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We combine hierarchical Bayesian modeling with a flow-based deep generative network, in order to
demonstrate that one can efficiently constraint numerical gravitational-wave (GW) population models at a
previously intractable complexity. Existing techniques for comparing data to simulation, such as discrete
model selection and Gaussian process regression, can only be applied efficiently to moderate-dimension
data. This limits the number of observable (e.g., chirp mass, spins.) and hyperparameters (e.g., common
envelope efficiency) one can use in a population inference. In this study, we train a network to emulate a
phenomenological model with 6 observables and 4 hyper-parameters, use it to infer the properties of a
simulated catalogue and compare the results to using a phenomenological model. We find that a 10-layer
network can emulate the phenomenological model accurately and efficiently. Our machine enables
simulation-based GW population inferences to take on data at a new complexity level.
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I. INTRODUCTION

Since the discovery of gravitational waves (GWs) [1],
GW events are being detected routinely at an accelerating
pace. By the end of the third observational run (O3) of the
ground-based GW detector network, which will end on
31 April 2020, one can anticipate ~60 detected events in
total. The ground-based GW detector network, including
the Laser Interferometer Gravitational-Wave Observatory
(LIGO), the Virgo interferometer [2], and the Kamioka
Gravitational Wave Detector (KAGRA) [3] (henceforth
LVK collaboration), is expected to operate at its design
sensitivity in late 2021, which will detect ~100 events per
year [4]. And with the planned A+ upgrade, we will detect
hundreds to a thousand events per year [5]. With the
growing GW catalogue, the focus of gravitational wave
astrophysics will rapidly shift toward studying the pop-
ulation of GW events [6,7]. The population of GW events
offers a unique window into a plethora of physics, includ-
ing fundamental physics such as modifications to general
relativity (GR) [8], the expansion rate of the universe [9],
and astrophysics related to the progenitor of the binaries
[10-13]. The growing catalogue of stellar-mass compact
binary systems detected by GWs offers burgeoning insights
to the physics governing their evolution. At the same time,
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its increasing complexity demands more sophisticated
modeling and data analysis techniques.

Current state-of-the-art GW analyses employ phenom-
enological parametric models to describe the GW popula-
tion [14-18]. This is advantageous for its simplicity and
agnostic to physical assumptions. On the other hand, it
cannot provide much physical insight directly precisely
because of the same reason. Alternatively, there are
simulations which create synthetic populations of GW
events based on some physical assumptions which are
characterized by a set of parameters, such as the metallicity
of the environment [19] or the escape speed of the stellar
cluster in which the GW-emitting binary resides [20]. One
can in principle compare the simulation results to the data
and obtain direct constraints on these physical parameters.
This is often done by calculating the Bayes factor between
models with different parameters under the same para-
metrization [21-23]. In practice, the simulation-based
approach has an obvious disadvantage—simulations are
often computationally heavy. Obtaining constraints on the
physical parameters requires good sampling in the param-
eter space of interest, which in turn would require a
simulation on each sample point, and the heavy computa-
tional load of each simulation basically renders this
thorough sampling impractical.

There are recent developments in circumventing this
technical difficulty by creating an emulator of the simu-
lations with machine learning techniques [24,25]. They
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emulate the output of the simulations with Gaussian
process regression (GPR) and principal component analysis
(PCA) without going through the sophisticated simulations,
hence gaining enough speed up so that the emulator can
be used in the population inference. Despite the novelty
demonstrated in previous studies, this existing method has
a few limitations:

(i) Data with high complexity, such as simulations
parametrized by a large number of hyperparameters,
will require a decent number of training simulations
to reach a given accuracy. Since the machine is
running Gaussian processes on every principal
component (PC) that characterize the entire set of
simulations, which the number scales roughly lin-
early with the number of simulations, the GPR-PCA
machine becomes progressively inefficient in emu-
lating simulations as the complexity of the set of
simulations increases.' Also, PCA is used to com-
press the dimension of the training data in order to
reduce the computational load, which means there is
an inevitable loss of information.

