences.

While single-cell DNA sequencing is very promising for elucidating and understanding

CNAs, our findings show that even the best existing method does not exceed 80% accuracy.

New methods that significantly improve upon the accuracy of these three methods are

needed. Furthermore, with the large datasets being generated, the methods must be com-

putationally efficient.

Author summary

Copy number aberrations, or CNAs, refer to evolutionary events that act on cancer

genomes by deleting segments of the genomes or introducing new copies of existing seg-

ments. These events have been implicated in various types of cancer; consequently, their

accurate detection could shed light on the initiation and progression of tumor, as well as on

the development of potential targeted therapeutics. Single-cell DNA sequencing technolo-

gies are now producing the type of data that would allow such detection at the resolution

of individual cells. However, to achieve this detection task, methods have to implement
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several steps of “data wrangling” and dealing with technical artifacts. In this work, we

benchmarked three widely used methods for CNA detection from single-cell DNA data,

namely Ginkgo, HMMcopy, and CopyNumber. To accomplish this study, we developed

a novel simulator and devised a phylogeny-based measure of potentially erroneous CNA

calls. We find that none of these methods has high accuracy, and all of them can be compu-

tationally very demanding. These findings call for the development of more accurate and

more efficient methods for CNA detection from single-cell DNA data.

Introduction

Acquired mutations are the main causes of cancer [1–3]. Copy number aberrations (CNAs)

are one such type of acquired mutations and have been implicated in over-regulating onco-

genes or down-regulating tumor suppressor genes [4]. Consequently, accurate detection of

CNAs could hold a great promise to understanding some of the genetic underpinnings of

cancer as well as developing targeted drugs. In the past two decades, a wide array of DNA tech-

nologies have been used to detect CNAs, among which the three most widely used are array

Comparative Genomic Hybridization (aCGH), Next Generation Sequencing (NGS), and sin-

gle-cell sequencing [5].

Array CGH [6] is a cytogenetic approach that uses fluorescent dyes on the test (tumor) and

reference (normal) samples, and applies them to a microarray, which is an array of probes.

Each probe is a DNA sequence that represents a region of interest. The size of a probe depends

on the DNA sequence being used, and it varies from dozens of base pairs, such as oligonucleo-

tides, to thousands of base pairs, such as bacterial artificial chromosomes. The probes from the

paired samples, after being mixed together, hybridize at each target region. The fluorescence

intensities can then be measured for both samples, and the ratio of the two is used to inform

about CNAs of the test sample relative to the normal one. Array CGH data is advantageous in

comprehensively detecting aneuploidies, amplifications, and deletions simultaneously. A few

computational methods [7–9] have been developed to detect CNAs using aCGH data. DNA-

copy [7] applies a modification of binary segmentation [10] called circular binary segmenta-

tion (CBS) to aCGH to overcome data noise, but it suffers from the problem of outliers [8, 9].

HMMcopy [8] was designed to ameliorate the problem of outliers and uses a Hidden Markov

Model (HMM) to divide the genome into piecewise fixed segments in order to make infer-

ences on CNAs. However, since aCGH data is limited in resolution and throughput [11], as

well as suffers from a hybridization bias problem, it is not the optimal technology to detect

CNAs for cancer samples.

Unlike aCGH, which obtains signal on only a limited number of genomic sites of interest,

NGS technology makes it possible to survey the whole genome at a nucleotide-level resolution

by sequencing millions of small fragments (reads) of the genome in parallel. By aligning the

reads to an assembled reference genome, the reads that cover a position in the genome are

counted to obtain the read depth at that position. Read depths at different regions of the

genome can then be contrasted to assess hypothesized genomic locations where copy number

gains and losses had occurred. NGS technologies suffer from high false positive rate compared

with aCGH, due mainly to GC bias and the presence of repetitive regions [12, 13]. Even more

challenging in the case of cancer genomes that are often aneuploid, contamination of normal

cells may occur in the bulk tissue further complicating the task of estimating the absolute copy

number from NGS data, i.e., the integer value representing the number of copies of a region

on the genome. To overcome these challenges, a plethora of computational tools [12, 14–21]
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have been developed for detecting CNAs from NGS data. SeqCNA [12] filters out potentially

false-positive CNAs and corrects GC content for a more accurate CNA detection. CNAseg

[14] analyzes flowcell-to-flowcell variability to avoid false-positive CNAs. CNAnorm [15]

addresses the normal contamination and aneuploidy of the tumor sample to infer CNAs accu-

rately. Paired-end NGS data provides another modality in addition to the read depth to infer

CNA, and a few bioinformatics tools use this, including, for example, CNVer [17], CNVnator

[18], ReadDepth [19], and Mseq-CNV [20].

Although both aCGH and NGS data can be used to detect CNAs, they do not provide

high-throughput data at the single-cell resolution that is ideal for understanding tumor

growth. In particular, intratumor heterogeneity [22] is best understood by using data

obtained from individual cells within the tumor tissue. Indeed, in the last ten years, the field

has made great strides towards developing technologies for single-cell DNA sequencing.

Data generated by these technologies can be analyzed to detect CNAs and other types of

mutations in individual cells and individual clones within the heterogeneous tumor [23]. For

example, DOP-PCR is a PCR amplification method that generates low-coverage data suitable

for CNA detection in single-cell data [24–27]. However, it also suffers from uneven coverage

and allelic dropout [23] that could lead to false-positive calls of CNAs. Beyond this method,

three tools have been extensively applied to single-cell sequencing data for CNA detection:

AneuFinder [28, 29], CopyNumber [30], and Ginkgo [31]. Like HMMcopy, AneuFinder

uses a Hidden Markov Model (HMM) to determine the segmentation of the genome, i.e., to

computationally segment the genome into non-overlapping regions so that each region has a

homogeneous copy number, and the absolute copy number of each segment. CopyNumber

[30] pools all the cells together for joint segmentation to improve boundary detection accu-

racy. Since cancer cells in the same subclone mostly share the same CNA boundaries, such a

strategy can improve the nucleotide resolution of the boundary by implicitly amplifying the

signal in the data. Ginkgo [31] uses Circular Binary Segmentation (CBS) [7] to segment the

genome, followed by inferring the integer value of the absolute copy number. It is worth not-

ing that some methods designed for aCGH and NGS data have also been extensively used on

single-cell data, and this is especially true for HMMcopy [32–36]. As both AneuFinder and

HMMcopy are HMM-based methods, we focus on HMMcopy as a representative of the

HMM-based approach due to its wide application to single-cell sequencing data in multiple

studies [32–36]. However, considering AneuFinder appears later than HMMcopy, we also

benchmark its performance particularly on different ploidies (average copy number across

the genome), as from our observation of HMMcopy, correctly inferring the ploidy level is a

challenge to such HMM-based approaches. A more recent method is SCNV [37], which uses

a bin-free segmentation method to do segmentation and copy number profiling. However,

the method has not been widely applied to single-cell DNA studies. Most recently, Chisel

[38] was introduced for detecting CNAs in single-cell sequencing data. With the help of a

matched normal sample or identified normal single cells, Chisel phases CNAs by germline

single nucleotide polymorphisms at a low coverage, and further infers allele- and haplotype-

specific CNAs. Such allele- and haplotype-specific CNAs can subsequently help improve

single-cell clustering and phylogenetic tree inference. As our study here does not deal

with phasing, we did not include Chisel in our study. Among CopyNumber, Ginkgo, and

HMMcopy, only CopyNumber utilized the pooled information from single-cell data. The

other two methods can be equally well applied to bulk samples. Moreover, HMMcopy was

designed for aCGH data originally, and thus does not take into account the specific error

profiles that characterize single-cell sequencing data, such as low and uneven coverage, or

the computational challenges that arise due to biological processes such as aneuploidy in a

tumor single cell.
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In this paper, we compared and benchmarked three methods that have been widely applied

to CNA detection on single-cell DNA cancer data: Ginkgo, HMMcopy, and CopyNumber.

