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d + 1 formalism in Einstein-scalar-Gauss-Bonnet gravity
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We present the d+ 1 formulation of Einstein-scalar-Gauss-Bonnet (ESGB) theories in dimension
D = d+ 1 and for arbitrary (spacelike or timelike) spacetime foliations. We first build an action which
generalizes those of Gibbons-Hawking-York and Myers to ESGB theories, showing that they can be
described by a Dirichlet variational principle. We then generalize the Arnowitt-Deser-Misner (ADM)
Lagrangian and Hamiltonian to ESGB theories, as well as the resulting d + 1 decomposition of the
equations of motion. Unlike general relativity, the canonical momenta of ESGB theories are nonlinear in the
extrinsic curvature. This has two main implications: (i) the ADM Hamiltonian is generically multivalued,
and the associated Hamiltonian evolution is not predictable; (ii) the “d + 1”7 equations of motion are
quasilinear, and they may break down in strongly curved, highly dynamical regimes. Our results should be
useful to guide future developments of numerical relativity for ESGB gravity in the nonperturbative regime.
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I. INTRODUCTION

The study of modifications of general relativity (GR) is
well motivated by some of the most outstanding puzzles in
theoretical physics (where such modifications are often
invoked e.g., in the quest to quantize gravity, or to solve
the information paradox) and in observational cosmology
(where the nature of dark matter and dark energy is unclear,
although both of them seem to interact only gravitationally)
[1-3].

The detection of gravitational waves by the LIGO/Virgo
Collaboration finally allows us to test observational sig-
natures of modified gravity in the dynamical, strong-field
regime of a coalescing compact binary system. Given our
limited understanding of the state of matter in neutron stars,
the cleanest tests involve gravitational-wave observations
of black-hole binary mergers (which, moreover, are the vast
majority of detected events so far) with Earth-based and
future space-based interferometers [4—10]. Most tests of
general relativity obtained so far are essentially “null tests™:
they place bounds on phenomenological parameters that
would be different from zero (or unity) if general relativity
were not correct [11,12].

Going beyond this sort of null tests requires the
calculation of gravitational waveforms for specific modi-
fied theories of gravity. In particular, the numerical sim-
ulation of the field equations is necessary to take into
account the full nonlinear dynamics of the merger.
A preliminary step in this direction is the d+1
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decomposition of the field equations and the study of
the corresponding Cauchy problem (in this paper we will
focus on a d + 1-dimensional theory, but the d = 3 case
is the most interesting from a phenomenological point
of view).

The Cauchy problem is known to be well-posed for a
very limited class of theories whose metric sector is the
same as in general relativity (see Refs. [13—15] for the
earliest 3 + 1 decomposition of FEinstein’s equations and
the study of their Cauchy problem). These include the
simplest scalar-tensor (ST) theories of gravity [16,17]
and Einstein-Maxwell-dilaton (EMD) theories [18,19].
However there are “no-hair theorems” which imply that
black-hole binary inspirals in ST theories must reduce to
general relativity, unless one enforces the presence of
“ad hoc” scalar field clouds just before merger [20] or
nontrivial boundary conditions [21,22]. Black-hole binary
mergers in EMD theories were evolved numerically in
Ref. [19] and found to be nearly indistinguishable from
their general-relativistic counterparts for small values of the
electric charge, but their scalar cosmological environment
may play a crucial role [23].

In this paper we study the d + 1 formulation of a class of
theories whose metric sector differs from that of general
relativity: FEinstein-scalar-Gauss-Bonnet (ESGB) gravity.
These theories supplement the Einstein-Hilbert action with
one single scalar degree of freedom ¢ coupled to the Gauss-
Bonnet scalar RE, = R¥°R,,,, — 4R*R,, + R? through
a coupling of the form f(¢)R%g. They pass Solar System
tests [24] as well as the stringent gravitational-
wave propagation tests from GW170817 [25] (see e.g.,
Refs. [26,27]), and they are interesting for various reasons.
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The theory above with an exponential coupling function
(also known as Einstein-dilaton-Gauss-Bonnet gravity)
corresponds to the bosonic sector of heterotic string theory
[28]. Black-hole solutions in this theory have long been
known to differ from GR [29,30] (see also Ref. [31]).
Theories with a generic coupling function f(¢) have
recently attracted interest because they can exhibit scala-
rization in vacuum: black-hole solutions can reduce to
those of general relativity in certain regions of parameter
space, and spontaneously scalarize to very different sol-
utions in others [32-35]. Studies of the radial stability of
these black hole solutions led to two interesting findings:
(i) the stability depends crucially on the choice of the
coupling function, and (ii) the hyperbolicity of the equa-
tions of motion of the perturbations seems to be broken
when the coupling is large [36-38]. This hints at the
possibility that the well-posedness of the field equations
may depend on the strength of the coupling to the Gauss-
Bonnet scalar. This is crucial, because most analytical
[39,40] and numerical [41-44] studies of black-hole
binaries in ESGB have relied on a weak-coupling expan-
sion (but see Ref. [45] for a post-Newtonian calculation
valid in principle for all couplings, and Refs. [46-48] for
different attempts to find global solutions and control
higher-order gradients in modified theories of gravity).