(ii) As mentioned in the first point, the computational
load of a GPR-PCA machine scales linearly with the
number of PCs after the compression. If one wants to
maintain the same speed of the machine, more PCs
need to be discarded, which degrades the quality of
the interpolation and potentially introduces bias into
the final result. Another issue is that the existing
machines use histograms to estimate the probability
density function of their observable space, which
means their estimate of the probability density is
binning-dependent.

(iii) Moreover, the memory requirement for a histogram
increases geometrically with the dimension of the
problem. For example, we want to have 6 observ-
ables in our problem, and we choose to bin our
observables into 30 bins in each observable axis.
Assuming we use FLOAT32 to store the histograms
which we use to train the machine, and we have
1000 simulations, then the size of the training data to
be loaded in memory will be ~2.5 TB, which is not
available on most computer cluster. Therefore the
existing machine cannot be easily generalized to
higher-dimensional problems.

In this work, we demonstrate the technique of normal-
izing flows (a type of flow-based generative model) can
overcome these difficulties, hence improving the efficiency
and accuracy of simulation-based GW population infer-
ence. More specifically, we use a normalizing flow network
to emulate the likelihood in a hierarchical Bayesian
analysis (HBA) framework. The field of deep learning is

"The more complex the simulations are, the harder it is to
compress the entire set of simulations to the same number of
principal components.

growing exponentially due to advancements in various
fields: innovations on the topic of neural networks
[26,27], increasingly powerful hardware [28,29], develop-
ment of open source general purpose deep learning libraries
[30,31], etc. These advancements lower the barrier to apply
deep learning techniques to problems in other fields. In
particular, the astronomy and astrophysics community has
applied deep learning techniques in various aspects, includ-
ing signal detection [32-37], inference [38—41], and simu-
lations [42]. Deep learning techniques often offer more
flexible and much faster solutions compared to traditional
methods. Normalizing-flows models rely on using a series
of simple invertible transformations to map a complicated
distribution (usually the data observed) to a simple one
(e.g., a multivariate Gaussian). This specific formulation can
provide an estimate of the log-probability for a given data-
point in the original distribution. They can therefore be used
for density estimation, see for instance [43].

This paper is structured as follow: In Sec. II, we describe
the specific problem of GW population inference and
review the HBA framework. In Sec. III, we review the
basics of normalizing flows, layout the architecture of our
network. In Sec. IV, we present our data and results. In
Sec. V, we discuss prospects of this work.

II. HIERARCHICAL BAYESIAN INFERENCE

In this section, we summarize the salient points of
hierarchical Bayesian inference and clarify our objective.
We refer interested readers to more detailed explanations
in the literature [44-46]. GW data is usually given as a
time series with some characteristic waveform. In order to
extract physical quantities from the time series, such as
masses and spins of a GW-emitting binary, one often adopts
a parameter estimation process with Bayesian inference
[47]. Given some data d, the posterior probability of the
signal being an astrophysical source with parameters @ is
given by p(0|d) « p(d|@)p(0), where p(d|@) is the like-
lihood of observing the data given our model of the
astrophysical signal and detector, and p(@) is the prior
we assume on the source parameters. The prior encodes our
intuition on the underlying physics (for example, mass
should not be negative), and plays an important role in
interpreting the result [48,49].

A hierarchical analysis parameterizes the prior used in
parameter estimation of a GW event with some hyper-
parameters A, so that we can infer the true hyperparameters
by marginalizing over the event parameters,

ploja) = DL ORE

The term p(d|@) is the single event likelihood, whereas
p(4) is now a prior on the hyperparameter. p(@|A) is the
population likelihood. For clarity, we denote the parameters
which describe the individual GW event properties as event
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parameters, 0, and the parameters which describe the entire
set of events as population parameters, A. As an example,
in studies which take the route of employing phenomeno-
logical models, p(@]1) could be a power law in mass, where
the spectral index «a is the population parameter and the
mass m is the event parameter, i.e., p(m|a)~m®. In
contrast, a simulation-based model often provides a syn-
thetic catalogue of GW event, instead of an analytical
expression of the population likelihood. The objective of
this study is to find an efficient way to construct an
emulator of the population likelihood p(@|A) given a set
of GW catalogue generated by numerical simulations, so
we can then use the emulator in Eq. (1) to compute the
population posterior.

