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Abstract

Markov jump processes are continuous-time stochastic processes widely used in a
variety of applied disciplines. Inference typically proceeds via Markov chain Monte
Carlo, the state-of-the-art being a uniformization-based auxiliary variable Gibbs sam-
pler. This was designed for situations where the process parameters are known, and
Bayesian inference over unknown parameters is typically carried out by incorporat-
ing it into a larger Gibbs sampler. This strategy of sampling parameters given path,
and path given parameters can result in poor Markov chain mixing. In this work,
we propose a simple and efficient algorithm to address this problem. Our scheme
brings Metropolis-Hastings approaches for discrete-time hidden Markov models to
the continuous-time setting, resulting in a complete and clean recipe for parameter
and path inference in Markov jump processes. In our experiments, we demonstrate
superior performance over Gibbs sampling, a more naïve Metropolis-Hastings algo-
rithm, as well as another popular approach, particle Markov chain Monte Carlo.
We also show our sampler inherits geometric mixing from an ‘ideal’ sampler that
is computationally much more expensive. Supplementary material for the article is
available online.

Keywords: Continuous-time Markov chain, Markov chain Monte Carlo, Metropolis-Hastings,
Uniformization, Geometric Ergodicity
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1 Introduction

Markov jump processes (MJPs) are continuous-time stochastic processes widely used in

fields like computational chemistry (Gillespie, 1977), molecular genetics (Fearnhead and

Sherlock, 2006), mathematical finance (Elliott and Osakwe, 2006), queuing theory (Breuer,

2003), artificial intelligence (Xu and Shelton, 2010) and social-network analysis (Pan et al.,

2016). MJPs have been used as realistic, mechanistic and interpretable models of a wide

variety of phenomena, among others, the references above have used them to model tem-

poral evolution of the state of a chemical reaction or queuing network, segmentation of a

strand of DNA, and user activity on social media. Their continuous-time dynamics how-

ever raise computational challenges when, given noisy measurements, one wants to make

inferences over the latent MJP trajectory as well as any process parameters. In contrast to

discrete-time hidden Markov models, one cannot a priori bound the number of trajectory

state transitions, and the transition times themselves are continuous-valued. The state-of-

the-art approach is an auxiliary variable Gibbs sampler from Rao and Teh (2013), we will

refer to this as the Rao-Teh algorithm. This Markov chain Monte Carlo (MCMC) algorithm

was designed to simulate paths when the MJP parameters are known. Parameter inference

is typically carried out by incorporating it into a Gibbs sampler that also conditionally

simulates parameters given the currently sampled trajectory.

In many situations, the MJP trajectory and parameters exhibit strong coupling, so

that alternately sampling path given parameters, and parameters given path can result in

poor mixing. To address this, we propose an efficient Metropolis-Hastings (MH) sampler

(algorithm 4). In our experiments, we demonstrate superior performance over Gibbs sam-

pling, a more naïve MH sampler (algorithm 3), as well as particle Markov chain Monte

Carlo (Andrieu et al., 2010). We also prove that under relatively mild conditions, our

sampler inherits geometric ergodicity from an ‘ideal’ sampler that is computationally much

more expensive.
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2 Markov jump processes (MJPs)

A Markov jump process (Çinlar, 1975) is a right-continuous piecewise-constant stochastic

process taking values in a state space S. We assume a finite number of states N , with

S = {1, . . . , N}. Then, the MJP is parameterized by two quantities, an N -component

probability vector π0 and a rate-matrix A. The former gives the distribution over states

at the initial time (we assume this is 0), while the latter is an N × N -matrix governing

the dynamics of the system. An off-diagonal element Aij gives the rate of transitioning

from state i to j. The rows of A sum to 0, so that Aii = −∑

j ̸=i Aij. We write Ai for the

negative of the ith diagonal element Aii, so that Ai = −Aii gives the total rate at which

the system leaves state i for any other state. To simulate an MJP over an interval [0, tend),

one follows Gillespie’s algorithm (Gillespie, 1977): first sample an initial state s0 from π0,

and defining t0 = tcurr = 0 and k = 0, repeat the following while tcurr < tend:

• Simulate a wait-time ∆tk from an exponential distribution with rate Ask . Set tk+1 =

tcurr = tk +∆tk. The MJP remains in state sk until time tk+1.

• Jump to a new state sk+1 ̸= sk with probability equal to Asksk+1
/Ask . Set k = k + 1.

The times T = (t1, . . . , tk−1) and states S = (s1, . . . , sk−1), along with the initial state s0,

define the MJP path. We use both (s0, S, T ) and {S(t), t ∈ [0, tend)} (and sometimes just

S(·)) to refer to the MJP path. See the top-left panel in figure 2 for a sample path.

2.1 Structured rate matrices

While the rate matrix A can have N(N − 1) independent elements, in typical applications,

especially with large state-spaces, it is determined by a much smaller set of parameters. We

will write these as θ, with A a deterministic function of these parameters: A ≡ A(θ). The

parameters θ are often more interpretable than the elements of A, and correspond directly

to physical, biological or environmental parameters of interest. For example:

Immigration-death processes Here, θ = (α, β), with α the arrival-rate and β the death-

rate. The state represents the size of a population or queue. New individuals enter
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with rate α, so off-diagonal elements Ai,i+1 equal α. Each individual dies at a rate

β, so that Ai,i−1 = iβ for each i. All other transitions have rate 0.

Birth-death processes This variant of the earlier MJP moves from state i to i+ 1 with

rate iα, with growth-rate proportional to population size. The death-rate is β, so

that Ai,i−1 = iβ for each i. Other off-diagonal elements are 0, and again θ = (α, β).

Codon substitution models These characterize transitions between codons at a DNA

locus over evolutionary time. There are 61 codons, and in the simplest case, all

transitions have the same rate (Jukes and Cantor, 1969): Aij = α ∀i ̸= j. Thus the

61 × 61 matrix A is determined by a single α. Other models (Goldman and Yang,

1994) group transitions as ‘synonymous’ and ‘nonsynonymous’, based on whether

old and new codons encode the same amino acid. Synonymous and nonsynonymous

transitions have their own rates, so A is now determined by 2 parameters α and β.

3 Bayesian modeling and inference for MJPs

We first set up our Bayesian model of the data generation process. We model a latent

piecewise-constant path S(·) over [0, tend) as an N -state MJP with rate matrix A(θ) and

prior π0 over s0 = S(0), the state at time 0. We place a prior P (θ) over the unknown

θ. For simplicity, we assume π0 is known (or we set it to a uniform distribution over

the N states). We have noisy measurements X of the latent process, with likelihood

P (X|{S(t), t ∈ [0, tend)}). Again, for clarity we ignore any unknown parameters in the

likelihood, else we can include them in θ. We assume the observation process has the

following structure: for fixed X, for any partition W̃ = {w̃1 = 0, . . . , w̃|W̃ | = tend} of the

interval [0, tend) (where | · | denotes cardinality), there exist known functions ℓi such that

the likelihood factors as:

P (X|{S(t), t ∈ [0, tend)}) =
|W̃ |−1
∏

i=1

ℓi({S(t), t ∈ [w̃i, w̃i+1)}) (1)

A common example is a finite set of independent observations X = {x1, . . . , x|X|} at times

TX = {tX1 , . . . , tX|X|}, each observation depending on the state of the MJP at that time:
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P (X|{S(t), t ∈ [0, tend)}) =
|X|
∏

i=1

P (xi|S(tXi )). (2)

Other examples are an inhomogeneous Poisson process (Fearnhead and Sherlock, 2006),

renewal process (Rao and Teh, 2011) or even another MJP (Nodelman et al., 2002; Rao

and Teh, 2013), modulated by (s0, S, T ). The first example, called a Markov modulated

Poisson process (MMPP) (Scott and Smyth, 2003), associates a positive rate λs with each

state s, with ℓi({S(t), t ∈ [wi, wi+1)}) equal to the likelihood of the Poisson events within

[wi, wi+1) under an inhomogeneous Poisson process with piecewise-constant rate {λS(t), t ∈
[wi, wi+1)}.

With A(·) and π0 assumed known, the overall Bayesian model is then

θ ∼ P (θ), (s0, S, T ) ∼ MJP(π0, A(θ)), X ∼ P (X|s0, S, T ). (3)

Given X, one is interested in the posterior distribution over the latent quantities, (θ, s0, S, T ).

3.1 Trajectory inference given the MJP parameters θ

This was addressed in Rao and Teh (2013) and extended to a broader class of jump processes

in Rao and Teh (2012) (also see Fearnhead and Sherlock, 2006; Hobolth and Stone, 2009;

El-Hay et al., 2008)). Rao and Teh (2013, 2012) both involve MJP path representations

with auxiliary candidate jump times that are later thinned. We focus on the former, a

simpler and more popular algorithm, based on the idea of uniformization (Jensen, 1953).

Uniformization involves a parameter Ω(θ) ≥ maxi Ai(θ); Rao and Teh (2013) suggest

Ω(θ) = 2maxi Ai(θ). Define B(θ) =
(

I + 1
Ω(θ)

A(θ)
)

; this is a stochastic matrix with

nonnegative elements, and rows adding up to 1. Unlike the sequential wait-and-jump

Gillespie algorithm, uniformization first simulates a random grid of candidate transition-

times W over [0, tend), and then assigns these state values:

• Simulate W from a Poisson process with rate Ω(θ) ≥ maxi Ai(θ): W ∼ PoissProc(Ω(θ)).

• Assign states (v0, V ) to the times 0∪W , with v0 ∼ π0, and P (vi+1 = s|vi) = Bvis(θ).

