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Abstract— The paper introduces a state-feedback closed-loop
control approach with integrated collision exploitation. We
represent the system’s kinematics in the form of a drift-diffusion
stochastic differential equation, and follow a stochastic switching
framework to model the transition between states of free motion
and in collision with the environment. We formulate an optimal
steering problem and compute the control input related to state
feedback. Collisions are found beneficial in terms of increasing
task success probability when steering a robot from an initial
to a target spatial distribution. In certain cases, collisions may
help reduce the control energy for the task when compared to
optimal steering with collision avoidance. We provide a mathe-
matical basis to explain this finding, perform several parametric
analyses in simulation to validate the theoretical analysis, and
conduct realistic physics simulations to quantify the impact of
realistic constraints (bounded control input, physical impact of
collision, and friction) on control energy and success probability.
Further, we validate the proposed approach experimentally with
an omni-directional collision-resilient wheeled robot.

Index Terms— Stochastic Control, Optimal Steering, Stochas-
tic Switching Framework

I. INTRODUCTION

As robots increasingly venture outside the protected lab
environment and into the real—uncertain—world, guarantee-
ing collision avoidance becomes an even more challenging
task [1], [2]. At the same time, recent advances in material
science and mechanical design have helped introduce robots
that can safely withstand collisions (e.g., small legged robots
with exoskeletons [3], aerial robots with protective cages [4],
and soft robots [5]). Taken together, these observations may
explain an emerging paradigm shift: Collisions with the envi-
ronment could be harnessed instead of being avoided. In fact,
recent works have demonstrated how allowing for collisions
can benefit motion planning and control [6], localization [7],
and sensing [8]. This present paper focuses on harnessing
collisions for robot motion planning and control.

Existing works on collision-based motion planning and
control are typically feedforward in nature. For instance,
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Fig. 1: (Left) The omni-directional collision-resilient wheeled robot
we use to validate the theoretical analysis and simulation results.
(Right) This paper’s case study evaluates the efficacy of a stochastic
mobile robot to navigate through a narrow aperture when colliding
with its environment (arrows in blue) compared to when navigating
directly through the aperture without colliding (arrow in red).

colliding with the environment may increase the probability
of success for reaching a target [6], and may improve naviga-
tion through confined environments [9], including multi-robot
systems [10]. However, controlled mobility (i.e. feedback-
based robot navigation) under collisions is critically missing.
Introducing feedback strategies alongside existing feedfor-
ward approaches would be beneficial. Indeed, while feed-
forward approaches essentially describe what is the impact
of collisions in robot navigation, feedback approaches could
help determine how to best utilize those collisions.

In this paper, we design a feedback motion control strategy
for a mobile robotic agent that intentionally collides with the
environment. The motion of the agent is considered to be
stochastic so as to retain relevance to practical applications
where robot motion is affected by uncertainty [11]. To
address motion uncertainty, we model the system by a drift-
diffusion stochastic differential equation (SDE) [12], [13].
We capture transitions between states of free motion and
in collision with the environment via a stochastic switching
framework [14], and build on top of recent efforts to include
such boundary interactions within an SDE-based modeling
framework [15]. The latter work [15] shows that boundary
interaction during wall-following has a positive effect on
limiting the rate of increase of position uncertainty for
the system. However, that approach is developed with a
feedforward control design at its core. On the contrary, we
consider here a state-feedback closed-loop control approach
with integrated collision exploitation.



Once an SDE model is formulated, we seek to compute
feedback control gains to steer the system from an initial
to a target spatial distribution, while colliding with the en-
vironment. This problem, different from classical LQG [16],
can be formulated as steering optimally the distribution of
a diffusion process [17]. Related work [18], [19] addresses
the optimal steering problem over a finite horizon with
minimum energy, employing semidefinite optimization to cal-
culate appropriate feedback gains under unbounded control
inputs. Recent work [20] extends the principle of optimal
steering [18], [19] to covariance control and path planning
for stochastic systems under chance constraints. However,
interactions between the robot and the environment are not
accounted for in any of these related efforts. Our work offers
a formal framework to account for and exploit collisions.