For a set of events which are drawn independently from
the same underlying population, and if the parameter
estimation of different astrophysical events is not correlated
(i.e., the signals are not overlapping), the likelihood of
observing that particular set of events can be factorized into
the product of the individual event likelihoods,

p(d|A) = / p(d|{0})p({0}12)d{6} )

N, obs

~I[ [ paieip@ina. G
i=1

Note thatd in Eq. (2) is the entire time series observed by
the GW detector network, while d; is Eq. (3) refers to the
segment which contains the event characterized by 6,. The
term p(d;|0;) is usually rewritten as p(0;|d)p(d;)/p(0;)
using Bayes’ theorem. Combining Eq. (1) and Eq. (3), we
obtain the population posterior,

i) = p IT [ 2O o,

i=1

The event posterior PDF p(6;|d) is often given in the form
of § discrete samples by a parameter estimation process
[50,51]. We can now make use of the posterior samples
produced by a separate parameter estimation pipeline, thus
avoiding unnecessary re-computation of estimating p(d|@)
and reducing the computation load for each population
inference run significantly. The integral in Eq. (4) is
essentially the expectation value of the prior-reweighted
population likelihood, which can be turned into a discrete
sum over the event posterior PDF samples:

Nops S j

p(0i]4)

p(Ald) = p(A — |
) = 115> 5

—

(5)

where j labels the jth sample of the ith event. Our models
in this work do not predict the event rate, so we also leave
the rate out in deriving Eq. (5). Since the event rate is

integrated over all the event’s parameters, it is solely a
function of the hyperparameters, so traditional interpolation
methods can handle the rate, and it can be incorporated into
the inference machine trivially.

Parameter estimation of GW events comes with its own
systematics [52-54] and the computation is often quite time
consuming. In the limit of high signal-to-noise ratio (SNR),
measurement uncertainties are negligible and the inferred
parameters of an event will be distributed as a Gaussian
around the true value [55], with standard deviation
inversely proportional to the SNR. To avoid complication
and unnecessary use of computational resources, in this
study we take the high-SNR limit and treat the measured
events as if they had no measurement systematics and
statistical uncertainties on the event parameters, i.e.,
p(0;ld) = 5(0; wue — 0;). Then the integration in Eq. (4)
will simply pick out the correct value, therefore the
posterior can be written as

Nohs

p(Ald) = p(4) H p(0:|). (6)

In the high-SNR limit, the prior on event parameters is
irrelevant [55] and can be treated as a constant.
Uncertainties in the selection biases will propagate through
the analysis pipeline, resulting in an additional systematic
error in the result when analysing real data [56,57]. In this
paper, our goal is to demonstrate that this deep learning
technique can enable the use of more sophisticated sim-
ulations in population inference, and we are generating
simulated data for this purpose. Leaving the selection
biases out avoids the confusion between systematic from
the deep learning method and inaccuracy in the selection
biases. We focus here on the ability of the model to recover
the hyperparameters A without considering the effect of
selection biases, so any systematics will be due to the
inaccuracy in the interpolation.

In reality, the uncertainties and systematic biases in event
parameter estimation will propagate to the population
inference result, smoothing out the population posterior
and adding biases to the inferred population parameters.
This means that systematic biases induced by the inaccur-
acy of our interpolation method will become less signifi-
cant when we include measurement uncertainties and
biases in our analysis, so the results we present in this
work are conservative.