We developed a simulator of cancer genome evolution in the presence of CNAs and used it to

investigate the accuracy, running time and memory consumption of the three methods. We

also investigated their performance on a real dataset and assessed their consistency. An impor-

tant contribution of this paper is the use of phylogeny-based analysis of CNA calls to identify

potentially erroneous ones. In particular, the use of a phylogeny helps identify regions that

have witnessed a large number of mutations which could be further explored for potential

error or some interesting biological explanation.

We found that in terms of the accuracy of the detected breakpoints (positions on the

genome where segmentation occurs) and memory consumption, HMMcopy is the best of the

three methods, and in terms of running time, it is slower than CopyNumber but faster than

Ginkgo. However, when evaluated the methods in terms of the actual copy number profiles

they detect, we found that Ginkgo is more accurate than HMMcopy; in fact, we found that

HMMcopy is not stable at this task (paradoxically, CopyNumber does not detect actual copy

numbers). In terms of accuracy, CopyNumber has a very poor performance. While Knouse

et al. [34] assessed the performance of CBS and HMM-based methods on single-cell DNA

sequencing data, their evaluation is limited to CNVs in brain and skin cells. Moreover, they

did not investigate the effect of the ploidy on the accuracy of the methods. Our results highlight

the need for developing new accurate and efficient methods for CNA detection from single-

cell DNA data.

Results

To better understand the strengths and limitations of current approaches for CNA detection

from single-cell DNA sequencing data, we selected HMMcopy, Ginkgo, and CopyNumber

using both simulation and realistic data.

For simulation, we designed three experiments to evaluate the performance of the three

methods under different conditions. The first experiment was designed to evaluate the recall

and precision of the CNA detection methods. We designed the simulation study in this experi-

ment to produce single cells that have ideal read count variability and normal ploidy levels

ranging between 2 and 3, so that we can learn how the methods perform when the data is rela-

tively not challenging. The second experiment was designed to evaluate the performance of

each method under a variety of ploidy levels. Specifically, we simulated single cells whose ploi-

dies range from 1.5 to 5.26. We then compared the recall and precision of the three methods

on the simulated data at different ploidies. The third experiment was designed to assess the

performance of each method under different coverage variabilities. In particular, we simulated

single cells whose coverage variabilities mimic those produced by three single-cell sequencing

technologies (MALBAC, DOP-PCR and TnBC) [39] that have been used for CNA detection.

Performance on simulated datasets

In the first experiment, we simulated the evolution of 10,000 cells from which we generated,

through sampling without replacement, three 1000-cell datasets. For each cell, we simulated

read data using a simulator that we developed (Methods). We then aligned the reads back to

the reference genome using BWA with default parameters [40, 41]. Finally, we ran each of

three methods on the resulting BAM files, and computed the recall and precision of each

method based on the ground truth generated by the simulator.

We assessed the methods’ performances in coarse- and fine-grained analyses. For the

coarse-grained evaluation, we inspected the breakpoint positions as well as whether they were
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consistent with the ground truth in terms of the estimated gain/loss state (rather than the

actual value) in the copy number. The predicted breakpoint is counted as consistent with the

ground truth whenever it has the same status (i.e., the copy number increases or decreases)

and its genomic location is within a certain distance of its counterpart in the ground truth. We

varied the value of this distance to study the methods’ accuracies. Each ground truth break-

point was matched by at most one predicted breakpoint to avoid double counting of the true-

positive calls. For each method, we varied a parameter to obtain the receiver operator charac-

teristic (ROC) curve, the details of which are described in the caption of Fig 1.

A preliminary analysis of CopyNumber on the data revealed that the method achieves

extremely low recall and precision. Since CopyNumber pools all the cells together for break-

point detection, we suspected that this poor performance owes mainly to the method’s lack of

sensitivity in detecting breakpoints shared by only a small number of cells. Therefore, to allow

for more meaningful comparison of CopyNumber to the other two methods, we eliminated

breakpoint pairs shared by fewer than five cells in the ground truth and used the resulting new

ground truth to evaluate CopyNumber’s recall and precision (but we did not filter the break-

points for the other two methods). As Fig 1a shows, CopyNumber still has, by far, the poorest

performance. We hypothesize that for a breakpoint to be detectable by CopyNumber, it needs

to be shared by a large number of cells. We further checked this by calculating the number of

cells sharing a breakpoint that is called or missed by CopyNumber, and found that there is a

significant difference between the two sets (p-value < 9.019e-09 for Student’s t-test with mean

9.27 versus 5.35). We also observe that as the tolerance threshold for the detected breakpoint

position increases, improvement in CopyNumber’s performance is much larger than the

improvement in the performance of the other two methods. However, even with the most for-

giving threshold (two breakpoints are considered to be the same if their positions are within 1

million basepairs of each other), CopyNumber still has poorer performance than the other two

methods even under the most stringent threshold. Overall, the results in Fig 1a show that (1)

HMMcopy generally outperforms the other two methods, with Ginkgo being a close second,

and (2) that even HMMcopy’s best recall and precision are around 0.8 and 0.7, respectively.

In the fine-grained analysis, we focused on the agreement of the absolute copy numbers

on both 5’ and 3’ of an inferred breakpoint with those of the ground truth, in addition to the

requirements on gain/loss consistency and distance. Since CopyNumber does not predict the

absolute copy numbers for an individual cell, it is not considered in this analysis. Surprisingly,

HMMcopy’s prediction of the absolute copy number is not stable, leading to a bimodal distri-

bution of both recall and precision (S1 Fig). We found that cells with low recall and precision

correspond mainly to cases where HMMcopy made inaccurate estimates of the cells’ ploidies

(S2 Fig). We then selected only those cells for which the ploidy was correctly predicted (i.e., 2

or 3), and plotted the ROC curve of HMMcopy on them. We found that HMMcopy performed

generally better than Ginkgo (Fig 1b), which is in agreement with the coarse-grained analysis.

The recall and precision for the two methods dropped, which is expected since the true posi-

tives and negatives are now measured most stringently. However, we observed that the differ-

ence in results between the coarse- and fine-grained analyses is not large, suggesting that

once the breakpoint is found by these methods, predicting the absolute copy number can be

attained quite accurately. This is especially true for Ginkgo whose ploidy prediction is stable.

Similar results were observed on the other two datasets (S3 and S4 Figs).

