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Abstract— The paper introduces a state-feedback closed-loop
control approach with integrated collision exploitation. We
represent the system’s kinematics in the form of a drift-diffusion
stochastic differential equation, and follow a stochastic switching
framework to model the transition between states of free motion
and in collision with the environment. We formulate an optimal
steering problem and compute the control input related to state
feedback. Collisions are found beneficial in terms of increasing
task success probability when steering a robot from an initial
to a target spatial distribution. In certain cases, collisions may
help reduce the control energy for the task when compared to
optimal steering with collision avoidance. We provide a mathe-
matical basis to explain this finding, perform several parametric
analyses in simulation to validate the theoretical analysis, and
conduct realistic physics simulations to quantify the impact of
realistic constraints (bounded control input, physical impact of
collision, and friction) on control energy and success probability.
Further, we validate the proposed approach experimentally with
an omni-directional collision-resilient wheeled robot.

Index Terms— Stochastic Control, Optimal Steering, Stochas-
tic Switching Framework

I. INTRODUCTION

As robots increasingly venture outside the protected lab

environment and into the real—uncertain—world, guarantee-

ing collision avoidance becomes an even more challenging

task [1], [2]. At the same time, recent advances in material

science and mechanical design have helped introduce robots

that can safely withstand collisions (e.g., small legged robots

with exoskeletons [3], aerial robots with protective cages [4],

and soft robots [5]). Taken together, these observations may

explain an emerging paradigm shift: Collisions with the envi-
ronment could be harnessed instead of being avoided. In fact,

recent works have demonstrated how allowing for collisions

can benefit motion planning and control [6], localization [7],

and sensing [8]. This present paper focuses on harnessing

collisions for robot motion planning and control.

Existing works on collision-based motion planning and

control are typically feedforward in nature. For instance,
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Fig. 1: (Left) The omni-directional collision-resilient wheeled robot
we use to validate the theoretical analysis and simulation results.
(Right) This paper’s case study evaluates the efficacy of a stochastic
mobile robot to navigate through a narrow aperture when colliding
with its environment (arrows in blue) compared to when navigating
directly through the aperture without colliding (arrow in red).

colliding with the environment may increase the probability

of success for reaching a target [6], and may improve naviga-

tion through confined environments [9], including multi-robot

systems [10]. However, controlled mobility (i.e. feedback-

based robot navigation) under collisions is critically missing.

Introducing feedback strategies alongside existing feedfor-

ward approaches would be beneficial. Indeed, while feed-

forward approaches essentially describe what is the impact

of collisions in robot navigation, feedback approaches could

help determine how to best utilize those collisions.

In this paper, we design a feedback motion control strategy

for a mobile robotic agent that intentionally collides with the

environment. The motion of the agent is considered to be

stochastic so as to retain relevance to practical applications

where robot motion is affected by uncertainty [11]. To

address motion uncertainty, we model the system by a drift-

diffusion stochastic differential equation (SDE) [12], [13].

We capture transitions between states of free motion and

in collision with the environment via a stochastic switching

framework [14], and build on top of recent efforts to include

such boundary interactions within an SDE-based modeling

framework [15]. The latter work [15] shows that boundary

interaction during wall-following has a positive effect on

limiting the rate of increase of position uncertainty for

the system. However, that approach is developed with a

feedforward control design at its core. On the contrary, we

consider here a state-feedback closed-loop control approach

with integrated collision exploitation.



Once an SDE model is formulated, we seek to compute

feedback control gains to steer the system from an initial

to a target spatial distribution, while colliding with the en-
vironment. This problem, different from classical LQG [16],

can be formulated as steering optimally the distribution of

a diffusion process [17]. Related work [18], [19] addresses

the optimal steering problem over a finite horizon with

minimum energy, employing semidefinite optimization to cal-

culate appropriate feedback gains under unbounded control

inputs. Recent work [20] extends the principle of optimal

steering [18], [19] to covariance control and path planning

for stochastic systems under chance constraints. However,

interactions between the robot and the environment are not

accounted for in any of these related efforts. Our work offers

a formal framework to account for and exploit collisions.
We first form an optimal steering problem and compute

the appropriate state feedback. Since the agent is unaware

of potential obstacles between initial and target distributions,

we integrate models for boundary interaction on the closed-

loop system. Hence, we design a switched optimal steering

control method. The developed method is thoroughly tested

in Monte-Carlo simulation with point and omni-directional

wheeled mobile robots, to evaluate the control energy and

task success rates associated with colliding with the envi-

ronment across a range of different conditions. Furthermore,

the approach is validated experimentally with an omni-

directional collision-resilient wheeled robot (see Fig. 1).
The main contributions of the paper are as follows:

• We design a stochastic switching framework for feed-

back motion control of robotic agents undergoing colli-

sions with the environment.