Recent work studied the hyperbolicity of ESGB gravity
under specific symmetries [49-51] as well as its well-posed
formulation in the small-coupling regime [52—54]. Our goal
in this paper is to go beyond these approximations by
developing an extension of the Arnowitt-Deser-Misner
(ADM) formalism [55,56] for ESGB gravity and to
provide, for the first time, their “d + 17 field equations.

The plan of the paper is as follows. In Sec. II we extend
the actions of Gibbons-Hawking-York [57,58] and Myers
[59] to ESGB gravity, and we formulate a Dirichlet
variational principle. In Sec. III we develop the ADM
formalism for ESGB gravity, and in Sec. IV we write down
the “d 4 1” equations of motion. One of our main results is
that the canonical momenta in ESGB gravity are non-
linear in the extrinsic curvature. As a consequence the
Hamiltonian is multivalued, and the field equations become
quasilinear. In Sec. V we comment and speculate on the
implications of these results, and we discuss possible
directions for future work.

II. VARIATIONAL PRINCIPLE
AND BOUNDARY TERMS

In vacuum, ESGB theories are described by the action

dD
]:/M W_(R 2¢0,90,¢ + af (9)REg), (2.1)

where we set G = ¢ = 1. In standard notation, R is the
Ricci scalar on the D-dimensional manifold M with metric
Gu» inverse metric ¢ and metric determinant g, and

REp = RMP°R,,,, — 4R*R,, + R* denotes the Gauss-
Bonnet scalar, with R*,,; being the Riemann tensor. The
fundamental constant a (assumed to be positive without
loss of generality) has the dimensions of length squared,
and f(¢) is a dimensionless function defining the theory.

In the following, it will be useful to rewrite the Gauss-

Bonnet scalar as

T\’,ZGB = RMPP s, (2.2)
where
v v _ 1 pu U pH L cy
P, =R", 25L0R | + 25[pR6] + 5’U)66]R
5““"“2 b1 (2.3)

4 /M/}lﬂz oy

Here brackets denote antisymmetrization, as in
8,8 = 1 (3% — 634), and &5/ = nls -8y is the

generalized Kronecker symbol, i.e., the determinant of the

n x n matrix M built from ordinary Kronecker “deltas,”

with elements Mj- = 6;{, which is antisymmetric under
J

exchange of its upper (and lower) indices. The quantity
P, has the symmetries of the Riemann tensor and it is
divergence-free: denoting by V, the covariant derivative
associated to g, , the Bianchi identities imply V, P¥,,, = 0.
The variation of the action (2.1) with respect to g** reads

1
= —

5(9) 167

(2.4)

de\/—g(Eﬂyég”” +V,VH),

where

Eﬂl/ = G/u/ - zaﬂ(pab(p + g/w (8(:0)2

+ a(f(¢)Hﬂb + 4P;tauﬁvavﬂf(¢))’ (25)

G,, denotes the Einstein tensor and

1
HY = 2RﬂaﬂyPDa/f7 - —6‘57%%,13

- a1 0,03, ﬂ ﬂ_ ﬂ‘ﬂ
55/311/37/33/3? ROV 4y, RSP

(2.6)
is the divergence-free [60] Lanczos tensor, which vanishes
identically in dimension D <4, as is obvious from its
expression above in terms of the rank-five generalized
Kronecker symbol. Equation (2.4) follows from the identity
SR*,p = 2V, 0T, with 8T, = 194(V,89,, + V,69;,—
V,69,,), integration by parts and the properties of P,,,,.

