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Vishal Baibhav ,l’* Emanuele Berti ,l‘

" and Vitor Cardoso®>

'Department of Physics and Astronomy, Johns Hopkins University,
3400 N. Charles Street, Baltimore, Maryland 21218, USA
2CENTRA, Departamento de Fisica, Instituto Superior Técnico—IST, Universidade de Lisboa—UL,
Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

M (Received 31 January 2020; accepted 6 April 2020; published 24 April 2020)

LISA can detect higher harmonics of the ringdown gravitational-wave signal from massive black-hole
binary mergers with large signal-to-noise ratio. The most massive black-hole binaries are more likely to
have electromagnetic counterparts, and the inspiral will contribute little to their signal-to-noise ratio. Here
we address the following question: can we extract the binary parameters and localize the source using LISA
observations of the ringdown only? Modulations of the amplitude and phase due to LISA’s motion around
the Sun can be used to disentangle the source location and orientation when we detect the long-lived
inspiral signal, but they cannot be used for ringdown-dominated signals, which are very short lived. We
show that (i) we can still measure the mass ratio and inclination of high-mass binaries by carefully
combining multiple ringdown harmonics, and (ii) we can constrain the sky location and luminosity distance
by relying on the relative amplitudes and phases of various harmonics, as measured in different LISA

channels.
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I. INTRODUCTION

Gravitational waves are predominantly quadrupolar. For
the black hole (BH) binaries detected by LIGO and Virgo,
the fraction of energy radiated in subdominant multipoles
increases with the mass ratio ¢g [1,2] (we define
g=m;/my, > 1, where m, is the mass of the primary
and m, is the mass of the secondary). For BH binaries of
total mass M = m; + m,, gravitational-wave frequencies
scale like 1/M. Simple WKB arguments [3] suggest that
the quasinormal mode frequencies of the remnant are
roughly proportional to the harmonic index ¢ (see, e.g.,
Refs. [4-6] for reviews). Since higher multipoles corre-
sponds to higher harmonics of the ringdown signal, which
radiate at higher frequencies, high-£ modes become more
important for high-mass binaries.

Interest in higher harmonics is growing as the sensitivity
of interferometric detectors improves [7-12]. This is
because (if detectable) subdominant multipoles and higher
harmonics of the radiation add structure to the gravitational
waveforms. Different harmonics have different dependence
on inclination, mass ratio and spins, so their observation
can break some of the degeneracies that currently haunt the
parameter estimation.
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One example is the distance-inclination degeneracy.
Different multipoles correspond to different spherical har-
monic indices and to a different angular dependence (and
hence inclination dependence) of the radiation. Therefore
higher multipoles allow us to distinguish between different
binary orientations, and this can also lead to improvements in
distance measurements. Degeneracy breaking can also occur
because the excitation of each higher multipole depends in a
characteristic way on the mass ratio g and on the spins
[13—19]. This can break the degeneracy between the mass
ratio ¢ and the so-called “effective spin” parameter y . For
example, it was recently shown that higher harmonics allow
us to better determine the mass ratio of the most massive BH
binary detected to date (GW170729) [20], and this can also
lead to improved effective spin estimates. Higher-order
modes can also break the degeneracy between polarization
and coalescence phase [21].

In this paper we will focus on the information carried by
higher multipoles of the ringdown, as they may be
detectable by the space-based interferometer LISA [22].
Several works have studied how LISA detectability and
parameter estimation are affected by higher harmonics of
the inspiral, finding that they can improve LISA’s angular
resolution and (consequently) luminosity distance esti-
mates by a factor ~10%, especially for heavier binaries
with M 2 107 M [23-26].

Ringdown is expected to be dominant over the inspiral
for binaries with mass M 2 10° My [27-29]. Higher
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harmonics of the signal usually have low amplitudes during
the inspiral, and become dominant only during merger and
ringdown (see, e.g., Ref. [30]). In general, higher harmon-
ics are more important in the ringdown stage: during the
inspiral the higher harmonics are always subdominant
relative to the inspiral of the (2, 2) mode, while harmonics
with £ = m > 2 stand out in the frequency domain during
the ringdown, because they have larger frequencies [and
hence are not “buried” under the (2, 2) component of the
signal].

Since higher multipoles typically correspond to higher
frequencies and f ~ 1/M, when M is large enough the
dominant mode will fall out of the sensitivity band of LISA
and become undetectable: higher harmonics could be our
only means to observe otherwise undetectable high-mass
sources. For systems with mass M 2 10° M, high-
frequency harmonics can lie closer to the noise “bucket”
of LISA than the fundamental (low-frequency) modes, and
therefore they can have relatively large SNR. This is
particularly important for large-g mergers, because then
higher modes can have relatively large amplitudes relative
to the (2, 2) mode [9,15,18]. In fact, the SNR in higher
harmonics for massive binaries with large ¢ is comparable
to (or greater than) the (2, 2) mode SNR.

It is generally believed that it will be hard to control
LISA’s noise below a low-frequency cutoff f,, ~ 10~ Hz,
or possibly fo~2x 107 Hz. A low-frequency cutoff
implies that there is a maximum redshifted mass MS,
beyond which the (#,m) mode goes out of band. This
maximum mass can be written as

10* Hz é,,,

~g=1"
fcut W

cut _ ,,fm
Mfm = Hg MO

(1)

Here @,,, denotes dimensionless QNM frequencies scaled
by their maximum value aﬁ%l , which for nonspinning BH
binary mergers corresponds to g = 1(a = 0.686). As
shown in Ref. [6], these frequencies are well fitted by

an expression of the form
(bfm = f]fm + fgm(l — a)ff'"_ (2)

For mergers of nonspinning BHs, the remnant spin a is
a function of mass ratio ¢ only. It can be approximated
as [31]

a(q) = n(2v/3 = 3.51715 + 2.57631%), (3)

wheren = /(1 + g)? is the symmetric mass ratio. In Table T
we list u§™, c?);;l, ¢m_ f5m and 4™ for the dominant modes.

The importance of the low-frequency cutoff can be
appreciated by looking at Fig. 1, where we consider
nonspinning binary mergers with ¢ =2 (top panel) and
g = 10 (bottom panel). Low-frequency sensitivity is crucial

TABLE I. Fitting coefficients for Eqs. (1) and (2).

(f’ m) ﬂgm d)z;l flfm gm fé’m

(2,2) 1.71 x 108 0.529 1.525 —-1.157 0.129
(3,3) 2.71 x 108 0.839 1.896 —1.304 0.182
2,1 1.47 x 108 0.456 0.6 —0.234 0.418
“4.,4) 3.68 x 108 1.139 2.3 —1.506 0.224

to observe ringdown from the most massive BH mergers, so
we also plot ringdown horizons obtained by truncating the
LISA noise power spectral density at f., = 10~ Hz
(dashed lines) and f., = 2 x 10~ Hz (dash-dotted lines).
LISA Pathfinder exceeded the LISA requirements at
frequencies as low as 2 x 107 Hz [32]. If the LISA
constellation noise can be trusted at these same frequencies,
the mass reach of the instrument would extend up to
~10° M, where the inspiral is not visible and most of the
SNR will come from merger and ringdown.

A. Plan of the paper

In this work we study LISA parameter estimation using
only the ringdown. The various sections address the
measurement of different parameters, as follows:

Remnant mass and spin: The spin and (redshifted) mass
of the remnant can be found from measurements of the
quasinormal mode frequencies. In Sec. II we study how
accurately LISA can measure the remnant mass and spin, and
how higher harmonics can improve these measurements.

Mass ratio and inclination: The relative excitation of
higher multipoles depends on the binary mass ratio ¢ and
inclination angle i. In Sec. IIl we use estimates of the
relative amplitudes of different # = m modes to measure ¢
and 1.