• We study under which conditions colliding with the

environment may lead to less control energy to steer

from an initial to target spatial distribution.

• We investigate the effect of unbounded and bounded

control inputs to the total required control energy and

task success rates for reaching a target distribution under

point and omni-directional robot kinematics.

Our work is a step forward to enabling controlled mobility

of mobile robots that operate under uncertainty. The pre-

sented method can also be beneficial to robots that lack suf-

ficient sensing capabilities to detect obstacles and/or ingress-

egress points (which are important to real-world applications

like disaster response), such as small robots [21].

II. TECHNICAL PRELIMINARIES

We first introduce the necessary technical preliminaries

on finite-horizon optimal steering, that are later applied to

calculate the control input u(t) of the robotic agent going

from an initial to a target distribution within a finite interval.1

1The material in this section is adapted from the original work on optimal
steering [18], [19]. To balance limited space and making the paper self-
contained, we cover here only the results that our work directly builds upon.
For further details on optimal steering, we refer the reader to [18], [19].

The finite-horizon optimal steering problem [18] of a linear

time invariant (LTI) system can be formulated as:

minimize
u(t)

J(u(t)) = E{
T∫

0

u′(t)u(t)dt} ,

subject to dxu(t) = Axu(t) +Bu(t) +B1(t)dw(t)

xu(0) = x0

xu(T ) = xT a.s. ,

(1)

where x0 and xT are n-dimensional Gaussian vectors with

covariance Σ0 and ΣT , respectively. The initial state x0 is

assumed independent of the system’s uncertainty w(t), where

{w(t)|0 � t � T} is taken to be the standard p-dimensional

Wiener process. Matrices A, B, and B1 take values in Rn×n,

Rn×m, and Rn×p, respectively.

Under the condition that the deterministic subsystem

(A, B) is controllable, the optimal control input in problem

(1) is a linear function of the states [19]:

u(t) = K(t)x(t), t ∈ [0, T ] . (2)

Without loss of generality let E{x0} = 0.2 Consider also

E{x0x′0} = Σ0.3 The state covariance Σ(t) = E{xtx′t} with

input (2) satisfies the Lyapunov differential equation

Σ̇(t) = (A−BK(t))Σ(t)+Σ(t)(A−BK(t))′+B1B
′
1 . (3)

Let H(t) = −Σ(t)K ′(t). If H(t) and K(t) are in bijective

correspondence (i.e. when Σ(t) > 0), we can rewrite (3) as

Σ̇(t) = AΣ(t)+Σ(t)A′+BH ′(t)+H(t)B′+B1B
′
1 . (4)

Given any two positive definite covariance matrices Σ0 and

ΣT , there is a smooth input u(t) so that the system satisfies

the boundary conditions and Σ(t) > 0 for all t ∈ [0, T ] [18].

To compute the optimal feedback gain, we reformulate the

objective function of problem (1) as

J(u(t)) = E{
T∫

0

u′(t)u(t)dt} =

T∫
0

trace(K(t)Σ(t)K ′(t))dt

(5)

=

T∫
0

trace(H ′(t)Σ(t)−1H(t))dt ,

with constraints Σ(0) = Σ0 and Σ(T ) = ΣT .

To compute K(t) numerically, we solve a semi-definite

program (SDP). The objective function is
T∫
0

trace(Y (t))dt,

with constraints (4) and

[
Y (t) H ′(t)
H(t) Σ(t)

]
� 0.

2This condition can be achieved by initially aligning the global and local
(body-fixed) coordinate systems.

3In practice, pose estimation covariance Σ0 is determined experimentally.