As far as we know, the second term in the integrand
on the right-hand side of Eq. (2.4) was not previously
considered in the ESGB literature. It is the divergence of
the four-vector

vpo

124045-2



d + 1 FORMALISM IN EINSTEIN-SCALAR-GAUSS-BONNET ...

PHYS. REV. D 101, 124045 (2020)

Vi = [gog¥ — g g — daf () P**PIV 15,

+ [4aPr N, f ()16, (2.7)

and can therefore be evaluated on the d =D —1-
dimensional boundary OM of M. Let us choose for
simplicity an adapted Gaussian coordinate system x* =
{w,x} such that w is constant on IM:
ds? = eN?dw? + h;;dx'dx/, (2.8)
where ¢ = 1 if OM is timelike, ¢ = —1 if 9 M is spacelike,
and such that /=g = N/|h|. Then P**° can be decom-
posed using the Gauss-Codazzi-Mainardi identities [61,62]

Riju = Rijiy — e(Ky Ky — Ky K i), (2.9a)
Rijiw = N(ViKj = V,;Ky), (2.9b)
Riij = —NawKU + ]\/2](”(1(§f - (:'NvivjN, (29C)

where from now on latin indices are lowered with the
induced metric h;; (with inverse 4" and determinant ),
bars denote intrinsic quantities built out of #;; (as in
VWi = o,W/ + T4 Wh), and K7 =—30,hV is the
extrinsic curvature. Introducing by analogy the notation
K,=- ﬁaw(p, the variation (2.4) of the ESGB action with
respect to ¢ yields

1
g)I ]67[ de\/ Eﬂl,ég”

1 .
F ddx[\/ |h|ﬂlj(sl’l]—

o

y(V/11]0)],

(2.10)

where

2% . .
€0 =2K +2af(p)s120 K (R”“-—%{;K{;), (2.11a)

Ju2da i i3 3

=6 KI' +2a67" [2K'V2V, f(p)
+f’(fp)

K, (R, _ZEK{: K{:)}
—af(q)) ;ljllljzzl;zKll (Rjzj}il"‘

2¢ ..
_?GK{;Kg;), (2.11b)

and where we defined K = hVK;; and f'(¢) = df/dgp.
Note that in the boundary term of Eq. (2.10) we have
ignored the divergence of a d-vector V; W', because its
integral over the closed boundary dM vanishes.

The results above reduce to those of Einstein-Gauss-
Bonnet gravity when f(¢) is a constant [59,63—65]. Note
also that when D <4 (ie., d<3) the last line of
Eq. (2.11b) vanishes identically.

From Egs. (2.10) and (2.11a), we see that extremizing
the action I requires fixing both the metric A" and its
normal derivative 9,,h" = —2NK" on OM, at odds with
the Einstein field equations E,, =0 being of second
order only.

Let us now generalize Eq. (2.1) as follows:

IESGB = I +— ddX\/ |]’l Q (212)

with Q given by Eq. (2.11a). This action extends those of
Gibbons-Hawking-York [57,58] and Myers [59] to ESGB
gravity, and it allows to obtain the field equations by means
of a Dirichlet variational principle:

(1) The variation of Eq. (2.12) with respect to ¢"* reads

1
O(g)lEscn = 1o / dPx\/=g E,6q"
+F d’x+/|h|m;;6h",  (2.13)
where E,, and n;; are given in Egs. (2.5) and

(2.11b). The action is extremal when the metric
satisfies the second-order generalized Einstein field
equations E,, = 0 together with Dirichlet boundary
conditions, i.e., 6h|,,, = 0.

(i) The variation of Eq. (2.12) with respect to ¢ reads

6((/})IESGB = F dD)C\/ E 6(p

1
+— d‘x+/ |h|z, 00, (2.14)
167 Jom
where

E, =40 + af'(¢)Rg. (2.152)

en, = 8K, + 2af' ()8} 2} K,

. 2¢ i
x (R hads, o~ ?Kf:K{:> , (2.15b)

and we defined (as usual) [J = V¥V . The action is
extremal when the scalar field satisfies the second-
order generalized Klein-Gordon equation E, =0
together with Dirichlet boundary conditions, i.e.,
5¢lom = 0.

The action (2.12) is the first new result of this paper. It
shows that ESGB theories can be consistently described
by a Dirichlet variational principle.