III. NORMALIZING FLOWS

As posed in Sec. II, the central problem we are trying to
tackle in this paper is: Given a set of simulated catalogues
of GW events, with each event characterized by a vector of
event parameters @ and each catalogue labeled by a vector
of hyperparameters A, can we construct a function that can
approximate p(@|A) with satisfying accuracy, and at the
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same time can be evaluated fast enough to be used as the
population likelihood in a hierarchical Bayesian analysis?

We approach this question using a conditional neural
density estimator, in particular a flow-based generative
(often referred as normalizing flow) model. Flow-based
generative models have been recently developed and
explored in the machine-learning community [43,58-62].
This family of models has a unique perk compared to
other neural generative models. In addition to being able to
perform good data generation, they also provide an
estimate of the probability density function of the data.
This makes this family of model a perfect fit for our task. In
this section, we present the general principles behind the
model we employ.

Normalizing flow propose to transform a simple density
(e.g., a Gaussian) z ~ p, into a target, complex, density (the
data) x ~ p,. Building a model to learn a mapping g from z
to x is a common idea in generative models, and several
methods have been proposed, e.g., using discriminator
networks (generative adversarial networks, [27]), or
approximate inference (variational auto encoders [63]).
However, these approaches do not allow us to evaluate
P, but can only generate new data that mimics p,. On the
other hand, normalizing flow [58,64] propose to use a
mapping function g: R? — R that is invertible (bijective),
with a tractable Jacobian. This will allow us to learn the
mapping using directly the maximum likelihood, through
a change of variable, with which we can compute the
normalized probability density p.(x) from p_(z) when we

use an invertible function:
Jg(z)
det
e ( o

Equation (7) is tractable as long as g is easily invertible
and the determinant of its Jacobian is easy to compute,
hence normalizing flow only require a careful design of g.
Interestingly, if two functions g; and g, are both invertible
and have a tractable Jacobian, the composition g; o g, also
has these properties. Additionally, generating new data x
can be done by drawing a sample z ~ p, and computing the
value of x through the set of transforms in the normalizing
flow network, x = f~'(z) = g(z). As written above, the
density on a given data point x can be computed as the
density of its image f(x) multiplied by the determinant of
the corresponding Jacobian.

Instead of choosing one complicated transform which
maps our prior to the target density distribution, we can
restrict the network to use a series of K simple transforms
gr, k=1, ..., K, which are invertible and whose Jacobians
can be easily calculated. We can then apply Eq. (7)
repeatedly to obtain arbitrarily complex probability density
distributions, given enough number of transforms. With the
series of transforms, the target random variable and its
probability density distribution are given by

-1

(7)

p(x) = p-(z)

7 = gro -+ 091 (20)- (8)

det <f9gk>
62/<

As an example, we can now estimate the probability density
in a relatively simple distribution such as a multivariate
Gaussian, then apply Eq. (9) to obtain the probability in the
target distribution. Given the transformation, we can also
generate new samples from the distribution by applying the
transforms to a set of samples from the prior as well.

Figure 1 illustrates the essence of normalizing flow.
Given the target samples, we apply multiple transforms to a
one-dimensional Gaussian distribution to fit the target.2
After two transformations, the Gaussian prior is wrapped
to fit the target sample. We also included a Gaussian kernel
density estimation (kde) result for comparison. While the
Gaussian kde is missing the sharp edges of the target
distribution, normalizing flow can capture these features.

Choosing the correct transformation is crucial to design-
ing an efficient network for our specific problem. Because
our target is p(@J4), it is essential that our network is
capable to model conditional probabilities. A specifically
designed autoregressive model known as masked autore-
gressive flow (MAF) [43] trivially incorporates the ability
to model conditional probability. Therefore, we adopt
MATF as the “flow” in the flow-based generative model.
Autoregressive models [66,67] expand the joint density
of a set of random variables p(x) as a product of
one-dimensional  conditionals  p(x) = [[; p(x;|x;.,-1)-
Assuming a specific order of those random variables
x ={x;...xp}, the ith conditional probabilities only
depend on the random variables appearing prior to x;,
ie., p(x;) = p(x;|x_;), which x_; = {x;...x;_; }. From the
definition of an autoregressive model, we can understand
why it naturally extends to conditional probability model-
ing. As long as the conditional variable y comes before
other random variables, we can write the conditional
probability of observing x given y as