III. OPTIMAL STEERING UNDER COLLISIONS

We design the framework to perform optimal steering for

robot behaviors that alternate between free-space motion and

collision states. For sake of clarity, the type of collision we

consider here includes wall-following. The system collides

with a wall and remains in contact with it for some amount

of time. Yet, our framework is general and can also handle

instantaneous collisions with isolated obstacles.

For concreteness, the task we consider is to go through a

narrow aperture (such as a door or a window) without explicit

knowledge of the latter’s location. We require that the robot

1) has the capacity to infer bearing to the target (e.g., through

a compass), and 2) can detect when it reaches the aperture

(e.g., through IR range finder).4

A. Optimal Steering for Free-space Motion

Under the condition that motion along the x and y body-

fixed coordinate axes is uncorrelated, the system model

attains the SDE form[
dx(t)

dy(t)

]
= v(t)dt+Bxyu(t)dt+

[
b21x 0

0 b21y

]
dw , (6)

with Bxy =

[
bx 0

0 by

]
and v(t) =

[
vx(t)

vy(t)

]
.

The control input is u(t) =
[
ux(t) uy(t)

]′
=[

kx(t)(x− vxt) ky(t)(y − vyt)
]′

. This problem is posed in

form (1); based on (5), the objective function becomes

J =

T∫
0

k2x(t)σx(t)dt+

T∫
0

k2y(t)σy(t)dt

=

T∫
0

h2
x(t)σ

−1
x (t)dt+

T∫
0

h2
y(t)σ

−1
y (t)dt = Jx + Jy ,

while based on (4) we get

σ̇x(t) = 2bxhx(t) + b21x , and σ̇y(t) = 2byhy(t) + b21y . (7)

B. Piece-wise Optimal Steering with Collision Avoidance

To avoid collisions with the wall, entering through the

aperture can be modeled as a piece-wise optimal steering

problem. That is, we first steer the robot to the middle of the

aperture, and from there to the target area. Since the (linear)

system kinematics do not change across intervals, (2) can be

directly extended to the piece-wise case. In the general case,

given target Gaussian distributions in each switching point Ti

with covariance ΣTi
, we can compute feedback gains Ki(t)

4These requirements are realistic since a compass and IR sensors can be
directly equipped onto mobile robots.

that minimize the control energy at each interval separately.

Then, the feedback gain is a piece-wise function of t, i.e.

K(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1(t) T0 � t � T1

K2(t) T1 � t � T2

...
...

KN (t) TN−1 � t � TN .

C. Integration of Collisions

We apply a stochastic switching framework [15] to

model the combined system behavior as it switches between

wall-following and free-space motion. When in free space

mode, (7) applies with b1x = b1x,free and b1y = b1y,free.

When in wall-following mode, the robot maintains a local

orientation such that its body-fixed x-axis is parallel to the

wall. Diffusion matrix B1xy,wall is diagonal, positive definite,

and constant with b1x = b1x,wall and b1y = b1y,wall. We

assume that b1x,wall = b1x,free and b1y,wall � b1y,free.

That is because the noise along they y direction can be

quickly compensated for due to the wall [15]. Then, the

whole motion can be formulated as a linear, piece-wise drift-

diffusion equation in free-space and wall-following modes.

D. Effect on Control Energy

A potential benefit of colliding with the environment is that

it may reduce the required control energy to reach a target

distribution, under certain conditions. The main reason is that

the presence of the wall reduces uncertainty in motion [6],

[15] which in turns leads to reduced control energy. In the

remainder of this section we offer a mathematical basis

explaining why the required control energy might reduce.

Section IV evaluates the effect of collisions on control energy

when the physical impact of the collision is neglected. Then

in Section V we relax several assumptions and test in simu-

lation, while in Section VI we test via physical experiments.

Let kx(t) and ky(t) be as in the linear optimal steering in

both free motion and wall-following. The initial distribution

and end time stay the same too. When colliding with the

wall, the control energy in the x direction is

Jx,wall =

Ti∫
0

k2x(t)σx,wall(t)dt+

Td∫
Ti

k2x(t)σx,wall(t)dt

+

T∫
Td

k2x(t)σx,wall(t)dt ,

(8)

where Ti and Td denote the time of impact and disengaging

from the wall, respectively.