The results in Fig 1 were obtained under default parameters except for the parameters that

were tuned to generate the ROC curves (alpha, gamma, and nu). However, we found that the

value of parameter strength in HMMcopy has to be much larger than the default value in order to

make the results more expected, i.e., increasing recall is accompanied with decreasing precision,

and vice versa. We therefore set strength to be 10 million. According to HMMcopy’s users’ guide,
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Fig 1. ROC curves of the three methods HMMcopy, Ginkgo, and CopyNumber. (a) Coarse-grained analysis results, and (b) fine-grained

results. For each method, the results based on three thresholds of correctness are plotted. For HMMcopy, nu, which controls the suggested

degree of freedom between states, was tuned to take on the values 0.01 (rightmost), 0.1, 2.1 (the tool’s default), 4, 10, and 20 (leftmost). For

Ginkgo, alpha, which controls the significance level to accept a change point, was tuned to take on the values 1e-1000 (rightmost), 1e-100, 1e-

10, 1e-5, 1e-4, 1e-3, 1e-2 (the tool’s default), 0.02 and 0.05 (leftmost). The dots corresponding to values 1e-5 and 1e-10 in coarse-grained

analysis overlap. For CopyNumber, gamma, which is the weight of the penalty on changing a state, was tuned to take on the values 40

(rightmost, and the tool’s default), 10, 5, 4, 3, 2, and 1 (leftmost).

https://doi.org/10.1371/journal.pcbi.1008012.g001
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strength is the parameter that controls how much the initial values of e, which controls the

probability of extending a segment, remains the same throughout the iterations. We found that

setting strength would help to have a good quality control of the result by making the initial set-

ting of e last throughout all the iterations. Apart from parameters nu and strength, we found

that e is also an important parameter in HMMcopy. The larger the value of e, the smaller the

chance that the breakpoint is detected. To explore which combination can yield the best per-

formance for HMMcopy, we varied both e and nu and calculated the F1 score. The perfor-

mance of HMMcopy is the best when nu is 4 and e� 0.999999 (S5 Fig).

We also analyzed the computational requirements in terms of running time and memory

consumption for the three methods on a 1000-cell dataset (Fig 2). Ginkgo is the slowest among

the three and CopyNumber is the fastest. HMMcopy is in between Ginkgo and CopyNumber

in terms of running time. For memory consumption, Ginkgo is the most demanding of the

three, followed by CopyNumber. HMMcopy is the lightest in terms of memory consumption.

Note that in running Ginkgo, we eliminated the steps of generating figures such as heatmaps

and copy number profile, so that these do not affect the running time and memory in compari-

son with the other two methods. For CopyNumber, an extra step is required to generate its

input file. We used the intermediate result of HMMcopy, i.e., the GC corrected read count on

each bin, as the input to CopyNumber. We take the time for calculating this intermediate file

into account for CopyNumber for a fair comparison. Since CopyNumber processes all the cells

together, we suspect that more cells will require more memory, whereas Ginkgo and HMMco-

py’s memory requirements are not affected by the number of cells involved.

In summary, we found that HMMcopy is the most accurate in predicting breakpoints

among the three. When HMMcopy’s prediction of ploidy is accurate, its recall and precision

of predicting the absolute copy number are the best among the three methods. However, it is

not as stable as Ginkgo in terms of the absolute copy number detection since its prediction of

ploidy is wrong for many cells (49.4% for default values of nu and e). CopyNumber’s recall and

Fig 2. Computational requirements of Ginkgo, HMMcopy, and CopyNumber. Results are for analyzing a 1000-cell dataset on Intel(R)

Xeon(R) CPU E5-2650 v2 whose clock speed is 2.60GHz. Left and right panels correspond to running time (in log10 of seconds) and

memory consumption (in log10 of kb). The running time and memory were recorded for using different parameters as described in Fig 1.

As Ginkgo’s running time increases more than twofold for α = 0.05, we treated it as an outlier and did not include this running time point

in this plot.

https://doi.org/10.1371/journal.pcbi.1008012.g002
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precision are the worst of the three methods. Moreover, it cannot predict the absolute copy

number for each individual cell, and thus is not as applicable as the other two methods.

The effect of ploidy on performance

To test the robustness of the methods to different ploidies, we varied the ploidy by tuning the

parameters that control whole chromosomal amplifications and the rate of deletion (see the

“Methods” section). We varied the ploidy from 1.5 to 5. Specifically, we used 1.5, 2.1, 3, 3.8,

and 5.26 (we refer to them as 1, 2, 3, 4, and 5, respectively, hereafter), and generated three

datasets for each ploidy. We tuned the coverage parameter for each ploidy so that the total

number of reads for different ploidies are approximately the same to avoid adding reads for

larger genomes resulting from higher ploidies.

We ran each method using their default parameters (except the strength parameter in

HMMcopy). Finding CopyNumber’s recall to be zero using the default gamma, we tuned

gamma using the optimal value, i.e., 5, shown in Fig 1. We then found the recall greatly

increased with this setting. Similar to the previous experiment, we again removed those

breakpoint pairs shared by� 5 cells from the ground truth for evaluating CopyNumber’s

performance.

We used different combinations of the parameters to simulate high-ploidy cells (details are

in the “Methods” section), i.e., 4 and 5, and found that in the absence of odd and intermediate

copy numbers, HMMcopy’s inference of the ploidy and absolute copy numbers were inaccu-

rate (S6 Fig). This is also the case for Ginkgo in the absence of the odd copy numbers. How-

ever, despite the lack of intermediate copy numbers, Ginkgo correctly predicted absolute copy

numbers for the case of ploidy = 5, showing that Ginkgo is more robust to changes in ploidy

than HMMcopy in terms of predicting absolute copy numbers. In summary, the lack of odd

or intermediate copy numbers in the data led to wrong predictions of absolute copy numbers.

We then tuned the simulator’s parameters so that in higher ploidies there are odd and interme-

diate copy numbers to avoid the extremely hard cases for CNA detection (details are in the

“Methods” section). Fig 3 shows the precision and recall for the three methods for coarse- and

fine-grained analyses, respectively.

In the coarse-grained analysis, Ginkgo’s recall is > 0.8 in general, but its precision is rela-

tively low (i.e., < 0.4) for ploidy 2 and 3. This is probably because it was affected by the vari-

ability of the read counts and over-segmented the genome. With similar recall, HMMcopy has

higher precision at all ploidies. CopyNumber’s recall and precision are low (< 0.4) for all ploi-

dies, with low recall and precision for ploidy 5 and low precision for ploidy 2.

In the fine-grained analysis, Ginkgo’s recall and precision dropped by about 10% as com-

pared with the coarse-grained results. Its recall dropped the most for ploidy 5, indicating the

challenge in accurately predicting the absolute copy number for high-ploidy cells. Although

the odd and intermediate copy number states are present in this simulated data, HMMcopy’s

precision and recall are still bimodally distributed for all ploidies.

