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Abstract
Efficient and correct operation of an IoT network requires
the presence of a failure detector and membership protocol
amongst the IoT nodes. This paper presents a new failure de-
tector for IoT settings where nodes are connected via a wire-
less ad-hoc network. This failure detector, which we name
Medley, is fully decentralized, allows IoT nodes to maintain
a local membership list of other alive nodes, detects failures
quickly (and updates the membership list), and incurs low
communication overhead in the underlying ad-hoc network.
In order to minimize detection time and communication, we
adapt a failure detector originally proposed for datacenters
(SWIM), for the IoT environment. In Medley each node picks
a medley of ping targets in a randomized and skewedmanner,
preferring nearer nodes. Via analysis and NS-3 simulation
we show the right mix of pinging probabilities that simulta-
neously optimize detection time and communication traffic.
We have also implemented Medley for Raspberry Pis, and
present deployment results.

CCS Concepts • Computer systems organization →
Dependable and fault-tolerant systems and networks.
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1 Introduction
The IoT market is expected to reach 500 Billion dollars in size
by 2022 [20]. For instance, during just the second quarter
of 2018, Amazon Echo + Dot sold 3.6 million units, while
Google Home + Mini sales were 3.1 million units [29]. IoT
deployments in smart buildings, smart homes, smart hospi-
tals, smart forests, battlefield scenarios, etc., are proliferating.
While today’s deployments in smart homes are typically a
few tens of devices, tomorrow’s vision, in smart buildings
and cities, is for hundreds or thousands of devices communi-
cating with each other.

Such large IoT deployments are in essence distributed sys-
tems of devices. As such, there is a need to provide familiar
abstractions and a similar substrate of distributed group op-
erations as those which exist in internet-based distributed
systems like datacenters, peer-to-peer systems, clouds, etc. In
other words, a distributed group communication substrate is
required for IoT settings, atop which management functions
and distributed programs can then be built. This is critical
in order to build large-scale IoT deployments that are truly
autonomous, self-healing, and self-sufficient.
One of the first problems that such a substrate needs to

solve is detecting failures (we consider only fail-stop failures
in this paper 1). At large scale, failures are the norm rather
than the exception. When a device fails, other affected de-
vices need to know about it and take appropriately corrective
action, and in some cases inform the human user. This is a
very common way of building internet-based and datacenter-
based distributed systems. In the IoT environment, examples
of corrective actions after failure include (but are not lim-
ited to): backup actions to ensure user needs are met (e.g.,
maintain sufficient lighting in an area), re-initiating and
re-replicating device schedules that were stored on failed
devices (e.g., timed schedules), informing the upper manage-
ment layer, informing the user, etc.

Existing techniques in IoT literature detect failures either
centralized or semi-centralized [9, 18, 27, 30]. These typically
provide a central clearinghouse where information is main-
tained about currently-alive nodes. Yet, they require access
to a cloud or a cloudlet, but this is not always feasible. For
instance, IoT deployments may span remote scenarios (e.g.,
battlefields, forests, etc.), and in some cases sending data

1Malicious/Byzantine failures are outside our scope.
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to the cloud may be prohibited by laws (e.g., GDPR [24] or
HIPAA [1] laws for data from smart hospitals). Additionally,
if the centralized service becomes inaccessible (e.g., to due
to failures or message losses), the IoT devices no longer have
access to the failure detection and membership service.
In this paper, we present Medley, which is the first fully-

decentralized membership service for IoT distributed sys-
tems running over a wireless ad-hoc network. The Medley
membership service maintains at each IoT node, an up-to-
datemembership list containing a list of currently alive nodes
in the system. The membership service’s critical goal is to
detect device failures (crashes) and update membership lists
at non-faulty nodes—this is the responsibility of the failure
detector component, which is the focus of this paper.
Maintaining full membership lists at devices is scalable

and feasible in an IoT setting. Consider a system with 5K
devices (sufficient to densely populate a multi-storey office
building). Suppose each membership list entry uses 20 B (16
B for IPv6 address + 4 B for sequence number). This entails
100 KB of memory for the membership list. For Raspberry Pis
which currently have 512 MB of memory, the membership
list would occupy only 0.02% of the memory.

Classical distributed systems literature builds awide swath
of distributed algorithms over a full membership list (at each
node). Examples include multicast, coordination, leader elec-
tion, mutual exclusion, virtual synchrony etc. [5]. Essentially,
full membership offers maximal flexibility in designing arbi-
trary distributed algorithms on top of it. It also helps make
analysis tractable. For IoT networks, Medley opens the door
for similar algorithms to be built on top of it. For instance,
to build a multicast tree, one algorithm could choose only
nearby nodes, or alternatively a mix of near and far nodes.
Both can be built atop a full membership algorithm.
Failure detector protocols for internet-based distributed

systems fall into two categories: heartbeat-based (or lease-
based), and ping-based. Heartbeat-based protocols [2, 3, 28]
have each node send periodic heartbeats to one or more other
monitor nodes; when a node ni dies, its heartbeats stop, the
monitors time out, and detect the node ni as failed. Ping-
based protocols [11, 16] have each node periodically ping
randomly-selected target nodes from the system. Analysis in
[16] has shown that compared to heartbeat protocols, ping-
based protocols are faster at detecting failures and impose
less network traffic, and can completely detect failures.
We thus adopt a ping-based approach for our IoT failure

detection protocol Medley. The key challenge for Medley is
that existing ping-based protocols [11, 14] select ping tar-
gets uniformly at random across the system. Randomized
selection is attractive due to its fast detection, congestion
avoidance and load balancing. Yet in a wireless ad-hoc IoT
network, uniform random selection leads to large volumes of
network traffic that span major portions of the IoT network.