We can split the control energy required to perform the

same task as if there were no obstacles in three parts,

according to switching times Ti and Td. That is, Jx,free =
J1(0 ≤ t ≤ Ti) + J2(Ti ≤ t ≤ Td) + J3(Td ≤ t ≤ T ).



According to noise kinematics (7) and due to the condition

σx,free(0) = σx,wall(0), then σx,wall(t) = σx,free(t) t ∈
[0, Ti]. Hence J1 =

Ti∫
0

k2x(t)σx,wall(t)dt. Following the same

rationale, and assuming that the processes are stationary [18]

so that we can time swift J3 from t = Td to t = 0, we get

that J3 =
T∫

Td

k2x(t)σx,wall(t)dt. In wall-following mode the

Lyapunov differential equation in x direction is chosen to be

σ̇x,wall(t) = 2bxhx(t) + b21x,wall −Q(t) . (9)

Q(t) is added to account for the wall-following effect on

σx(t). We consider Q(t) � 0 since the wall-following motion

decreases the rate of diffusion over the x direction [15].

Therefore, we get σx,wall(t) � σx,free(t). Then

Td∫
Ti

k2x(t)σx,wall(t)dt = lim
n→∞

n∑
i=1

k2x(ξi)σx,wall(ξi)Δt

� lim
n→∞

n∑
i=1

k2x(ξi)σx,free(ξi)Δt

=

Td∫
Ti

k2x(t)σx,free(t)dt = J2

with ξi ∈ [ti, ti+1). Thus, Jx,wall ≤ Jx,free.

The same steps apply to the control energy along the y
direction. For wall-following when t ∈ (Ti, Td], b

2
1y,wall �

b21y,free and based on the noise kinematics

σ̇y,wall(t) = 2byhy(t) + b21y,wall , (10)

we get σy,wall(t) � σy,free(t) leading to Jy,wall � Jy,free.

Since motions in the x and y directions are assumed in-

dependent from each other, Jwall = Jx,wall + Jy,wall ≤
Jx,free + Jy,free = Jfree.

As an immediate consequence, and by the triangle in-

equality on the system’s stochastic process, we get Jwall ≤
Jfree ≤ Jncol, where Jncol denotes the control energy to

steer through the aperture without collision.

IV. SIMULATION WITH POINT ROBOT

We run simulations to study the effect of boundary interac-

tions when going through an aperture such as a door. In this

section we focus on a point robot and conduct an extensive

parametric study. In the next section we focus on a omni-

directional wheeled robot. The setup is shown in Fig. 2.

The agent begins at randomly selected initial positions

(along the X axis of a global frame) at a distance D1 = 5 m
from the door along the Y global axis. The target distribution

has a mean at a distance D2 = 5 m from the door along the

global Y axis, while its X location is at the midpoint of the

door. The length of the door Dd is allowed to vary across

different sets of simulations.

Fig. 2: Simulation study setup.

The following assumptions are made in this case study:

• The thickness of the wall is ignored.

• Friction and collision impact are ignored.

• The robot has some localization capacity so that it can

use the location as state feedback.

• The robot has some wall identification capabilities so

that it knows when it is in contact with the wall.

• The robot has bearing information to the target and

hence can correctly determine along which direction of

the wall to move after collision.

Remark 1. The purpose of this case study is to shed light on
the tradeoffs between the various parameters of the problem
in the ideal case where physical collision impact is negligible.
Later in Section V, that focuses on an omni-directional
wheeled robot, we relax the environment assumptions on
wall thickness, friction, and collision impact. Further, in Sec-
tion VI, we validate the theory and simulation experimentally.

The diagonal elements of diffusion matrix in (6) for free-

space motion mode are bx,free = by,free = 0.1. The

diffusion coefficients change into bx,wall = 0.1, by,wall =
0.001 in wall-following mode.

A. Simulation Procedure

We first formulate an optimal steering problem for a

stochastic LTI system over a finite horizon to calculate the

state feedback gains kx and ky in x and y directions, respec-

tively. In the calculation, we assume that the distributions of

initial and final state are Gaussian with covariance

Σ0 =

[
100 0

0 100

]
, ΣT =

[
0.1 0

0 0.1

]
.