From the boundary terms in Egs. (2.13) and (2.14) we
see that ESGB theories propagate one scalar degree of
freedom and d(d + 1)/2 metric degrees of freedom (the
independent components of 47 in coordinates adapted to
the boundary). As usual with covariant gravity theories, the
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D = d+ 1 remaining components of ¢#¥ can be fixed
at will.

Note that the presence of the boundary term in Eq. (2.12)
affects the quantities r;; and r,,; for example, varying only
the bulk action / with respect to ¢ would yield Eq. (2.14)
with ex, = 8K, instead of its expression (2.15b) above.

III. ADM FORMALISM

Consider first the Einstein-Hilbert action supplemented
by the Gibbons-Hawking-York (GHY) boundary term:

1 1
Iop = — dPx./=gR + — d? h ,
R =67 |0 X\/=3 +16ﬂ' o xv/|h|Qcry
3.1)

with Qgpy = 2¢K, the limit of Q given in Eq. (2.11a)
above as a — 0. As recalled in the previous section, this
boundary term ensures that extremizing the action (3.1)
yields Einstein’s field equations G, = 0 when we impose
Dirichlet boundary conditions.

In Gaussian coordinates (2.8), which foliate M with
surfaces XZ,, of constant w, we can use the Gauss-Codazzi-
Mainardi identities (2.9a)—(2.9c) to decompose the
Einstein-Hilbert Lagrangian density on X, as

R—R+e5t K]‘K“ B 0,(\/|h]2€K) B 200N

JiJ2 N\/W N

Now define the closed boundary as the union OM =
Z, UX, U BB of the surfaces w = w; and w = w/ and their

(3.2)

complement B (which is a timelike cylinder when w is a
time coordinate). By plugging the expression above into
Eq. (3.1) with \/—g = N\/|h| we find that Igg coincides
with the ADM bulk action [56]

deN\/|h (R + e KI'KD),

JiJj2

1
1 .
o =1 (33)

modulo a contribution on 5 which we can discard for our
purposes (but which is essential to define the ADM mass
[66]). The integrand of Eq (3.3) is the ADM Lagrangian,
and it does not depend on the second-order w derivatives of
the metric.

Since the variation of Igggg also yields a Dirichlet
variational principle, it must be possible to rewrite it in
ADM-like form as

de\/WE

(modulo boundary terms on B), where £ should depend
at most on the fields’ first-order normal derivatives 0,,h"/
and 0,,¢. However, the ESGB Lagrangian density (2.1) is
quadratic in the Riemann tensor, and reproducing the

Tesan = — 4
e (34)

decomposition above would involve cumbersome calcu-
lations. As we will show momentarily, it is straightforward
to compute L if we follow instead the procedure recently
developed in Ref. [65] in the context of Lovelock gravity.

Indeed, from Egs. (2.13) and (2.14) we first get that z;;
and 7, are respectively the conjugate momentum densities
to '/ and ¢, as is well-known in classical mechanics [67].
Therefore £ must satisfy

oL
— . = iis 35'
8 ( aw h i j) T L] ( d)
oL
=7z, 3.5b
90,0 " (530
where 9,,h = -2NK" and 0,p = -2NK, in the
Gaussian coordinates introduced above. The system

(3.5a)—~(3.5b) is integrable: the quantities z;; and 7z, given
in Egs. (2.11b) and (2.15b) satisfy the 1dent1t1es

8n'ij 8ﬂab

9K,, OKJ’ (3.6a)
aﬂ'l’j 37r¢
oK = oK (3.6b)

Their explicit expressions are given in Egs. (4.5a)—(4.5¢)
below.

Therefore we can integrate Eqs. (3.5a)—(3.5b) to get L,
modulo terms £ which must be identical to the part of
the ESGB Lagrangian (2.1) which, when calculated in
Gaussian coordinates, depends only on the intrinsic geom-
etry of the constant-w surfaces X,

N7'L=R-2V'V,p + gf (@)1 300 ROy R,
— 208155 Rik, VIV, f(g), (3.7)

where the first three terms follow trivially from Eq. (2.1),
while obtaining the fourth term requires introducing a
nonconstant lapse N and integrating the last term of the
Gauss-Codazzi-Mainardi identity (2.9¢) by parts.