Setting Ω(θ) > maxi Ai(θ) results in more candidate-times than actual MJP transitions,

at the same time, unlike A(θ), the matrix B(θ) can thin these through self-transitions.
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Write U for the elements W with self-transitions, and T for the rest. Define s0 = v0,

and S = {vi ∈ V s.t. vi ̸= vi−1} as the elements in V corresponding to T , then (s0, S, T )

sampled this way for any Ω(θ) ≥ maxi Ai(θ) has the same distribution as under Gillespie’s

algorithm (Jensen, 1953; Rao and Teh, 2013). The third panel in figure 2 shows these sets.

Introducing the thinned variables allowed Rao and Teh (2013) to develop an efficient

MCMC sampler (algorithm 1). At a high-level, each MCMC iteration simulates a new grid

W conditioned on the path (s0, S, T ), and then a new path conditioned on W . Rao and

Teh (2013) show that the resulting Markov chain targets the desired posterior distribution

over trajectories, and is ergodic for any Ω(θ) strictly greater than all the Ai(θ)’s.

Algorithm 1 The Rao and Teh (2013) MCMC sampler for MJP trajectories

Input: Prior π0, observations X, the previous path (s0, S, T ).

Parameter Ω(θ) > maxi Ai(θ), where A(θ) is the MJP rate-matrix.

Output: New MJP trajectory (s′0, S
′, T ′).

1: Simulate the thinned candidate times U given the MJP path (s0, S, T ) from

a piecewise-constant rate-(Ω(θ)− AS(·)(θ)) Poisson process:

U ∼ PoissProc(Ω(θ)− AS(t)(θ)), t ∈ [0, tend).

2: Discard the states (s0, S), and write W = T ∪ U .

3: Simulate states (v0, V ) on 0 ∪W from a discrete-time HMM with initial dis-

tribution over states π0 and transition matrix B(θ) =
(

I + 1
Ω(θ)

A(θ)
)

. Following equa-

tion (1), between two consecutive times (w̃i, w̃i+1) in W̃
def
= 0 ∪ W ∪ tend, state s has

likelihood ℓi(s) ≡ ℓi({S(t) = s, t ∈ [w̃i, w̃i+1)}). The simulation involves two steps:

Forward pass: Set f0(·) = π0. Sequentially update fi(·) at time wi ∈ W given fi−1:

for i = 1 → |W | do: fi(s
′) =

∑

s∈S

fi−1(s) · ℓi(s) · Bss′(θ), ∀s′ ∈ S.

Backward pass: Simulate v|W | ∼ b|W |(·), where b|W |(s) ∝ f|W |(s) ·ℓ|W |+1(s) ∀s ∈ S.

for i = (|W |−1) → 0 do: vi ∼ bi(·), where bi(s) ∝ fi(s)·Bsvi+1
(θ)·ℓi+1(s) ∀s ∈ S.

4: Discard self-transitions: Set s′0 = v0. Let T ′ be the set of times in W when V

changes state. Define S ′ as the corresponding set of state values. Return (s′0, S
′, T ′).
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3.2 Joint inference over MJP path (s0, S, T ) and parameters θ

For fixed parameters θ, the efficiency of the Rao-Teh algorithm has been established, both

empirically (Rao and Teh, 2013) and theoretically (Miasojedow and Niemiro, 2017). In

practice, the parameters are typically unknown, and often, these are of primary interest.

One then has to characterize the complete posterior P (θ, s0, S, T |X) of the Bayesian model

of equation (3). This is typically carried out by incorporating the previous algorithm into a

Gibbs sampler that targets the joint P (θ, s0, S, T |X) by conditionally simulating (s0, S, T )

given θ and then θ given (s0, S, T ). Algorithm 2 (see also Rao and Teh, 2013) outlines this:

Algorithm 2 Gibbs sampling for path and parameter inference for MJPs

Input: The current MJP path (s0, S, T ), the current MJP parameters θ.

Output: New MJP trajectory (s′0, S
′, T ′) and parameters θ′.

1: Simulate a new path from the conditional P (s′0, S
′, T ′|X, s0, S, T, θ) by algorithm 1.

2: Simulate a new parameter θ′ from the conditional P (θ′|X, s′0, S
′, T ′) (see equation (4)).

The distribution P (θ′|X, s′0, S
′, T ′) depends on the amount of time τi spent in each state

i, and the number of transitions cij between each pair of states i, j:

P (θ′|X, s′0, S
′, T ′) ∝ P (θ′)

∏

i∈S

exp(−Ai(θ
′)τi)

∏

j∈S

(

Aij(θ
′)

Ai(θ′)

)cij

. (4)

In some circumstances, this can be directly sampled from, otherwise, one has to use a

Markov kernel like Metropolis-Hastings to update θ to θ′. In any event, this introduces

no new technical challenges. However, the resulting Gibbs sampler can mix very poorly

because of coupling between path and parameters. We illustrate this in figure 1 (inspired by

Papaspiliopoulos et al., 2007), which shows the posterior distribution of an MJP parameter

(long-dashes) is less concentrated than the distribution conditioned on both observations

as well as path (short-dashes). The coupling is strengthened as the trajectory grows longer

(right panel), and the Gibbs sampler can mix very poorly with long observation periods,

even if the observations themselves are only mildly informative about the parameters.

Before we describe our actual algorithm, we outline a naïve attempt around this coupling.
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says this is the marginal probability of X under a discrete-time HMM on W , with transition

matrix B(θ). This can be computed using the forward pass of FFBS algorithm (steps 4

and 6 of algorithm 3 below). The term P (W |θ) is the probability of W under a rate-Ω(θ)

Poisson process. These, and the corresponding terms for ϑ allow the acceptance probability

to be computed. Only after accepting or rejecting ϑ do we simulate new states (v′0, V
′),

using the new parameter θ′ in a backward pass over W . The new trajectory and parameter

are used to simulate a new grid W ′, and the process is repeated. Algorithm 3 includes all

details of this algorithm (see also figure 19 in the supplementary material).

Algorithm 3 Naïve MH for parameter inference for MJPs

Input: Observations X, the MJP path (s0, S, T ), the MJP parameters θ and π0.

Output: A new MJP trajectory (s′0, S
′, T ′), new MJP parameter θ′.

1: Set Ω(θ) > maxs As(θ) for some function Ω(·), e.g. Ω(θ) = 2maxs As(θ).

2: Simulate the thinned times U from a rate-(Ω(θ)− AS(·)(θ)) Poisson process:

U ∼ PoissProc(Ω(θ)− AS(t)(θ)), t ∈ [0, tend).

3: Set W = T ∪ U and discard (s0, S). Define W̃ = 0 ∪W ∪ tend.

4: Forward pass: Set B(θ) = I+ 1
Ω(θ)

A(θ) and f
θ
0(·) = π0. Recall ℓi(·) from equation (1).

for i = 1 → |W | do: f
θ
i (s

′) =
∑

s∈S

f
θ
i−1(s) · ℓi(s) · Bss′(θ), ∀s′ ∈ S.

5: Propose ϑ ∼ q(·|θ). For elements of W , calculate f
ϑ
i (·) similar to above.

6: Accept/Reject: For θ (and similarly for ϑ), set P (W |θ) = Ω(θ)|W | exp(−Ω(θ)tend),

P (X|W, θ) =
∑

s∈S f
θ
|W |(s) · ℓ|W |+1(s). With probability acc, set θ′ = ϑ, else θ′ = θ;

acc = 1 ∧ P (ϑ|W,X)

P (θ|W,X)

q(θ|ϑ)
q(ϑ|θ) = 1 ∧ P (X|W,ϑ)P (W |ϑ)P (ϑ)

P (X|W, θ)P (W |θ)P (θ)

q(θ|ϑ)
q(ϑ|θ) . (5)

7: Backward pass: Simulate v|W | ∼ b
θ′

|W |(·), where b
θ′

|W |(s) ∝ f
θ′

|W |(s) · ℓ|W |+1(s) ∀s ∈ S.

for i = (|W |−1) → 0 do: vi ∼ b
θ′

i (·), where b
θ′

i (s) ∝ f
θ′

i (s)·Bsvi+1
(θ′)·ℓi+1(s) ∀s ∈ S.

8: Set s′0 = v0. Let T ′ be the set of times in W when V changes state. Define S ′ as the

corresponding set of state values. Return (s′0, S
′, T ′, θ′).

The resulting MCMC algorithm updates θ with the MJP trajectory integrated out,

and by instantiating less ‘missing’ information, can be expected to mix better. This can
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be quantified by the so-called Bayesian fraction of missing information (Liu, 1994; Pa-

paspiliopoulos et al., 2007). We note that even with the state values (v0, V ) marginalized

out, θ is updated conditioned on W . The distribution of W depends on θ: W follows a

rate-Ω(θ) Poisson process. This dependence manifests in the P (W |θ) and P (W |ϑ) terms in

equation (5). The fact that the MH-acceptance involves the probability of the observations

X is inevitable, however the P (W |θ) term is an artifact of the computational algorithm

of Rao-Teh. In our experiments, we show that this term significantly hurts acceptance

probabilities and mixing. For a given θ, |W | is Poisson distributed with mean and variance

Ω(θ). If the proposed ϑ is such that Ω(ϑ) is half Ω(θ), then the ratio P (W |ϑ)/P (W |θ) will

be small, and ϑ is unlikely to be accepted. The next section describes our main algorithm

that gets around this.

5 An improved Metropolis-Hasting algorithm

The algorithm we propose symmetrizes the probability of W under the old and new pa-

rameters, so that P (W |θ) disappears from the acceptance ratio. Now, the probability of

accepting a proposal ϑ will depend only on the prior probabilities of θ and ϑ, as well as how

well they both explain the data given W . This is in contrast to the previous algorithm,

where one must also factor in how well each parameter explains the current value of the

grid W . This results in a MCMC sampler that mixes significantly more rapidly. Since we

need not account for the probabilities P (W |θ), we also have a simpler MCMC scheme.