Then, we consider three types of simulations.

1. Simulate the agent’s trajectory as if there were no ob-

stacles. The state feedback gain is calculated from the

previous step. The drift is a constant speed [vx, vy]. Euler-

Maruyama method is applied to calculate the position.

2. Simulate the agent’s trajectory entering through the door

while colliding with the wall. We use the same feedback

gain as above. To simulate the door entering behavior:

• We begin simulating the system in free-space mode.

• We change to wall-following mode when the agent

collides. At that instant, the velocity of the robot is set



to s
Tend−t ; s stands for the remaining distance toward

the goal, and t is the time of hitting the wall.

• We change back to free-space mode once the agent

reaches the edge of the door. The velocity is updated

again as s
Tend−t , where in this case t updates to the

time of disengaging from the wall.

3. Simulate the agent’s trajectory entering directly through

the door without colliding. This case presupposes that

information about the door position is available. We now

deal with a piece-wise optimal steering problem. To steer

the robot into the door, we set σx = Dd

3 and σy = Dd

3 to

avoid collisions. Then, we steer it to the target.

We conduct 1000 trials in each simulation case; final time

Tend is the same in all cases. To study the effect of final

time, we let it vary from 5 sec to 25 sec in increasing

5 sec intervals. We also consider Tend at 50 and 100 sec.
After the simulations conclude, we compare the control

energy required by those three scenarios. Then, we vary other

parameters like door width and mean of initial distribution

to study how those parameters influence the control energy.

Furthermore, we evaluate the effect of bounded control

input. For this purpose we define a target area of success

by
[
x y

]
Σ−1

T

[
x y

]ᵀ � 32, and run 1000 trials in each

simulation to study the influence of bounded control input.

B. Results — Unbounded Control Input

We first compare the control energy required for the

aforementioned three types of simulation. The initial variance

is σ2
x,0 = σ2

y,0 = 100 m2, the target is set at (0, 10) m
with desired variance σ2

x,T , σ
2
y,T ≤ 0.1 m2, the final time

Tend = 10 sec, and the door length Dd = 1 m. These

variables remain the same for all three cases.

Table I and Fig. 3 provide a side-by-side comparison for

the three types of simulation. Cases 1a (theoretical calcula-

tion) and 1b (simulation) in Table I and Fig. 3a correspond

to optimal steering as if there were no obstacles. Case 2

in Table I and Fig. 3b correspond to our framework of

optimal steering and wall exploitation. Cases 3a (theoretical

calculation) and 3b (simulation) in Table I and Fig. 3c

correspond to piece-wise optimal steering to avoid obstacles.

Remark 2. Although the first scenario cannot be attained
in practice (the agent will not reach the target as it will
collide), we include it here so as to compare with the other
two scenarios which are attainable in practice.

It can be readily verified that wall exploitation significantly

reduces the observed final covariance. At the same time, wall

exploitation is shown to reduce the amount of control energy

needed to steer the system. This result is in accordance with

the mathematical analysis in Section III. When comparing

the obstacle-free and piece-wise steering, we observe that

the final covariance in the simulations are close to the

desired one, and confirm that the control energy observed

in simulation is lower than the theoretically-derived.

TABLE I: Endpoint statistics and control energy.

Case
Mean Covariance Control energy
[m] [m2] [J]

1a (0, 10)

[
0.1 0

0 0.1

]
18.50

1b (0.0210, 9.8153)

[
0.1229 0.0036

0.0036 0.0558

]
17.03

2 (0.0016, 9.9140)

[
0.0053 0

0 0.0181

]
11.42

3a (0, 10)

[
0.1 0

0 0.1

]
36.19

3b (−0.0090, 9.8429)

[
0.1273 0

0 0.0734

]
32.01

Table II demonstrates how the choice of final time affects

the control energy. For each case shown in Table II we

simulate 1000 realizations. We select σ2
x,0 = σ2

y,0 = 100 m2,

set the target at (0, 10) m with desired target covariance

σ2
x,T , σ

2
y,T ≤ 0.1 m2, and choose Dd = 1 m. These

variables remain the same for all seven cases. E1a and E1b

denote the energy required for obstacle-free optimal steering

in theory and in simulation, respectively. E2 denotes the

energy required for optimal steering with collision exploita-

tion (our proposed approach) in simulation. Finally, E3a and

E3b denote the energy required for piece-wise collision-free

optimal steering in theory and in simulation, respectively.