Source location and luminosity distance: LISA inspiral
sources are long-lived, and LISA’s motion around the Sun
modulates the amplitude and phase of the signal, which in
turn can be used to disentangle the source location and
orientation. On the contrary, the ringdown is very short
lived, and hence we cannot use the modulation of the
antenna pattern for localization. Furthermore, the angular
dependence of different modes with # = m depends only
on 7, so we must rely on modes with £ # m to infer more
information on the source location. In Secs. IV and V we
show that we can constrain the sky location and luminosity
distance by relying on the relative amplitudes and phases of
the (2, 2) and (2, 1) modes, as measured in different LISA
channels.

In Sec. VI we present a preliminary exploration of the
dependence of the errors on mass ratio, inclination, and sky
location. In Sec. VII we summarize our results and discuss
possible directions for future work.

In most of this paper we ignore the motion of LISA,
because ringdown signals are typically much shorter
than LISA’s observation time and orbital period. This
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FIG. 1. Solid lines indicate ringdown horizons for (2, 2), (3, 3), (2, 1), (4, 4) modes for a binary with ¢ = 2 (top) and ¢ = 10 (bottom).

Dashed and dash-dotted lines correspond to a low-frequency cutoff f,, = 107 and f., = 2 x 10~ Hz, respectively.

assumption is justified in the Appendix A, where we study
the effect of first-order corrections to this approximation.
We show that these corrections are negligible even for
binaries with M > 10% M, when the ringdown can last for
hours. Finally, in Appendix B we show that parameter
estimation could improve dramatically for sources that can
be associated with an electromagnetic counterpart.

II. REMNANT MASS AND SPIN

For our present purposes we can model the LISA detector
in the low-frequency approximation as a combination of two
independent LIGO-like detectors or “channels” (denoted by
a superscript i = “T” or “IT”’) with antenna pattern functions
F" and sky-sensitivities Q). [33,34]. The ringdown signal
from a BH with source-frame mass M, redshifted mass M =
M (1+ z) and dimensionless spin a measured by each
detector can be written in the time domain as a superposition
of damped sinusoids of the form

h;”ﬂ (t) = ;’716_(’_[0)/‘[““ cos (2”ffmt + (Di’m) >

(4)

where f,,, = f 55,21 /(1 + z) is the redshifted (detector-frame)
frequency, 7,4, = rgf? (1 + z) is the redshifted decay time,

n

and for later convenience we also define the quality fac-

tor Ql’m = ”fﬁmT{’m' .
The signal phase @), is given by

. Fi Yfm
q)lfm = ¢fm - 27[ffmt0 + me + tan_l (FIX Y;m> ’ (5)
+++

where ¢ is the starting time of the signal.
The signal amplitude in the ith detector is
‘m dL

Afr;l(Q)’ (6)

where d; = d;(z) is the luminosity distance to the source
(we use the standard cosmological parameters determined
by Planck [35]),

Q,, = \(FLYOP + (FLY? ()
is a “sky sensitivity” coefficient and A, is a ringdown
excitation amplitude, which depends on the mass ratio of the
binary and on the spins of the progenitors [2,15,17,19,36].
We compute A,,, as described in Ref. [19]. We consider
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only nonspinning binaries and we neglect precession
(cf. Refs. [37-39] for a calculation of ringdown excitation
amplitudes of more general trajectories in the extreme mass-
ratio limit).

The antenna pattern functions F ik,x depend on the
source sky position angles (6, ¢) and on the polarization
angle v [33]:

. 1+ u? . .
Fl(u,¢yp) = cos 2y cos 2¢p — u sin 2y sin 2¢,
: 1+u? .
F(u,¢,y) = 5 sin 2y cos 2¢p + u cos 2y sin 24,
P 3
F{,I_’X(M,(ﬁ,l//):Fﬂl_’x<u,(ﬁ—z,l/j>, (8)

where u = cos 6. The harmonics YV’ i’f’x corresponding to the
two ringdown polarizations can be found by summing over

modes with positive and negative +m, as follows
[15,16,40]:

Yf_m(l) = _nym(l, O) + (_l)f_zyf’fm(l’ O)’
VE) = V0 - (1 LY 0). (9)

Here 1 is the angle between the spin axis of the remnant and
the plane of the sky. For example, for £ = m = 2 we get

100k
10—1 ; .,
=
S 102k ¢
= 3
1073 L
100k
1071 B
bg F Ve
102
10°3

106 107 108 10°
MS(M(D)

v = \/i[l + (cos )],

1 /5
Y2(1) = 2\[“)51. (10)
y

Reference [27] used a Fisher matrix analysis to estimate
errors on the detector amplitude A}, = and on the phase @, :

8A _ V2 (11)
Alfm p;f’m
) 1
5q)lfm =~ - (12)
‘m

Here p"fm denotes the signal-to-noise ratio (SNR) in
detector i [19]:

pi’m :pglﬂwéﬂ’l(l’ 9’ ¢’ ll/)’ (13)

where p% s a detector-independent optimal SNR, while
wh, (1,0, ¢,w) = Q. /max(€QL, ) < 1isa “projection fac-
tor” that depends on the sky location, inclination and
polarization angles.

1005—
107! .—\\\
S - "\j\\
~ . ’\ \ .
- \0 e
E 1072 s SIS
Eo*e, S
10'35—
1005—
107! r\
k.
g -
1072 ™
10_35— .......

107 108 10°
Ms (MG)

—
(=]
=)

FIG.2. Angle-averaged errors on the remnant’s redshifted mass (top panel) and dimensionless spin (bottom panel) as a function of the
remnant’s total mass. We consider a binary merger of mass ratio ¢ = 2 (left) and ¢ = 10 (right) at z = 1. Each line corresponds to a
different mode; the thick, solid black line corresponds to the total error obtained after combining all modes.
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Median relative error on the detector-frame mass (left) and median absolute error on the remnant spin (right) for binary mergers

with ¢ = 2 (top panels) and ¢ = 10 (bottom panels). We also show the horizon of (2,2) mode and redshifted-mass cutoff at =10
q PP q p cut

(in red) and fo, = 2 x 107 Hz (in green).

Reference [27] also showed that a quasinormal mode
with SNR p,,, = [(p%,)? + (p4,)*]/* can be used to
measure the redshifted mass and spin of the remnant with
accuracy

1
Sa=— 2% , (14)
Ptm Qfm
sM 1 !
o 24Qf”"ff'", (15)
M Pem Qfmffm

which is independent of the channel, since we are summing
over i = I, I. In other words, the error ¢ resulting from two-
detector measurements is 6~ = o7 + o752, which is equiv-
alent to replacing the SNR pi, in each detector by the total
SNR py,,. Therefore, in this section and in the next we will
drop the subscript i.

Estimates of mode excitation based on numerical rela-
tivity simulations suggest that, in favorable cases, LISA
may see all multipolar components of the radiation that
have been computed in current numerical relativity simu-
lations [19]. Parameter estimation errors could be further
reduced for these “golden binaries” as we show in Fig. 2.
We consider a binary with ¢ = 2 (left panels) and g = 10
(right panels) at z = 1 and we plot angle-averaged param-
eter estimation errors on redshifted mass and spin inferred

from specific modes, as well as the (smaller) total error
estimate when we consider all multipoles. We assume
Gaussian distributions for the errors from each mode, and
we estimate the total error as

(5M> -2 B Z(éM) -2

M reduced ‘m M fm,

(5areduced)_2 = Z(éab"m)_z’ (16)
‘m

where (6M/M),,, is the relative error on the remnant’s
redshifted mass and da,,, is the absolute error on its
dimensionless spin computed using the (£, m) mode. For
small mass ratios most of the parameter estimation accu-
racy comes from the (2, 2) mode, while higher multipoles
make almost no contribution to the total error. The scenario
changes drastically for ¢ = 10: now all harmonics have
SNR comparable to that of the (2, 2) mode, the errors from
the individual modes are comparable, and adding them in
quadrature leads to a significant improvement in parameter
estimation.