As before, the MCMC iteration begins with (s0, S, T, θ). Instead of simulating the

thinned events U like earlier algorithms, we first generate a new parameter ϑ from some

distribution q(ϑ|θ). Treat this as an auxiliary variable, so that the augmented space now

is (s0, S, T, θ, ϑ). Define a function Ω(θ, ϑ) > maxs As(θ) that is symmetric in its ar-

guments (the number of arguments will distinguish Ω(·, ·) from Ω(·) of the earlier sec-

tions). Two examples are Ω(θ, ϑ) = κmaxs As(θ) + κmaxs As(ϑ), for κ ≥ 1, and Ω(θ, ϑ) =

κmax (maxs As(θ),maxs As(ϑ)), for κ > 1.

We will treat the path (s0, S, T ) as simulated by uniformization, but now with the

dominating Poisson rate equal to Ω(θ, ϑ) instead of Ω(θ). The transition matrix B(θ, ϑ)
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of the embedded Markov chain is B(θ, ϑ) = I + 1
Ω(θ,ϑ)

A(θ), so that the resulting trajectory

(s0, S, T ) will still be a realization from a MJP with rate-matrix A(θ).

Following the Rao-Teh algorithm, the conditional distribution of the thinned events U

given (s0, S, T, θ, ϑ) is a piecewise-constant Poisson with rate Ω(θ, ϑ)−AS(t)(θ), t ∈ [0, tend).

This reconstructs the set W = U∪T , and as we saw (see also Rao and Teh, 2013), P (W |θ, ϑ)
is a homogeneous Poisson process with rate Ω(θ, ϑ). Having imputed W , discard the state

values, so that the MCMC state space is (W, θ, ϑ). Now, propose swapping θ with ϑ.

From the symmetry of Ω(·, ·), the Poisson grid W has the same probability both before

and after this proposal, so unlike the previous scheme, the ratio equals 1. This simplifies

computation, and as suggested in the previous section, can significantly improve mixing. An

acceptance probability of min
(

1, P (X|W,ϑ,θ)P (ϑ)q(θ|ϑ)
P (X|W,θ,ϑ)P (θ)q(ϑ|θ)

)

targets the conditional P (W, θ, ϑ|X) ∝
P (θ)q(ϑ|θ)P (W,X|θ, ϑ). The terms P (X|ϑ) and P (X|θ) can be calculated from the forward

pass of FFBS, and after accepting or rejecting the proposal, a new trajectory is sampled

by completing the backward pass. Finally, the thinned events and auxiliary parameter are

discarded. Algorithm 4 and figure 2 outline the details of these steps.
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Proposition 1. The sampler described in Algorithm 4 has the posterior distribution P (θ, s0, S, T |X)

as its stationary distribution.

Proof. Consider a realization (θ, s0, S, T ) from the posterior distribution P (θ, s0, S, T |X).

An iteration of the algorithm first simulates ϑ from q(ϑ|θ). By construction, the marginal

distribution over all but the last variable in the set (θ, s0, S, T, ϑ) is still the posterior.

The algorithm next simulates U from a Poisson process with rate Ω(θ, ϑ) − AS(·)(θ).

Write W = T ∪ U . The random grid W consists of the actual and thinned candidate

transition times, and is distributed according to a rate-Ω(θ, ϑ) Poisson process (Proposition

2 in Rao and Teh (2013)). Thus, the triplet (W, θ, ϑ) has probability proportional to

P (θ)q(ϑ|θ)PoissProc(W |Ω(θ, ϑ))P (X|W, θ, ϑ). Next, the algorithm proposes swapping θ

and ϑ with W fixed (a deterministic proposal), and accepts with MH-acceptance probability

acc = 1 ∧ P (ϑ)q(θ|ϑ)P (X|W,ϑ, θ)

P (θ)q(ϑ|θ)P (X|W, θ, ϑ)
= 1 ∧ P (ϑ)q(θ|ϑ)PoissProc(W |Ω(ϑ, θ))P (X|W,ϑ, θ)

P (θ)q(ϑ|θ)PoissProc(W |Ω(θ, ϑ))P (X|W, θ, ϑ)
,

where we exploit the symmetry of Ω(·, ·). Write the new parameters as (θ′, ϑ′).

This MH step has stationary distribution over (W, θ′, ϑ′) proportional to P (θ′)q(ϑ′|θ)
PoissProc(W |Ω(θ′, ϑ′))P (X|W, θ′, ϑ′), so that the triplet (W, θ′, ϑ′) has the same distri-

bution as (W, θ, ϑ). The algorithm uses B(θ′, ϑ′) to make a backward pass through W ,

simulating state values on W from the conditional of a Markov chain with transition matrix

B(θ′, ϑ′) given observations X. Dropping the self-transition times results in (θ′, s′0, S
′, T ′, ϑ′).

From uniformization (see also Lemma 1 in Rao and Teh (2013)), the trajectory (s′0, S
′, T ′) is

distributed according to the conditional of a rate-A(θ′) MJP given observations X. Finally,

dropping ϑ′ results in (θ′, s′0, S
′, T ′) from the posterior given X, proving stationarity.

6 Related work

Our paper modifies the algorithm from Rao and Teh (2013) to include parameter inference.

That algorithm requires a uniformization rate Ω(θ) > maxs As(θ), and empirical results

from that paper suggest Ω(θ) = 2maxs As(θ). The uniformization rate Ω(θ, ϑ) in our

algorithm includes a proposed parameter ϑ, must be symmetric in both arguments and

must be greater than both maxs As(θ) and maxs As(ϑ). A natural and simple setting is
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Ω(θ, ϑ) = maxs As(θ) + maxs As(ϑ). When θ is known, our algorithm has ϑ equal to θ

(i.e. the ‘proposed’ ϑ equals θ), and our uniformization rate reduces to 2maxs As(θ). This

provides a principled motivation for the particular choice of Ω in Rao and Teh (2013).

Of course, we can consider other choices, such as Ω(θ, ϑ) = κ(maxAi(θ) + maxAi(ϑ))

for κ > 1. These result in more thinned events, and so more computation, with faster

MCMC mixing. We study the effect of κ in our experiments, but find the smallest setting

of κ = 1 performs best. It is also possible to have non-additive settings for Ω(θ, ϑ), for

example, Ω(θ, ϑ) = κmax(maxi Ai(θ),maxAi(ϑ)) for some κ > 1. We investigate this too.

A key idea in our paper, as well as Rao and Teh (2013), is to impute the random grid

of candidate transition times W every MCMC iteration. Conditioned on W , the MJP

trajectory follows an HMM with transition matrix B. By running the FFBS algorithm

over W , we can marginalize out the states associated with W , and calculate the marginal

P (X|W, θ). Another approach to parameter inference that integrates out state values fol-

lows Fearnhead and Sherlock (2006). This algorithm makes a sequential forward pass

through all observations X (rather than W ). Unlike with W fixed, one cannot a priori

bound the number of transitions between two successive observations, so that Fearnhead

and Sherlock (2006) have to use matrix exponentials of A (rather than just B) to calcu-

late transition probabilities. The resulting algorithm is cubic, rather than quadratic in

the number of states, and the number of expensive matrix exponentiations needed scales

with the number of observations, rather than the number of transitions. Further, matrix

exponentiation results in a dense matrix, so that Fearnhead and Sherlock (2006) cannot

exploit sparsity in the transition matrix. In our framework, B = I + 1
Ω
A inherits sparsity

present in A. Thus if A is tri-diagonal, our algorithm is linear in the number of states.

A second approach to marginalizing out state information is particle MCMC (Andrieu

et al., 2010). This algorithm, described in section 11.3 in the supplementary material, uses

particle filtering to get an unbiased estimate of P (X|θ). Plugging this estimate into the

MH acceptance probability results in an MCMC sampler that targets the correct posterior,

however the resulting scheme does not exploit the Markovian structure of the MJP the way

FFBS can. In particular, observations that are informative of the MJP state can result
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in marginal probability estimates that have large variance, resulting in slow mixing. By

contrast, given W , FFBS can compute the marginal probability P (X|W, θ) exactly.

The basic idea of marginalizing out information to accelerate MCMC convergence is

formalized by the idea of the Bayesian fraction of missing information (Liu, 1994). In this

context, papers such as Papaspiliopoulos et al. (2007); Yu and Meng (2011) have studied

MCMC algorithms for hierarchical latent variable models. The Gibbs sampler of algo-

rithm 2 can be viewed as operating on a centered parametrization (Papaspiliopoulos et al.,

2007) or sufficient augmentation (Yu and Meng, 2011) of a hierarchical model involving

the parameter θ, the latent variables (v0, V,W ) and the observations X. These papers

then suggest noncentered parametrizations or ancillary augmentations, which in our con-

text correspond to simulating θ, W , and an independent set of (|W | + 1) i.i.d. uniform

random variables Q. Through a sequence of inverse-cdf transforms, the state values (v0, V )

are then written as a deterministic function of Q and θ: (v0, V ) = fθ(Q), after which the

observations X are produced. Now, proposing a new parameter ϑ automatically proposes

a new set of state variables (v′0, V
′) = fϑ(Q), so that problem of path-parameter coupling

is avoided. A similar idea could also be used to avoid couplng between θ and the Poisson

process W . However now, updating Q given θ and (v0, V,W ) raises significant challenges

to mixing. By contrast, our approach marginalizes out the variables (v0, V ) (or Q), and

will mix significantly faster. Nevertheless, results from the literature on NCPs can suggest

further improvements to our approach, and give guidance about conditions under which

approaches like ours outperform centered parametrisations like algorithm 2, or when a

mixture of centered and non-centered updates could be useful (Yu and Meng, 2011).