TABLE II: Effect of final time on control energy.

Tend [sec] E1a [J] E1b [J] E2 [J] E3a [J] E3b [J]

5 36.93 34.23 23.84 72.31 69.43
10 18.50 17.03 11.42 36.19 32.01
15 12.43 11.07 8.69 24.43 20.95
20 9.37 8.12 6.21 18.45 16.21
25 7.52 6.30 5.25 14.82 12.57
50 3.90 3.21 2.66 7.51 7.20
100 1.94 1.70 1.17 3.81 3.65

We observe that no matter the choice of final time, the

control energy when exploiting collisions remains signifi-

cantly lower than the control energy for obstacle-free and

piece-wise collision-free optimal steering. While the absolute

values drop as we increase the final time (which is expected),

our method still serves as a lower bound to the required

control energy. Figure 4 shows this trend. Simulation findings

are in agreement with our theoretical analysis.

An interesting observation is that the energy savings (Pi,

i ∈ {1a, 1b, 2, 3a, 3b} expressed as a percentage) appear to

be less dependent on final time. As depicted in Table III, the

average control energy savings are approximately 32% and

65% when compared to the theoretical values of obstacle-free

and piece-wise collision-free optimal steering, respectively.

The respective values obtained through simulation are more



(a) Optimal steering without obstacles (b) Wall exploitation (c) Piece-wise optimal steering with obstacles

Fig. 3: Simulated runs for the three conditions we consider here. In each case we demonstrate 1000 realizations. It can be seen that the
final covariance (shown in red color) is significantly lower when we exploit collisions.
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Fig. 4: Control energy of the different methods as final time varies.

TABLE III: Effect of final time on energy savings.

Tend [sec] P1a [%] P1b [%] P3a [%] P3b [%]

5 −31.00 −25.55 −64.76 −63.30
10 −37.30 −32.97 −68.46 −64.34
15 −30.11 −21.55 −64.44 −58.54
20 −33.66 −23.47 −66.32 −61.68
25 −30.22 −16.74 −64.60 −58.26
50 −30.24 −17.18 −64.61 −63.09
100 −34.25 −24.85 −66.50 −64.95

MEAN −32.40 −23.19 −65.67 −62.02
STD 2.55 5.13 1.39 2.48

volatile (notice the higher standard deviations); however, the

variations seem independent of the final time.

We then examine the effect of the door width on control

energy. In this case we consider our approach and the piece-

wise collision-free optimal steering. For each case shown in

Table IV, we simulate 1000 realizations. Initial and target

spatial distributions are as in the previous case study, while

Tend = 10; these variables stay constant for all seven cases.

The control energy required by our proposed approach that

harnesses collisions is the lowest for all tested door widths

(see Fig. 5). We observe that as the door width increases,

the energy savings of our approach decrease and appear to

regulate to approximately 19% and 14% when compared to

piece-wise collision-free optimal steering in theory and in

simulation, respectively. This is due to two reasons. First, as

the door width increases, it is possible to find less energy-

demanding optimal controls to navigate through the aperture

without colliding. Second, as the wall surface decreases,

uncertainty-reducing interactions with the walls become less,

thus raising the control energy of our approach.

Further, we investigate the effect of varying the mean of

the initial position along the X global axis on control energy.

The initial covariance remains at σ2
x,0 = σ2

y,0 = 100 m2. The

final time remains Tend = 10, the desired target covariance

σ2
x,T , σ

2
y,T ≤ 0.1 m2, and the door width is kept at Dd =

1 m. We compare our approach with piece-wise collision-free

optimal steering in simulation. We collect 1000 realizations

for each case shown in Table V.

TABLE IV: Effect of door width on control energy and savings.