In Fig. 3 we show contour plots for the median relative
error SM /M on the redshifted mass (left) and for the
median absolute error da on the dimensionless spin (right).

LISA can measure BH remnant spins for binaries
with ¢ =2(10) with an accuracy of 0.01 up to redshift
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7 =19.8(2.6) if M = 10% M, or up to redshift z ~ 1.2(0.5)
if M ~ 10% M. LISA can also measure the redshifted mass
of the remnant for binaries with ¢ = 2(10) with an accuracy
of 1% up to redshift z = 12(6) if M = 10° M, or up to
redshift z ~ 1.5(0.8) if M ~ 108 M,

Interestingly, the remnant spins and redshifted masses
for binaries with ¢ = 2(10) can be measured with an
accuracy of 10% even if the remnant has mass as large
as M~10° Mg, as long as the merger occurs at
7z < 0.7(0.3). Such binaries are usually thought to be
observable only with pulsar timing arrays (PTAs). It is
possible that PTAs may observe the early inspiral of a few
resolvable binaries with z < 1 [41], while LISA may
observe their merger and ringdown.

II1. MASS RATIO AND INCLINATION

In this section we will exploit the fact that the excitation
of different modes with # = m depends in a characteristic
way on the mass ratio ¢ and on the inclination angle 1 to
infer ¢ and 1. Let us focus first on one of the two
independent LIGO-like detectors, dropping the superscripts
I, ) for clarity.

For multipoles with # = m, the sky sensitivity appearing
in Eq. (6) is of the form

Q= re(sin) 7Qp, (17)

where the proportionality constant

(=12t | epee +1) "
"=/ \w-2)f+2) (18)

1s such that
Y, = rp(sing)/2Y2,. (19)

The detector-amplitude ratio of two modes—which to
simplify the notation we shall denote as, say, A, =
Ay.m, With Z; = m;—depends only on g and 1, i.e.,

jj = (sin0)™ 1 Hy, ¢, (4). (20)
where
re, A, (q)
H S WL LA 21
flf’g(q) rt’lAfl(‘I) ( )

By a simple extension, we can obtain a three-mode
combination which depends only on ¢:

/1

A A G/ £t (‘1) (22)

1.0
. 0.8 "¢‘—— --'--------_---------
S o6l [
< H
= 4
< 04f
O —_— (l1y by £5) = (2,3,4)
02f
mm—— (elaezae:}) = (27 3, 5)
0'0 1 1 1 1
2 4 6 8 10

q

FIG. 4. The function G, 4, (q) defined in Eq. (23).

where

i
r/}o Afv (23)
rf‘ "'/’L 1 1420214/1 1

Grotoe,(q) =
and 1= (¢3—7¢,)/(£>—¢1). This function is plotted in
Fig. 4 in two cases of interest: (¢,¢,,¢3) = (2,3,4) and
(£1.65.¢3) = (2,3,5). Note that Gy, 4,,,(q) has a local
maximum for g ~ 4 in both cases. This observation will be
useful later.

Note that Gy, (q) is obtained by fitting ringdown
excitation amplitudes to numerical simulations. Higher
harmonics are typically subdominant and contaminated
by numerical noise. Since the errors are proportional to
Ger,6,6,(0)/ Gy, r,r,(q), our results are very sensitive to the

accuracy of these fits (and therefore, indirectly, to the
accuracy of the numerical simulations). This is why we do
not use modes with Z > 5 to estimate g and 1, even though
those modes were used to estimate M and a.

The idea is now to infer ¢ and 1 from the detector
amplitudes A, of the three dominant modes. To estimate
measurement errors on ¢ and 1, we propagate errors from
the basis { A, A,,, Az, } to the basis {g,1} as follows:

e cova) (DY, 2y

COVy 1,4 (g.1) =
3Af 505 8Af|fzf3

where cov(.A) is the diagonal covariance matrix of detector

amplitudes with elements 2“:}2;’, and (f)j(#') denotes the
‘

€123

Jacobian of the transformation between the two bases,
obtained from Egs. (20) and (22). We can also use multiple
mode combinations to reduce the uncertainty:

cov(g.)™ = D covpe (g )T (25)

{61.62.65}

The left panel of Fig. 5 shows contour plots of the
median relative error on the mass ratio 6q/q (left) for
sources uniformly distributed over the sky. To reduce the
error we follow the procedure outlined above, using the
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FIG. 5. Median relative errors q/q for the mass ratio (left) and median error on the inclination angle ¢ (right) for nonspinning binary
mergers with mass ratio ¢ = 2 (top) and g = 10 (bottom). We also show the horizon of (2, 2) mode and redshifted-mass cutoff at

fouw = 107 Hz (in red) f., = 2 x 107 Hz (in green).

following two combinations of modes: (£,%5,¢3) =
(2,3,4) and (3,4, 5). The top panels show that for a binary
with mass ratio ¢ =2, LISA can measure g with an
accuracy of 10% up to redshift z = 16(2.1) for BHs of
mass 10% M4 (108 My,). In the bottom panels we consider a
binary with mass ratio ¢ = 10, and we show that measuring
the mass ratio is harder: in this case we can get ¢ with better
than 10% accuracy out to z = 0.7 for M = 10° M, The
right panel of Fig. 5 shows median error contours for the
inclination angle . For a ¢ = 2 binary (top panel), LISA
can measure : within 10° up to z &~ 18(2.4) for BHs of mass
10% Mo (~10% M). In the bottom panel we consider a g =
10 binary, for which ¢ is harder to measure, but the
inclination can still be measured to a relatively good
accuracy: we can measure ¢ within 10° up to redshift z ~
11(1.4) for BHs of mass 10® My (~10% M,). The depend-
ence of the various errors on the binary parameters will be
discussed in more detail in Sec. VL

IV. SKY LOCALIZATION

In general, LISA can localize inspiraling sources and
measure their distance by using amplitude and phase
modulations due to the orbital motion of the constellation
around the Sun [33,34,42-44]. This is not possible when
we observe only the merger or ringdown, because then the

signal duration is very short: even for remnant masses as
large as ~10° M, the signal can last at most ~17 hr,
compared to the LISA orbital timescale 7' ~ 1 yr.1 For this
reason we will explore other ways of localizing the source,
which are mainly based on comparing the amplitudes and
phases of the harmonics measured in different channels.

A. Localization contours using the amplitudes and
phases of the dominant mode in different channels

A first possibility to determine the sky location of a
source is to take the ratio of the signal amplitudes in two
channels

() -z
Y\ 9,04y
_ () 452, (F)°
(FE)? + 2, (FX)?
and the difference of the phases measured in the two
channels

(26)

'In principle, for such massive binaries we could still measure
first-order corrections to the antenna pattern due to orbital
modulations. However, in Appendix A we show that these
modulations can be measured with a typical accuracy « T'/7,,,
which is not sufficient even for the most massive remnants.
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FIG. 6. The function s = s, [cf. Eq. (28)] and the function s,;.

-1 fm __ gl 1
tan™ Qg" = ©,, — Dy,

FII FI
= tan™~! (s’f;:H X) —tan~! <Sf;1 X>, (27)
+ +

where we have defined the function s,,(1) =
Y (1)/Y{" (1), and we have omitted the inclination
dependence for brevity. From Egs. (10) and (19) it follows
that

2cos1

—_— 28
1 + cos?t (28)

S = Spr = S0 =

for all modes with # = m. This function is plotted in Fig. 6
along with the corresponding function s,;.