As we observed cells whose incorrect ploidy prediction led to wrong prediction of absolute

copy numbers in the previous experiment, these bimodal distributions further showed that

such wrong prediction can widely occur to cells with different ploidies. Similar results were

observed on the other two datasets (S7, S8, S9 and S10 Figs). We then plotted the predicted

versus actual ploidies for all cells for five simulated ploidies on one dataset, and found that

HMMcopy’s predicted ploidies deviate from the true ploidy for all simulated ploidies, whereas

Ginkgo’s prediction of ploidy is relatively accurate (S11 and S12 Figs). Specifically, we noticed

that when the ploidy is between 1.5 and 3, most of the incorrectly predicted ploidies accumu-

lated at the values that are multiples of the actual ploidy. For example, when the actual ploidy
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is 2, the incorrectly predicted ploidies were at 4 and 6, as seen in the histogram in S12(c) Fig.

When the actual ploidy is greater than 4, the incorrectly predicted ploidies centered around

the actual ploidy but with a large deviation. While both phenomena are probably due to the

wrong selection of the best-fitting ploidy, which can be further traced to a suboptimal scoring

algorithm for selecting the best ploidies in HMMcopy, the first phenomenon of having multi-

ples of the actual ploidy is possibly also due to that the algorithm mistook the noises as the

intermediate copy numbers, leading to a much larger predicted ploidy. In addition, while both

Ginkgo and HMMcopy adopt a post-segmentation step for inferring the ploidy, the fact that

Ginkgo allows non-integer ploidy but HMMcopy does not may lead to their performance dif-

ference in inferring the ploidy.

Fig 3. Recall and precision of Ginkgo, HMMcopy, and CopyNumber as functions of the ploidy. The ploidy level is varied and the results

are based on the (a) coarse-grained and (b) fine-grained analyses. The ploidies of the simulated data were 1.5, 2.1, 3.0, 3.8, and 5.3.

https://doi.org/10.1371/journal.pcbi.1008012.g003
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Since AneuFinder and HMMcopy are both HMM-based methods but use different emis-

sion probability distributions (HMMcopy uses Gaussian whereas AneuFinder uses negative

binomial), we also tested AneuFinder on datasets of varying ploidies (1.14.0, method=“edivi-

sive”, binsizes = 2e5). We applied AneuFinder to the same dataset we described above and

found that AneuFinder’s recall and precision are generally lower than that of HMMcopy’s, and

the difference is extremely large when the ploidy is above 3. In particular, AneuFinder’s preci-

sion drops below 0.2 for ploidy at 4 and 5 with recall between 0.4 and 0.6 (S13 Fig) for coarse-

grained analysis. In other words, at a lower recall, the precision of AneuFinder for ploidy

above 3 is at least 50% smaller than those of HMMcopy’s. When the ploidy is between 2 and 3,

while the recall of AneuFinder is close to that of HMMcopy, its precision is still much poorer

than that of HMMcopy. For fine-grained analysis, AneuFinder’s recall further drops near 0.2

when the ploidy is 4, and 0.05 when the ploidy is 5. Its precision also drops near 0.05 when the

ploidy is 5 (S14 Fig). In all, we conclude that although AneuFinder does not show bimodality

on fine-grained analysis, its recall and precision are both much lower than those of HMMcopy

especially at high-ploidy datasets.

The effect of coverage on performance

To evaluate the performance of each method under different single-cell sequencing technolo-

gies, we sampled 20 cells from the simulated dataset and simulated their sequencing at four

levels of coverage variabilities, corresponding to MALBAC, DOP-PCR, TnBC and Bulk

sequencing (see details in the “Methods” section) and ran the three methods on each of them.

We generated three datasets for each level of variability. Fig 4 shows the performance on one

of the datasets. With decreasing variability, all three methods’ recall increased under both

the coarse- and fine-grained analyses. Ginkgo’s and HMMcopy’s precisions increased with

decreasing variability. CopyNumber’s precision, on the other hand, stays the same regardless

of the coverage variability level, whereas its recall generally increases. In summary, better

sequencing technology leads to better performance. The best that can be ever obtained (Bulk

sequencing) is about 15% higher than the worst (MALBAC) for recall, and slightly higher for

precision.

We looked into the copy number profiles in cases where HMMcopy’s precision and recall

were effectively 0 (one such case is illustrated in S15 Fig). We found that choosing a wrong

ploidy from the set of candidate ploidies by HMMcopy may result in a copy number profile in

which all the segments are predicted to have the same absolute copy number, whereas the clos-

est profile to the ground truth is among the reported non-optimal results. We observed that in

such cases, the wrong choice of ploidy may affect both the segmentation and inference of the

absolute copy number of those segments.

Similar results were observed on the other two repetitions (S16, S17, S18 and S19 Figs).

Performance on a real dataset. In real data analysis, due to the lack of ground truth, we

evaluated the performance of the three methods in two ways. First, we evaluated the consis-

tency among the three methods. The more overlap among the methods, the more consistent

they are. Second, we inferred a maximum parsimony tree using PAUP [42] from the inferred

copy number profiles and calculated the smallest number of copy number changes for each

bin across all the branches of the tree, where the genome at the root of the tree is assumed to

be diploid. The rationale for the latter way of assessing performance is that if the CNAs called

by a method result (under a parsimony analysis) in a very large number of changes of the copy

number at any bin, then one plausible explanation is error in the calls (another plausible pre-

diction is that, for some reason, the locus corresponding to that bin has repeatedly gained and
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lost copies during the evolution of the cells which could be indicative of some interesting bio-

logical processes at play).

We downloaded single-cell DNA sequencing data of seven samples (the median number

of cells in the seven samples is 47) from [43] (NCBI Sequence Read Archive under accession

SRP114962) and selected those pre-treatment samples whose CNA profiles had not changed

due to treatment compared with mid-treatment and post-treatment ones. We then ran the

three methods with default parameters (except for the strength parameter in HMMcopy, as dis-

cussed above) on the single cells in each sample.

For assessing accuracy, we generated for each sample a Venn diagram of the predictions

based on all three methods, where predictions by two methods were deemed consistent

Fig 4. Recall and precision of Ginkgo, HMMcopy, and CopyNumber as functions of the coverage. The coverage is varied and the results

are based on the (a) coarse-grained and (b) fine-grained analyses. The coverages are varied to mimic those produced by MALBAC,

DOP-PCR, TnBC and Bulk sequencing.

https://doi.org/10.1371/journal.pcbi.1008012.g004
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according to the same rule we used in the simulation study (in assessing consistency

between predictions and the ground truth). Fig 5a shows the results for Sample 102 (S20 Fig

shows results for the other six samples). It can be seen that 47% of Ginkgo’s calls overlapped

with the other two methods, leaving a large portion as unique calls. HMMcopy overlapped

well with the other two methods, with 22% of unique calls. In particular, HMMcopy over-

lapped well with Ginkgo: 76% of HMMcopy’s calls overlapped with Ginkgo. CopyNumber’s

overlap with Ginkgo was larger than that of HMMcopy (65% versus 43%). The overlap

among the three methods is a very small portion of the union of all calls (8%), indicating a

very large inconsistency among the three methods. From these results, we observe that

HMMcopy performed the best among the three in breakpoint calling, if we consider consis-

tency with other methods as a metric of quality, which is consistent with what we observed

on the simulated data.