Our approach of first simulating ϑ, and then simulating W from a Poisson process whose

rate is symmetric in θ and ϑ is related to Neal (2004). In that work, to simulate from an

‘energy’ model P (x, y) ∝ exp(−E(x, y)), the author proposes a new parameter x∗, and

then updates y via intermediate transitions to be symmetric in x and x∗, before proposing

to swap x and x∗. Our approach exploits the specific structure of the Poisson and Markov

jump processes to do this directly, avoiding the need for any tempered transitions.

Our algorithm is also related to work on MCMC for doubly-intractable distributions.
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Algorithms like Møller et al. (2006); Murray et al. (2006); Andrieu and Roberts (2009) all

attempt to evaluate an intractable likelihood under a proposed parameter ϑ by introducing

auxiliary variables, typically sampled independently under the proposed parameters. For

MJPs, this would involve proposing ϑ, generating a new grid W ∗, and then using P (X|W, θ)

and P (X|W ∗, ϑ) in the MH acceptance step. This is more involved (with two sets of grids),

and introduces additional variance that reduces acceptance rates. While Murray et al.

(2006) suggest annealing schemes to try to address this issue, we exploit the uniformization

structure to provide a cleaner solution: generate a single set of auxiliary variables that

depends symmetrically on both the new and old parameters.

7 Experiments
In the following, we evaluate Python implementations of a number of algorithms, fo-

cusing on our contribution, the symmetrized MH algorithm (algorithm 4), and as well

as the naïve MH algorithm (algorithm 3). We evaluate different variants of these al-

gorithms, corresponding to different uniformizing Poisson rates. For naïve MH, we set

Ω(θ) = κmaxs As(θ) with κ equal to 1.5, 2 and 3 (here κ must be greater than 1), while

for symmetrized MH, where the uniformizing rate depends on both the current and pro-

posed parameters, we consider Ω(θ, ϑ) = κ(maxA(θ) + maxA(ϑ)) (κ = 1 and 1.5), and

Ω(θ, ϑ) = 1.5max(maxA(θ),maxA(ϑ)). We evaluate two other baselines: Gibbs sampling

(algorithm 2), and particle MCMC (Andrieu et al., 2010, see also section 11.3 in the ap-

pendix). Gibbs sampling involves a uniformization step to update the MJP trajectory (step

1 in algorithm 2), for which we use Ω(θ) = κmaxs As(θ) for κ = 1.5, 2, 3. Unless specified,

our results were obtained from 100 independent MCMC runs, each of 10000 iterations. We

found particle MCMC to be more computationally intensive, and limited each run to 3000

iterations, the number of particles being 5, 10 and 20.

For each run of each MCMC algorithm, we calculated the effective sample size (ESS)

of the posterior samples of the MJP parameters using the R package rcoda (Plummer

et al., 2006). This estimates the number of independent samples returned by the MCMC

algorithm, and dividing this by the runtime of a simulation gives the ESS per unit time

(ESS/sec). We used this to compare different samplers and different parameter settings.
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The performance of the naïve sampler demonstrates that it is not sufficient just to integrate

out the state values of the trajectory, we also have to get around the coupling between the

Poisson grid and the parameters. Our symmetrized MH-algorithm allows this.

To the right of figure 8, we plot results from a similar experiment. Now, instead of

keeping the number of measurements fixed as we increase the observation interval, we

keep the observation rate fixed at one observation every unit interval of time, so that

longer observation intervals have larger number of observations. The results are similar

to the previous case: Gibbs sampling performs well for small observation intervals, with

performance degrading sharply for larger intervals.

7.2 The Jukes and Cantor (JC69) model

The Jukes and Cantor (JC69) model (Jukes and Cantor, 1969) is a popular model of

DNA nucleotide substitution. We write its state space as {0, 1, 2, 3}, representing the four

nucleotides {A, T, C,G}. The model has a single parameter α, representing the rate at

which the system transitions between any pair of states. Thus, the rate matrix A is given

by Ai = −Ai,i = 3α,Ai,j = α, i ̸= j. We place a Gamma(3, 2) prior on the parameter α.

Figures 9(b) and (c) compare different samplers: we again see that the symmetrized MH

samplers comprehensively outperforms all others. Part of the reason why the difference is

so dramatic here is because now a single paramter α
def
= θ defines the transition matrix,

implying a stronger coupling between MJP path and parameter. We point out that for

Gibbs sampling, the conditional distribution over θ is conjugate to the Gamma prior.

We can thus simulate directly from this distribution without any MH proposal (hence its

performance remains fixed along the x-axis). Despite this, its performance is worse than

our symmetrized algorithm. Particle MCMC performs worse than all the algorithms, and

we do not include it in our plots. Figure 9(d) compares different settings of Ω(θ, ϑ) for our

sampler: again, the simple additive setting Ω(θ, ϑ) = maxs As(θ) + maxs As(ϑ) does best.
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constant, and are instead given by Ai,i+1(t) = αw(t) (i = 0, 1, · · · , N − 1) respectively.

While it is not difficult to work with sophisticated choices of w(t), we limit ourselves to

a simple piecewise-constant w(t) =
⌊

t
5

⌋

. Even such a simple change in the original model

can dramatically affect the performance of the Gibbs sampler.

Figure 14 plots the ESS per unit time (top row) and ESS per 1000 samples (bottom row)

for the parameters α and β. The left two columns show these for this model with capacity

3, and the right two show these for capacity 10. Now, the symmetrized MH algorithm is

significantly more efficient, comfortably outperforming all samplers (including the Gibbs

sampler) over a wide range of settings. We note that increasing the dimensionality of the

state space results in a more concentrated posterior, shifting the optimal setting of the

proposal variance to smaller values. Figure 1 shows prior and conditional distributions

over α for tend set to 10 and 100, with 3 states.

7.4 Chi site data for Escherichia coli

Finally, we consider a dataset recording positions of a particular DNA motif on the
E. coli genome. These motifs consist of eight base pairs GCTGGTGG, and are called

Chi sites (Fearnhead and Sherlock, 2006). The rates of occurence of Chi sites provide

information about genome segmentation, allowing the identification of regions with high

mutation or recombination rates. Following Fearnhead and Sherlock (2006), we use this

dataset to infer a two-state piecewise-constant segmentation of the DNA strand. We focus

on Chi sites along the inner (lagging) strand of the E. coli genome. We place an MJP

prior over this segmentation, and indexing position along the strand with t, we write this

as {S(t), t ∈ [0, 2319.838]}. To each state s ∈ {1, 2}, we assign a rate λs, which together

with S(·), defines a piecewise-constant rate function λS(·). We model the Chi-site positions

as drawn from a Poisson process with rate {λS(t), t ∈ [0, 2319.838]}, resulting in a Markov-

modulated Poisson process (Scott and Smyth, 2003) (see also section 3). MJP transitions

from state 1 to state 2 have rate α while transitions from state 2 to state 1 have rate β.

We place Gamma(2, 2), Gamma(2, 3), Gamma(3, 2), Gamma(1, 2) priors on α, β, λ1, λ2.

We use this setup to evaluate our symmetrized MH sampler along with Gibbs sampling

(other algorithms perform much worse, and we do not include them). For our MH proposal
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8 Geometric ergodicity

We derive conditions under which our symmetrized MH algorithm inherits mixing proper-

ties of an ‘ideal’ sampler that can compute the marginal likelihood P (X|θ), with the MJP

path integrated out. This algorithm proposes a new parameter ϑ from q(ϑ|θ), and accepts

with probability αI(θ, ϑ;X) = 1 ∧ P (X,ϑ)q(θ|ϑ)
P (X,θ)q(ϑ|θ)

. The resulting Markov chain has transition

probability PI(θ
′|θ) = q(θ′|θ)αI(θ, θ

′;X)+
[

1−
∫

dϑq(ϑ|θ)αI(θ, ϑ;X)
]

δθ(θ
′), the first term

corresponding to acceptance, and the second, rejection (Meyn and Tweedie, 2009).

Our main result is Theorem 3, which shows that if the ideal MCMC sampler is geomet-

rically ergodic, then so is our sampler in Algorithm 4. Informally, an MCMC algorithm

is geometrically ergodic when the total variation distance between the distribution over

states and the stationary distribution decreases geometrically with the number of itera-

tions. Meyn and Tweedie (2009) provide more details, as well as sufficient conditions that

we exploit in Theorem 3. Geometric ergodicity is an important property of an MCMC

chain, guaranteeing that the central limit theorem (CLT) holds for ergodic averages calcu-

lated with MCMC samples. Before diving into the proofs, we first state our assumptions,

Assumption 1. The uniformization rate is set as Ω(θ, ϑ) = Ω(θ) + Ω(ϑ), where Ω(θ) =

k1 maxs As(θ) + k0, for some k1 > 1, k0 > 0.

Although it is possible to specify broader conditions under which our result holds, for clarity

we focus on this case. In our experiments, one of our settings had k1 = 1. We believe our

result holds for this case too, but do not prove it. We can drop k0 if infθ maxs As(θ) > 0.

Assumption 2. There exists a positive constant θ0 such that for any θx, θy satisfying

∥θx∥ ≥ ∥θy∥ > θ0, we have Ω(θx) ≥ Ω(θy).

We make this assumption to avoid book-keeping, so Ω(θ) increases monotonically with θ.

Definition 1. Let πθ be the stationary distribution of the MJP with rate-matrix A(θ), and

define Dθ = diag(πθ). Define Ã(θ) = D−1
θ A(θ)Dθ, and the reversibilization of A(θ) as

RA(θ) = (A(θ) + Ã(θ))/2.
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This definition is from Fill (1991), who shows that RA(θ) is reversible with real eigenvalues,

the smallest being 0. The larger its second smallest eigenvalue, the faster the MJP converges

to its stationary distribution πθ. Note that if A(θ) is reversible, then RA(θ) = A(θ).