Dd [m] E2 [J] E3a [J] E3b[J] P3a [%] P3b[%]
1 11.42 36.19 32.01 −68.46 −64.34
2 12.76 33.97 30.72 −62.50 −58.46
3 13.71 31.92 29.88 −57.04 −54.11
5 14.70 28.07 25.28 −47.64 −41.84
10 16.07 21.21 18.74 −24.24 −14.27
15 16.36 18.53 16.72 −11.75 −2.20
20 16.16 20.14 18.81 −19.78 −14.14
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Fig. 5: Control energy of the different methods as door width varies.

TABLE V: Effect of initial position on control energy

μx,0 [m] E2 [J] E3b [J]
0 11.42 32.01
5 12.95 33.33
10 13.71 32.03
15 13.26 34.20
20 14.77 31.86

Results reveal two key insights. First, the control energy

of our approach increases as we get further away from the

door. The reason is that the relative portion of interacting with

wall over free-space motion decreases, and is in agreement



with the effect of increasing door width. Changes are small

since the initial covariance is comparatively high (cf. Fig. 3).

Second, the control energy of piece-wise optimal steering

remains very close to the theoretically-derived value of

32.03 J . This is because the initial condition only influences

the drift part, and hence optimal-steering should be agnostic

to the expectation of the initial point.

V. SIMULATION WITH OMNI-DIRECTIONAL ROBOT

In the previous section we showed the validity of the

theoretical analysis suggesting that collisions can reduce un-

certainty, and they might decrease the required control energy

to steer from an initial to a target distribution. The purpose

of this section is twofold: First, to show that the proposed

method applies to more realistic robots with velocity control

bounds. Second, to relax some key assumptions, mainly the

one where the physical impact of collision was neglected.

We consider a virtual omni-directional wheeled robot of

mass 0.08 kg and dimensions 0.08 m× 0.08 m× 0.019 m,

with kinematics as in (6). We simulate the robot via ROS and

Gazebo based on [22]. The wall has 0.05 m thickness. We

further test the effect of friction between the robot and the

wall; namely we pick three friction coefficients: 0, 0.6, and 1.

We consider two distinct velocity bounds: vbound = 2 m/s
and vbound = 5 m/s. We compare the proposed optimal

steering with collision exploitation to piece-wise collision-

free optimal steering. In total we have 12 distinct sub-case

studies; for each we simulate 100 realizations. We set D1 =
D2 = 5 m, and Dd = 1 m. The initial variance is σ2

x,0 =
σ2
y,0 = 100 m2, the target is set at (0, 10) m with desired

variance σ2
x,T , σ

2
y,T ≤ 0.1 m2. Final time T is calculated

by T = 1
vbound

√
(3σx,T )2 + (3σy,T +D1 +D2)2 so as to

force test cases to stay within a given velocity bound. Hence,

vbound = 2 m/s and vbound = 5 m/s lead to final times of

T = 25 s and T = 10 s, respectively.

To evaluate the 12 conditions we calculate the task success

probability Pomni over 100 realizations, and the mean control

energy of the successful realizations by Ec =
T∫
0

1
2mv�

c vc,

where vc is calculated by the sum of drift velocity and

optimal steering control input of the robot. Table VI contains

the task success probabilities and required control energy.

We can make the following observations. First, it appears

that optimal steering with collision exploitation can lead to

higher task success probabilities than piece-wise collision-

free optimal steering at comparative control costs at low

speeds. Friction with the wall appears to play a secondary

role in terms of control energy, but it may decrease task

success probabilities, at low speeds. At higher speeds, both

methodologies are negatively impacted, both in terms of

success probabilities and required control energy to suc-

cessfully achieve the task. Optimal steering with collision

exploitation is more significantly impacted by speed. Both

TABLE VI: Task success probability and required control energy
for an omni-directional robot.