The amplitude ratio Q, = Q% and phase difference
Qo = Q% of the dominant mode with # = m = 2 are the
two main observable quantities. Let us assume that we have
determined the inclination z as described in Sec. III. Then
the two observables (Q4, Q) depend on three unknowns
(0, ¢ and y). Since, at this stage, this system is under-
determined we cannot find the exact sky location (0, ¢), but
we can infer contours of constant (Q,, Qg) in the sky.

For the moment we will ignore measurement errors on Q 4
and Qg, which scale like 1/p,,. This assumption is justified:
the limiting factor in the measurement is the inclination 1,
determined (as we discussed previously) from subdominant
modes such as (£, m) = (4,4) or (5, 5), which typically have
smaller signal-to-noise ratio than the (2, 2) mode.

By eliminating y from Egs. (26) and (27) we get
contours in the (6, ¢) plane. These belong to two classes
of solutions, as illustrated in Fig. 7:

(i) Type I: the contours form a set of 8 closed rings, and

there can be anywhere from O to 4 solutions at a
given ¢ (top panel of Fig. 7).

(i) Type II: the contours form two ringlike structures
enclosing the north and south pole, and there are two
solutions at any given ¢» (middle panel of Fig. 7).

These two classes of solution arise because the equations
have a different number of solutions in different regions of
the (Q4, Q¢) parameter space: ringlike solutions of type II
arise when

FIG. 7. Top and central panels: localization contours found
using relative detector amplitudes Q4 and phases Qg for the
dominant (2, 2) mode. Here we consider a source at (u =
cost, ) = (0.5,60°,60°) and three selected values of the
inclination: 45° and 60° (top panel) and 75° (central panel).
For smaller inclinations (1 = 45° and : = 60°) we get type I
contours, according to the definition in the main text. For larger
inclinations (1 = 75°) we get type II contours. The bottom panel
shows a phase diagram of the different classes of solutions in the
(Q4, Qo) plane for three fixed values of the inclination.

(Qa + 1)]s] _
\/(QA - 52)(1 - QASz)
(29)

1
S2 < QA < -5 and |Q¢| >
N

In the bottom panel of Fig. 7 we plot the “phase diagram”
of solutions in the (Q,, Q) parameter space for a source at
0 = ¢ = w = 60°and three fixed values of 1 = 45°,60°, 75°.
Type II solutions are usually present for nearly edge-on
binaries. Most of the solutions are of type I, with only about
1/4 of sources belonging to type ITif we assume that they are
isotropically distributed. Notice also that the rings are
symmetric under parity (u = cos — —u,¢p — 2z — ).
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In practice, the rings will have finite “widths” which are
mainly determined by the uncertainty in 1.

The discussion above focused on modes with £ = m, but
it is also applicable to £ # m modes, with the (2, 1) mode
being the most relevant observationally. The main differ-
ence is that s,; = cosz. The (2, 1) mode also yields two
families of solutions, with the phase diagram being
determined by Eq. (29). The three type II regions shown
in Fig. 7—which correspond to : = 60°,75° 80° for the
(2, 2) mode—would correspond to 1 = 36.9°,61°,70.3° for
the (2, 1) mode. In other words, Type II solutions are more
likely for the (2, 1) mode: about one third of the sky gives
type II solutions for the (2, 1) mode, compared to about
one-fourth of the sky for the (2, 2) mode.

B. Localization contours using the
amplitude of the (2, 1) mode

In the previous section we inferred localization contours
using the amplitude ratio Q, = Q% and phase difference
Ogp = Q%ﬁ of the dominant mode with # = m = 2, assum-
ing that the inclination has been measured as described in
Sec. III. Unfortunately we cannot extract any more infor-
mation from the remaining modes with £ = m, because the
sky sensitivity Q,, o sin(1)’=2Q,, for all of these modes:
cf. Eq. (17).

More information on the pattern functions F', , is
encoded in modes with £ # m. The excitation of these
modes is generally harder to quantify through numerical
relativity simulations, where subdominant modes are usu-
ally contaminated by dominant modes through a mixing of
spherical and spheroidal harmonics with the same m and
lower ¢ [1,2,17,45-47]. The (2,1) mode is an exception,
because (i) it is not affected by mode mixing, and (ii) it can
be excited to relatively large amplitudes, especially for
spinning BH binaries [15-19,48].

In this section we will focus on the localization infor-
mation contained in the (2,1) mode. Let us assume that the
inclination angle 1 and the mass ratio g are known. Then a
possible strategy would be to think about the two sky
sensitivities (€2),, €,) (or more precisely, the correspond-

. . . Qi
ing measurable detector amplitudes A, ﬁ) as func-

tions of the corresponding antenna pattern functions
(F'., Fi) in each channel [cf. Eq. (7)], and to solve these
equations to determine (F',,F’) in each channel. A
problem with this strategy is that we can never obtain
the antenna pattern functions themselves, but only the
ratios F'. . /d;, which are degenerate with the luminosity
distance. Following this line of reasoning, we consider
instead two ratios of angular functions: the relative channel
power Q. and the relative polarization power Qp.

1. Relative channel power

We start by defining the relative channel power Q.
between channels I and II:

_(FLP+ ()’
Oc = (- (P o

This combination has some interesting properties. First
of all, the numerator and the denominator (which can be
thought of as the antenna power of each channel, or
detector) are independent of the polarization angle y,
and they are given by simple functions of u = cos 6 and ¢:

(Fi 4 (FL)? = g1+ 6 + = (12 = 1)2 cos(4g)]
(1)

where the plus sign corresponds to the first channel (i = I),
while the minus sign corresponds to the second channel
(i = II). Because of this property, constant-Q contours in
the sky can be found from the analytic relation

Qc — 1 (1 +6u> + u*)

PR

(32)

and they are shown in Fig. 8. The intersection of the
constant-Q.~ contours of Fig. 8 with the localization
contours of Fig. 7 corresponds (in the absence of meas-
urement errors) to a finite set of points in the sky.

The relative channel power Q- can be computed from
the detector amplitudes as follows. One possibility is to
solve Eq. (6) to find F HIX /d; , and to use these quantities to
compute Q.. In alternative, we can use the relation

(€5))7 = 4(Q%,)*  (FL)* + (FL)?, (33)
to show that

41321 (61)2 - (-211)2
4A21(‘1)2 - (-AII)2

Qc = 0Oa (34)

where A, (q) = Ay (¢)/Ax(q) is the relative mode ampli-
tude, while A, = A}/ A}, is the relative detector
amplitude.

FIG. 8. Constant-Q. contours (Eq. (32) for Q- = 0.25 (inner-
most, dark blue contour), 0.5, 0.75, and 0.9 (outermost, light
green contour).
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2. Relative polarization power

A second useful combination is the relative polarization
power

(35)

This quantity is complementary to Qc, in the following
sense. First of all, the numerator and the denominator are
now independent of the polarization angle ¢, and they are
given by simple functions of u = cosé and y:

1+ 6u? + u* 4 (u® — 1) cos(dy)],

0| =

(Fp)? + (Fp)? =
(36)

where the plus sign corresponds to the plus polarization,
while the minus sign corresponds to the cross polarization.
By the same reasoning outlined above we find that

Op — 1 (14 6u>+ u*)
Op+1 (u=1)

cosdy = (37)

and therefore constant-Qp contours are completely iden-
tical to those shown in Fig. 8 for Q.