plxly) = Hp(xi|x1:i—lvy)v (10)

p(®) = plex) = py(a) [ T
=

1

which is similar to the definition of an autoregressive
model. The main drawback of this approach is its sensi-
tivity to the order of the variables x;. References [43,68]
show that specific autoregressive models can be interpreted
as normalizing flow (i.e., they have tractable Jacobian and
are invertible). Using an autoregressive model as normal-
izing flow allows to increase the flexibility of the model
while retaining a tractable Jacobian, but also to make the
model more resilient to the ordering of variables. More
specifically, in the MAF framework, a conditional-MAF

*We used planar flow described in [65] for the illustration.
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FIG. 1. Anillustration of the working principle of normalizing flow. Given the target samples (histogram in green), whose pdf we want

to estimate, we apply a series of transformations to wrap a Gaussian to fit the target sample. Since the probability density of the Gaussian
can be obtained trivially, the pdf of the target (shown in blue) can also be computed as long as the transformations are known. In the case
of a neural network, the transformation is a set of parametrized functions, whose parameters are obtained during the training of the
neural network. For comparison, we also use a Gaussian kernel density estimation (kde) to estimate the pdf given the target samples.
While the Gaussian kde can capture the bimodality of the target, it misses the sharp edges of the distribution. On the other hand, the
normalizing flow framework reproduce the distribution with excellent accuracy.

simply stacks MADEs (masked autoencoder for distribu-
tion estimation [69]) functions that have been made condi-
tionals by adding the condition A as an additional input for
each layer. We can train a conditional-MAF network to
emulate a given set of training GWs catalogue. Once the
network is trained, it can be used as the population
likelihood p(@|A) in Eq. (1).

The only difference between the model described in [43]
and the model implemented in this paper are the size of
input layer and network-related hyperparameters (such as
the number of hidden units in a hidden layer). Therefore,
we refer interested readers to Refs. [43,70] for more
elaborated description of the model. We use 1024 hidden
units in each layer, and we explore two variations of this
model, one using 5 flow layers and the other one using
10 layers. We find the accuracy of a 10-layers network to
be sufficient for our purpose.

IV. VALIDATING AGAINST A
PHENOMENOLOGICAL MODEL

To demonstrate the robustness of our deep learning
interpolation method, we cross check the performance of
our machine against a phenomenological model, for which
we can write down an analytic expression for p(@|4), thus
we can use the model directly in the population inference
process and validate the results from the neural network.
We generate our training data from the analytical model and
train a network to interpolate the model. We use the trained
network to emulate p(@|A) in a population inference
analysis, then compare the inference result using the
network with the result using the analytical model.

We generate our population according to the prescriptions
described in [7]. The most general model family described in
[7] includes 7 event parameters and 16 hyperparameters.
In order to facilitate the speed of the training and
inference process, we choose 6 event parameters and 4

hyperparameters as our phenomenological models. Our
model includes the primary mass 7, mass ratio ¢, the spin
magnitude of each binary a;,i € (1,2) and the tilt angles ¢;
between each BH spin and the orbital angular momentum.

For simplicity, we parametrized our mass model as
two independent power laws in the primary mass and
mass ratio,

m% if my € 15,50
P(ml)cx{ ! 1 &15,50) (11)
0 otherwise,
P(q) x g/ qe(0,1], (12)

where «,, and f,, are the spectral indices of the two power
laws. We choose the lower mass cutoff to be 5 M, and the
upper mass cutoff at 50 M. Both are assumed to be sharp.
The range of sampling in «,, and f,, are chosen to be
[-3,—1] and [1, 3], respectively. More sophisticated
models [14,17,18,71] were discussed in [7], which add
more free parameters into the model to capture more
features in the data. However, there is no strong evidence
favoring one model over another, therefore we pick a
simple model in this studies.