We first form an optimal steering problem and compute
the appropriate state feedback. Since the agent is unaware
of potential obstacles between initial and target distributions,
we integrate models for boundary interaction on the closed-
loop system. Hence, we design a switched optimal steering
control method. The developed method is thoroughly tested
in Monte-Carlo simulation with point and omni-directional
wheeled mobile robots, to evaluate the control energy and
task success rates associated with colliding with the envi-
ronment across a range of different conditions. Furthermore,
the approach is validated experimentally with an omni-
directional collision-resilient wheeled robot (see Fig. 1).

The main contributions of the paper are as follows:

o We design a stochastic switching framework for feed-
back motion control of robotic agents undergoing colli-
sions with the environment.

e« We study under which conditions colliding with the
environment may lead to less control energy to steer
from an initial to target spatial distribution.

o« We investigate the effect of unbounded and bounded
control inputs to the total required control energy and
task success rates for reaching a target distribution under
point and omni-directional robot kinematics.

Our work is a step forward to enabling controlled mobility
of mobile robots that operate under uncertainty. The pre-
sented method can also be beneficial to robots that lack suf-
ficient sensing capabilities to detect obstacles and/or ingress-
egress points (which are important to real-world applications
like disaster response), such as small robots [21].

II. TECHNICAL PRELIMINARIES

We first introduce the necessary technical preliminaries
on finite-horizon optimal steering, that are later applied to
calculate the control input u(¢) of the robotic agent going
from an initial to a target distribution within a finite interval.!

The material in this section is adapted from the original work on optimal
steering [18], [19]. To balance limited space and making the paper self-
contained, we cover here only the results that our work directly builds upon.
For further details on optimal steering, we refer the reader to [18], [19].

The finite-horizon optimal steering problem [18] of a linear
time invariant (LTI) system can be formulated as:

minimize
u(t)

J(u(t)) = E{ / o (tu(t)dt} |

0

subject to  dx"(t) = Ax"(t) + Bu(t) + By (t)dw(t) D
x"(0) = xg

x'(T) =xr a.s. ,

where x¢ and xp are n-dimensional Gaussian vectors with
covariance Xy and X7, respectively. The initial state Xq is
assumed independent of the system’s uncertainty w(t), where
{w(t)|0 < t < T} is taken to be the standard p-dimensional
Wiener process. Matrices A, B, and B; take values in R, ,,
Ry, 5m, and R, «,,, respectively.

Under the condition that the deterministic subsystem
(A, B) is controllable, the optimal control input in problem
(1) is a linear function of the states [19]:

u(t) = K(t)x(t), t €[0,T] . 2)

Without loss of generality let E{xo} = 0.2 Consider also

E{xox{} = Xo.> The state covariance ¥(t) = E{x;x}} with
input (2) satisfies the Lyapunov differential equation

S(t) = (A-BK(t))2(t)+2(t)(A—BK(t)) +B1B} . (3)

Let H(t) = —X(t)K'(¢). If H(t) and K(t) are in bijective

correspondence (i.e. when X(¢) > 0), we can rewrite (3) as

S(t) = AS(t) + S(t)A' + BH'(t) + Ht)B' + B1B, . (4)

Given any two positive definite covariance matrices > and
Y, there is a smooth input u(t) so that the system satisfies
the boundary conditions and X(¢) > 0 for all ¢ € [0, T [18].

To compute the optimal feedback gain, we reformulate the
objective function of problem (1) as

u(t)) IE{/

T
/ trace(H (H)S(8) " H(1))dt |
0

u(t)dt} = /tmce (K®)Z(H)K'(t))dt
)

with constraints X(0) = ¥ and 3(T) =
To compute K (¢) numerically, we solve a semi-definite

T
program (SDP). The objective function is [ trace(Y (t))dt,
. . Y(t) H'(t)
with constraints (4) and H(t) S(0)

2This condition can be achieved by initially aligning the global and local
(body-fixed) coordinate systems.
3In practice, pose estimation covariance g is determined experimentally.