Assumption 3. Write λRA

2 (θ) for the second smallest eigenvalue of RA(θ). There exist

µ > 0, θ1 > 0 such that for all θ satisfying ∥θ∥ > θ1, we have λRA

2 (θ) ≥ µmaxs As(θ) (or

equivalently from Assumption 1, λRA

2 (θ) ≥ µΩ(θ)), and mins πθ(s) > 0.

This assumption is the strongest we need, requiring that λRA

2 (θ) (which sets the MJP mixing

rate) grows at least as fast as maxs As(θ). This is satisfied when θ is bounded, or when, as in

our experiments, all elements of A(θ) grow with θ at similar rates, controlling the relative

stability of the least and most stable states. While not trivial, this is reasonable: the

MCMC chain over MJP paths will mix well if we can control the mixing of the MJP itself.

A less restrictive assumption would also account for the tail behavior of the prior over θ,

though we do not do this. To better understand this assumption, recall B(θ, θ′) = I+ A(θ)
Ω(θ,θ′)

is the transition matrix of the embedded Markov chain from uniformization, which has the

same stationary distribution πθ as A(θ). Define the reversibilization RB(θ, θ
′) of B(θ, θ′)

just as we did RA(θ) from A(θ).

Lemma 2. Consider ∥θ∥ > max(θ0, θ1) and θ′ such that 1
K0

≤ Ω(θ′)
Ω(θ)

≤ K0, where K0

satisfies (1 + 1
K0

)k1 ≥ 2. For all such (θ, θ′), the Markov chain with transition matrix

B(θ, θ′) converges geometrically to stationarity at a rate uniformly bounded away from 0.

Proof. A little algebra gives RB(θ, θ
′) = I+RA(θ)/Ω(θ, θ

′). It follows that both RA and RB

share the same eigenvectors, with eigenvalues satisfying λRB
(θ, θ′) = 1− λRA

(θ)

Ω(θ,θ′)
. The second

largest eigenvalue λRB

2 (θ, θ′) of RB and second smallest eigenvalue λRA

2 (θ, θ′) of RA then

satisfy λRB

2 (θ, θ′) = 1 − λ
RA
2

(θ)

Ω(θ,θ′)
. From assumptions 1 and 3, and the lemma’s assumptions,

1− λRB

2 (θ, θ′) =
λ
RA
2

(θ)

Ω(θ,θ′)
≥ λ

RA
2

(θ)

(K0+1)Ω(θ)
≥ µ

K0+1
. Also, since (1 + 1

K0
)k1 ≥ 2,

Ω(θ, θ′) = Ω(θ) + Ω(θ′) ≥ (1 +
1

K0

)Ω(θ) > (1 +
1

K0

)k1 max
s

As(θ) ≥ 2max
s

As(θ).

So for any state s, the diagonal element Bs(θ, θ
′) = 1 − As(θ)

Ω(θ,θ′)
> 1

2
. From Fill (1991), this

diagonal property and the bound on 1− λRB

2 (θ, θ′) give the result.
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Our overall proof strategy is to show that on a set with ∥θ∥ and |W | large enough,

the conditions of Lemma 2 hold with high probability. Lemma 2 then will imply that

the distribution over states for the continuous-time MJP and its discrete-time counterpart

embedded in W will be brought arbitrarily close to πθ (and thus to each other), allowing our

sampler to inherit mixing properties of the ideal sampler. We will exploit the boundedness

of the complement of this set to establish a ‘small-set condition’ where the MCMC algorithm

forgets its state with some probability. These two conditions will be sufficient for geometric

ergodicity. The next assumption states these small-set conditions for the ideal sampler.

Assumption 4. For the ideal sampler with transition probability pI(θ
′|θ):

i) for each M , for the set BM = {θ : Ω(θ) ≤ M}, there exists a probability measure ϕ and

a constant κ1 > 0 s.t. αI(θ, θ
′;X)q(θ′|θ) ≥ κ1ϕ(θ

′) for θ ∈ BM . Thus BM is a 1-small set.

ii) for M large enough, ∃ρ < 1 s. t.
∫

Ω(ν)pI(ν|θ)dν ≤ (1− ρ)Ω(θ) + LI , ∀θ ̸∈ BM .

These two conditions are standard small-set and drift conditions necessary for the ideal

sampler to satisfy geometric ergodicity. The first implies that for θ in BM , the ideal

sampler ‘forgets’ its current location with probability κ1. The second condition ensures

that for θ outside this set, the ideal sampler drifts towards BM . These two conditions

together imply geometric mixing with rate equal or faster than κ1 (Meyn and Tweedie,

2009). Observe that we have used Ω(θ) as the so-called Lyapunov-Foster function to define

the drift condition for the ideal sampler. This is the most natural choice, though our proof

can be tailored to different choices. Similarly, we could easily allow BM to be an n-small

set for any n ≥ 1 (so the ideal sampler needs n steps before it can forget its current value

in BM); we restrict ourselves to the 1-small case for clarity.

Assumption 5. ∃ u > ℓ > 0 s.t.
∏

P (X|so, θ) ∈ [ℓ, u] for any state so and θ.

This assumption follows Miasojedow and Niemiro (2017), and holds if θ does not include

parameters of the observation process (or if so, the likelihood is finite and nonzero for

all settings of θ). We can relax this assumption, though this will introduce technicalities

unrelated to our focus, which is on complications in parameter inference arising from the

continuous-time dynamics, rather than the observation process.
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Assumption 6. Given the proposal density q(ν|θ), ∃η0 > 0, θ2 > 0 such that for θ satisfying

∥θ∥ > θ2,
∫

Θ
Ω(ν)2q(ν|θ)dν ≤ η0Ω(θ)

2.

This mild requirement can be satisfied by choosing a proposal distribution q that does not

attempt to explore large θ’s too aggressively. The next corollary follows from a simple

application of the Cauchy-Schwarz inequality, see the supplement for the proof.

Corollary 1. Given the proposal density q(ν|θ), ∃η1 > 0, θ2 > 0 such that for θ satisfying

∥θ∥ > θ2,
∫

Θ
Ω(ν)q(ν|θ)dν ≤ η1Ω(θ).

We need two further assumptions on q(θ′|θ). There are satisfied in our experiments.

Assumption 7. For any ϵ > 0, there exist finite Mϵ, θ3,ϵ such that for θ satisfying

∥θ∥ > θ3,ϵ, the condition q({θ′ : p(θ′)q(θ|θ′)
p(θ)q(θ′|θ)

≤ Mϵ}|θ) > 1− ϵ holds.

This holds, when e.g. p(θ) is a gamma distribution, and q(θ′|θ) is Gaussian.

Assumption 8. For any ϵ > 0 and K > 1, there exists θK4,ϵ such that for θ satisfying

∥θ∥ > θK4,ϵ, the condition q({θ′ : Ω(θ′)
Ω(θ)

∈
[

1
K
, K

]

}|θ) > 1− ϵ holds.

This holds when e.g. q(θ′|θ) is a centered on θ and has finite variance.

Theorem 3. Under the above assumptions, our symmetrized auxiliary variable MCMC

sampler in algorithm 4 is geometrically ergodic.

Proof. This theorem follows from two lemmas we will prove. Lemma 5 shows there exist

small sets {(W, θ, ϑ) : λ1|W |+Ω(θ) < M} for λ1,M > 0, within which our sampler forgets

its current state with some positive probability. Lemma 8 shows that for appropriate

(λ1,M), our sampler drifts towards this set whenever outside. Together, these two results

imply geometric ergodicity (Meyn and Tweedie, 2009, Theorems 15.0.1 and Lemma 15.2.8).

If supθ Ω(θ) < ∞, we just need the small set {(W, θ, ϑ : |W | < M} for some M .

For easier comparison with the ideal sampler, we begin an MCMC iteration from step

5 in Algorithm 4. Thus, our sampler operates on (θ, ϑ,W ), with θ the current parameter,

ϑ the auxiliary variable, and W the Poisson grid. An MCMC iteration updates this by

(a) sampling states V with a backward pass, (b) discarding ϑ and self-transition times,

31



(c) sampling ν from q(ν|θ), (d) sampling U ′ given (θ, ν, S, T ), setting W ′ = T ∪ U ′, and

discarding S, (e) proposing to swap (θ, ν) and then (f) accepting or rejecting with a forward

pass. On acceptance, θ′ = ν and ϑ′ = θ, and on rejection, θ′ = θ and ϑ′ = ν, so that the

MCMC state at the end of the iteration is (θ′, ϑ′,W ′). We write (θ′′, ϑ′′,W ′′) for the

MCMC state after two iterations. Recall that step (a) actually assigns states V to W . T

are the elements of W where V changes value, and S are the corresponding elements of

V . The remaining elements U are the elements of W corresponding to self-transitions. For

reference, we repeat some of our notation in the supplementary material.

We first bound self-transition probabilities of the embedded Markov chain from 0:

Proposition 4. The posterior probability that the embedded Markov chain makes a self-

transition, P (Vi = Vi+1|W,X, θ, ϑ) ≥ δ1 > 0, for any θ, ϑ,W .

The proof (in the supplement) exploits the bounded likelihood from assumption 5. A simple

by-product of the proof is the following corollary:

Corollary 2. P (Vi+1 = s|Vs = s,W,X, θ, ϑ) ≥ δ1 > 0, for any θ, ϑ,W, s.