Medley solves this by proposing a new spatial ping-target
selection strategy which prefers nearer nodes but also has

some probability of pinging farther nodes. Compared to
fully randomized pinging, always picking nearby nodes as
ping targets localizes and reduces network traffic. But this
always-local selection leads to high detection times due to
lowered randomness of pinging. It also causes non-detection
of failures when multiple simultaneous failures occur (e.g.,
failures caused by a circuit breaker tripping), because all
nearby pingers of a failed node have also failed.

Medley attempts to gain the advantages of both approaches
by using a hybrid of the uniform-random and the always-
local target selection. It utilizes a mix (medley) of nearer and
farther ping targets. The best way to mix these targets is the
key question we answer via both mathematical analysis as
well as experimental results.

We implemented and evaluated Medley via both simu-
lation and real deployment. Our simulation is in the NS-3
simulator. Our Medley implementation is in Raspberry Pi.
Our evaluation shows that compared to the classical random
pinging schemes, Medley provides comparable failure de-
tection times, lowers bandwidth by 35% (for a given failure
detection time), and gives false positive rates as low as 2%
under high 20% packet drop rates.

The contributions of this paper are:

1. A new fully-decentralized failure detector protocol,
Medley, for wireless ad-hoc IoT networks.

2. Analysis of the key parameter (exponent) in spatial
pinging, in order to optimize detection time as well as
communication traffic.

3. An optimization to provide time-bounded detection of
failures in Medley.

4. Evaluation of Medley via simulation in NS-3.
5. Implementation of Medley for Rasperry Pi, and associ-

ated deployment experiments.

2 Background
System Model We consider the fail-stop model: once a
node crashes it executes no further instructions or oper-
ations. Fail-recovery models can be seen as a special case
(with nodes rejoining under a new id or incarnation number).
Byzantine failures [12] are beyond our current scope (but
represent an interesting future direction).
The network is asynchronous, and messages may be de-

layed or dropped. Multiple nodes may fail simultaneously.
Nodes are allowed to join and voluntarily leave the system.
We use N to denote the number of nodes in the system.

Each node maintains a membership list consisting of en-
tries for all other nodes in the system–our membership pro-
tocol’s goal is to delete entries for failed/departed nodes soon
after their failure departure, and to add entries for joining
nodes soon after they join.

Our protocol makes no assumptions about clock synchro-
nization, but our analysis assumes (for tractability) that clock
speeds are similar.
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Failure Detector Properties Failure detectors have three
desirable properties. The two desirable correctness proper-
ties are called [7] Completeness and Accuracy. Completeness
requires that every failure is detected by at least one non-
faulty node. Accuracy means that no failure detections are
about healthy nodes, i.e., there are no false positives. In their
seminal paper [7] Chandra and Toueg proved that it is impos-
sible to design a failure detector for asynchronous networks,
to satisfy both completeness and accuracy. Due to the need
to perform corrective recovery actions after a failure, today’s
failures navigate this impossibility by always guaranteeing
completeness, while attempting to maximize accuracy (i.e.,
minimize false positive rate).

Besides the above two properties, failure detectors also aim
to minimize detection time, i.e., time between failure and first
non-faulty node discovering this failure. Finally, scalability
and load balancing are often goals of failure detectors.

Figure 1. One pinging round in SWIM failure detection
(from [16]).

SWIM Failure Detector Our Medley system is adapted
from the failure detector and dissemination component of
the SWIM protocol [11, 16]. SWIM is popular and various
versions of it are today widely deployed in datacenters and in
open-source software, including at Uber [19], andHashiCorp’s
Serf [26] and Consul [10].

We next describe the base SWIMprotocol to set the context
for Medley. The SWIM membership protocol handles failure
detection and dissemination separately. The former detects
failures, while the latter multicasts to the system information
about node joins, leaves, and detected failures.
Fig. 1 (from [11, 16]) depicts the SWIM failure detector.

Each nodeMi periodically runs the following protocol every
T time units.T is fixed at all nodes but nodes run their periods
asynchronously from each other. Each period consists of a
direct pinging phase and an optional indirect pinging phase.

At the start of a period,Mi picks a member from its mem-
bership list, uniformly at random, and sends it a ping mes-
sage. Any nodeMj receiving a ping responds immediately
with an ack. IfMi receives the ack within a small timeout t
(based on message RTT), thenMi is satisfied and does noth-
ing else in this period. Otherwise, Mi picks k other nodes
(denoted as indirect pingers), also at random, and asks each
of them to ping Mj . If any of these k nodes hears back an
ack fromMj , they pass on the ack back toMi . IfMi receives
at least one such ack before the end of the period, it is sat-
isfied and does nothing else in this period. Otherwise, i.e.,
ifMi hears no acks, then it marksMj as failed at the end of
this period. Pings and acks carry unique identifiers to avoid
confusion with other rounds and pingers.
Indirect pinging essentially gives a “second chance” to

pinged nodes that might have been congested or slow during
the initial ping. It also avoids potential network congestion
on the direct Mi −Mj network path. Both of these reduce
false positive rates.
Analysis in [16] shows that even without the indirect

pinging, failures are detected within O(1) protocol periods
on expectation. In addition, the SWIM protocol guarantees
eventual detection of all failures (eventual completeness).

SWIM Dissemination Component SWIM nodes continu-
ously piggyback the information about node join/leave/failure
atop the messages they send out, namely ping, ack, and in-
direct ping request for quick dissemination. In addition, a
receiving node records new information in the message and
reacts accordingly.

This “infection-style” dissemination provides a gossip-like
behavior for disseminating information about node failures,
joins, and voluntary leaves. Analysis [16] shows that in a sys-
temwith N nodes, information spreads with high probability
to all nodes within O(loд(N )) time periods.

3 Medley: Design and Analysis
3.1 Spatial Pinging
We target settings where IoT devices are connected via a
wireless ad-hoc network. In such scenarios, the SWIM fail-
ure detector described in Section 2 is inefficient because it
picks ping targets uniformly at random. This spreads pings
and acks across far distances in the ad-hoc network. Far pings
and acks require more routing hops, incurring higher com-
munication overhead on intermediate nodes, longer latency,
and create congestion and packet losses.
Thus, we propose in Medley a way to replace the ran-

domized target selection in SWIM with a skewed randomized
mechanism which takes distance to target into account. We
call this as spatial target selection.