We assume that both BH spins magnitudes are drawn
from a common beta distribution [15]:

a.aa_l(l - a.)ﬂa_l
P a; aa,ﬂu X ! : B
(ai|aq, Ba) Bla.p.)

(13)

where B(a,, f,) is the beta function. Following the choice
presented in [7], we choose to model the moments of the
beta distribution using the mean (E[a|) and variance
(Var|a]), given by

—_— aa
a,+p,’

Ela] (14)
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aaﬂa
(@0 + Ba)*(au+ P+ 1)

The pdf of a beta distribution can change quite drastically
depending on the parameters characterizing the distribu-
tion, which means we will need more data and a more
complex network to capture the features which represent
the change in the pdf as a function of distribution
parameters. For simplicity, we fix the mean and variance
to be E[a] = 0.5 and Var[a] = 0.05. Note that even though
this choice means we do not include the change of the beta
distribution as a function of the distribution parameter in
the training of our model, the network still needs to fit for
the beta distribution we have chosen. This resembles a
practical scenario that the model one tries to interpolate has
some discrete flags which affect the event parameters
distribution, yet there is no need to interpolate over those
discrete flags.

Finally, we follow Ref. [17] to simulate the spin
orientation. We assume that the tilt angles between each
BH spin and the orbital angular momentum are drawn from
a mixture of two distributions: an isotropic component
and a preferentially aligned component, represented by a

Varfa] = (15)

truncated Gaussian distribution in cos?; peaked at
cost; =1

1—
p(costy, costy|oy,0,,E) = ( , 3 (16)

2¢ g—(1—cos t,)*/20;%
;ielz O'ierf(ﬂ/ai) '
(17)

The distribution is parametrized by three parameters,
01,0,,&, which are the standard deviation of the two
Gaussian and the mixing fraction between the two com-
ponents. A value of £ = 1 implies that all the BBH spins are
preferentially aligned with the orbital angular momentum,
while ¢ = 0 implies that the spin orientations are distrib-
uted isotropically. The two components represents the two
most prominent formation channels of BBH mergers:
isolated and cluster formation. We fix the mixing fraction
to be £ = 0.5, and include ¢, and o, in our training. The
range of o, and o, are both [0, 2]. The parameters and
hyperparameters used in our phenomenological models are
summarized in Table I.

Given the analytical model, we train and evaluate the
performance of our machine as described below. We create
the training set by sampling 100 points in the hyper-
parameter space with Latin hypercube sampling [72]. For
each point in the hyperparameter space, we create a
catalogue of 10° BBH events, each characterized by the
6 event parameters, following the distribution parametrized
by the 4 hyper-parameters. This means the entire training

TABLE 1.
this work.

Event parameters and hyperparameters used in

Event parameters 6

m Primary mass in the binary
q Mass ratio of the binary
ai, a, Spin magnitudes of the binary

cos ty, COSt, Tilt angles between each BH spin
and the orbital angular
momentum.
Hyperparameters 4
a, Spectral index of m;
P Spectral index of ¢

Width of the preferentially
aligned component of the BH
spin orientation

01, 0)

set contains 107 training samples. We also create a smaller
validation set, which follows the same method as creating
the training set but with only 10 points in the hyper-
parameter space. Note that the locations of the points in
hyperparameter space in the validation set is different from
the training dataset. We take the state of the network for
which the validation loss is minimum as our best-trained
model, and use it in the inference process. The entire
process of training and validating the 10 layers model takes
~10 hours on a Tesla k80 gpu.

Figure 2 shows the interpolation result of p(6|A) for a
specific A = (-2,2,0.5,0.7), which is a test point in the
hyperparameter which we have not included in both the
training set and validation set. Despite the small scale
difference, mainly originating from individual sampling
fluctuations, both 5-layer and 10-layer models fit the large-
scale behavior of the distribution quite well. In particular,
the 10-layer model is performing better than the 5-layer
model at the edge of cos ¢, and cos £,. This is expected since
a model with more layers is applying more transforms to
the prior distribution, which means it is more flexible in
terms of modeling a target distribution, therefore it should
be able to capture more features such as the edge of a
distribution.