Lemma 5. For all M,h > 0, the set Bh,M = {(W, θ, ϑ) : |W | ≤ h, θ ∈ BM} is a 2-small set

under our proposed sampler. Thus, for all (W, θ, ϑ) in Bh,M , the two-step transition proba-

bility satisfies P (W ′′, θ′′, ϑ′′|W, θ, ϑ) ≥ ρ1ϕ1(W
′′, θ′′, ϑ′′) for a constant ρ1 and a probability

measure ϕ1 independent of the initial state.

Proof. Recall the definition of BM , and of an n-small set from Assumption 4. The 1-step

transition probability of our MCMC algorithm consists of two terms, corresponding to the

proposed parameter being accepted and rejected. Discarding the latter, we have

P (W ′, θ′, ϑ′|W, θ, ϑ,X) ≥ q(θ′|θ)δθ(ϑ′)α(θ, θ′,W ′;X)
∑

S,T

[P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, θ′)] .

This follows from steps (c) to (e) in the reordered algorithm. The summation is over all

(S, T ) values produced by the backward pass (which are then discarded after sampling W ′).

We have used the fact that given (S, T ), P (W ′|S, T, θ, θ′, X) is independent of X.
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We bound the summation over (S, T ) by considering only terms with S constant. When

this constant is state s∗, we write this as (S = [s∗], T = ∅). This corresponds to |W | self-

transitions after starting state S0 = s∗. Then the first term in the square brackets becomes

P (S = [s∗], T = ∅|W, θ,ϑ,X) = P (S0 = s∗|X,W, θ, ϑ)

|W |−1
∏

i=0

P (Vi+1 = s∗|Vi = s∗, X,W, θ, ϑ)

≥ P (S0 = s∗|X,W, θ, ϑ)δ
|W |
1 (from Corollary 2).

With S(t) fixed at s∗, W ′ is distributed as a Poisson process with rate Ω(θ′)+Ω(θ)−As∗(θ).

Write PoissProc(W ′|R(t)) for the probability of W ′ under a rate-R(t) Poisson process on

[0, tend], so that P (W ′|S = [s∗], T = ∅, θ′, θ) = PoissProc(W ′|Ω(θ′) +Ω(θ)−As∗(θ)). Then,

from the Poisson superposition theorem, writing 2W
′ for the power set of W ′, we have

P (W ′|S =[s∗], T = ∅, θ′, θ) =
∑

Z∈2W ′

PoissProc (Z|Ω(θ′))PoissProc (W ′\Z|Ω(θ)− As∗(θ))

≥ PoissProc(W ′|Ω(θ′))PoissProc(∅|Ω(θ)− As∗(θ))

≥ PoissProc(W ′|Ω(θ′))PoissProc(∅|Ω(θ))

≥ PoissProc(W ′|Ω(θ′)) exp(−Mtend), since for θ ∈ BM , Ω(θ) ≤ M.

Thus we have
∑

S,T

P (S, T,W ′|W, θ, ϑ,X) ≥
∑

s∗

P (S= [s∗], T = ∅|W, θ, ϑ,X)P (W ′|S= [s∗], T = ∅, θ′, θ)

≥ δ
|W |
1 exp(−Mtend)PoissProc(W ′|Ω(θ′)). (6)

Next, using assumption 5,

α(θ, θ′,W ′;X) = 1 ∧ P (X|W ′, θ′, θ)/P (X|θ′)
P (X|W ′, θ, θ′)/P (X|θ) · P (X|θ′)q(θ|θ′)p(θ′)

P (X|θ)q(θ′|θ)p(θ)

≥ 1 ∧ ℓ2

u2
· P (X|θ′)q(θ|θ′)p(θ′)
P (X|θ)q(θ′|θ)p(θ) ≥ αI(θ, θ

′;X)
ℓ2

u2
. (7)

Inside Bh,M , |W | ≤ h, and by assumption 4, q(θ′|θ)αI(θ, θ
′;X) ≥ κ1ϕ(θ

′). Then the three

inequalities above let us simplify the equation at the start of the proof:

P (W ′, θ′, ϑ′|W, θ, ϑ) ≥ ℓ2

u2
δh1 exp(−Mtend)δθ(ϑ

′)κ1PoissProc(W ′|Ω(θ′)ϕ(θ′)
def
= ρ1δθ(ϑ

′)PoissProc(W ′|Ω(θ′)ϕ(θ′).
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Write FPoiss(a) for the CDF of a rate-a Poisson. The two-step transition satisfies

P (W ′′, θ′′, ϑ′′|W, θ, ϑ) ≥
∫

Bh,M

P (W ′′, θ′′, ϑ′′|W ′, θ′, ϑ′)P (W ′, θ′, ϑ′|W, θ, ϑ)dW ′dθ′dϑ′

≥
∫

Bh,M

ρ1δθ′(ϑ
′′)PoissProc(W ′′|Ω(θ′′))ϕ(θ′′)

ρ1δθ(ϑ
′)PoissProc(W ′|Ω(θ′))ϕ(θ′)dW ′dθ′dϑ′

≥ ρ21ϕ(θ
′′)PoissProc(W ′′|Ω(θ′′))

∫

Bh,M

δθ′(ϑ
′′)FPoiss(Ω(θ′))(h)ϕ(θ

′)dθ′

≥ ρ21PoissProc(W ′′|Ω(θ′′))ϕ(θ′′)ϕ(ϑ′′)FPoiss(Ω(ϑ′′))(h)δBh,M
(ϑ′′)

≥ ρ21PoissProc(W ′′|Ω(θ′′))ϕ(θ′′)ϕ(ϑ′′)δBh,M
(ϑ′′) exp(−Ω(ϑ′′)) (8)

The last line uses FPoiss(a)(h) ≥ FPoiss(a)(0) = exp(−a) ∀a, and gives our result, with

ϕ1(W
′′, θ′′, ϑ′′) ∝ PoissProc(W ′′|Ω(θ′′))ϕ(θ′′)ϕ(ϑ′′)δBh,M

(ϑ′′) exp(−Ω(ϑ′′)).

We have established the small set condition: for a point inside Bh,M our sampler forgets its

state with nonzero probability, sampling a new state from ϕ1(·). We next establish a drift

condition, showing that outside Bh,M , the algorithm drifts back towards it (Lemma 8). We

first establish a result needed when maxs |As(θ)| is unbounded as θ increases. This states

that the acceptance probabilities of our sampler and the ideal sampler can be brought

arbitrarily close outside a small set, so long as Ω(θ) and Ω(θ′) are sufficiently close.

Lemma 6. Suppose 1
K0

≤ Ω(θ)
Ω(θ′)

≤ K0, for K0 satisfying (1 + 1
K0

)k1 ≥ 2 (k1 is from

Assumption 1). Write |W ↓| for the minimum number of elements of grid W between

any successive pairs of observations. For any ϵ > 0, there exist wK0

ϵ , θK0

5,ϵ > 0 such that

|P (X|W, θ, θ′)− P (X|θ)| < ϵ for any (W, θ) with |W ↓| > wK0

ϵ and ∥θ∥ > θK0

5,ϵ .

Proof. From lemma 2, for all θ, θ′ satisfying the lemma’s assumptions, the Markov chain

with transition matrix B(θ, θ′) converges geometrically to stationarity distribution πθ at a

rate uniformly bounded away from 0. By setting |W ↓| large enough, for all such (θ, θ′) and

for any initial state, the Markov chain would have mixed beween each pair of observations,

with distribution over states returning arbitrarily close to πθ.

Write WX for the indices of the grid W containing observations, and VX for the Markov

chain state at these times (illustrated in Section 11.1 in the supplementary material).
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Let PB(VX |W, θ, θ′) be the probability distribution over VX under the Markov chain with

transition matrix B given W and Pst(VX |θ) be the probability of VX sampled independently

under the stationary distribution. Let P (X|W, θ, θ′) be the marginal probability of the

observations X under that Markov chain B(θ, θ′) given W . Dropping W and θ′ from

notation, P (X|θ) is the probability of the observations under the rate-A(θ) MJP.

From the first paragraph, for |W ↓| > w0 for large enough w0, PB(VX |W, θ, θ′) and

Pst(VX |W, θ) can be brought ϵ′ close. Then for any W with |W ↓| > w0, we have

|P (X|W, θ, θ′)−Pst(X|θ)| = |
∑

VX

P (X|VX , θ)[PB(VX |W, θ, θ′)− Pst(VX |θ)]|

≤
∑

VX

P (X|VX , θ)|PB(VX |W, θ, θ′)− Pst(VX |θ)| ≤ ϵ′′,

using P (X|VX , θ) ≤ u (Assumption 5), and
∑

VX
|PB(VX |W, θ, θ′) − Pst(VX |θ)| < ϵ. For

large θ, we prove a similar result in the continuous case by uniformization. For any θ′,

P (X|θ) =
∫

dWP (X|W, θ, θ′)PoissProc(W |Ω(θ) + Ω(θ′)).

We split this integral into two parts, one over the set {|W ↓| > w0}, and the second over

its complement. On the former, for w0 large enough, |P (X|W, θ, θ′)− Pst(X|θ)| ≤ ϵ′′. For

θ large enough, {|W ↓| > w0} occurs with arbitrarily high probability for any θ′. Since the

likelihood is bounded, the integral over the second set can be made arbitrarily small (say,

ϵ′′ again). Finally, from the triangle inequality,

|P (X|θ)− P (X|W, θ, θ′)| ≤ |P (X|θ)− Pst(X|θ)|+ |Pst(X|θ)− P (X|W, θ, θ′)|

≤ (ϵ′′ + ϵ′′) + ϵ′′
def
= ϵ.

The previous lemma bounds the difference in probability of observations under the discrete-

time and continuous-time processes for θ and |W | large enough. The next result uses this to

bound with high probability the different in acceptance probabilities of the ideal sampler,

and our proposed sampler with a grid W . See the supplement for the proof.