By solving Eq. (6) for F} L /d; and using these
quantities to calculate Qp we get

0p = —cos? lA21 (q)* - (A I+1T) /521(1)) (38)
p=—
Ay (Q) ( 1+11)/521(l))
where we have defined
Ay = 0(A)? + (Ap)? (A7 (A (39)
. Q04 +1 (Ap)” + (A5)?
as well as
Y2 (1) 2sinz
)= 1 F
SZI(Z)_YZf() 1 +cos’t’
YZI( )
X == = 40
551 (1) Y20 = sin1. (40)
Constant-Q~ and constant-Qp contours are both
bounded in latitude: for example -—u,,(Qp) <u <

u,,(Qp), where

um(Qp)—\/ i e GO}

An identical relation holds for Q.
The intersection of constant-Qp contours with the
localization contours of Fig. 7 also corresponds (at least

in the absence of measurement errors) to a finite set of
points in the sky. In both cases, when solving for sky
position we inevitably end up with multiple solutions. The
situation is not too dissimilar from sky localization with
(say) three Earth-based interferometers: by using times of
arrival for each two-detector combination we can identify a
ring in the sky, and the intersection of two rings identifies
two points in the sky.

Is there an optimal strategy to find “the” right solution in
our case? One possibility to further localize the signal is to
use the time delay between different spacecraft. Time-delay
contributions appear as higher-order corrections to the
phase which depend on the projected arm lengths
L;; = L(1 —n-#;), where f;; denotes the unit separation
vector between spacecraft i and J» Ljj is the corresponding
arm length, and 1 is the unit Vector pointing towards the
source [49]. These projected arm lengths can be related to
the sky location, and therefore an accurate phase meas-
urement could (in principle) give more insight on sky
location. This method is more effective for high-frequency
signals.

Reference [49] studied the localization of sine-Gaussian
bursts by measuring time delays between different space-
craft, finding that bursts with short duration could be
localized much better than bursts with longer duration
due to a degeneracy between the central time of the burst
wavelet and the sky localization: bursts with a longer
duration yield poor constraints on the central time, and
hence poor sky localization. Similar arguments should be
applicable to ringdown signals. In the case of ringdown, the
“starting time” 7 in Eq. (4)—which is the analog of the
central time in the burst analysis—can be determined with
good accuracy from relative phase calculations. In principle
it should be possible to use higher-order phase corrections
to improve the sky-localization procedure based on relative
amplitudes that we described above.

C. Errors

Now that we have outlined the general procedure, let us
turn to estimating the sky localization errors using error
propagation.

We have two independent ways of calculating the source
position and polarization: we can use either (Qy4, Qg, Oc) or
(Q4. Q. Qp)- The unknowns ©; = {6, ¢,y } can be calcu-
lated from the vectors Q; = { Q4. Q. Q;} (Where j = C, P).
In turn, these vectors depend on the mass ratio ¢, the
inclination : and the detector amplitudes, which we will

collectively denote as Xg = {q.1, A3, A3 }. Therefore we
need a mapping between three sets of variables:

The covariance matrices for these sets of variables are related
by Jacobian matrices as follows:
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FIG.9. Median errors on sky localization (left) and luminosity distance (right) for binaries with ¢ = 2 (top) and g = 10 (bottom). We
also show the horizon of (2,1) mode and redshifted-mass cutoff at f., = 10~* (in red) fo, = 2 x 107> Hz (in green).

00 00

B o0;T 00T
- 00; 0Xg

cov;(0) % 8_Q] )

-cov(Xg)- (43)
where a T' denotes the transpose.

We ignore errors on the amplitudes and phases of the
(2,2) mode, which are typically very small compared to
the errors associated with ¢, 1 or the (2,1) amplitudes.
Furthermore we can neglect correlations between {¢, 1} and
the (2,1) mode amplitudes, so the covariance matrix for Xg
is block diagonal:

cov(q,1) 0 0
covXe)= | 0 2(Ah/ph)? 0
0 0 2(Ah/ph)
(44)
The Jacobian gTQ:) can be calculated from Egs. (34) and
(38), while the Jacobian g—gj = %_1 can be computed from

Egs. (26), (27), (30) and (35).
It is possible to reduce the error by combining results
from both Q. and Qp:
cov(@)~! = Zcovj(ﬂ)‘l. (45)
J

‘We define the sky-localization error as the determinant of
the (u, ¢) block of cov(®):

6Q = {det [cov(u, )]}/ (46)

In the left panel of Fig. 9 we plot the median sky-
localization errors for sources uniformly distributed over
the sky. LISA can localize a My = 10° M, source with
g =2(10) within 100 deg? up to redshift z~ 13(9.4).
However sky localization relies on measurements of the
(2,1) mode, which has lower frequency than the (2,2) mode
(for fixed M) and gets out of band earlier as we increase
the mass. Therefore sky-localization accuracy suffers at
high masses: for example, we can localize a M = 108 M,
source with ¢ = 2(10) within 100 deg? only up to redshift
z~ 1.7(1.2). It may be possible to localize such high-mass
sources using the time evolution of the antenna pattern.
This is because, as we show in Appendix A, the time
evolution of the amplitude is known much better than the
(2,1) amplitude for binaries with M, > 5 x 108 M. In
these cases, we may expect the errors to be significantly
smaller.

In Fig. 9 we show the “reduced” error obtained by
combining both Q- and Qp, but using Qp alone gives
better sky-localization accuracy than using Q. alone for
most sources (approximately 77% of the sky). This can be
understood as follows. The relative channel power Q.
[Eq. (30)] and the amplitude ratio Q4 [Eq. (26)] differ only
by factors of s,, multiplying F%, in the numerator and in the
denominator. From Fig. 6 we see that sy ~ 1 unless
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1290 deg (i.e., unless the binary inclination is close to
edge-on). We conclude that Q- ~ Q, in a large portion of
the parameter space, and using Q. does not necessarily
lead to new information.

Note that we chose to consider Q- and Qp mainly
because they are easy to understand and manipulate, but in
data analysis applications other combinations may be easier
to measure, and the particular combination that leads to the
smallest errors will in general depend on the source
position and orientation. Some examples of combinations
that could be considered include F./FL, F./FY,
F'/FL, etc.

V. LUMINOSITY DISTANCE

The strategy for sky localization in Sec. IV was to
determine the ratios F';", /d; between the antenna pattern
functions and the luminosity distance. The antenna pattern
functions depend on the angles (0, ¢, w), so we can (at least
in principle) determine these angles from a knowledge of
F I+‘I.IX /d;. At this point it would be straightforward to
compute d; .

A simple way to determine d; is to use the fact that the
“total” antenna power depends only on u = cos 6:

(1 + 6u® + u?). (47)

Bl =

Pu) = [(FL)* + (Fi)?) =

i

Then we can compute the distance in terms of the detector
amplitudes of the (2, 2) and (2, 1) modes as follows:

P _) 5 (Ao YT, ( A, H N
afi M’ i;,ll Ax(q) 421(4) - &)
where
4r  sec?:
(0= 53 ot “9)
TABLE 1I.

remnant’s source-frame mass M.

Next we estimate errors on the luminosity distance by error
propagation. The unknown luminosity distance d; can be
computed in the “basis” X";, = {uj, q.1, AL, 211211}, where u;
is the colatitude calculated using Q; = (Q¢, Qp). We will
ignore once again the errors on the amplitude and phase of the
(2,2) mode, which are much smaller than the errors asso-
ciated with ¢, 1 or the (2,1) amplitudes. Then we have

3dL P 3dLT -1
(6dL)_1 = <— . COV(XJd) — > . (50)
2w, ") o,

Since correlations between {gq,:} and the (2,1) mode
amplitudes are negligible and we are ignoring the errors
associated with the (2,2) mode, the covariance matrix for X{i
is simply

. ou; cov(u,X
cov(de)=< Y v 9)>’ (51)
cov(u,Xg)T  cov(Xe),
where cov(u,Xg) reads
ou 0Q;
cov(u,Xg) = — - —2L - cov(X 52
(1.X0) = 5 g 0V (Ke) (52

Even if we have no sky localization information, we can
still compute an “effective distance” d, defined as follows:

dy
CVASFL (FLY

This quantity is very similar to the effective distance for
LIGO-like Earth-based detectors, which is degenerate with
the inclination angle 1 [50].