Spatial Target Selection: In Medley, a node chooses to ping
a given target with probability proportional to 1

rm , where r
is the distance to the target andm is a fixed exponent.
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An example is shown in Fig. 2. Mi has in its member-
ship list nodes Mp , Mq , and Mr at distances d, 2d, and 4d
respectively. In a period of the SWIM protocol atMi , it has
the highest probability (∝ 1

dm ) of pingingMp . Similarly, the
probabilities for pinging Mq ,Mr are respectively ∝ 1

(2d )m ,
and ∝ 1

(4d )m . Using appropriate normalization constants, we
depict two points in the space ofm. Ifm = 1, then the re-
spective ping probabilities toMp ,Mq ,Mr are 0.57, 0.28, and
0.15. However, increasing the exponentm to 2 localizes pings
more–the changed ping probabilities are respectively 0.75,
0.2, and 0.05. Mp with probability 0.75 will be pinged even
more frequently.

The above calculations indicate that higher values ofm lo-
calize ping-ack traffic more and incur lower communication
overhead. At the same time, more localized pinging reduces
the randomness of pinging and thus increases the detection
time. We wish to find “good” values form that optimize both
network traffic and detection time. We do so in the next
section (Analysis).
We point out that Spatial Pinging (Medley) is a general-

ization of SWIM. Whenm = 0, spatial pinging degenerates
to SWIM with uniform target selection.m = ∞ means that
each member uniformly pings to its closest neighbours.

Figure 2. Example of ping target selection in Medley.

Other components: Just like SWIM, Medley disseminates
information by piggybacking atop pings, acks, and indirect
pings (Sec. 2, “SWIM Dissemination Component”). This is a
gossip style of dissemination and is also used to disseminate
node join/leave information.
Medley is able to seamlessly borrow optimizations from

SWIM. One such important optimization is suspicion, which
allows mistakenly-detected alive nodes a second chance to

disprove their false detection. Here a detected node is not
marked as failed but instead is suspected and this suspicion
gossiped to other nodes (via pings and acks). If another node
successfully pings the suspected node via normal pinging, be-
fore the suspicion times out, the suspected node rejuvenates
in membership lists and is not deleted frommembership lists.
More details can be found in the SWIM paper [11].

3.2 Analysis
We analyze Medley’s spatial pinging under certain idealized
assumptions. For tractability, we assume that: i) the N nodes
are uniformly spread with a density of D, and ii) a pinging
node picks targets only up to a distance of R away.
First, to minimize detection time we wish to maximize

the expected number of pings a given node receives dur-
ing a pinging period. We denote this expected number as
E[Pings received per period] or EP(m), where:

EP(m) = (
∫ R

0

1
rm

D(2πr ) · dr ) · 1
πR2D

= (
∫ R

0

1
rm−1 · dr ) · 2

R2

(1)

In the first line of the equation, the integral term contains the
probability of being picked as a ping target( 1

rm ), multiplied
by the number of nodes in an annulus at radius r (D(2πr )·dr ).
The term beyond parentheses is a normalizing constant to
ensure that whenm = 0, which is the uniform default SWIM,
Equation 1 comes to an expected 1 received ping.
Second (along with maximizing ping probability), we si-

multaneously wish to minimize communication cost C(m)
incurred by pings received at a given node. A message tran-
sits over multiple hops in the underlying ad-hoc network.
Assuming a fixed size for messages, C(m) is proportional
to the number of hops incurred by the message. Again for
tractability, we calculate a message’s cost as proportional
to the distance between its sender and receiver (as this is
correlated with hop count). We obtain:

C(m) = (
∫ R

0

1
rm

D(2πr ) · r · dr )

= (
∫ R

0

1
rm−2 · dr ) · (2πD)

(2)

This is obtained bymultiplying the expected number of pings
in the annulus of radius r (similar to Equation 1), by the com-
munication cost incurred by the multi-hop network, which
is proportional to the target distance r .

In order to simultaneously minimize C(m)) and maximize
EP(m), we define our optimization function that we wish to
maximize as: Ratio(m) = EP (m)

C(m) .

Theorem 1. Medley’s spatial pinging: (i) provides complete-
ness, and (ii) optimizes Ratio(m) at the following values of
exponentm:
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1. If the ratio of deployment area dimension to inter-node
distance is high, thenm = ∞ is optimal;

2. If the ratio of deployment area dimension to inter-node
distance is low, thenm = 3 is optimal.

Proof. First, to prove completeness, consider a failure of node
Mj . We observe that with at least one non-faulty node Mi
in the system,Mi has a non-zero probability of pingingMj
during any protocol period subsequennt toMj ’s failure. Be-
cause of the (biased) randomness of picking ping targets,
Mi is guaranteed to eventually pickMj as a ping target in a
future period.Mj will be unresponsive (because it is failed),
and thusMi will markMj as failed.
Second we find the optimal value ofm. Explanding the

expected ping count EP(m) gives us:

EP(m) =



R2−m

2 −m
· 2
R2 m < 2

log(R
d
) · 2

R2 m = 2

( 1
dm−2 − 1

Rm−2 ) ·
1

m − 2
· 2
R2 m > 2

(3)

where d represents the distance to the nearest node (for a
2-dimensional deployment, d ∝ 1√

D
).

Similarly, for communication cost C(m):

C(m) =



R3−m

2 −m
· (2πD) whenm < 3

log(R
d
) · (2πD) whenm = 3

( 1
dm−3 − 1

Rm−3 ) ·
1

m − 3
whenm > 3

(4)

Table 1 shows the variation of Ratio(m) = EP (m)
C(m) as m is

increased (second column). To make comparisons tractable,
the third column shows the normalized value Ratio(∞)

Ratio(m) . We
wish to minimize this value (in order to maximize Ratio(m)).