Proposition 7. Let (W, θ, ϑ) be the current state of the sampler. Then, for any ϵ, there

exists θϵ > 0 as well as a set Eϵ ⊆ {(W ′, θ′) : |αI(θ, θ
′;X)−α(θ, θ′;W ′, X)| ≤ ϵ}, such that

for θ satisfying ∥θ∥ > θϵ and any ϑ, we have P (Eϵ|W, θ, ϑ) > 1− ϵ.
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Lemma 8. (drift condition) There exist δ2 ∈ (0, 1), λ1 > 0 and L > 0 such that

E [λ1|W ′|+ Ω(θ′)|W, θ, ϑ,X] ≤ (1− δ2) (λ1|W |+ Ω(θ)) + L.

Proof. Since W ′ = T ∪ U ′, we consider E[|T ||W, θ, ϑ,X] and E[|U ′||W, θ, ϑ,X] separately.

An upper bound of E[|T ||W, θ, ϑ,X] can be derived directly from proposition 4:

E[|T ||W, θ, ϑ,X] = E[

|W |−1
∑

i=0

I{Vi+1 ̸=Vi}|W, θ, ϑ,X] ≤
|W |−1
∑

i=0

(1− δ1) = |W |(1− δ1).

By corollary 1, there exist η1, θ2 such that for ∥θ∥ > θ2,
∫

Ω(ν)q(ν|θ)dν ≤ η1Ω(θ). Then,

E[|U ′||W, θ, ϑ,X] = ES,T,νE[|U ′||S, T,W, θ, ϑ, ν,X] = ES,T,νE[|U ′||S, T,W, θ, ν]

≤ ES,T,ν [tendΩ(θ, ν)] = tend

∫

Ω(θ, ν)q(ν|θ)dν

= tend

[(

Ω(θ) +

∫

Θ

Ω(ν)q(ν|θ)dν
)]

≤ tend(η1 + 1)Ω(θ).

To bound E [Ω(θ′)|W, θ, ϑ,X], consider the transition probability over (W ′, θ′):

P (dW ′, dθ′|W, θ, ϑ) = dθ′dW ′

[

q(θ′|θ)
∑

S,T

P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, θ′)α(θ, θ′;W ′, X)

+

∫

q(ν|θ)
∑

S,T

P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, ν)(1− α(θ, ν;W ′, X))dνδθ(θ
′)

]

.

With P (W ′|W, θ, ϑ, θ′, X) =
∑

S,T P (S, T |W, θ, ϑ,X)P (W ′|S, T, θ, θ′), integrate out W ′:

P (dθ′|W, θ, ϑ) = dθ′
∫

dW ′

[

q(θ′|θ)P (W ′|W, θ, ϑ, θ′, X)α(θ, θ′;W ′, X)+

∫

q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X))dνδθ(θ
′)

]

Let
∫

Ω(θ′)P (dθ′|W, θ, ϑ) = I1(W, θ, ϑ) + Ω(θ)I2(W, θ, ϑ), with

I1(W, θ, ϑ) =

∫

dθ′Ω(θ′)q(θ′|θ)
∫

dW ′P (W ′|W, θ, ϑ, θ′, X)α(θ, θ′;W ′, X),

I2(W, θ, ϑ) =

∫

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X)).

Consider the second term I2. From Proposition 7, for any positive ϵ, there exists θϵ > 0 such

that the set Eϵ (where |α(θ, ν;X,W ′)−αI(θ, ν;X)| ≤ ϵ) has probability greater than 1− ϵ.
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Write I2,Eϵ
for the integral restricted to this set, and I2,Ec

ϵ
for that over the complement,

so that I2 = I2,Eϵ
+ I2,Ec

ϵ
. Then for θ > θϵ,

I2,Eϵ
(W, θ, ϑ) =

∫

Eϵ

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X))

≤
∫

Eϵ

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)[1− (αI(θ, ν;X)− ϵ)]

≤
∫

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)[1− (αI(θ, ν;X)− ϵ)]

≤ (1 + ϵ)−
∫

q(ν|θ)αI(θ, ν;X)dν, and

I2,Ec
ϵ
(W, θ, ϑ) =

∫

Ec
ϵ

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X)(1− α(θ, ν;W ′, X))

≤
∫

Ec
ϵ

dνdW ′q(ν|θ)P (W ′|W, θ, ϑ, ν,X) ≤ ϵ.

We similarly divide the integral I1 into two parts, I1,Eϵ
(over Eϵ) and I1,Ec

ϵ
(over its comple-

ment Ec
ϵ ). For ∥θ∥ large enough, we can bound the acceptance probability by αI(θ, θ

′;X)+ϵ

on the set Eϵ, and by corollary 1, we get

I1,Eϵ
≤

∫

Eϵ

Ω(θ′)q(θ′|θ)(αI(θ, θ
′;X) + ϵ)dθ′ ≤

∫

Ω(θ′)q(θ′|θ)αI(θ, θ
′;X)dθ′ + η1ϵΩ(θ).

For I1,Ec
ϵ
, from assumption 6, we have

∫

Θ
Ω(ν)2q(ν|θ)dν ≤ η0Ω(θ)

2 for ∥θ∥ > θ2. So, by

Cauchy-Schwarz inequality and bounding the acceptance probability by one, we have

(

I1,Ec
ϵ

)2 ≤
∫

Ec
ϵ

q(θ′|θ)P (W ′|W, θ, ϑ, θ′, X)dθ′dW ′

∫

Ec
ϵ

Ω(θ′)2q(θ′|θ)P (W ′|W, θ, ϑ, θ′, X)dθ′dW ′

≤ ϵ

∫

Ω(θ′)2q(θ′|θ)dθ′ ≤ ϵη0Ω(θ)
2,

giving I1,Ec
ϵ

≤ √
ϵη0Ω(θ). Putting these four results together, for θ satisfying ∥θ∥ >

max(θ2, θϵ,M) (where M is from Assumption 4 on the ideal sampler), we have
∫

Ω(θ′)P (dθ′|W, θ, ϑ) ≤
∫

Ω(θ′)q(θ′|θ)αI(θ, θ
′|X)dθ′ + Ω(θ)

∫

q(ν|θ)(1− αI(θ, ν|X))dν+

√
η0ϵΩ(θ) + η1ϵΩ(θ) + 2ϵΩ(θ)

≤ (1− ρ)Ω(θ) + (
√
η0ϵ+ η1ϵ+ 2ϵ)Ω(θ) + LI , giving
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E[λ1|W ′|+ Ω(θ′)|W, θ, ϑ,X] ≤ λ1(1− δ1)|W |+ λ1tend(1 + η1)Ω(θ)+

(1− ρ)Ω(θ) + (
√
η0
√
ϵ+ η1ϵ+ 2ϵ)Ω(θ) + LI

= (1− δ1)λ1|W |+ [1− (ρ− λ1tend(1 + η1)− (2 + η1)ϵ−
√
η0ϵ)]Ω(θ) + LI

def
= (1− δ1)λ1|W |+ (1− δ2)Ω(θ) + LI

For (λ1, ϵ) small enough, δ2 ∈ (0, 1), and δ = min(δ1, δ2) gives the drift condition.

9 Conclusion

We have proposed a novel Metropolis-Hastings algorithm for parameter inference in Markov

jump processes. We use uniformization to update the MJP parameters with state-values

marginalized out, though still conditioning on a random Poisson grid. The distribution

of this grid depends on the MJP parameters, significantly slowing down MCMC mixing.

We propose a simple symmetrization scheme to get around this dependency. In our ex-

periments, we demonstrate the usefulness of this scheme, which outperforms a number of

competing baselines. We also derive conditions under which our sampler inherits geometric

ergodicity properties of an ideal MCMC sampler.

There are a number of interesting directions for future research. Our focus was on

Metropolis-Hastings algorithms for typical settings, where the parameters are low dimen-

sional. It is interesting to investigate how our ideas extend to schemes like Hamiltonian

Monte Carlo (Neal, 2010) suited for higher-dimensional settings. Another direction is to

develop and study similar schemes for more complicated hierarchical models like mixtures

of MJPs or coupled MJPs. While we focused only on Markov jump processes, it is also

of interest to study similar ideas for algorithms for more general processes (Rao and Teh,

2012). It is also important to investigate how similar ideas apply to deterministic algorithms

like variational Bayes (Opper and Sanguinetti, 2007; Pan et al., 2017). From a theoretical

viewpoint, our proof required the uniformization rate to satisfy Ω(θ) ≥ k1 maxs As(θ) + k0

for k1 > 1. We believe our result still holds for k1 = 1, and for completeness, it would be

interesting to prove this.
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10 Supplementary material

Appendix This file includes a summary of notation used in the main text, proofs not

included in the main text, details of the naïve and particle MCMC algorithms, as well

as experimental results not included in the main text. [Appendix_ZhangRao.pdf].

Python code This includes code implementing the symmetrized MH algorithm, as well as

the E Coli dataset. README.txt includes instructions. The github repository https:

//github.com/varao/ZhangRao_JCGS_code also contains the code. [Code_ZhangRao.tar.gz].
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• P (X|W, θ, θ′) is the marginal distribution of X on W under a Markov chain with

transition matrix B(θ, θ′) (after integrating out the state information V ). Recall

that the LHS does not depend on θ′ because of uniformization.

• P (X|θ) is the marginal probability of the observations under the rate-A(θ) MJP.

P (X|θ) =
∫

W
P (X|W, θ, θ′)P (W |θ, θ′)dW .

• PB(VX |W, θ, θ′) is the probability distribution over states VX for the Markov chain

with transition matrix B(θ, θ′) on the grid W , with the remaining elements of V

integrated out.

• Pst(VX |θ) is the probability of VX when elements of VX are sampled i.i.d. from πθ).