In the third and last step, we can generalize the result to
arbitrary ADM metric variables [55,68]

ds® = eN*dw? + h;;(dx" + N'dw)(dx) + N/dw) (3.8)
through the redefinitions
Kij = % (aw - ['N*‘)hij
= %\7 (0hi; = ViN; — V;N;) (3.92)

and
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1
K, = _ﬁ(aw — Ly o
1 k
- _ﬁ(aw(p N ak(p)’ (39b)

where Ly« denotes the Lie derivative along the shift N*.
As a result of this procedure we find

N7'L =R+e8)% KI'K! = 2VipV,00 — 8¢K?,

a 2a€5;11i]'zzi]3'3 |:(€R jljzfliz + 2K{11 K{;)v]w vi;f((p)

= 2¢
+ Zf/((p)K,,,K{: <R12]3i2i3 _? {;K{:>:|

iy | 1w o =
+ af(go)é;lllle;zlj4 |:ZR]1]2i1i2R13]4i3i4
_ f[(ﬁ[d‘*)}
3 13 Iy *

As we shall check in Sec. IV below, the Euler-Lagrange
equations derived from this Lagrangian return the d + 1
decomposition of the equations E; =0 and E, =0
[cf. Egs. (2.5) and (2.15a)] in the ADM variables (3.8).

For now, we rather focus on the associated Hamiltonian,
defined as

T eKIKE <R i, (3.10)

1 ..
H / /[0 b + m,Bg — L), (3.11)

" 167 )s
Since by definition we have 9,,h" = —2NK"/ - VIN/ —
V/N' and 0,9 = —2NK,, + N*O,¢, an elementary calcu-
lation yields

1 .
H /d"x [n[(NC+NC),  (3.12)

" l6r s

where C and C; are the Hamiltonian and momentum
constraints:

C=—R+es}? KI'K) + 2VipV,9 — 8eK?,
+ 208} 25 [(R12; ;) = 2eKI'K2)(VOV, f ()

J1J2J3
—2¢f'(¢)K,K})]
i 1-..  _ ..
L S
j jZ _ij j3 ]
+ €eKj K72 (R — €K, Kif)] ; (3.13a)
C; =2Vim;;+ 7, Vip. (3.13b)

The Lagrangian (3.10) and Hamiltonian (3.12) are new,
and their simple derivation based on integrating the ESGB

momenta is the second main technical result of this
paper. Note that H reduces to the Einstein-Gauss-Bonnet
Hamiltonian when f(¢) is a constant [65,69], and to the
ADM Hamiltonian when @ = 0 and ¢ is a constant [56].
Note also that the last two lines of Egs. (3.10) and (3.13a)
vanish identically when D <4 (i.e., d < 3).
Since H can only depend on the fields and their
conjugate momenta, the quantities K/ and K, appearing
in C above must be thought of as functions of z;; and x,,
found by inverting the system of Eqgs. (2.11b) and (2.15b).
However when a # 0, r;; and r,, are nonlinear functions of
K% and K. Solving Eq. (2.15b) for K, and substituting the
result back into Eq. (2.11b) yields a system of d(d + 1)/2
polynomial equations of degree five for d(d+1)/2
unknowns (the independent components of K/). In the
weak Gauss-Bonnet coupling limit (JaR";| < 1 and
|a'/2K| < 1) the solution can be approximated as a
Taylor series, but the exact solution for a generic coupling
a is not known in closed form (moreover, cf. Refs. [70-72]
for the existence of solutions in radicals to algebraic
equations of degree five).
More importantly, the inversion of this system could
have several real roots. Therefore the Hamiltonian of ESGB
theories is generically multivalued. The same feature was
previously discovered by Teitelboim and Zanelli in the case
of Lovelock gravity in D > 5 [69], and it has two important
implications:
(i) At the classical level, the phase-space evolution of
a system with initial data (N, N%;h/, @; Tijs T )y
obtained by integrating Hamilton’s equations, can be
unpredictable, since the choice between different
“branches” of the Hamiltonian is a priori arbitrary.

(i) A multivalued Hamiltonian has serious shortcom-
ings when attempting to canonically quantize the
theory: see e.g., Refs. [73-77] for simple toy
models. The generalization of these toy models to
ESGB theories is an interesting topic for future
work.

Had ESGB theories been restricted to their weak Gauss-
Bonnet coupling limit, points (i) and (ii) above would have
been overlooked.