Even in the worst-case scenario where u is completely
unconstrained, the allowed range for d, is relatively
limited: d, <d; < 2v/2d,. However in most cases the
(2,2) mode is dominant, so Q, and Qg can be determined
very accurately. These quantities alone cannot determine

(53)

*

Redshifts at which various median errors are equal to the values indicated in the top row, for selected values of the

M, (Mo)  §1=0.1(107) 5,=01(107%) =01 (1072 & =10°(19 8Q=10deg* (1deg’) 2 —0.1 (1072
q=2

10 50 (12) 40 (9.8) 16 (0.3) 18 (0.3) 6.8 (1.4) 3.6 (0.05)

107 16 (5.5) 14 (4.5) 7.3(1.5) 8.1(1.7) 3.(14) 2.3(0.5)

108 4.1(1.5) 35(1.2) 2.1(0.7) 2.4(0.8) 0.9 (0.5) 0.7(0.2)

10° 0.9(0.2) 0.7(0.2) 0.4 (0.06) 0.4 (0.08) 0.1(0.04) 0.07 (0.01)
qg =10

106 22(5.9) 14 (2.6) 0.7 (0.04) 11(0.4) 55(1.3) 0.6 (0.04)

107 9.7(2.5) 6.1(1.4) 1.3(0.3) 4.8(1.0) 2.2(1.0) 1.3(0.3)

108 2.6 (0.8) 1.8 (0.5) 0.5 (0.09) 1.4 (0.4) 0.6 (0.3) 0.4 (0.08)

10° 0.5 (0.09) 0.3 (0.04) 0.04 (0.005) 0.2 (0.03) 0.05 (0.02) 0.03 (0.003)
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the sky location, but they can be used to set bounds on u
which can be very narrow (especially when the inclination
is not close to edge-on): see for example the 1 = 45° case in
the top panel of Fig. 7, for which 0.47 < |u| < 0.58,
or 1.54d, <d; <1.77d,.

In the right panel of Fig. 9 we plot the median luminosity
distance errors for sources uniformly distributed and
oriented over the sky. The top panels show that for a
binary with ¢ =2, LISA could measure d; with an
accuracy of 10% up to redshift z = 3.6 for BHs of mass
10% M. In the bottom panels we consider a binary with
g = 10, and we show that LISA could measure d; with
better than 10% accuracy out to z = 0.6 for M, = 10® M,

Table II summarizes LISA’s parameter estimation capa-
bilities by listing the redshift out to which various median
errors are equal to specific thresholds (indicated in the top
row) for selected values of the remnant’s source-frame
mass M.

VI. ERROR DEPENDENCE ON MASS RATIO,
INCLINATION AND SKY POSITION

So far we have mostly estimated errors for specific
binary systems. We now wish to explore more systemati-
cally the dependence of the errors on the mass ratio ¢, the
inclination z, and the sky position of the source.

A. Mass-ratio and inclination dependence

Let us start by exploring the ¢ dependence of the errors.
We consider a three-mode combination as in Eq. (22) and
assume that #5 is the least dominant mode. If we ignore the
errors on the dominant modes and we also ignore corre-
lations, we can show from Eq. (22) that the error on g can
be written as

QGbplfzf}

, (54)
Py Glt’lfzzﬁ

0q =

where a prime denotes a derivative with respect to g. Recall
that according to Eq. (13) the SNR in a given mode can be
factored as ps,, = p%, X wg,,, where p2  is the SNR for an
optimally oriented binary, and wy,, (1, 0, ¢, y) is a position,
orientation and polarization-dependent “projection factor”
such that 0 < wy,, <1 (see, e.g., Ref. [51]).

For most binaries, the two strongest modes correspond to
{/y=¢=m=2 and ¢, =¢C=m=3 (see, e.g,
Ref. [19]). In Fig. 10 we plot the errors on various
quantities assuming that either 3 =4 or £3 = 5. In both
cases the fractional error 6g/g diverges at g ~ 4 because
Gy s,,, = 0 there (cf. Fig. 4) and it saturates at large g,

approaching the limit

5q 9.4

5q 8.0
q P44’ -

P~ 55
q P55 ( )

30
25
20
15

1
1
1
1
1
)
‘

0q/q X pe,

oL X p?s

—_— (ela Lo, 63) = (27 394)

50 T

mm—— (ely Lo, 63) = (2? 3, 5)

oL X pgg

FIG. 10. Top panel: Relative error 6g/q on the mass ratio,
scaled by the SNR p,. of the third (least dominant) mode used in
the analysis. Middle panel: inclination error &1 scaled by the
optimal SNR pg2 of the third (least dominant) mode used in the
analysis as a function of q, for 1 = 45°. Bottom panel: inclination
error O1 scaled by the optimal SNR pgz as a function of 1 for g = 2
(thick lines) and ¢ = 10 (thin lines):

For the inclination we find

tan: H:f/
oL = 5‘1‘ = 26
fz—fl Hflfo ( )
_ U e [ Hy G (57)
/)f} Lﬂz_fl Hflnglflfzf3

and the error diverges at g =~ 4 for the same reason.
Finding analytical scalings for the errors on d; and Qis not
as simple, mainly because the sky-position dependent terms
are complex and we have to “change basis” twice, as
explained above. In Fig. 11 we consider for definiteness a
M;=10" My remnant at z=1 with (1, u,¢,p) =
(45°,0.5,30°,60°), and we plot the ¢ dependence of various
errors. Mass and spin errors depend on the remnant proper-
ties, which in turn depend on ¢q. As expected, 6g/q and 61
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FIG. 11. Mass-ratio dependence of various errors for a M =

107 M, remnant at z = 1 with (1, u, ¢, y) = (45°,0.5,30°,60°).

diverge close to ¢ = 4, and the errors are typically smallest
for small values of g. Interestingly, the sky-localization errors
have a weaker dependence on g and they do not diverge at
g = 4, but they do diverge for nearly equal-mass systems
(g — 1). Distance errors diverge at both ¢ ~ 1 and g ~ 4.

Equation (54) for d¢ depends on the inclination z only
through p,,. To single out the  dependence, we average the
projection factor wy,, (1, 6, ¢, y) over the remaining angles
(0, ¢ and y) with the result

1 1

— x
W, (1) (sin1)?72y/1 + 6¢c0s? 1 + cos* 1

5q , (58)

which diverges for face-on binaries. By proceeding in a
similar way we find that, upon angle averaging, o1 in
Eq. (56) reduces to

T T T T T T T T T T T T T
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FIG. 12. Inclination dependence of various errors for a M, =

107 Mg remnant at z = 1 with (u, ¢, ) = (0.5,30° 6°) and g =
2 (thick lines) or ¢ = 10 (thin lines).

tan:

Ol X ————
Wests (1)

1

(sin1)?373 cos 1v/1 + 6cos 1 + cos* 1

. (59)

which diverges for both face-on and edge-on binaries (as
shown in the bottom panel of Fig. 10). This can be
understood as follows. The amplitude of £ = m modes
is proportional to sin‘~?, so the amplitude of higher
harmonics is very low for face-on binaries. On the other
hand, for edge-on binaries sinz“~? is flat, and measuring
1 is hard.

Let us now look at the 1 dependence of various errors. In
Fig. 12 (which is similar to Fig. 11) we consider for
definiteness a M, = 10" M, remnant at z =1 with
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FIG. 13. Dependence of the sky localization errors (top) and
distance errors (bottom) on sky position. Here we consider a
binary with M, = 107 Mg at z = 1 with (q,1,w) = (2,45° 60°).
We also plot localization ellipses at constant u and ¢. For
visualization purposes we magnify the size of each ellipse by
a factor 10 (i.e., we magnify the area by a factor 100).