III. OPTIMAL STEERING UNDER COLLISIONS

We design the framework to perform optimal steering for
robot behaviors that alternate between free-space motion and
collision states. For sake of clarity, the type of collision we
consider here includes wall-following. The system collides
with a wall and remains in contact with it for some amount
of time. Yet, our framework is general and can also handle
instantaneous collisions with isolated obstacles.

For concreteness, the task we consider is to go through a
narrow aperture (such as a door or a window) without explicit
knowledge of the latter’s location. We require that the robot
1) has the capacity to infer bearing to the target (e.g., through
a compass), and 2) can detect when it reaches the aperture
(e.g., through IR range finder).*

A. Optimal Steering for Free-space Motion

Under the condition that motion along the x and y body-
fixed coordinate axes is uncorrelated, the system model
attains the SDE form

dx(t)
dy(t)

2

0
1y

by
with By, = [ and v(t) =

0 b,

Vg (t)
vy (t)|

The control input is wu(t) = [u(t) wu,(t)] =
[ko(t)(x —vyt) Ky (t)(y — v,t)]". This problem is posed in
form (1); based on (5), the objective function becomes

T T

J:/@@%wﬁ+/@m%@m

0

T

— / hﬁ(t)a;l(t)dt—i—/h;(t)ay’l(t)dt =J.+Jy ,
0 0

while based on (4) we get
o (t) = 20,0, (1) + 07, and 6, (t) = 2b,hy () + 07, . (7)

B. Piece-wise Optimal Steering with Collision Avoidance

To avoid collisions with the wall, entering through the
aperture can be modeled as a piece-wise optimal steering
problem. That is, we first steer the robot to the middle of the
aperture, and from there to the target area. Since the (linear)
system kinematics do not change across intervals, (2) can be
directly extended to the piece-wise case. In the general case,
given target Gaussian distributions in each switching point 7}
with covariance Xr,, we can compute feedback gains K;(t)

4These requirements are realistic since a compass and IR sensors can be
directly equipped onto mobile robots.

that minimize the control energy at each interval separately.
Then, the feedback gain is a piece-wise function of ¢, i.e.

Kl(t) To<t<T)

Kg(t) T <t<Ty
K(t) =

KN(t) Th_o1 <t<Ty .

C. Integration of Collisions

We apply a stochastic switching framework [15] to
model the combined system behavior as it switches between
wall-following and free-space motion. When in free space
mode, (7) applies with by, = b1, free and by, = b1, free-
When in wall-following mode, the robot maintains a local
orientation such that its body-fixed z-axis is parallel to the
wall. Diffusion matrix By, wau is diagonal, positive definite,
and constant with by, = b1, wau and b1, = b1, wau. We
assume that blz,wall = blz,free and bly,wall < bly,free-
That is because the noise along they y direction can be
quickly compensated for due to the wall [15]. Then, the
whole motion can be formulated as a linear, piece-wise drift-
diffusion equation in free-space and wall-following modes.

D. Effect on Control Energy

A potential benefit of colliding with the environment is that
it may reduce the required control energy to reach a target
distribution, under certain conditions. The main reason is that
the presence of the wall reduces uncertainty in motion [6],
[15] which in turns leads to reduced control energy. In the
remainder of this section we offer a mathematical basis
explaining why the required control energy might reduce.
Section IV evaluates the effect of collisions on control energy
when the physical impact of the collision is neglected. Then
in Section V we relax several assumptions and test in simu-
lation, while in Section VI we test via physical experiments.

Let k,(t) and k,(¢) be as in the linear optimal steering in
both free motion and wall-following. The initial distribution
and end time stay the same too. When colliding with the
wall, the control energy in the x direction is

T; Tq
Jm,wall :/ki(t)am,wall(t)dt“f’/ki(t)o':c,wall(t)dt

0 T;
T

+/k§.(t)az,wa”(t)dt ,

Ty

®)

where T; and Ty denote the time of impact and disengaging
from the wall, respectively.

We can split the control energy required to perform the
same task as if there were no obstacles in three parts,
according to switching times T; and Tj;. That is, J; free =
JIO0 <t <T)+ Ll <t <Ty)+J5(Ty <t <T).