From the table, we can eliminate some possibilities for
optimizing Ratio(m):

1. m = 0 can be ignored as Ratio(m = 1) is higher than
Ratio(m = 0),

2. m = 2 can be ignored as x
log(x ) has a minimum of

e(> 1),
3. m = 1 can be ignored as Ratio(3)

Ratio(1) =
x

2 log(x ) has a mini-
mum at e

2 > 1.
Therefore, the choice for optimizing Ratio(m) boils down

to eitherm = 3 orm = ∞. Next we observe that:
1. If R ≫ d (in particular R

d > e ≃ 2.718 or log(Rd ) > 1,
thenm = ∞ is optimal. In other words, if the dimension
of the IoT installation area is much larger than inter-
node distances, local pinging is optimal.

2. If R
d < e ≃ 2.718,m = 3 is optimal. In other words, for

small installation areas (e.g., a room or a floor, where R

Table 1. Ratio of expected number of pings (need to max-
imize) to Communication (need to minimize). Here x = R

d .
Constants elided.

m Ratio(m) Ratio(∞)
Ratio(m)

0
3
R3

2
3
· x

1
4
R3

1
2
· x

2
2 log(R

d
)

R3
x

log(x)

3
2

dR2 log(R
d
)

log(x)

>3
2 · (m − 3)

(m − 2) · dR2 Increasing, tends to 1

is small), or areas of low node density (where inter-node
distance d is high), Medley withm = 3 is optimal.

□

Theorem 2. In an area with symmetric pinging (e.g., large
deployment, or 3 dimensional area), when Medley is configured
to have each node send 1 ping per period 2, it achieves an O(1)
expected time for failure detection, while imposing an O(1)
message load.

Proof. Consider a system of N nodesM1,M2, . . .MN . With-
out loss of generality, letM1 be the node failing. Denote as
PPm(i) the probability of Mi pinging M1 in a given period,
according to the normalized spatial ping distribution andm.
Because eachMedley node sends 1 ping period, by symmetry,
a node M1 will also receive an expected 1 ping per period.
This means that

∑N
k=2 PPm(k) = 1, for all values of spatial

exponentm we may choose.
Now the probability that at least one of the nodesM2, . . .MN

picksMi as ping target in a protocol period (and thus detects
its failure) is FP(m) = 1 − ∏N

k=2(1 − PPm(k)). Because the
product of terms with a fixed sum (

∏N
k=2(1 − PPm(k))) is

maximized when all terms (PPm(k)) are identical, we have
for allm, FP(m) ≥ FP(m = 0).
When m = 0 (the default uniform SWIM), each of the

nodesM2, . . .MN pingsMi per period with identical proba-
bility 1

N−1 . Thus, FP(0) = 1−(1− 1
N−1 )N−1 ≃ 1−e−1 for large

N . This is equivalent to tossing a coin with heads probability
(1 − e−1) per period. Thus: i) the expected detection time at
m = 0 is O( 1

1−e−1 ) periods, which is O(1); and ii) the time
2Note that this is a different assumption from the analysis in Equation 3,
but is closer to our real implementation.
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for the failure to be detected with high probability (w.h.p.)
(1 − 1

N ) is loд( 1
1−e−1 )

(N ) periods.
Since FP(m) ≥ FP(0), the expected detection time and

w.h.p. detection time for spatial pinging are both ≤ the cor-
responding values form = 0.

□

4 Time-Bounded Failure Detection
Theorem 1 was able to prove that detection is eventual. In
practice this could still mean particularly long detection
times in IoT scenarios. Consider a nodeMi that is “far” from
most other nodes. Because ping probabilities toMi are low,
whenMi fails, the biased target selection choices imply that
it may be an arbitrarily (and indeterminately) long time for
the first non-faulty node to pickMi as ping target.

We now present an optimization that preserves the biased
randomness of the Medley’s spatial pinging from Section 3,
but is additionally able to specify an absolute time bound on
how long a failed node takes to be detected.

4.1 Design of Time-Bounded Medley
The key idea is to ping via a round-robin mechanism which
is weighted by ping probability.

Algorithm 1 Time-bounded target selection in a super
round from a single nodeMi ’s view.
Require: Runtime Probability List PMi

▷ Super round: Create initial bag BAGMi

1: for each pj in PMi do
2: Put ⌈ pj

pmin
⌉ into BAGMi

3: end for
4: Create an empty set onePassTarдets

5: ▷ Start target selection
6: while BAGMi is not all zeros do
7: ▷ Initialize new Pass if needed
8: if onePassTarдets is empty then
9: onePassTarдets =

{Mj } for all j that Countj > 0 in BAGMi

10: end if
11: ▷ One Period
12: Randomly pick one node in onePassTarдets

as PING target
13: RemoveMj from onePassTarдets
14: Reduce BAGMi (Mj ) by one
15: end while

Consider a member (node)Mi with membership listMLi ,
currently containing K entries (M1,M2, . . . ,MK ). Mi also
maintains a runtime probability list PMi = [p1,p2,p3 . . .pK ],
where pj is the pinging probability of respective memberMj
fromMLi .

The pj values in PMi are calculated using the spatial ping
probabilities of Section 3. The pseudocode for our approach
is shown in Algorithm 1. We explain below.
Let pmin = min{PMi }, the lowest probability among all

non-faulty members inMLi . Now, denoteCountj = ⌈ pj
pmin

⌉.
We create a initial bag list as
BAGMi = [Count1,Count2,Count3 . . .CountK ] (Line 1 - 3).
The weighted round-robin pinging at nodeMi creates a

bag Bi which consists of Countj instances of node Mj for
each Mj ∈ MLi . This can be thought of as a bag of balls,
with Countj balls of colorMj .

During each period,Mi picks one ball from this bag (with-
out replacement), and uses the corresponding member as
ping target for that period. The bag is created at the start of a
super round (which consists of multiple periods), and a super
round completes when the bag is empty. Thus, a super-round
consists of (ΣK1 Countj ) number of protocol periods.