(u, ¢, w) = (0.5,30° 60°), and we plot the i dependence of
various errors for two selected values of the mass ratio
(g = 2, 10).

Some remarks are in order. Spin and mass errors (das
and 6M /M) depend on 1 only through the joint SNR
(PL,)* + (p1 )? o (QL, )2 + (QR )2, For moderate mass
ratios (¢ = 2) the (2,2) mode is dominant, and higher
harmonics do not contribute much to the measurement of
a; and M. For the (2,2) mode, (€},)* 4 (1,)? decreases
with 7, leading to smaller SNRs and larger errors for edge-
on binaries. The situation is different for larger mass ratios
(g = 10): higher harmonics are more prominent, and their
contribution to the error budget is comparable to the (2,2)
mode (cf. Fig. 2). The higher harmonics vanish when the
binary is face-on—i.e., when most of the SNR comes from
(2,2) mode—and have maxima when 0 < 1 < z/2, unlike
the (2,2), which decreases monotonically with 7. As a result,
da; and 6M /M have a minimum when g = 2.

We can also use Fig. 12 to better understand Fig. 11, in
which we had fixed 1 = 45°. For example, from the bottom
panel of Fig. 12 we see that face-on binaries (1 ~ 0°) have
similar inclination errors for ¢ =2 and g = 10, while for
edge-on binaries (1~ 90°) &1 is larger for ¢ = 10 than for
g = 2. In Fig. 11, the mass ratio dependence would have
been milder (stronger) had we considered 1 ~ 0° (1 ~90°)
rather than ¢ = 45°, Inclination has a much milder effect on
sky localization errors, whether ¢ = 2 or g = 10.

B. Sky-location dependence

Figure 13 shows the dependence of the localization
errors (top panel) and luminosity distance errors (bottom
panel) for a remnant source mass M, = 107 M with z = 1
and (q,1,w) = (2,45°60°. In this case the best sky
localization (top panel) and distance determination (bottom
panel) are achieved when the binary is near the equator.

This is in contrast with errors on the remnant mass,
remnant spin, mass ratio and inclination, which are smaller
when the source is overhead. The reason is that sky
localization and distance determination hinge on measuring
the relative amplitudes or phases between two channels. For
overhead binaries the SNR is close to optimal, but both
channels have similar amplitudes and phases. Consequently,
localization is much better when the binary is close to the
equatorial plane, even though the SNR is not optimal.

VII. CONCLUSIONS

Massive BH binaries in the universe are expected to have
a stronger influence on their astrophysical environment.
Partly because of observational bias, there is by now strong
observational evidence for BHs in the high-mass range, and
mounting evidence that they may form binaries. For
example, the Catalina real-time transient survey (CRTS)
identified 111 candidate SMBH binaries with periodic
variability [52], more than 90% of which have masses
>10% M. If even a small fraction of the high-mass BH
binaries in the universe merge, higher modes of the ring-
down may be detectable by LISA.

The ability to localize high-mass BH binaries is par-
ticularly important. If binary BH mergers are accompanied
by electromagnetic signatures (like a “notch” in the IR/
optical/UV  spectrum, or periodically modulated hard
x-rays), such signatures are most likely in massive binaries,
with typical masses in the range 108 My—-10° My (see.
e.g., Ref. [53]). In particular, Athena should be able to
detect x-ray emission from such sources at z <2 [54,55].
The coincident detection of gravitational and electromag-
netic waves may allow us to use BH binaries as standard
sirens at relatively large redshift [56,57], potentially
resolving the apparent discrepancy between cosmological
observations at early and late cosmological time [58].

In this paper we have shown that higher modes of the
merger and ringdown are a treasure trove of information on
various properties of the binary, such as the mass ratio,
inclination, sky location and luminosity distance. This is
particularly remarkable because the source localization
method we proposed here (while admittedly somewhat
limited in scope) does not rely on modulations induced by
LISA’s motion, and therefore it is independent of the
observation time.

For the reader’s convenience, we conclude this paper
with a short summary of our main results.
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In Sec. II we use Fisher matrix estimates for the remnant
mass and spin from past work [Eq. (15): see, e.g.,
Refs. [27,59,60] ], showing that the accuracy with which
these parameters can be measured improves by combining
several modes.

In Sec. III we present one of our central results: since we
know how the ringdown amplitudes depend on mass ratio,
we can obtain both the mass ratio and the inclination of the
binary from the measurement of three modes. The key
insight comes from Eq. (17), which implies that by taking
appropriate ratios of the three dominant modes we can find
both ¢ and 1.

In Sec. IV we assume that : has been determined as
described in Sec. III, and we show that multimode
detections allow us to determine the sky localization and
luminosity distance without having to rely on modulations
induced by LISA’s orbital motion. We define the ratio
between the signal amplitudes in two LISA channels of
detectors Q4™ [Eq. (26)] and the difference between their
phases Q4" [Eq. (27)]. The two # = m = 2 quantities
0, = 0% and Qg = 0% should typically be measured
with the highest SNR, and they depend on three angles:
(0, ¢,y). For constant values of Q4 and Qg, we can
eliminate y and identify contours in the sky (Fig. 7). A
similar procedure can be applied to the relative channel
power Q¢ [Eq. (30)] and the relative polarization power Qp
[Eq. (35)], leading to the identification of additional “rings
in the sky” (Fig. 8). Finally, the intersection of these two
sets of rings in the sky identifies finite sets of points where
the source may be located. A similar strategy allows us to
determine the luminosity distance (Sec. V). In Sec. VI we
discuss how parameter estimation accuracy depends on the
binary’s mass ratio, inclination and sky position.

Our analysis relies on several simplifying assumptions
that should be relaxed in future work. For example, we
neglect the effect of spins on the mode amplitudes, which is
reasonably well understood (see, e.g., Ref. [19] and
references therein). Spins should not significantly affect
the errors on mass ratio ¢ and inclination 1: these quantities
depend on the amplitude ratios of £ = m modes, which are
only mildly dependent on spins, as first shown by
Refs. [15,16]. The situation is different for the (2,1) mode
(crucial to estimate sky localization and luminosity dis-
tance), which is very sensitive to spins. In this case,
correlations between the spins and other binary parameters
could reduce the accuracy in sky localization and lumi-
nosity distance. However, by focusing on the ringdown we
have significantly underestimated the information carried
by the full inspiral-merger-ringdown signal, which should
break some of these correlations. For example, LIGO
observations of the inspiral can most easily measure the
effective spin combination y.r = (qr1 +x2)/(qg+ 1)
[61,62], while the (2,1) mode depends most sensitively
on the combination y_ = (qy; —x2)/(¢ + 1) [18]. Com-
bined measurement of the inspiral and of the ringdown

could reduce the errors on the individual spin components.
These qualitative arguments should be supported by
explicit calculations using state-of-the-art inspiral-
merger-ringdown models including higher harmonics
[7-12], a task beyond the scope of this work.
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Note added.—Recently, a related work appeared [63]. The
new study performs a full Bayesian analysis using a more
realistic instrumental model and complete inspiral-merger-
ringdown waveforms, but it only focuses on two massive
black hole sources of fixed masses and redshift [63]. The
conclusions of Ref. [63] concerning sky localization with
higher harmonics are consistent with ours: compare e.g.,
our Fig. 7 with their Fig. 13.

APPENDIX A: LOCALIZATION FROM TIME
EVOLUTION OF ANTENNA PATTERN

Most long-lived sources can be localized using the time
variation of the LISA antenna pattern. This method cannot
be used for ringdown waveforms, because they are short
lived: a typical ringdown decay time ranges from 1 min for
M;~10° My to ~17 hr for M~ 10° M. This is a
problem for very massive BH mergers, where the inspiral
occurs out of band and we may have to rely only on merger-
ringdown to localize the source.