Fig 5. Comparison of HMMcopy, Ginkgo and CopyNumber on Sample 102 in [43]. (a) Venn diagram of the breakpoints from

Ginkgo, HMMcopy and CopyNumber. Breakpoints from two methods are counted as overlapping if they are within 400,000bp of

each other. (b) Distribution of the copy number changes (under a parsimony analysis) per bin based on the copy number profiles

obtained by HMMcopy for the seven samples. (c) Distribution of the copy number changes (under a parsimony analysis) per bin

based on the copy number profiles obtained by Ginkgo for the seven samples. For (b) and (c), a maximum parsimony tree was

inferred from the copy number profiles of the cells, and the minimum number of copy number changes per bin along all the

branches of the tree was computed by parsimony analysis. The percentages of the bins with each number of copy number changes are

plotted.

https://doi.org/10.1371/journal.pcbi.1008012.g005
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We then investigated the smallest number of changes required to explain the copy numbers

detected by Ginkgo and HMMcopy (again, CopyNumber does not detect absolute copy num-

bers, which is why it is excluded in this analysis). To accomplish this, we inferred a phylogenetic

tree from the inferred copy number profiles of the individual cells under the maximum parsi-

mony criterion. We then inferred ancestral copy number profiles, also under the maximum

parsimony criterion, and tabulated, for each bin, the number of changes that occurred along

the branches of the tree. A bin that has a very large number of changes in the copy number

could be pursued for further analysis. Two possible explanations of large number of changes are

erroneous inferred copy numbers in this bin, or some real biological phenomenon that is worth

pursuing further. Note that in this analysis we make the independent-bin assumption (copy

number aberrations on each bin are independent of each other) and assume that bins undergo

changes once at a time. More complex evolutionary models such as considering a group of

neighboring bins together for a copy number aberration are beginning to emerge, but comput-

ing the parsimony score under those models is intractable [44]. Fig 5b and 5c show the distribu-

tions of copy number changes based on HMMcopy and Ginkgo’s results, respectively (S21 and

S22 Figs show results for the other six samples). Interestingly, for Ginkgo, four out of seven

samples (samples 102, 132, 152, and 302) showed a higher number of bins that have one copy

number change than ones with no copy number changes. The other three samples (samples

126, 129, 615) have the most bins that had no copy number changes at all. Generally the number

of bins that had copy number changes decreased with the increasing number of changes. On

the other hand, based on the HMMcopy results, all samples showed much higher percentage of

no copy number change than those with some copy number change.

Discussion

Single-cell DNA sequencing data holds great promise for elucidating the complex biological

processes that underly human diseases, including cancer. Copy number aberrations have been

implicated in cancer, and their accurate detection from single-cell DNA sequencing data is of

great potential to diagnosis and treatment of cancer. In this paper, we investigated the perfor-

mance of three representative methods, Ginkgo, HMMcopy, and CopyNumber, that have

been widely applied to single-cell sequencing cancer data for CNA detection.

We compared the three methods on simulated data generated under different settings that

reflect varying degrees of complexity in the data. To accomplish this task, we developed a sim-

ulator that is flexible to simulate different scenarios and also mimic realistic data. We found

that HMMcopy performs the best for breakpoint detection. However, HMMcopy is not stable

in inferring the absolute copy number. Ginkgo performs well for both breakpoint detection

and inference of the absolute copy number. CopyNumber is not as sensitive as the other two

methods. We also looked into the performance of the three methods when ploidies were var-

ied. We found that data with higher ploidies presented challenges for Ginkgo. HMMcopy is

the most robust in terms of breakpoint detection among the three methods regardless of the

ploidy, but its inference of the absolute copy number is not accurate for all ploidies. However,

since the program yields copy number profiles for all possible integer ploidies, selecting the

correct ploidy and obtaining the right copy number profiles will be trivial if given the pre-spec-

ified ploidy information, for example from DAPI staining. Both recall and precision of Copy-

Number are the worst among the three methods. To explore the effect of technology artifacts

on the accuracy of the methods, we simulated data that mimics the variability in coverage

corresponding to MALBAC, DOP-PCR, TnBC, and Bulk. We found that all three methods’

recall generally increases with the improvement in the technology, with smaller observed

change in their precision. We then applied the three methods to real data and evaluated their
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performance by analyzing the shared and unique detections they made as well as counting the

total number of copy number changes that must be invoked based on their detections. We

found a good amount of overlap in detections between Ginkgo and HMMcopy. We also found

that HMMcopy’s detections result in fewer copy number changes than Ginkgo’s.

Our benchmarking study highlights several points. First, the ploidy and coverage of the

genome under analysis affect the ability of a computational method to detect CNAs. Second,

there is much more power in analyzing all cells in a data set simultaneously, as the fact that

they all evolved from a common ancestral cell provides not only signal for the inference, but

also accounts naturally for model complexity and regularizes the number of changes in copy

numbers. Third, using algorithms and tools from the field of phylogenetics can help signifi-

cantly in this area. As we demonstrated above on the biological data set, parsimony analysis of

phylogenetic trees can be used to identify regions with large numbers of changes in the copy

number, especially convergent changes, and those can be further inspected for determining

whether the high rate of change reflects a biological process that is worth pursuing or it is due

to sequencing or computational inference error artifacts. Finally, our results show that while

existing methods are a good step in the right direction, there is need for developing more accu-

rate methods for CNA detection, especially ones that are designed specifically to model the

specifics of single-cell DNA sequencing.

Methods

Simulation

Two steps are involved in simulating reads for single-cell sequencing. First, the cell tree is gen-

erated, where the nodes are the cells, and the edges represent the parent-daughter cell relation.

The leaf nodes represent the single cells that are sampled from the patient; the internal nodes

represent the cells that existed in the past and were not sampled. We set the root node as a

human normal genome without any CNA, assuming that all CNAs are somatic. The tree is

simulated by the Beta-Splitting model (see below), which allows producing imbalanced trees,

consistent with what was observed in the real data [45].

On each edge (except for those attached to the root of the tree; see below), we simulate a

number of CNAs, the number of which corresponds to a Poisson distribution (by default,

λ = 2). λ relates with the mutation rate which has been studied for two decades [46, 47].

There has not yet been a comprehensive knowledge of the mutation rate of CNAs, but

according to the data from [43], we found there are about several dozens of CNAs in this

dataset. The same can be found in a pan-cancer study [48]. Setting default λ to be 2 will lead

to the similar number of CNAs at the leaves for a tree. The daughter cell of the edge inherits

all CNAs in the parent node, in addition to its unique CNAs. To simulate a CNA, we ran-

domly choose the allele, and the chromosome and position on the allele that CNA is going to

occur. First, we sample the allele on which the CNA is going to occur from the paternal and

maternal alleles according to a binomial distribution (default p = 0.5). We designed the simu-

lator in a framework which keeps track of the allele at which the CNA occurs so that in our

future work of simulating single nucleotide variations (SNV) simultaneously, the allele that

is dropped due to the high allelic dropout rate can be traced. For the CNA size, we sample

from an exponential distribution (default mean = 5Mbp), plus a minimum CNA size (default

2Mbp). We set the minimum CNA size by default to be 2Mbp because these CNAs are rare

and commonly associated with disease [49], and also because of the limited resolution of

single-cell data. The exponential distribution with mean 5Mbp is to render a wide range of

CNA size. According to [34, 50], the larger the CNA size, the smaller the CNAs possibility.