According to noise kinematics (7) and due to the condition
Ux,free(o) = O'x,wall(o)s then Ux,wall(t) = Ux,free(t) t €
T;
[0,T;]. Hence Jy = [ k2(t)0y wau(t)dt. Following the same
0
rationale, and assuming that the processes are stationary [18]
so that we can time swift J3 from ¢t = T,; to ¢t = 0, we get
T
that J3 = [ k2(t)0swau(t)dt. In wall-following mode the
T,

d
Lyapunov differential equation in z direction is chosen to be

é—m,wall(t) = szhx(t) + biﬁ,wall - Q(t) : C))

Q(t) is added to account for the wall-following effect on
o (t). We consider Q(t) > 0 since the wall-following motion
decreases the rate of diffusion over the x direction [15].
Therefore, we get 04 waii(t) < 0u, free(t). Then

Ty

[ 00 w1t = im Y B (€0 man (@)
1=1

T;
n

< ILHI ki(fi)aw,free(gi)At
i=1
Ta
_ / K2 ()00 free (H)dt = Jo
T;

with 52 € [ti7ti+l)- Thus’ Jz,wall < J:Jc,f'r‘ee~

The same steps apply to the control energy along the y
direction. For wall-following when ¢ € (T, Ty], b}, ,an <
b%y, free and based on the noise kinematics

Gywait (t) = 2byhy (£) + V7 et (10)

we get 0y wail(t) < 0y, free(t) leading to Jy wan < Jy, free-
Since motions in the x and y directions are assumed in-
dependent from each other, Jyau = Jzwail + Jywanr <
Jrr,free + Jy,frce = Jfree~

As an immediate consequence, and by the triangle in-
equality on the system’s stochastic process, we get Jyq1 <
Jrree < Jncol, Where Jp.o denotes the control energy to
steer through the aperture without collision.

IV. SIMULATION WITH POINT ROBOT

We run simulations to study the effect of boundary interac-
tions when going through an aperture such as a door. In this
section we focus on a point robot and conduct an extensive
parametric study. In the next section we focus on a omni-
directional wheeled robot. The setup is shown in Fig. 2.

The agent begins at randomly selected initial positions
(along the X axis of a global frame) at a distance D; = 5 m
from the door along the Y global axis. The target distribution
has a mean at a distance Dy = 5 m from the door along the
global Y axis, while its X location is at the midpoint of the
door. The length of the door D, is allowed to vary across
different sets of simulations.

En
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Fig. 2: Simulation study setup.

The following assumptions are made in this case study:

o The thickness of the wall is ignored.

« Friction and collision impact are ignored.

o The robot has some localization capacity so that it can
use the location as state feedback.

o The robot has some wall identification capabilities so
that it knows when it is in contact with the wall.

e The robot has bearing information to the target and
hence can correctly determine along which direction of
the wall to move after collision.

Remark 1. The purpose of this case study is to shed light on
the tradeoffs between the various parameters of the problem
in the ideal case where physical collision impact is negligible.
Later in Section V, that focuses on an omni-directional
wheeled robot, we relax the environment assumptions on
wall thickness, friction, and collision impact. Further, in Sec-
tion VI, we validate the theory and simulation experimentally.

The diagonal elements of diffusion matrix in (6) for free-
space motion mode are by free = by free = 0.1. The
diffusion coefficients change into by wau = 0.1, by wan =
0.001 in wall-following mode.

A. Simulation Procedure

We first formulate an optimal steering problem for a
stochastic LTI system over a finite horizon to calculate the
state feedback gains k, and k,, in  and y directions, respec-
tively. In the calculation, we assume that the distributions of
initial and final state are Gaussian with covariance

100 0 01 0
2o = A

0 100
Then, we consider three types of simulations.

1. Simulate the agent’s trajectory as if there were no ob-
stacles. The state feedback gain is calculated from the
previous step. The drift is a constant speed [v, v,]. Euler-
Maruyama method is applied to calculate the position.