Picking these balls (targets) uniformly at random from the
bag may lead to a high variance in detection times. To reduce
this variation, we introduce the notion of passes. Algorithm 1
depicts howMi selects targets in a super round. AtMi , ping
target selection is done randomly but in multiple passes
through the bag. Each pass consists of multiple periods. In
each pass atMi , every nodeMj (inMi ’s bag), which has at
least one leftover instance in the bag, is touched (removed,
and pinged) only once. These instances are removed in a
random order (Line 8 - Line 13).
Suppose a particular pass contains r instances (thus con-

sisting of r protocol periods). Then during these r periods,
Mi sequentially picks one instance as ping target based on
the order. When the final pass is done (and no instances are
left in the bag), all instances are put back in the bag, a new
super round is started, and the above process is repeated.

Note that the different super rounds may contain different
numbers of periods, as the membership list is continuously
changing (we discuss node joins and leaves in Section 4.3).
Fig. 3 shows an example of Algorithm 1 in action. There

are four activemembers in the network, aligned topologically
in a straight line. ∥MiMr ∥ = ∥MrMq ∥ = 1

2 ∥MqMp ∥ = d (as
Fig. 3a). Thus, Mr ,Mq ,Mp are d, 2d and 4d away from Mi

respectively. When m = 1, PMi = [ 1d ,
1
2d ,

1
4d ], pmin =

1
4d .

Thus, BAGMi = [4, 2, 1] respectively forMr ,Mq andMp .
At the start of this super round, there are 1 + 2 + 4 = 7

instances in the bag at Mi . Based on our protocol, Fig. 3b
shows that Mi sequentially pings Mr ,Mp ,Mq in the first
three time periods. Then,Mp ’s instance is no longer in this
bag (only three forMr and one forMq left), so in Pass 2Mi
pingsMq andMr in the next two time periods. Only twoMr
instances are left after this. Passes 3 and 4 each pick oneMr
for one period each. This concludes the super round forMi ,
and new bag is created again for the next super round based
on the latestMLi .
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(a) Neighbor distances and initial full bag ofMi

(b) Target selection example ofMi

Figure 3. An example of time-bounded target selection in
one super round (seven time periods in total, four members
in network,m = 1).
4.2 Time Bound
The approach above preserves relative ping selection proba-
bilities because ping Counti ’s are normalized derivations of
ping probabilities pi . At the same time, this protocol provides
time-bounded completeness, as we prove now.

Theorem 3. In a system ofN IoT nodes, consider a non-faulty
nodeMi and a faulty nodeMj inMi ’s membership list. Let α
be the highestCountk inMi ’s bag counts (i.e., BAGMi ). Then:
Medley guaranteesMi detectsMj ’s failure within a number of
pinging periods that is upper-bounded by:

((N − 2) · α) + (N − 1)

Proof. The worst case occurs when: a) Mj has the lowest
count (=1) in Mi ’s membership list (bag), i.e., Mj is the far-
thest node fromMi , b) all other (N − 2) nodes inMi ’s mem-
bership list share the same Countk value of α , and in the
execution run: c) Mi creates a new bag, and the first node
it picks to ping isMj , and d) this first ping succeeds butMj
fails right afterwards.

From this point onwards: (i)Mi will spend the rest of this
super round by executing (N − 2) · α periods pinging nodes
other thanMj . At the start of the next super round, whenMi
creates a new bag, the first pass will pick every node once,
includingMj . Thus, the worst case occurs whenMj is picked
last at the end of this first pass (in this next bag). This means:
(ii)Mi will take another (N−2) protocol periods to get around
to pingingMj . Finally: (iii) one additional protocol period is
needed whereMi actually pingsMj .
Adding (i), (ii), and (iii), the worst-case detection time of

faulty nodeMj atMi is (in protocol periods):

((N − 2) · α) + (N − 1)
□

4.3 Node Joins and Removals
If a new nodeMj is added to, or removed from,Mi ’s mem-
bership list just as the bag is about to be refilled, then all
the members’ ping probabilities (and thus Counts) are recal-
culated and normalized to reflect the changed membership.
Additionally, Medley also allows node joins and removals in
the midst of passes–the only rule required for correctness
(to preserve relative ping probabilities) is to normalize the
ping probability (and thus Counts) of the added/removed
nodes to match current super round progress, based on the
leftover nodes in the bag. When the bag becomes empty
next, probabilities (and thus Counts) of all other members
are recalculated and re-normalized anew.

5 System Design
We now discuss practical considerations that were needed
in order to implement Medley in a real IoT network.
Distance Metric: The analysis in Section 3.2 is based on
physical distances. However, exact physical locations are
hard to calculate; furthermore, physical distance may not be
proportional to end to end (multi-hop) routing latency. As a
result, our Medley implementation replaces the use of phys-
ical distance in the ping-probability equations (Section 4)
with the metric of hop-distance. The hop-distance is the ac-
tual total distance that a message travels between two nodes,
i.e., sum of distances of all intermediate hops.

For instance, if the locations of nodesM1,M2 andM3 form
an isosceles right triangle with ∥M1M2∥ = ∥M2M3∥ = 1.
Suppose M1 pings M3 through M2: Medley considers the
distance between M1 and M3 as ∥M1M2∥ + ∥M2M3∥ = 2
instead of

√
2 which would have been the physical distance.

In our deployment experiments (Section 6), for compari-
son, we also implemented two alternative distance metrics.
These are: 1) latency metric: actual end-to-end latency, and
2) hop-number metric: count of number of hops. We found
that: a) the performance of Medley with latency metric was
comparable to using the hop-distance metric, and b) Medley
with hop-number metric behaves similar to hop-distance
metric under grid topology. Thus hereafter we only show
results using the hop-distance metric, with a few differing
results shown using the hop-number metric.
Other Medley Features:We clarify a few other features of
Medley. First, the spatial probabilities we just described are
for selecting not only ping targets, but also indirect pings.
(Section 2).