Next, we inspect the performance of the network on a
population level. The population posterior produced by a
well trained network should be similar to the posterior
produced by the analytical model. To test this, we compare
the population posterior inferred from three simulated
“injection” BBH catalogues using the network-output to
the results inferred using the analytical model. We create
the injection catalogues by sampling events from the
distribution characterized by the vector of hyperparameters
A=1(-2,2,0.5,0.7). We consider the events in each
catalogues to be perfectly measured, which means the
measured values are the true value with infinite precision.
The main difference between the injection sets are the
number of events, which are 100, 1000, and 3000,
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FIG. 2. The joint probability distribution of the 6 event parameters in the phenomenological model, given the hyperparameters
A =(-2,2,0.5,0.7). The two contour represent the 68% and 95% confidence interval of the sampled distribution. The analytical (blue)
line represents the true answer. The 5-layer (orange) and 10-layer (green) lines are the output of the network with the corresponding
number of flow layers. Each contour are created from 100 000 samples, either drawn from the analytical distribution or generated by the
network. The 5-layer model fits the analytical answer fairly well on large scale yet having some inaccuracy near the edge of cos ¢; and
cos t,. We find the accuracy of 10-layer model to be sufficient for our purpose.

respectively. These numbers are chosen to be approxi-
mately the number of detected events one can anticipated in
the early-, mid-, and late-2020s [73]. Even though the
network can in principle extrapolate to regions outside the
trained hyperparameters space, the accuracy is expect to
drop, hence the result we obtain will become less credible.
Therefore, we choose the range of population prior to be
the same as the range where training data are sampled
from. We use EMCEE [74] to sample the population
posterior [Eq. (6)].

As shown in Fig. 3, the inference results using a network
agree well with the analytical model. Not only the posterior
agrees with the injected hyperparameters within the
95% confidence interval, the shape and the location of
the confidence interval produced by the network is also
similar to the analytical result. There are some minor
discrepancies in the case which we consider 3000 events,
which can be overcome by increasing the number of layers
in the network and training. Considering we are not
including other sources of error in this analysis, the minor
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FIG. 3.

Left: The population posterior recovered by the neural network emulator as the population likelihood. The injected

hyperparameters are A = (—2,2,0.5,0.7), which is marked by the black lines. The contours are the 68% and 95% confidence intervals.
The blue, orange, and green line mark the case of having 100, 1000, and 3000 events, respectively. Right: The population posterior
recovered by the analytical distribution stated in Sec. I'V. The only difference between the right panel and the left panel is the population

likelihood, all other factors are the same.

discrepancies shown in Fig. 3 are unlikely to be the
dominant source of systematic error.

We have focused on the accuracy aspect of the
machine so far. A equally important aspect of this
machine is the speed at which a population inference
run is done. With 3000 events and each event with 100
posterior samples in a six dimensional event parameters
space, one evaluation of the posterior function
described in (4) takes ~0.1 second if we are using
the normalizing flow network. On the other hand, we
tried using the simulation and the GAUSSIAN_KDE
function from scipy [75] to evalute the same posterior
function, which each evaluation would take more than
~20 minutes. Note that the simulations used here are
relatively simple and fast, which can be generated in a
minute. In this case, most of the computational cost
comes from estimating the probability of a point in the
event parameter-hyper parameter space. A typical infer-
ence runs requires ~10% to few 10* point to ensure
convergence of the results. This means the gaussian
kernel density estimation method would require months
to years to produce one population inference run, while
our network requires only a few hours. More sophis-
ticated simulations will need more time to be produced,
which can take days or even weeks on a computer
cluster, rendering a direct estimate of p(6|4) from
simulation impossible.