Case Metric
Wall friction coefficient
0 0.6 1

Collision exploitation Ec[J ] 1.81 1.49 1.87
vbound = 2 m/s Pomni[%] 93 92 87

Piece-wise collision-free Ec[J ] 1.72 1.74 1.62
vbound = 2 m/s Pomni[%] 85 80 78

Collision exploitation Ec[J ] 4.15 4.26 3.50
vbound = 5 m/s Pomni[%] 31 24 33

Piece-wise collision-free Ec[J ] 3.62 3.01 3.20
vbound = 5 m/s Pomni[%] 53 56 44

evaluation metrics are found to be lower than those of piece-

wise collision-free optimal steering. In the simulation, we

observe that the robot tends to flip over much more frequently

as the speed increases; especially when the robot collides

with one of its omni-wheels. To mitigate part of this effect,

we expect that a protective round bumper which can redirect

the restitution force [23], [24] can be beneficial; we test the

hypothesis experimentally in the section that follows. Finally,

we seek to investigate at what speed bounds collisions may

no longer beneficial in terms of improving tasks success

rates. As per the current simulated setup, we identify that

v†bound = 2.5 m/s appears to be the switching behavior

bound. To determine this bound, we performed 20 simulation

runs at 0.5 m/s velocity intervals and identify the velocity

bound where success probability of piece-wise collision-free

optimal steering exceeds the one for optimal-steering with

collision exploitation.

VI. EXPERIMENTAL VALIDATION

In this section, we test the control strategies in section V on

an omni-directional robot equipped with a reflection ring [23]

that we build in house. The robot has a mass of 0.639 kg
and a body diameter of 0.22 m. We consider two distinct

velocity bounds: vbound = 0.5 m/s and vbound = 1 m/s.

Robot position data are captured using a 12-camera VICON

motion capture system. In the physical experiment, we set

D1 = D2 = 4 m and Dd = 0.2 m. The initial variance is

σ2
x,0 = σ2

y,0 = 1 m2. For each case shown in Table VII, we

perform 10 trials in the physical environment.

TABLE VII: Task success probability and required control energy
for an omni-directional robot in experiments.

Case Metric Result
Collision exploitation Ec[J ] 0.3214
vbound = 0.5 m/s Pomni[%] 100

Piece-wise collision-free Ec[J ] 0.3102
vbound = 0.5 m/s Pomni[%] 100

Collision exploitation Ec[J ] 0.9467
vbound = 1 m/s Pomni[%] 100

Piece-wise collision-free Ec[J ] 0.6822
vbound = 1 m/s Pomni[%] 70

The physical experiment validates the results presented in

Section V. With the application of the collision protection



device, the success rate of robot reaching the goal area is

improved when applying collision exploitation as the velocity

increases. Further, we notice that as the velocity increases,

the task success probabilities remain high, although at higher

required control energy.

VII. CONCLUSIONS

We design a switched optimal steering method for stochas-

tic systems, evaluate it via extensive simulation with point

and omni-directional robots, and validate it experimentally

with an omni-directional collision-resilient wheeled robot

built in house. Our framework optimally switches between

states of free-space motion and interaction with obstacles

(such as wall-following), so as to enable controlled mobility

under uncertainty with high task success probability. Task

success probability, as well as the required control energy of

our proposed method of optimal steering with collision ex-

ploitation, are thoroughly compared to piece-wise collision-

free optimal steering. We show the existence of solutions

to the piece-wise optimal steering problem, and provide a

mathematical basis that might explain potential reduction of

required control energy to steer the robot through a narrow

aperture while colliding.

Extensive simulation results validate the theoretical con-

cepts. In the first set of simulations, we consider point

robot kinematics, and make certain simplifying conditions,

with an eye to evaluating the basic underlying theory. The

proposed approach might reduce control energy relative to

optimal steering as if there were no obstacles and piece-wise

collision-free optimal steering. We further study the effect

of key variables on control energy; our method can yield

energetically efficient solution across variations.

The second set of simulations moves one step closer to

applying the derived theoretical tools in practice, by relaxing

several key assumptions. Specifically, we consider omni-

directional robot kinematics with bounded control input, and

account for the physical impact of collisions and friction via

realistic physics simulation. Results show that collisions can

be exploited at lower speeds (up to 2 − 2.5 m/s) in the

sense of increased task success probability over piece-wise

collision-free optimal steering with similar control energy.

Furthermore, the results of the second set of simulations are

validated via physical experimentation.

The proposed approach is evaluated on ingress/egress

through narrow apertures such as a window or door, without

explicit knowledge of the latter’s location relative to the

wall. This can benefit applications like disaster response with

(small) robots that may lack sufficient sensing and computing

capacity to determine ingress/egress points and to localize,

but may instead withstand collisions with the environment.
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