IV. THE d +1 FIELD EQUATIONS
OF ESGB GRAVITY

In Sec. II we built an action Igsgg [Eq. (2.12)] whose
variation yields the covariant ESGB field equations E}, = 0
and E, = 0 when we impose Dirichlet boundary condi-
tions. In Sec. IIT we performed a d 4+ 1 decomposition of
Igsgp of the form (3.4), where £ = L[N, N', h/, ¢] gen-
eralizes the ADM Lagrangian of general relativity to ESGB
gravity, and is given in Eq. (3.10).

In this section we derive the equations of motion
associated to the Euler-Lagrange variation of the action
(3.4). As we shall see, these equations of motion are the
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same as the d + 1 decomposition of the covariant field
equations Ej =0 and E, =0 using the ADM metric
variables (3.8), as they should be.

The action (3.4) does not depend on the normal
derivatives O,,N and O,N'. Therefore N and N’ are
Lagrange multipliers, and the variation of Eq. (3.4) with
respect to SN and SN yields the following D constraints:

(4.1a)

(4.1b)

where C and C; are identical to the Hamiltonian and
momentum constraints found in Egs. (3.13a)—(3.13b),
which depend on the fields and on their first-order w
derivatives. In Gaussian coordinates (such that N’ = 0),
they are equivalent to the set of Einstein’s equations E)), =
and E? = 0; indeed, a short calculation using the Gauss-
Codazzi-Mainardi identities (2.9a)—(2.9c) gives

EY=C/2, (4.2a)

= C,;/2N. (4.2b)

The variation of the action (3.4) with respect to 4"/ and ¢
yields the system of 1d(d + 1) + 1 coupled equations

Oon

on
1] l]
9Ky 0+ oK, e = T (4.32)
Om, 87!4,
4.3b
T YK, A, =F,. (4.3b)
where
! _
Agp = N (O = Ly)Kap — KKy + %VavbN’ (4.4a)
1
Ay =Dy = Ly)K (4.4b)

The quantities K;; and K, were defined in Egs. (3.9a)-
(3.9b), and furthermore

on' . .

J ib ibi, 1
Kd = —ed', + 4aed;, | (V“V,-If((p) - 2€f’((p)Kq,K{1)

—aef (@)t (R, —2eKIK]), (4.5a)

on, o
—L = 2aef’ () ;’]"]’ (R, iy 2€K{I'K{ZZ), (4.5b)
(’)K(/,
or
% _3 4.5
8K¢ € ( C)

satisfy the integrability identities (3.6a)—(3.6b). The lengthy
expressions for F;; and F , will be given later for clarity.

Written as such, the structure of the dynamical equations of
motion (4.3a)—4.3b) is transparent. They are quasilinear when
a # 0 thatis, the coefficients of the “accelerations” A, and A,
become functions of the fields 4"/ and ¢ and of their first w
derivatives [cf. Eqs. (4.5a)-(4.5¢)]. Letus set n = d(d + 1)/
2 + 1 and introduce the n x n matrix 7 with elements

({)Il'i/.b on'l
JK“ 0K
1 ¢

J J = or, or, (46)
9K 0K,

where a capital index / denotes either a pair of ordered indices
i < jor . Inverting and evolving the system (4.3a)—(4.3b) on a
constant-w surface X, necessitates that the determinantof 7, i.e.,

det J = 1511 bl g, (4.7)
be nonzero on X,,. Conversely, if there exists a location x’ on the
surface X, at which det 7 = 0 [being understood that on-shell,
the constraints (4.1a)—(4.1b) are satisfied], the dynamical equa-
tions of motion break down, and their predictability is lost.
From Egs. (4.5a)«4.5c), we see that this might happen in the
nonperturbative Gauss-Bonnet coupling case, i.e., whenever
laR}}| = 1 or |a'/2K7| 2 1.

In general, the explicit expression of det 7 is cumber-
some. When D = 4 (i.e., d = 3), for example, Eq. (4.7) is
the determinant of a 7 x 7 matrix. However, from the
integrability equations (3.6a)—(3.6b) it follows that 7 is a
symmetric matrix,

, on' Om;

T =ok7 = ok, =7

and it is hence diagonalizable. The specialization of our

results to simpler isometric “minisuperspaces” is left for
future work.