We choose copy number gain versus loss by a binomial distribution (default p = 0.5). We set

PLOS COMPUTATIONAL BIOLOGY Benchmark methods on copy number aberration detection from single-cell DNA sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008012 July 13, 2020 14 / 24

https://doi.org/10.1371/journal.pcbi.1008012


the default parameter to be 0.5 so that copy number gain and loss are equally distributed. If a

copy number gain is sampled, we sample from a geometric distribution (default p = 0.5) to

determine the number of copies to be gained (mean = 1/p). This choice of a distribution is

motivated by the observation that extremely high copy number gains are very rare and are

often observed by double minutes amplification [51], which we do not take into account cur-

rently. Once a whole-genome DNA sequence is simulated with the CNAs, the gained copies

are placed in tandem with the original copy. If a copy number loss is sampled, the whole

sequence on that region of the allele is deleted.

The CNAs on the edges attached to the root node are simulated differently. In particular,

clonal whole chromosomal amplifications can occur on these edge, as indicated in the punctu-

ated evolution model observed in [45]. We simulate the chromosomal amplifications in

addition to the focal CNAs. We set the probability of a chromosome to be amplified to be

according to a binomial distribution (default p = 0.2). This default value is used so that while

the whole chromosome amplification is introduced, 20% chromosomes in the genome will be

changed. The number of the amplified copy is sampled from a geometric distribution (default

mean is p = 1) multiplied by a value (default is 1) to amplify the copy numbers simulated with-

out changing the distribution. The distribution of the whole chromosomal amplification can

be turned off as an option.

At the edge to the root, we also add an option to allow more CNAs than the other edges.

This is again to mimic a scenario of punctuated evolution [45]. To do that, we sample a value

from a Poisson distribution (by default, λ = 4) which is the multiplier of the average number of

the CNAs that occur to the edges other than the root. Thus the edge to the root has on average

4 times (default parameter) more focal CNAs than those of other edges. The higher this num-

ber, the more focal CNAs the edge to the root carries. This parameter is introduced to allow

the user to simulate data that mimics the punctuated evolution model. However, due to the

diversity of models that have been summarized for cancer evolution [52], users can turn off

this option or tune the parameter λ so that the simulated data corresponds to their observation

and experience. In our study, the value of λ was chosen according to the length of the trunk

observed in [45].

Once we have the tree and the DNA sequences for all leaf nodes, we simulate the generation

of read data from the genomes. Given the coverage of the genome (by default 0.04X), the

simulator divides the genome into non-overlapping bins each of which has a default size of

200,000bp. To simulate the coverage variability observed in single-cell data, we use a Markov

Chain Monte Carlo (MCMC) Metropolis-Hastings algorithm to determine a sequence of

numbers of read pairs to be sampled for each bin.

An input of the variability information is a point on the Lorenz curve, whose X axis repre-

sents the percentage of the reads, and Y axis represents the percentage of the coverage. We

transform it to a Beta distribution by Equations (1) and (2) in [53]. Through this transforma-

tion, we can sample read counts from a Beta distribution that corresponds to the given Lorenz

curve. The followings are mathematical equations in [53] that are used to calculate the parame-

ters (α and β) for the Beta distribution. In more detail, suppose X is a random variable whose

cumulative distribution function F corresponds to a Beta distribution with parameters α and

β. A point x sampled from this distribution has its corresponding X and Y positions on the

Lorenz curve as F(x) and ϕ(x), where

FðxÞ ¼ Ixða; bÞ ð1Þ

and

�ðxÞ ¼ Ixðaþ 1; bÞ ð2Þ
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Given a point (F(x), ϕ(x)) on the Lorenz curve, we can calculate α and β for the Beta

distribution.

Given the Beta distribution’s parameters, we can then sample read count for each bin by

MCMC Metropolis-Hastings algorithm. Starting from the first bin whose read count is assigned

as the expected coverage x0, we sample the next bin’s proposed read count x0 by a Gaussian dis-

tribution, and accept it if compared with the previous bin’s read count x0,

Ix0 ða; bÞ �Gausðx0jx0Þ

Ix0
ða; bÞ �Gausðx0jx0Þ

� u ð3Þ

where Gaus(x0|x0) is the proposal probability of proposing x0 given x0, and u is the acceptance

ratio. We set u to be 0.5 by default. We set the same standard deviations for Gaus(x0|x0) and

Gaus(x0|x0), centered at x0 and x0, respectively. Thus the two Gaussian distributions canceled

out. The rest term, Ix0=Ix0
� u, controls how much the next bin’s read count differs from the

current one. The read counts drawn are thus corresponding to a Beta distribution, and are

simultaneously constrained by the acceptance ratio of the Metropolis-Hastings algorithm.

This is to mimic the realistic data whose read coverage fluctuates, but the read count changes

smoothly without sharp changes between neighboring bins.

Running the programs

In all experiments, we eliminated reads that have mapping quality score < 40. We eliminated

the cells that HMMcopy predicted as normal cells (predicted to be diploid and found no copy

number aberration) in all experiments, the percentage of which was very small (< 0.2%).

Parameters of simulator

The simulator is designed to be flexible, with user-specified parameters, as now describe.

Parameters for varying the ploidy level. To generate data with different ploidies, param-

eters associated with whole chromosomal amplification can be set for that purpose.

• -W (–whole-amp) Controls whether there are whole chromosomal amplifications or not.

• -d (–del-rate) The rate of copy number loss versus copy number gain.

• -C (–whole-amp-rate) The possibility that a chromosome is selected to have whole chromo-

somal amplification.

• -E (–whole-amp-num) For those chromosomes that are selected to be amplified, multiply-

ing this number with the sampled value from a geometric distribution, whose p is “-J”

described below, renders the final number of copies to be amplified.

• -J (–amp-num-geo-par) The parameter p in the geometric distribution from which the

number of copy of the chromosome to be amplified is sampled. Combination of -J and -E

can make a variety of copy number distributions and make it convenient to attain higher

copy number gains when necessary.

In our experiment above where we varied the ploidy level, we use a combination of these

five parameters to generate data whose ploidies range from 1.5 to 5 as follows.

• Ploidy = 1.5: -W 0 -d 1 No amplifications are allowed, and all copy number aberrations

come from deletion.

• Ploidy = 3: -W 1 -d 0.5 -C 0.5 -E 1 -J 1 Amplification is allowed, and the average number of

amplification for the whole genome is 0.5 for one allele. The final ploidy is 3.
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• Ploidy = 4, the case that lacks odd copy numbers: -W 1 -d 0.5 -C 0.5 -E 2 -J 1 Amplification

is allowed, and the average number of amplification for the whole genome is 1 for one allele.

The final ploidy is 4. Note that since the parameter p in the geometric distribution (-J) is set

to be one, the copy number is amplified by two for the allele that is selected for amplification.