2. Simulate the agent’s trajectory entering through the door
while colliding with the wall. We use the same feedback
gain as above. To simulate the door entering behavior:

o We begin simulating the system in free-space mode.
« We change to wall-following mode when the agent
collides. At that instant, the velocity of the robot is set



T S stands for the remaining distance toward
the goal, and ¢ is the time of hitting the wall.

« We change back to free-space mode once the agent
reaches the edge of the door. The velocity is updated
again as 7—=—;, where in this case ¢ updates to the

time of disengaging from the wall.

3. Simulate the agent’s trajectory entering directly through
the door without colliding. This case presupposes that
information about the door position is available. We now
deal with a piece-wise optimal steering problem. To steer
the robot into the door, we set o, = % and o, = Da g

3
avoid collisions. Then, we steer it to the target.

We conduct 1000 trials in each simulation case; final time
Tenaq is the same in all cases. To study the effect of final
time, we let it vary from 5 sec to 25 sec in increasing
5 sec intervals. We also consider 7,,4 at 50 and 100 sec.
After the simulations conclude, we compare the control
energy required by those three scenarios. Then, we vary other
parameters like door width and mean of initial distribution
to study how those parameters influence the control energy.

Furthermore, we evaluate the effect of bounded control
input. For this purpose we define a target area of success
by [z y] »7! E y]T < 32, and run 1000 trials in each
simulation to study the influence of bounded control input.

B. Results — Unbounded Control Input

We first compare the control energy required for the
aforementioned three types of simulation. The initial variance
is 02, = 025 = 100 m?, the target is set at (0,10) m
with desired variance o7 1,07 7 < 0.1 m?, the final time
Tena = 10 sec, and the door length D; = 1 m. These
variables remain the same for all three cases.

Table I and Fig. 3 provide a side-by-side comparison for
the three types of simulation. Cases la (theoretical calcula-
tion) and 1b (simulation) in Table I and Fig. 3a correspond
to optimal steering as if there were no obstacles. Case 2
in Table I and Fig. 3b correspond to our framework of
optimal steering and wall exploitation. Cases 3a (theoretical
calculation) and 3b (simulation) in Table I and Fig. 3c
correspond to piece-wise optimal steering to avoid obstacles.

Remark 2. Although the first scenario cannot be attained
in practice (the agent will not reach the target as it will
collide), we include it here so as to compare with the other
two scenarios which are attainable in practice.

It can be readily verified that wall exploitation significantly
reduces the observed final covariance. At the same time, wall
exploitation is shown to reduce the amount of control energy
needed to steer the system. This result is in accordance with
the mathematical analysis in Section III. When comparing
the obstacle-free and piece-wise steering, we observe that
the final covariance in the simulations are close to the

desired one, and confirm that the control energy observed
in simulation is lower than the theoretically-derived.

TABLE I: Endpoint statistics and control energy.

Case Mean Covariance Control energy
[m] [m?] [J]
0.1 0
la (0,10) 0 01 18.50
0.1229 0.0036
1b (0.0210,9.8153) 0.0036  0.0558 17.03
0.0053 0
2 (0.0016,9.9140) 0 0.0181 11.42
0.1 O
3a (0,10) 0 01 36.19
0.1273 0
3b (—0.0090, 9.8429) 0 0.0734 32.01

Table II demonstrates how the choice of final time affects
the control energy. For each case shown in Table II we
simulate 1000 realizations. We select 02 o = o7 o = 100 m?,
set the target at (0,10) m with desired target covariance
agﬁT, a;T < 0.1 m?2, and choose D; = 1 m. These
variables remain the same for all seven cases. Iy, and Eq,
denote the energy required for obstacle-free optimal steering
in theory and in simulation, respectively. F5 denotes the
energy required for optimal steering with collision exploita-
tion (our proposed approach) in simulation. Finally, Es, and
E3;, denote the energy required for piece-wise collision-free
optimal steering in theory and in simulation, respectively.

TABLE II: Effect of final time on control energy.