Let us assume that the source direction remains constant
in the Solar System frame during the observation period. In
the LISA frame, the position r of a GW source which has
fixed position rg in the Solar System is given by
r =R -rg, where R(t) =C-B- A is a product of three
rotation matrices:
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coswt sinwt 0
A= | —sinwt coswt 0 |,
0 0 1
1 0 0
B=|0 1 ¢
0 % )
coswt —sinwt 0
C=| sinwt coswt O (A1)
0 0 1

Here @ = 27/ T is the LISA orbital frequency,and T = 1 yr.
The source direction in the barycentric frame can be written
in polar coordinates as Az = (sin Oz cos ¢p, sin O sin ¢y,
cosfp), and the corresponding vector in the LISA frame
18 ﬁL = R(l) . ﬁB'

In the LISA frame, the apparent change in position of the
source is given by

A(t) = R(r) - R(0)~" - A(0). (A2)

If we apply this transformation to the source position vector
we get

k)

3
cos (1) = cos 6 + %a)tcosdﬂ sin@

ot)=d+ %a)t(l ++V3cotfsing),  (A3)

while if we apply it to the angular momentum vector of the
binary Ly = (sin@ cos ¢, . sinf; sin¢; ,cos ;) we find
that the inclination 1 = cos™!(Lp - fig) is constant, while
the polarization angle, given in terms of z (the direction
perpendicular to the LISA plane) by

tany/ (1) = : (A4)

changes at O((wt)?). The waveform modes change as
follows:

1
hfm(t) = Afm + (UfB};m + 5 (a)t)zBﬁm e_(t_to)/ff‘m

1
X €08 27 f gt + @y + 0tPL + 5 (wt)?¥2, ],

(AS)

where the first-order corrections to the detector amplitude
and phases are

Agm 1 d
1 _m 2 2 ‘m\2 ‘m\2
Bfm - Qfma)dt (\/(F+(I)Y+ ) + (FX([)YX ) )’

g _1d (Fx(t)Y'§”1>

= A6
‘m w dl F+ (t) Yﬁm ( )

and the second-order corrections are

Apm 1 &2
B = o (VP OV 4 (L7,

9 1 & (Fx(t)Yi’">

@ d \F o (1)Yo"

By computing Fisher matrices, we can show that the
first-order corrections can be measured with accuracy

sp. = V2Am T
om T Pem Tem ’

spl V2 1. T
o T PtmTem ’

5B, — \ﬁim(iy
om 3 ”2 Pem \Vém
21 1 T \2
= Pem \T¢m

For long-lived sources, the evolution of the antenna
pattern can be used to find both the inclination and the sky
position. Recall however that our strategy in this paper
relies on first using the £ = m = 2, 3, 4 modes to find the
inclination, and then the (2,1) mode to find the sky position.
The question is then whether first-order in ot corrections to
the dominant mode amplitude 6B,, which could be used to
find the source position and orientation, can be measured
more or less accurately than the other subdominant ampli-
tudes A,,, themselves. In Fig. 14 we plot the fractional
error 6B},/BL, and we compare it to 5.4,/ Az, for some
of the dominant (#, m) modes for sources of different mass
at redshift z = 0.1. For ¢ = 10 (bottom panel), 58}, /B), is
larger than either 54,44/ Ayy or 84,/ Ay, for all binaries
with M < 10° M, so the time evolution of the signal
amplitude should not play an important role in finding
inclination. Furthermore, in this paper, for ¢ =2 (top
panel), 5A4,,/A,; gets larger than 6B,/B), when M 2
5 x 108 M, and slight improvements in source localization
may be possible. Note, however, that these improvements
would only be possible if we can control the low-frequency
sensitivity down to f, = 2 x 107> Hz. Solid markers in
Fig. 14 show that, if f., = 107 Hz, the signal would get
out of band before any improvement occurs.

(A7)
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FIG. 14. Fractional amplitude errors for a source at z = 0.1.
The markers indicate the mass at which the given mode goes out
of band at f., = 10~* (solid markers) and f., = 2 x 107> Hz
(hollow markers).

APPENDIX B: PARAMETER ESTIMATION FOR
SOURCES WITH ELECTROMAGNETIC
COUNTERPARTS

In this section we consider parameter estimation errors in
the ideal situation where we can associate an optical
counterpart to the source, so that 6, ¢ and d; are known.

A single-mode detection is enough to solve for the
remaining unknowns (q,z,y). For example, from the
knowledge of (0, ¢) we can use Q4" and Q4" to measure
1 and y, which can then be used to solve for g. We need a
Jacobian transformation from the basis Qp,, = {Q}", Q%"
to the basis {z, y}, and we can propagate the uncertainty as
usual:

cov({t.w}s) = 88{5:/} < cov(Qpm) - <aa{é;l/})T, (B1)

where the covariance for Qy,, is

cov(Qem) (B2)

2
=
E 1072
=
°
—
m— reduced === (2, 2) === (3, 3) == (4, 4)
10-3 | 1 1 | 1 1 1 | 1 L L | L L L
2 4 6 8 10
q
10!

. 100F
&
=
s 107
P
2

1072}
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FIG. 15. Errors on ¢ and : for a source with counterpart and

M;=10" Mg, z=1, u = 0.5, ¢ = 30°, v = 60°. In the upper
panel we set 1 = 45° while in the lower panel we set ¢ = 2 (solid
lines) and ¢ = 10 (dashed lines).

The Jacobian for Qp,, — {1, y} is

Huy}) ( 9Qem )‘1’

8Qt’m B 8{1’4/} (B3)

which can be calculated from Eq. (26) and Eq. (27).
We can then compute the reduced error as

cov({1}en) = (Zf,,xcov({z,w}fm»-l)_l. (B4)

Once 1 and y are known we can compute g from

AfmdL

Apm(q) = =L
fm(Q) Qfm (17 9’ W)M

(BS)

and error propagation gives

Apm(@\2[(SM\2 2 (69,2
S 2 _ ( ‘m ) omt =4 m ’ B6
1 Alfm (q) M pLZ”m 'Qfm ( )

where

Q?IH = (Qlfm)z + (ng)z’

p?'ﬂ = (plf'n)z + (pI}Wl)2’ (B7)
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and

09, 09, \"
(09200 = g contfu))- (o) (B

In Fig. 15 we plot the relative error on mass ratio 8¢/ ¢
and the inclination error &t for a source M, = 107 M, at
z = 1, assuming that the position and distance of the source
are known from an electromagnetic counterpart.

The upper panel of Fig. 15 shows that mass ratio errors
coming from a measurement of the (2,2) and (4,4) modes
diverge as ¢ — 1. This is because A%, (¢=1)=Al,(¢g=1)=0
and hence the denominator in Eq. (B6) diverges as g — 1.
The observed divergence of the errors for other modes
and/or at other values of ¢ are similarly due to the fact

that A, (¢) =0. However, the solid black line shows
that we can always measure ¢ at the subpercent level (at
least in principle) by combining information from all the
modes.

The bottom panel of Fig. 15 shows that the inclination is
harder to measure for face-on binaries than for edge-on
binaries. This could be explained from a closer look at
Eq. (26) and Eq. (27). Note that Q, and Qg depend on
inclination through the function s,,,. As shown in Fig. 6,
sz, has a weak (strong) dependence on 1 for face-on (edge-
on) binaries, leading to large (small) errors. These consid-
erations also apply to modes with # > 2, which in addition
have smaller SNRs, and therefore larger errors. The smaller
SNR for edge-on binaries also leads to the observed
turnover for 1 > 80°.
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