This causes the lack of intermediate copy numbers such as three, five, etc.

• Ploidy = 3.8, the case that has odd copy numbers: -W 1 -d 0.5 -C 0.9 -E 1 -J 1 Amplification

is allowed, and the average number of amplification for the whole genome is 0.9 for one

allele. The final ploidy is 3.8. Compared with the previous case which lacks odd copy num-

bers, we increase the copy number by doubling 90% of the chromosomes. The following

local copy number aberrations that are performed based on the amplified genome will then

generate regions that have different copies, including the odd copies. In the absence of odd

copy numbers, copy numbers 2, 4 and 6 will be considered as 1, 2, and 3 by any method.

Thus, without copy numbers 1, 3 and 5, there is no way for a method to tell the correct abso-

lute copy number.

• Ploidy = 5, the case that lacks intermediate copy numbers: -W 1 -d 0.5 -C 0.5 -E 3 -J 1

Amplification is allowed, and the average number of amplifications for the whole genome is

1 for one allele. The final ploidy is 5. Note that since the parameter p in the geometric distri-

bution (-J) is set to be one, the copy number is amplified by three for the allele that is selected

for amplification. This causes a scenario where most of the copy numbers are two, five and

eight.

• Ploidy = 5.26, the case that has intermediate copy numbers: -W 1 -d 0.5 -C 0.9 -E 1 -J 0.55

Amplification is allowed, and the average number of amplification for the whole genome is

0.9 for one allele. Setting parameter J to be 0.55, the total amplified copy number for each

allele is 1.63 (from 1/p × 0.9). The final ploidy is 5.26.

Parameters for varying the read count distribution. Since Lorenz curves have been used

to evaluate the variability of read counts [32, 39, 54], we used the Lorenz curves reported in

[39] for simulating variabilities at different levels. We sampled the read counts for each bin

by the distribution (Beta distribution) corresponding to their Lorenz curves using a Markov

Chain Metropolis-Hastings method (S23 Fig shows the Lorenz curves (left panel) and their

corresponding Beta distributions (right panel) for the four technologies. The key parameters

used for the Lorenz curves and Beta distributions corresponding to the four technologies are

shown within the panels.).

The Beta-splitting model

For generating the underlying evolutionary trees, we followed a generalization of the Blum-

François Beta-splitting model [55] which is inspired by Aldous’ Beta-splitting model [56]. The

construction of a tree based on this model [57] consists of two major steps: First, we generate

two sequences of random values: B = (b1, b2, � � �) and U = (u1, u2, � � �), B is a sequence of inde-

pendent and identically distributed (i.i.d.) random variables sampled from the Bðaþ 1; bþ 1Þ

distribution, and, U is a sequence of i.i.d. random variables with the uniform distribution on

[0, 1]. We call fgi ¼ ðui; biÞi2Ng the generating sequence which is the basis of incremental con-

struction of a tree. At the second step, we run the following algorithm on the random values

generated at the first step. The process of constructing an evolutionary tree for n cells/leaves

based on the Beta-splitting model with the parameters (α, β) combining these two steps is

described in the following pseudocode.
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Algorithm 1 Algorithm for constructing a tree T with n leaves with the Beta parameters α
and β.
1: function BUILDBETASPLITTINGTREE (n, α, β)
2: Create the root of T
3: T :root:label ð0; 1Þ

4: for i = 1� � �n do
5: Sample bi � Bðaþ 1; bþ 1Þ

6: Sample ui � U(0, 1)
7: for each leaf 2 T :leaves do
8: (x, y)  leaf.label
9: if ui 2 [x, y] then
10: l  Create the left child of leaf
11: r  Create the right child of leaf
12: r.label  (x + (y − x)bi, y)
13: l.label  (x, x + (y − x)bi)
14: leaf.label  i
15: end if
16: end for
17: end for
18: return T
19: end function

Software availability

The simulator has been implemented in Python and is freely available at https://github.com/

compbiofan/SingleCellCNABenchmark.git, which also includes the scripts for regenerating

the comparison results for both simulated and real datasets. The new version of HMMcopy

was downloaded from https://github.com/shahcompbio/single_cell_pipeline/tree/master/

single_cell/workflows/hmmcopy. The scripts to preprocess files for HMMcopy were down-

loaded from https://shahlab.ca/projects/hmmcopy_utils/. We use hg19 for all experiments

in this manuscript and the mappability file used by HMMcopy was downloaded from http://

genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability. CopyNumber was

downloaded from https://bioconductor.org/packages/release/bioc/html/copynumber.html.

Ginkgo’s command line version which was used in this manuscript was downloaded from

https://github.com/robertaboukhalil/ginkgo.

Supporting information

S1 Fig. Scatter plot of precision and recall of HMMcopy on the simulated large dataset.

The color of the dots represent the ploidy that HMMcopy predicts. The upper and right histo-

grams show the histogram of precision and recall, respectively, for all cells.

(PNG)

S2 Fig. Precision and recall of HMMcopy on the simulated large dataset when ploidy esti-

mation deviates from the ground truth which is 2.6. (a), (b) and (c) correspond to estimated

ploidy 4, 5 and 6, respectively.

(PDF)

S3 Fig. ROC curves of the three methods HMMcopy, Ginkgo, and CopyNumber on a sec-

ond repetition. (a) Coarse-grained analysis results, and (b) fine-grained results for the second

repetition. For each method, the results based on three thresholds of correctness are plotted.

For HMMcopy, nu, which controls the suggested degree of freedom between states, was tuned

to take on the values 0.01 (rightmost), 0.1, 2.1 (the tool’s default), 4, 10, and 20 (leftmost). For

Ginkgo, alpha, which controls the significance level to accept a change point, was tuned to
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take on the values 1e-1000 (rightmost), 1e-100, 1e-10, 1e-5, 1e-4, 1e-3, 1e-2 (the tool’s default),

0.02 and 0.05 (leftmost). The dots corresponding to values 1e-5 and 1e-10 in coarse-grained

analysis overlap. For CopyNumber, gamma, which is the weight of the penalty on changing a

state, was tuned to take on the values 40 (rightmost, and the tool’s default), 10, 5, 4, 3, 2, and 1

(leftmost).

(PNG)

S4 Fig. ROC curves of the three methods HMMcopy, Ginkgo, and CopyNumber on a third

repetition. (a) Coarse-grained analysis results, and (b) fine-grained results for the third repeti-

tion. For each method, the results based on three thresholds of correctness are plotted. For

HMMcopy, nu, which controls the suggested degree of freedom between states, was tuned to

take on the values 0.01 (rightmost), 0.1, 2.1 (the tool’s default), 4, 10, and 20 (leftmost). For

Ginkgo, alpha, which controls the significance level to accept a change point, was tuned to

take on the values 1e-1000 (rightmost), 1e-100, 1e-10, 1e-5, 1e-4, 1e-3, 1e-2 (the tool’s default),

0.02 and 0.05 (leftmost). The dots corresponding to values 1e-5 and 1e-10 in coarse-grained

analysis overlap. For CopyNumber, gamma, which is the weight of the penalty on changing a

state, was tuned to take on the values 40 (rightmost, and the tool’s default), 10, 5, 4, 3, 2, and 1

(leftmost).