Tend secl | Eia [J] | Evp [J] | E2 [J] | E3a [J] | Esp [J]
5 36.93 34.23 23.84 72.31 69.43
10 18.50 17.03 11.42 36.19 32.01
15 12.43 11.07 8.69 24.43 20.95
20 9.37 8.12 6.21 18.45 16.21
25 7.52 6.30 5.25 14.82 12.57
50 3.90 3.21 2.66 7.51 7.20
100 1.94 1.70 1.17 3.81 3.65

We observe that no matter the choice of final time, the
control energy when exploiting collisions remains signifi-
cantly lower than the control energy for obstacle-free and
piece-wise collision-free optimal steering. While the absolute
values drop as we increase the final time (which is expected),
our method still serves as a lower bound to the required
control energy. Figure 4 shows this trend. Simulation findings
are in agreement with our theoretical analysis.

An interesting observation is that the energy savings (F;,
i € {la,1b,2,3a,3b} expressed as a percentage) appear to
be less dependent on final time. As depicted in Table III, the
average control energy savings are approximately 32% and
65% when compared to the theoretical values of obstacle-free
and piece-wise collision-free optimal steering, respectively.
The respective values obtained through simulation are more
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Fig. 3: Simulated runs for the three conditions we consider here. In each case we demonstrate 1000 realizations. It can be seen that the
final covariance (shown in red color) is significantly lower when we exploit collisions.
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Fig. 4: Control energy of the different methods as final time varies.

TABLE III: Effect of final time on energy savings.
Tena [sec] | Pia [%] | Pip [%] | Psa [%] | Pap [%]
5 —31.00 —25.55 —64.76 —63.30
10 —37.30 —32.97 —68.46 —64.34
15 —30.11 —21.55 —64.44 —58.54
20 —33.66 —23.47 —66.32 —61.68
25 —30.22 —16.74 —64.60 —58.26
50 —30.24 —17.18 —64.61 —63.09
100 —34.25 —24.85 —66.50 —64.95
MEAN | —32.40 | —23.10 | —65.67 | —62.02

STD 2.55 5.13 1.39 2.48

volatile (notice the higher standard deviations); however, the
variations seem independent of the final time.

We then examine the effect of the door width on control
energy. In this case we consider our approach and the piece-
wise collision-free optimal steering. For each case shown in
Table IV, we simulate 1000 realizations. Initial and target
spatial distributions are as in the previous case study, while
Tena = 10; these variables stay constant for all seven cases.

The control energy required by our proposed approach that
harnesses collisions is the lowest for all tested door widths
(see Fig. 5). We observe that as the door width increases,
the energy savings of our approach decrease and appear to
regulate to approximately 19% and 14% when compared to
piece-wise collision-free optimal steering in theory and in
simulation, respectively. This is due to two reasons. First, as
the door width increases, it is possible to find less energy-
demanding optimal controls to navigate through the aperture
without colliding. Second, as the wall surface decreases,

uncertainty-reducing interactions with the walls become less,
thus raising the control energy of our approach.

Further, we investigate the effect of varying the mean of
the initial position along the X global axis on control energy.
The initial covariance remains at o2 , = o2 5 = 100 m?. The
final time remains 7,4 = 10, the desired target covariance
021,000 < 0.1 m?, and the door width is kept at Dy =
1 m. We compare our approach with piece-wise collision-free
optimal steering in simulation. We collect 1000 realizations
for each case shown in Table V.

TABLE IV: Effect of door width on control energy and savings.

Dg[m] | E2[J] | Esa [J] | E3[J] | Psa [%0] | P3p[%]
1 11.42 36.19 32.01 —68.46 —64.34
2 12.76 33.97 30.72 —62.50 —58.46
3 13.71 31.92 29.88 —57.04 —54.11
5 14.70 28.07 25.28 —47.64 —41.84
10 16.07 21.21 18.74 —24.24 —14.27
15 16.36 18.53 16.72 —11.75 —2.20
20 16.16 20.14 18.81 —19.78 —14.14

40 T T T T T T T T T
—&— Optimal steering with collision exploitation (simulation)
35 —+— Piece-wise collision-free optimal steering (theoretical) | |
—&— Piece-wise collision-free optimal steering
30
S5t

0 2 4 6 8 10 12 14 16 18 20
D, [m]

Fig. 5: Control energy of the different methods as door width varies.