Second, the rejoin of a failed node is considered as a new
node. We denote the ID of each node with its IP address and
local timestamp when it joins the network. Two IDs with the
same IP but different join timestamps are considered as two
incarnations. IfMi receives an active update forMj with ID
(ipj , ts1) that is different from its local record forMj : (ipj , ts),
Mi will consider the old incarnation as failed and continue
with the latest ID for Mj . In practice this scenario occurs
rarely as Medley dissemination times are fast.
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Figure 4. First failure detection time under differentm and for 3 topologies. All use hop-distance metric, except Random
(hop-number) which uses the hop-number metric.

6 Experiments
We present experimental results from both NS-3 simulation
and Raspberry Pi deployments.

6.1 NS-3 Simulation Results
The theoretical analysis of Section 3 made simplifying as-
sumptions about uniformity and used physical distances.
In this section, we explore realistic node layouts and ping-
ing, and measure the behavior and performance of our real
Medley system.

We implemented and simulated Medley in NS-3 simulator
(v3.27), and evaluated in three topologies: Random, Grid,
and Cluster (multiple clusters in the area), each with 25
nodes deployed in 50m × 50m area. The default number of
members chosen as indirect pinger was K = 3, and protocol
period was 20 time units. The suspicion timeout was set as
3⌈log(N + 1)⌉ = 80 time units in the experiments (based
on [16] ). Each data point reflects data from 50 independent
runs with the same parameters and different seed values.

In the simulations below, unless otherwise specified, Med-
ley uses the hop-distance metric from Section 5.

6.1.1 Failure Detection and Dissemination Latency
We define first detection time as the time gap between a
failure occurring and the first non-faulty node detecting this
failure (after suspicion time out). Figure 4 shows how the
exponentm affects first detection time, with averages across
50 runs, and square root of standard deviation. Apart from
the three topologies (using the hop-distance metric), the
Random (hop-number) bars show the runs with hop-number
metric (Section 5) under Random topology.
First, we note that due to initial detection timeout of 20

time units and the suspicion timeout tosuspect = 80 time
units, theminimum possible failure detection time is 100 time
units. Across the three topologies using the hop-distance
metric, Grid has the lowest detection time, with Random
next, and Cluster the worst. Grid is more deterministic in

assigning every node at least a small set of neighbors at short
distances. On the other hand, there might be “unlucky” nodes
in Cluster and Random topologies, whose neighbors all have
their own closer neighbor(s). Whenm is high and pings stay
local, unlucky nodes have fewer pingers, thus prolonging
their detection times. As a result, the detection time in Grid is
more stable and largely independent ofm. This is a different
result from the analysis in Section 3.2, and this occurred
because: i) the node layout and density assumptions were
different there, and ii) we are using the hop-distance metric
(Section 5) to calculate ping probabilities.

For Cluster and Random topologies, first detection time
(defined at start of this section) stays low form ≤ 3.5 and
rises quickly whenm ≥ 3.5. This is due to two factors: i) a
quick increase (with risingm) in initial bag size increases
the duration of a super round (Section 4), and ii) unlucky
node’s lower probability (fewer instances in bag) to be as a
ping target by any of its neighbours. Whenm is low enough
(below 3.5), the bag sizes are manageable and nodes have
sufficient pingers for fast failure detection. Beyondm = 3.5,
the bag size increases quickly, and thus super round length.
It takes much longer for a pinger to pick a failed unlucky
node, which could be as long as a super-round in the worst
case (Theorem 3).

We also observe from Figure 4 that Medley using the hop-
number metric in the Random topology behaves similar to
Grid topology, with relatively stable first detection time. The
reason is that eachmember has at least one one-hop (shortest
distance) neighbour as a pinger, making unlucky nodes rarer
than when using hop-distance metric.

Simultaneous Failures: We test up to half the nodes be-
ing failed randomly (12 out of 25) in the Random topology.
Figure 5 shows the average first detection time. The lower
error bar is the earliest time any failure is detected, averaged
across runs. The higher bar is the latest detection time for a
non-faulty node detecting all failures, averaged across runs.
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Figure 5. Failure detection time under simultaneous failures
(Random topology).

Whenm = 0, each failed node has a good probability (at
least 1 − ( 2324 )12 ≃ 40.0%) of being picked as ping target in
the round after it fails, as long as fewer than 50% nodes fail.
Thus, the failure detection time stays stable whenm = 0.

The first detection time tends to increase gently across
incrementing of bothm and the number of failures. Form =
1.5, the time to detect massive failures only takes 15% more
time than one failure, and form = 3, this difference is about
60%. This slight increase is caused by the ping localization
that Medley brings about, and the limitation of one ping
target per period. Under a given number of simultaneous
failures, asm rises, a failed node waits longer to become a
ping target because pings are localized. Additionally, more
unlucky nodes might be involved under more failures, thus
increasing average first detection time.

Domain Failure Next we explore the effect of massive
failures in an area (e.g., connected to a power breaker). 25
nodes are located in three clusters in the square area of
interest. Each run randomly fails a whole cluster.

Figure 6. Failure detection time under domain failures (Clus-
ter topology).

From Figure 6 (bars similar to Figure 5) we observe that
the average first detection time stays low whenm < 2, and
as expected it increases asm rises. The dissemination time of
failure information is much stabler. The increase in detection
time withm is because of the ping localization under higher
m, implying that the typical way a detection proceeds at
higherm is from the edges of the failed cluster towards the

cluster’s middle. In comparison, lower values ofm would de-
tect nodes near the middle of the failed cluster much quicker
due to the higher probability of far-away non-faulty pingers.

6.1.2 First Detection Distance

Figure 7. CDF of distances between the failed node and the
first member detecting this failure (Random topology).