(PNG)

S5 Fig. Plot of F1 scores of HMMcopy based on varying nu and e on one simulated dataset

(1000 cells). On nu, 0, 1, 2, 3, 4, 5 and 6 represent 0.01, 0.1, 1, 2.1 (default), 4, 10 and 20. On e,
0, 1, 2, 3, and 4 represent 0.99, 0.9999, 0.999999, 0.99999999 (default), and 0.9999999999. It

can be seen when nu is 4, and e is� 0.999999, F1 score reaches the maximum.

(PNG)

S6 Fig. Example of two cells that lack odd copy numbers (top panels, simulated ploidy = 4)

and intermediate copy numbers (bottom panels, simulated ploidy = 5), respectively. The

left and right panels show HMMcopy and Ginkgo’s results, respectively. For each panel, X and

primary Y axes represent the whole genome segmented into bins and the raw read count for

each bin, respectively. The secondary Y axis represents the absolute copy number. Black dots

represent the raw read count for each bin. Red and blue horizontal lines represent the ground

truth of the absolute copy number and the inferred ones from HMMcopy and Ginkgo. Due to

the lack of odd copy numbers, both HMMcopy and Ginkgo incorrectly predicted absolute

copy number for the case of ploidy = 4. Due to the lack of intermediate copy number,

HMMcopy incorreclty predicted absolute copy number for the case of ploidy = 5. Despite the

lack of intermediate copy numbers, Ginkgo correctly predicted absolute copy number for the

case of ploidy = 5 (red and blue lines overlap in this case).

(PNG)

S7 Fig. Recall and precision of Ginkgo, HMMcopy, and CopyNumber on varying ploidy

level based on the coarse-grained analysis on a second repetition. The ploidies of the simu-

lated data were 1.5, 2.1, 3.0, 3.8, and 5.3.

(PNG)

S8 Fig. Recall and precision of Ginkgo and HMMcopy on varying ploidy level based on the

fine-grained analysis on a second repetition. The ploidies of the simulated data were 1.5, 2.1,

3.0, 3.8, and 5.3.

(PNG)

S9 Fig. Recall and precision of Ginkgo, HMMcopy, and CopyNumber on varying ploidy

level based on the coarse-grained analysis on a third repetition. The ploidies of the simulated
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data were 1.5, 2.1, 3.0, 3.8, and 5.3.

(PNG)

S10 Fig. Recall and precision of Ginkgo and HMMcopy on varying ploidy level based on

the fine-grained analysis on a third repetition. The ploidies of the simulated data were 1.5,

2.1, 3.0, 3.8, and 5.3.

(PNG)

S11 Fig. Comparison of Ginkgo’s predicted and actual ploidy on the varying ploidies. (a) A

summary of all ploidies. Dots in purple, green, orange, red and blue represent the simulated

ploidies at 1.5, 2.1, 3.0, 3.8 and 5.3. (b)-(f) Scatter plot of the predicted and actual ploidies for

the five varying ploidies mentioned in (a) with their corresponding colors. Ploidy was calcu-

lated as the average copy number of the whole genome. On the right of each subplot, a histo-

gram of the predicted ploidies is drawn to show the percentage of each predicted value. For

(a)-(f), X and Y axis are the actual and predicted ploidies, respectively.

(PNG)

S12 Fig. Comparison of HMMcopy’s predicted and actual ploidy on the varying ploidies.

(a) A summary of all ploidies. Dots in purple, green, orange, red and blue represent the simu-

lated ploidies at 1.5, 2.1, 3.0, 3.8 and 5.3. (b)-(f) Scatter plot of the predicted and actual ploidies

for the five varying ploidies mentioned in (a) with their corresponding colors. Ploidy was cal-

culated as the average copy number of the whole genome. On the right of each subplot, a histo-

gram of the predicted ploidies is drawn to show the percentage of each predicted value. For

(a)-(f), X and Y axis are the actual and predicted ploidies, respectively.

(PNG)

S13 Fig. Recall and precision of AneuFinder on varying ploidy on coarse-grained analysis.

The ploidies of the simulated data were 1.5, 2.1, 3.0, 3.8, and 5.3.

(PNG)

S14 Fig. Recall and precision of AneuFinder on varying ploidy on fine-grained analysis.

The ploidies of the simulated data were 1.5, 2.1, 3.0, 3.8, and 5.3.

(PNG)

S15 Fig. An example of when wrong selection of ploidy in HMMcopy leads to wrong esti-

mation of breakpoints. X and primary Y axes represent the whole genome segmented into

bins and the raw read count for each bin, respectively. The secondary Y axis represents the

absolute copy number. Black dots represent the raw read count for each bin. Red and blue

horizontal lines represent the copy number profiles of HMMcopy on the condition when its

ploidy estimation is 2 and 1, respectively, the latter of which was selected as the optimal ploidy

by HMMcopy.

(PDF)

S16 Fig. Recall and precision of Ginkgo, HMMcopy, and CopyNumber on varying cover-

ages based on the coarse-grained analysis on a second repetition. The coverages are varied

to mimic those produced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

(PNG)

S17 Fig. Recall and precision of Ginkgo and HMMcopy on varying coverages based on the

fine-grained analysis on a second repetition. The coverages are varied to mimic those pro-

duced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

(PNG)
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S18 Fig. Recall and precision of Ginkgo, HMMcopy, and CopyNumber on varying cover-

ages based on the coarse-grained analysis on a third repetition. The coverages are varied to

mimic those produced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

(PNG)

S19 Fig. Recall and precision of Ginkgo and HMMcopy on varying coverages based on the

fine-grained analysis on a third repetition. The coverages are varied to mimic those pro-

duced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

(PNG)

S20 Fig. Venn diagram of the breakpoints from Ginkgo, HMMcopy and CopyNumber for

the rest of the six samples. Breakpoints from two methods are counted as overlapped ones if

they are within 400,000bp.

(PNG)

S21 Fig. Distribution of the copy number changes (under a parsimony analysis) per bin

based on the copy number profiles obtained by HMMcopy for the seven samples. A maxi-

mum parsimony tree was inferred from the copy number profiles of the cells, and the minimum

number of copy number changes per bin along all the branches of the tree was computed by par-

simony analysis. The percentages of bins with each number of copy number changes are plotted.

(PNG)

S22 Fig. Distribution of the copy number changes (under a parsimony analysis) per bin

based on the copy number profiles obtained by Ginkgo for the seven samples. A maximum

parsimony tree was inferred from the copy number profiles of the cells, and the minimum

number of copy number changes per bin along all the branches of the tree was computed by

parsimony analysis. The percentages of bins with each number of copy number changes are

plotted.

(PNG)

S23 Fig. Left and right panels show the Lorenz curves and Beta distributions, respectively.

The four rows represent four sequencing technologies: MALBAC, DOP-BAC, TnBC and Bulk.

The parameters of generating Lorenz curve were learned from [39]. The parameters of gener-

ating Beta distributions were learned from Eqs 1 and 2 in the main text.

(PDF)
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