TABLE V: Effect of initial position on control energy

Ha,o [m] | Eo [J] | Esp [J]
0 11.42 32.01
5 12.95 33.33
10 13.71 32.03
15 13.26 34.20
20 14.77 31.86

Results reveal two key insights. First, the control energy
of our approach increases as we get further away from the
door. The reason is that the relative portion of interacting with
wall over free-space motion decreases, and is in agreement



with the effect of increasing door width. Changes are small
since the initial covariance is comparatively high (cf. Fig. 3).
Second, the control energy of piece-wise optimal steering
remains very close to the theoretically-derived value of
32.03 J. This is because the initial condition only influences
the drift part, and hence optimal-steering should be agnostic
to the expectation of the initial point.

V. SIMULATION WITH OMNI-DIRECTIONAL ROBOT

In the previous section we showed the validity of the
theoretical analysis suggesting that collisions can reduce un-
certainty, and they might decrease the required control energy
to steer from an initial to a target distribution. The purpose
of this section is twofold: First, to show that the proposed
method applies to more realistic robots with velocity control
bounds. Second, to relax some key assumptions, mainly the
one where the physical impact of collision was neglected.

We consider a virtual omni-directional wheeled robot of
mass 0.08 kg and dimensions 0.08 m x 0.08 m x 0.019 m,
with kinematics as in (6). We simulate the robot via ROS and
Gazebo based on [22]. The wall has 0.05 m thickness. We
further test the effect of friction between the robot and the
wall; namely we pick three friction coefficients: 0, 0.6, and 1.
We consider two distinct velocity bounds: vpoyna = 2 m/s
and Vpouna = 5 m/s. We compare the proposed optimal
steering with collision exploitation to piece-wise collision-
free optimal steering. In total we have 12 distinct sub-case
studies; for each we simulate 100 realizations. We set D =
Dy =5 m, and Dg = 1 m. The initial variance is 02 ; =
or o = 100 m?, the target is set at (0,10) m with desired
variance o7 p, 05 p < 0.1 m?. Final time T is calculated
by T = —1—\/(30,,7)% + (30,17 + D1 + D2)? so as to

force test Tc):lasuelsi to stay within a given velocity bound. Hence,
Ubound = 2 m/s and Upouna = 5 m/s lead to final times of
T =25s and T = 10 s, respectively.

To evaluate the 12 conditions we calculate the task success

probability P,,,,; over 100 realizations, and the mean control

T
energy of the successful realizations by E. = [ %mvzvc,

where v, is calculated by the sum of drift Vglocity and
optimal steering control input of the robot. Table VI contains
the task success probabilities and required control energy.
We can make the following observations. First, it appears
that optimal steering with collision exploitation can lead to
higher task success probabilities than piece-wise collision-
free optimal steering at comparative control costs at low
speeds. Friction with the wall appears to play a secondary
role in terms of control energy, but it may decrease task
success probabilities, at low speeds. At higher speeds, both
methodologies are negatively impacted, both in terms of
success probabilities and required control energy to suc-
cessfully achieve the task. Optimal steering with collision
exploitation is more significantly impacted by speed. Both

TABLE VI: Task success probability and required control energy
for an omni-directional robot.

Wall friction coefficient

Case Metric 0 0.6 T
Collision exploitation Ec[J] 1.81 | 1.49 1.87
Vbound = 2 M/ Porrini %] 93 92 87
Piece-wise collision-free E.[J] 1.72 | 1.74 1.62
Vbound = 2 m/s Pomnil%) | 85 | 80 78
Collision exploitation E.[J] 415 | 4.26 3.50
Vpound = D M/ Porni [ %] 31 24 33
Piece-wise collision-free E.[J] 3.62 | 3.01 3.20
Vbound = 9 m/s Pomni [%] 53 56 44