Figure 7 shows how far the first detector is from the failed
node. Higherm exponents lead to more local detections. For
m = 3, 90% of detections are within 20 m, which is 32% of the
farthest node distance. Atm = 5, the 90% detection distance
is within 15 m (24 % of farthest node distance). Hence, higher
values of m, while prohibitive for detection time, may be
preferable for applications that prefer the first detecting
node be closer to the faulty node (e.g., to re-replicate file
replicas, or respond to local events).

6.1.3 Communication Cost
Figure 8 shows the CDF of communication cost over distance.
Point (x ,y) shows that y% of messages travel less than dis-
tance x . As expected, lowerm (uniform pinging) incurs far
more traffic across the network while Medley with higherm
localizing traffic. Medley’s higher values ofm reduce traffic
over base SWIM’sm = 0.

Figure 8. CDF of communication cost (number of messages)
vs. distance, for differentm (Random topology).

Because Medley’s goal is to minimize both communication
cost (bytes sent, counting multiple hops) and detection time,
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we measure the square root of their product in Figure 9, for
Random topology. The product cost (lower is better) falls
quickly asm goes from 0 to 2.5, and then flattens out. This
is because Medley pings far nodes more frequently when
m is low. Due to increased ping localization and multi-hop
routing, increasingm results in reduced communication, and
increased detection time (Figure 4), but the former drops
much quicker (hence the product falls). At higherm these
two balance out. Compared to base SWIM (m = 0), the
product cost of Medley is Product_Cost (m=0)

Product_Cost (m=3) −1 = 35% lower.

Figure 9. First failure detection rate × Communication cost,
Square Root (Random topology). Lower is better.

6.1.4 False Positive Rate
Wemeasure the rate of false detections, which are non-faulty
nodes mistakenly detected as failed (this may occur due to
slow nodes, dropped packets, etc.). In Table 2, we drop a
random fraction rloss of packets (on hops). We measure false
positive rate as the fraction of time, over the entire run, that
a false positive detection persists, i.e., fraction of time that
at least one non-faulty node is considered failed by at least
one other non-faulty node.
In Table 2, higher packet loss rates imply higher false

positive rates, as expected.We also observe that false positive
rate drops with increasingm (for a given packet loss rate).
This is because at lowerm, pings and acks have to transit
more hops, thus increasing the chances that at least one of
the hops will drop the packet, and a non-faulty node will be
detected as failed due to a timeout. Further, at higherm, the
suspicion (Section 3.1) arising from a failure detection has a
higher chance of being resolved due to the more repetitive
and localized nature of pings.

6.2 Deployment Evaluation
We implemented a prototype of Medley in the Raspberry Pi
(RP) [22] environment. Our Java implementation was 1427
lines of code, under Raspbian 4.13. We deployed Medley in
a network of 7 IoT devices with the topology shown in Fig-
ure 10. Each device was a Raspberry Pi 2 B model, with 32 GB
memory, 1GB RAM and 900MHz quad-core ARM Cortex-A7
CPU. Since Raspberry 2 does not provide a built-in Wifi mod-
ule, we used a TP-Link USB Wifi adapter WN725N v2.0 with

Table 2. False positive rate under different packet loss rates
(rloss ) and exponentsm.

rloss

m 0 1 2 3 4 5

10% 1.07% 0.43% 0.69% 0.08% 0.08% 0.00%
20% 2.32% 2.35% 2.05% 1.49% 1.36% 1.39%

the 2.4GHz 802.11ac standard in ad-hoc mode. We used UDP
as communication protocol in the Netty framework [21].

Figure 10. Topology of Raspberry Pi deployment.

6.2.1 Failure Detection and Dissemination Latency

(a) Hop-distance metric.

(b) Hop-number metric.

Figure 11. First failure detection time and dissemination
time for Raspberry Pi experiments for 2 distance metrics.

From Figure 11 (15 data points per failure, with average
and standarad deviation), we observe that the failure detec-
tion time under both hop-distance and hop-number metrics
are relatively stable asm varies. The limited number of Pi
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nodes restricts the number of unlucky nodes (those with no
nearby neighbors), leading to low first failure detection time.
The dissemination time for hop-number metric is sta-

ble, while the dissemination time for hop-distance increases
when m becomes larger (beyond m>3.5). This is because
disseminating failure information “out” of a region of iso-
lated nodes (e.g., nodes 1, 3 in Figure 10) takes a while since
spatial pinging (hence piggybacking of failure information)
stays largely local especially whenm is high. Using the hop-
number metric, each node has multiple closest neighbors,
allowing faster spread. Further, the bag size is smaller (as
counts vary less across nodes), limiting super-round time
and thus dissemination time.

6.2.2 Bandwidth Cost over Time

(a) Base SWIM (m = 0). Hop-number metric.

(b) Medley (m = 3). Hop-number metric.

Figure 12. Bandwidth change timeline. Failures occur at
t = 0. Using the hop-number metric.

We denote links that lie on more routing paths (of node
pairs) as hotter links, and those on fewer paths as colder links.
Figure 12 plots real-time bandwidth on a hotter link d and a
colder link b. In each run a node fails at time 60 (hotter node
4 or colder node 3). Compared tom = 0,m = 3 consumes
lower bandwidth on average (61.8% less for link d , and 52.9%
less for link b), but fluctuates inside a super round.
Both far pings and local pings tend to go through hotter

links. Whenm increases, far pings reduce dramatically, sav-
ing bandwidth. Bandwidth cost is high right after new nodes

join (time 5 to 10) and right after failures occur (time 60 to
70)—this is due to increase in indirect pings. Larger exponent
values (m) mean that a failure will cause bandwidth to rise
more (3× atm = 3 and 1.5× atm = 0). Yet the peak band-
width consumption in Medley (m = 3) stays lower than base
SWIM’s (m = 0).

This difference between SWIM and Medley’s post-failure
bandwidth is largely due to the spatial target selection.While
SWIM spreads pings, acks and indirect pings uniformly, Med-
ley’s common case traffic (pings and acks) is largely local.
Indirect pings that jump up after a failure consume more
bandwidth, but because they are also chosen spatially, Med-
ley’s post-failure bandwidth stays lower than SWIM’s.