• Pst(X|θ) is the marginal probability of X when VX is drawn from Pst(VX |θ).

11.2 Remaining proofs

Corollary 3. Given the proposal density q(ν|θ), ∃η1 > 0, θ2 > 0 such that for θ satisfying

∥θ∥ > θ2,
∫

Θ
Ω(ν)q(ν|θ)dν ≤ η1Ω(θ).

Proof. From assumption 6, we have
∫

Θ
Ω(ν)2q(ν|θ)dν ≤ η0Ω(θ)

2 for θ satisfying ∥θ∥ > θ2.

For such θ, by the Cauchy-Schwarz inequality, we have
[
∫

Θ

Ω(ν)q(ν|θ)dν
]2

≤
∫

Θ

Ω(ν)2q(ν|θ)dν ·
∫

Θ

q(ν|θ)dν ≤ η0Ω(θ)
2.

So for θ satisfying ∥θ∥ > θ2, we have
∫

Θ
Ω(ν)q(ν|θ)dν ≤ √

η0Ω(θ).

Proposition 4. The a posteriori probability that the embedded Markov chain makes a

self-transition, P (Vi+1 = Vi|W,X, θ, ϑ) ≥ δ1 > 0, for any θ, ϑ,W .

Proof. We use k0 from assumption 1 to bound a priori self-transition probabilities:

P (Vi+1 = s|Vi = s,W, θ, ϑ) = Bss(θ, ϑ) = 1− As(θ)

Ω(θ, ϑ)
≥ 1− As(θ)

Ω(θ)
≥ 1− 1

k0
.
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We then have

P (Vi = Vi+1|W,X, θ, ϑ) =
∑

v

P (Vi = Vi+1 = v|W,X, θ, ϑ) =
∑

v

P (Vi = Vi+1 = v,X|W, θ, ϑ)

P (X|W, θ, ϑ)

=
∑

v

P (X|Vi = Vi+1 = v,W, θ, ϑ)P (Vi = Vi+1 = v|W, θ, ϑ)

P (X|W, θ, ϑ)

≥ ℓ

u

∑

v

P (Vi = Vi+1 = v|W, θ, ϑ)

=
ℓ

u

∑

v

P (Vi+1 = v|Vi = v,W, θ, ϑ)P (Vi = v|θ, ϑ)

≥ ℓ

u
(1− 1

k0
)
.
= δ1 > 0.

Proposition 7. Let (W, θ, ϑ) be the current state of the sampler. Then, for any ϵ, there

exists θϵ > 0 as well as a set Eϵ ⊆ {(W ′, θ′) : |αI(θ, θ
′;X)−α(θ, θ′;W ′, X)| ≤ ϵ}, such that

for θ satisfying ∥θ∥ > θϵ and any ϑ, we have P (Eϵ|W, θ, ϑ) > 1− ϵ.

Proof. Fix ϵ > 0 and K > 1 satisfying (1 + 1
K
)k1 ≥ 2.

• From assumption 7, there exist Mϵ and θ1,ϵ, such that P ( q(θ|θ
′)p(θ′)

q(θ′|θ)p(θ)
≤ Mϵ) > 1 − ϵ/2

for θ satisfying ∥θ∥ > θ1,ϵ. Define Eϵ
1 = {θ′s.t. q(θ|θ′)p(θ′)

q(θ′|θ)p(θ)
≤ Mϵ}.

• Define EK
2 = {θ′s.t. Ω(θ′)

Ω(θ)
∈ [1/K,K]}. Following assumption 8, define θK2,ϵ such that

P (EK
2 |θ) > 1− ϵ/2 for all θ satisfying ∥θ∥ > θK2,ϵ.

• On the set EK
2 , Ω(θ′) ≤ KΩ(θ) (and also Ω(θ) ≤ KΩ(θ′)). Lemma 6 ensures that

there exist θK3,ϵ > 0, wK
ϵ > 0, such that for |W ↓| > wK

ϵ , ∥θ∥ > θK3,ϵ and ∥θ′∥ > θK3,ϵ,

we have |P (X|W, θ′, θ) − P (X|θ′)| < ϵ, and |P (X|W, θ, θ′) − P (X|θ)| < ϵ. Define

EK
3,ϵ = {θ′s.t.∥θ′∥ > θK3,ϵ}.

• Define EK
4,ϵ = {Ws.t. |W ↓| > wK

ϵ }. Set θK4,ϵ, so that for ∥θ∥ > θK4,ϵ, P (EK
4,ϵ|EK

2 , Eϵ
1) >

1− ϵ.. This holds since W comes from a Poisson processes, whose rate can be made

arbitrarily large by increasing Ω(θ).
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• From assumption 2, there exists θ0, such that Ω(θ) increases as ∥θ∥ increases, for θ

satisfying ∥θ∥ > θ0. Set θϵ = max(θ0, θ1,ϵ, θ
K
2,ϵ, θ

K
3,ϵ, θ

K
4,ϵ).

Now consider the difference

|α(θ, θ′;W,X)− αI(θ, θ
′;X)| = | 1 ∧ P (X|W, θ′, θ)q(θ|θ′)p(θ′)

P (X|W, θ, θ′)q(θ′|θ)p(θ) − 1 ∧ P (X|θ′)q(θ|θ′)p(θ′)
P (X|θ)q(θ′|θ)p(θ) |

≤ | P (X|W, θ′, θ)

P (X|W, θ, θ′)
− P (X|θ′)

P (X|θ) | q(θ|θ
′)p(θ′)

q(θ′|θ)p(θ) .

On Eϵ
1,

q(θ|θ′)p(θ′)
q(θ′|θ)p(θ)

≤ Mϵ. Since P (X|W, θ, θ′) and P (X|θ) are lower-bounded by ℓ, for any

ϵ > 0 we can find a K such that on EK
2 ∩ EK

3,ϵ,

|P (X|W, θ′, θ)

P (X|W, θ, θ′)
− P (X|θ′)

P (X|θ) | < ϵ/Mϵ.

This means that on Eϵ
1 ∩ EK

2 ∩ EK
3,ϵ, |α(θ, θ′,W,X)− αI(θ, θ

′, X)| < ϵ.

For θ > max(θ1,ϵ, θ
K
2,ϵ) we have P (EK

2 Eϵ
1) ≥ P (EK

2 ) + P (Eϵ
1)− 1 ≥ 1− ϵ.

When EK
2 holds, Ω(θ′) ≥ Ω(θ)/K. For θ large enough, we can ensure ∥θ′∥ > θK3,ϵ. So

P (Eϵ
1E

K
2 EK

3,ϵE
K
4,ϵ) > (1− ϵ)2.

Finally, set Eϵ
.
= Eϵ

1 ∩ EK
2 ∩ EK

3,ϵ ∩ EK
4,ϵ , giving us our result.

11.3 Particle MCMC for MJP inference

11.3.1 A sequential Monte Carlo algorithm for MJPs inference

We describe a sequential Monte Carlo algorithm for MJPs inference that underlies particle

MCMC. Denote by S[t′
1
,t′
2
] the MJP trajectory from time t′1 to time t′2. Our target is to

sample an MJP trajectory S[0,tend] given n noisy observations X = (x1, x2, ..., xn), at time

tX1 , t
X
2 , ..., t

X
n . The initial value of the Markov jump process trajectory can be simulated

from its initial distribution over states: S(0) ∼ π0. S[tXi ,tXi+1
], its values over any interval

[tXi , t
X
i+1] can be simulated by Gillespie’s algorithm as described in section 1 For the ith

observation xi at time tXi , denote the likelihood for S(tXi ) as P (xi|S(tXi )).
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Algorithm 5 The SMC sampler for MJP trajectories

Input: Prior π0, n observations X, Number of particles N , rate-matrix A.

Output: New MJP trajectory S ′(t) = (s′0, S
′, T ′).

1: Define tX0 = 0 and tXn+1 = tend.

2: Sample initial states for N particles Sk(0) from π0, k = 1, ..., N .

3: for i = 1, ..., n+ 1 : do

4: (a) For k = 1, 2, ..., N , update particle k from [0, tXi−1] to [0, tXi ] by forward simulating

Sk
[tXi−1

,tXi ]
|Sk(tXi−1) via Gillespie’s algorithm.

5: (b) Calculate the weights wk
i = P (xi|Sk(tXi )) and normalize W k

i =
wk

i∑N
k=1

wk
i

.

6: (c) Sample Jk
i ∼ Multi(·|(W 1

i , . . . ,W
N
i )) , k = 1, 2, ..., N .

7: (d) Set Sk
[0,tXi ]

:= S
Jk
i

[0,tXi ]
.

8: end for

The SMC algorithm gives us an estimate of the marginal likelihood Pθ(X1:n).

P̂θ = P̂θ(X1)
n
∏

i=2

P̂θ(Xi|X1:i−1) =
n
∏

i=1

[

N
∑

k=1

1

N
wk

i

]

.

11.3.2 Particle MCMC algorithm for MJPs inference

Algorithm 6 The particle marginal MH sampler for MJP trajectories

Input: The observations X, the MJP path S(t) = (s0, S, T ),

number of particles N , parameter θ and π0,

P (θ) prior of θ, proposal density q(·|·).
Output: New MJP trajectory S ′(t) = (s′0, S

′, T ′).
1: Sample θ∗ ∼ q(·|θ).
2: Run the SMC algorithm above targeting Pθ∗(·|X1:n) to sample S∗(t) from P̂θ∗(·|X1:n)

and let P̂θ∗ denote the estimate of the marginal likelihood.

3: Accept θ∗, S∗(t) with probability

acc = 1 ∧ P̂θ∗P (θ∗)

P̂θP (θ)

q(θ|θ∗)
q(θ∗|θ) .
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