evaluation metrics are found to be lower than those of piece-
wise collision-free optimal steering. In the simulation, we
observe that the robot tends to flip over much more frequently
as the speed increases; especially when the robot collides
with one of its omni-wheels. To mitigate part of this effect,
we expect that a protective round bumper which can redirect
the restitution force [23], [24] can be beneficial; we test the
hypothesis experimentally in the section that follows. Finally,
we seek to investigate at what speed bounds collisions may
no longer beneficial in terms of improving tasks success
rates. As per the current simulated setup, we identify that
vgound = 2.5 m/s appears to be the switching behavior
bound. To determine this bound, we performed 20 simulation
runs at 0.5 m/s velocity intervals and identify the velocity
bound where success probability of piece-wise collision-free
optimal steering exceeds the one for optimal-steering with
collision exploitation.

VI. EXPERIMENTAL VALIDATION

In this section, we test the control strategies in section V on
an omni-directional robot equipped with a reflection ring [23]
that we build in house. The robot has a mass of 0.639 kg
and a body diameter of 0.22 m. We consider two distinct
velocity bounds: vpound = 0.5 m/s and Vpouna = 1 m/s.
Robot position data are captured using a 12-camera VICON
motion capture system. In the physical experiment, we set
Dy = Dy =4 m and Dy = 0.2 m. The initial variance is
029 =0, =1m? For each case shown in Table VII, we
perform 10 trials in the physical environment.

TABLE VII: Task success probability and required control energy
for an omni-directional robot in experiments.

Case Metric Result

Collision exploitation E.[J] 0.3214
Vbound = 0.5 m/s Pornni | %) 100

Piece-wise collision-free E.[J] 0.3102
Vpound = 0.5 m/s Porni| %) 100

Collision exploitation E.[J] 0.9467
Vbound = 1 m/s Pomni[%] 100

Piece-wise collision-free Ec[J] 0.6822
Vpound = 1 m/s Pomni[%] 70

The physical experiment validates the results presented in
Section V. With the application of the collision protection



device, the success rate of robot reaching the goal area is
improved when applying collision exploitation as the velocity
increases. Further, we notice that as the velocity increases,
the task success probabilities remain high, although at higher
required control energy.

VII. CONCLUSIONS

We design a switched optimal steering method for stochas-
tic systems, evaluate it via extensive simulation with point
and omni-directional robots, and validate it experimentally
with an omni-directional collision-resilient wheeled robot
built in house. Our framework optimally switches between
states of free-space motion and interaction with obstacles
(such as wall-following), so as to enable controlled mobility
under uncertainty with high task success probability. Task
success probability, as well as the required control energy of
our proposed method of optimal steering with collision ex-
ploitation, are thoroughly compared to piece-wise collision-
free optimal steering. We show the existence of solutions
to the piece-wise optimal steering problem, and provide a
mathematical basis that might explain potential reduction of
required control energy to steer the robot through a narrow
aperture while colliding.

Extensive simulation results validate the theoretical con-
cepts. In the first set of simulations, we consider point
robot kinematics, and make certain simplifying conditions,
with an eye to evaluating the basic underlying theory. The
proposed approach might reduce control energy relative to
optimal steering as if there were no obstacles and piece-wise
collision-free optimal steering. We further study the effect
of key variables on control energy; our method can yield
energetically efficient solution across variations.

The second set of simulations moves one step closer to
applying the derived theoretical tools in practice, by relaxing
several key assumptions. Specifically, we consider omni-
directional robot kinematics with bounded control input, and
account for the physical impact of collisions and friction via
realistic physics simulation. Results show that collisions can
be exploited at lower speeds (up to 2 — 2.5 m/s) in the
sense of increased task success probability over piece-wise
collision-free optimal steering with similar control energy.
Furthermore, the results of the second set of simulations are
validated via physical experimentation.

The proposed approach is evaluated on ingress/egress
through narrow apertures such as a window or door, without
explicit knowledge of the latter’s location relative to the
wall. This can benefit applications like disaster response with
(small) robots that may lack sufficient sensing and computing
capacity to determine ingress/egress points and to localize,
but may instead withstand collisions with the environment.
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