V. DISCUSSION

We have incorporated a flow-based deep generative
network into a hierarchical Bayesian analysis, and showed
that the neural network we have integrated in this study is
capable to handle data and simulations which are too
complicated for previous machines. While previous studies
[24,25] have shown how population-synthesis simulations
and machine learning can be used in GW population
inference, they are severely limited in various aspects,
especially in terms of scalability, thus cannot be used to
explore the increasingly complex GW dataset and simu-
lations in practice. We have demonstrated that a normal-
izing flow network can be used as a highly accurate,
efficient, and most importantly scalable machine in GW
population inference. There are up to 15 standard event
parameters per BBH event in GR, among them there are 8
intrinsic parameters (1 mass and 3 spins per black hole),
which are particularly important to astrophysical theories.
Many population-synthesis models predict features in at
least 4 of these intrinsic parameters, very often in 6 or more
intrinsic parameters. Previous approaches can only function
accurately and efficiently up to 2 event parameters. When
one tries to use the previous machine for 3 or more event
parameters, the performance in terms of speed and accuracy
drops significantly, and the memory usage starts to become
unmanageable. As shown in Sec. 1V, our network can
reproduce the analytical answer very accurately in a
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reasonable time even with 6 event parameters. Given the
high fidelity of our results and the fact that we will have
~1000 compact binary coalescence events in late 2020
[73], our method is a promising way forward for
simulation-based population inference.

Equipped with this machine, our next step will be testing
different state-of-the-art models [76—79] with the upcoming
LVC O3 catalogue. An interesting application is that we are
now able to compare different family of model directly.
Each of the simulations has their own set of hyperpara-
meters. After we obtain the population posterior for each of
them, we can marginalize it to obtain the evidence and
compare between models. The Bayes factor between one
model and another will indicate which model is favored by
the data. Furthermore, one can compare these simulation-
based models to the evidence from a phenomenological
model. In this way we can investigate whether a model
contains redundant parameters or not. Being able to
compare entire families of models means not only we
can use the data to constrain the model, we can also gauge
the importance of individual components in a simulation,
hence gaining insight on how to improve the simulation.

The simulations used in this work are relatively simple
compared to the state-of-the-art models. We also neglected
event uncertainties and selection bias, which are crucial
when applying this method to real data. The precise effect
of the interplay between all these uncertainties and sys-
tematics will depend on the properties of the data and
simulations. We will follow up with a case study which
employs our method and state-of-the-art simulations on O3
data in the soon future, with uncertainties and selection bias
taken into account.

We only trained a relatively small network with relatively
small amount of data, as compared to other deep neural
network trained for the same purpose [41,80]. This means
we still have not reached the limit of the network capability.
The purpose of this paper is to demonstrate the robustness
and efficiency of our method, yet we have not exactly
quantified the precise uncertainty from the network as a
function of the size of the training data, simulation
complexity, and architecture of the network. A study of
the precise scaling behavior of the method, which will shed
light on the reason why neural networks perform well
in this particular type of problem, will be carried out in
the future.

This study is specifically dedicated to the GW commu-
nity, therefore we discussed the BBH case. But the machine
can be applied to more general problems such as other GW
sources, or even other inference problems that are not
related to GWs. As examples, while keeping the vast
differences between detector design and potential sources
of systematic error in mind, the same machinery can be
applied to understanding the population of gamma-ray
burst [81], fast radio burst [82], and exoplanets [83],
especially when the data is noisy and Bayesian statistics
is necessary to characterize the data.

Because of its capability to solve problems with much
greater efficiency and accuracy in many settings, deep
learning is revolutionizing many different aspects of our
society. By integrating the existing tools from deep learning
to GW population inference, we enable the possibility of
constraining state-of-the-art models with upcoming data at
a complexity which was previously intractable. On the
other hand, the traditional tools we use to understand
physical models and data offer very interpretable checks,
which we can use to gauge the performance of our deep
learning model and improve it. GW data analysis is known
to be in the extremely noise dominated regime, which is
where deep learning often encounter trouble in. We hope
that the progressively frequent cross talk between the deep
learning and GW communities can be mutually beneficial
to both fields.
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