Figure 13. Run-time bandwidth on random vs pass target
selection under Medley (m = 3). Failed colder node 3, mea-
suring link b. Top: Bandwidth. Bottom: Bandwidth’s FFT.

Whenm is relatively high, bandwidth usage has a periodic
behavior caused by the cyclical nature of the super-round.
Figure 13 depicts the bandwidth pattern on link b under
m = 3 for the two strategies of random and pass-based from
the bag (Section 4.1). The plot shows: 1) bandwidth over time
(top figure), and 2) its Fast Fourier transform (FFT) (lower
figure). This is a 700 second run with no failures.
We first observe that the bag selection strategy does not

affect the average bandwidth. Second, the random selection
from bag has lower bandwidth fluctuation over time, while
pass-based has bigger amplitudes. This is because in the pass-
based approach (Algorithm 1), the pings in the second half of
each super-round tend to focus on close neighbors (a small
group of nodes which have higher counts in the bag), leading
to temporally unbalanced communication load on links. In
comparison, selecting from the bag targets at random (rather
than via passes) has less pronounced periodicity.
Although random strategy benefits from balanced band-

width, it has longer detection times: 2 × ((N − 2) · α) + 1
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periods, almost twice as pass-based (for highm). If the ap-
plication prefers reducing detection time than minimizing
bandwidth, the pass-based approach is preferable.

7 Discussion
Partial Membership Lists:Medley maintains full member-
ship lists, useful for building a swath of distributed algo-
rithms (Section 1). Nevertheless, full membership lists can be
“pared” down to partial membership lists, without affecting
properties, while reducing overhead. Two examples follow.
Ex. 1: If a multicast tree (built atop Medley) uses only nearby
neighbors, the partial membership list can maintain mostly
nearby neighbors. Ex. 2: It is well-known that uniformly-
randomly-selected partial membership lists give identical
properties as a full list, for gossip multicast applications [15].
For this case, Medley’s partial membership lists could be
built in one of two ways: i) apply a uniform-random selec-
tion strategy to pick the partial membership list, and use
spatial pinging, or ii) apply the spatial distribution to pick
the partial membership list, and use uniform-random ping-
ing. In both these cases, the results of [15] would extend,
meaning that gossip over Medley with partial lists would
behave identically as gossip over Medley with full lists.
Topology Optimizations: An open direction is leveraging
knowledge of network topology and optimizing indirect ping
target selection. For instance, one could avoid intersecting
routes, route pings/acks avoiding failure domains, etc. An-
other possibility is randomizing (uniformly) the indirect ping
selections, to reduce going via failed nodes in correlated fail-
ure scenarios.
Byzantine failures:Wehave focused on crash failures. Clas-
sical techniques for Byzantine failures are quite different
from those for crash failures, focusing on tolerance rather
than detection [6]. This is an open direction for IoT networks.
CodeAvailability:Medley code is available at: https://github.
com/RuiRitaYang/Medley.git.

8 Related Work
Failure Detection Techniques Failure detection in data-
center environments is a well-studied area. Heartbeating
[3] is one of the earliest failure detectors where each pro-
cess periodically sends a heartbeat message to either every
node, or a subset thereof. Each receiver maintains the list
of heartbeat counts, and if one has not been updated for a
timeout, it is marked as failed. Authors of [28] describe a
gossip-style way of disseminating heartbeats. However, this
still incurs a super-quadratic increase in network load as the
system scale increases. Authors of [17] use a hierarchical
gossiping protocol and an adaptive multicast dissemination
framework to reduce network overheads. SWIM [11] solves
the network overhead problem by separating the failure de-
tection operations from membership update dissemination
and by using pinging for failure detection. SWIM provably

gives the optimal tradeoff between detection time and band-
width [16]. FUSE [14] uses applications to disseminate failure
information in distributed systems to reduce network costs.

Failure Detection in IoT Networks Existing IoT failure
detection schemes largely focus on data anomalies and can be
used orthogonally with Medley. Sympathy [23] uses flooding
to calculate next-hops and neighbors, and then analyzes
these in a centralized way. It aggregates distributed data
at the sink and detects failure by finding insufficient flow
of incoming data. [25] proposes a distributed sensor node
failure detection method called Memento, wherein sensor
nodes detect problematic nodes by cooperatively monitoring
each other. However, Memento structured the network nodes
in a tree-like way, which limits the scalability of the design.
Such an algorithm can detect the failures quickly, but the
aggregation behavior bottlenecks performance and causes
high bandwidth cost closer to the root of the tree. For both
Sympathy and Memento, our Medley-style pinging can be
used to improve them.

Network layer information such as packet traces or delays
is used in [8] and [13] to detect failed nodes. Such designs,
while efficient, are hard to analyze mathematically and also
do not generalize easily to IoT settings. DICE [9] uses con-
text (e.g., sensor correlation, state transition probabilities)
to identify faulty sensors by finding real-time values that
violate the precomputed context. To process the context, the
information of sensors are aggregated to aggregators, which
restricts DICE’s scalability. Once again, DICE can be im-
proved by combining it with Medley. Asim et al. [4] manage
faults in a wireless sensor network environment where the
network is homogeneous and nodes are equal in resources.
They partition the network into a virtual grid of cells to sup-
port scalability and perform fault detection. Failures within
a cell are detected by entities within it and are forwarded
across cells. Unlike this work, Medley does not require a
homogeneous network.

9 Conclusion
We have presented design, analysis, and implementation of
Medley, a decentralized membership service for distributed
IoT systems running atop wireless ad-hoc networks. Our key
idea is a spatial failure detector, that prefers pinging nearby
nodes with an exponentially higher probability. Compared
to classical SWIM, Medley detects failures just as quickly,
while lowering the product of failure detection time and
communication cost by 35%, and incurring low false positive
rates around 2% even with 20% dropped packets.
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