In D >5, the quasilinearity of the Lovelock field
equations and its consequences for the Cauchy problem
and structure of characteristics was studied by Choquet-
Bruhat in Refs. [78—80]. As shown there, a quantity such
as (4.7) is a scalar on the D-dimensional spacetime M:
it only depends on the geometry of the foliation X, through
invariant contractions of its extrinsic and intrinsic
curvatures. These quantities can be written in arbitrary
coordinates by the substitutions [81]

(4.8)

K=K, = yﬁvlnb, (4.9a)
K,—K,= —%nlvﬂ(p, (4.9b)
ViVif = VIV, f = yhyiVeV,f + 2¢f'K KL, (4.9¢)

Ry — R™, = V’éYﬂi’p}’éRa/}yﬁ + e(KL,K: — K6K}),

(4.9d)
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Ni

where n* is a unit normal vector to X, such that n*> =€, given by n* = (+,—2%) in ADM metric variables, and

Y. = 8, —en*n, is the projector on Z,,.

1
N> N

For further developments on the problem of wave propagation in Lovelock gravity, see Refs. [82,83]; for an illustration of
quasilinearity and its consequences in cosmology, see Refs. [84,85]. We also note that the d + 1 decomposition of the
Einstein-Gauss-Bonnet field equations was presented in Ref. [86].

In the present (ESGB) case, the right-hand sides of the dynamical field equations (4.3a)—(4.3b) read

]:;- = —N"ijp + 5;-(4€Ké + V";qu;)

N o 1 | sine
+ 5}'/}11122 {(Rh]ziliz — 2€K{:K{22) [_Z + a<4€f”((p)K§, +vavaf>]

— dae(KE Vif +2V, (fK,)) VI K] — dae(K VA f +2V7 ( f’Kq,)W,-]K{j]

T asiysh (R~ 2eKIKE) (V0T £ - 26f (9)K,K2) + def () (01 KI) (T, K2)]

JiJ2J3

8

P b I . € i i . s i
_ il |\~ pjijo. . RIiJs, . _ ZRKINKI2(RIs. . — cKBKI4
af (‘/’)5111/'21314[ ROy, RIG, =5 K K (RP, — eKUKG) |

Fp=4 (v‘w ~2KK, + %WW@ = 8acf ()3} (VK (Y, K])

J1j2J3Js

4

1- .. _ . .o . .
+ af'(p)5; 23 <lejzi1i2R]314i3i4 — €K} K (R4, — €K{;Kﬁ)>-

Equations (4.3a)—(4.3b) are the same as the decompo-
sition of the Einstein and Klein-Gordon equations E} =0
and E, = 0 in ADM metric variables (3.8) obtained using
the Gauss-Codazzi-Mainardi identities.

The “d + 17 field equations of ESGB gravity (4.1a)-
(4.1b) and (4.3a)—(4.3b) are the third, and main, result of
this paper. They reduce to the field equations of general
relativity when @ = 0 and ¢ is a constant [61], and they
significantly simplify when D < 4 (i.e. d < 3), since then
the last lines of Eqgs. (4.5a) and (4.10b) and the last two
lines of Eq. (4.10a) vanish identically. Our results comple-
ment and extend previous works in various ways:

(i) We take into account the ESGB contributions of the
scalar field and its coupling to the Gauss-Bonnet
scalar, hence providing an explicit example of a
“quasilinear” theory with nontrivial dynamics in
dimension D =4 (i.e., d = 3).

(i) We give, for the first time, the complete d + 1
decomposition of the ESGB field equations, which
could serve as a starting point to develop numerical
relativity in these theories, extending the work of
Refs. [41-44].

(iii) In our notation it should be clear that det 7 is the
Jacobian of the change of variables (K, K,) —
(n',x,). Therefore if det7 vanishes at any point
x* = (w,x'), not only is the predictability of the

(4.10a)

J1J2J3 3

(4.10b)

dynamical equations of motion (4.3a)—(4.3b) lost,
but also the Hamiltonian is not defined, since the
change of variables is noninvertible.

We conclude this section by establishing the constraint
propagation equations of ESGB gravity, which can be
found by a direct generalization of their general-relativistic
counterpart. From the Bianchi identities we have
that V,Gy =V, P, . =V, ,H) =0, as discussed below
Eq. (2.6). Therefore, taking the divergence of E; in
Eq. (2.5), a simple calculation yields

V,E, = —%E(/,V,,go, (4.11)
where E, is given in Eq. (2.15a). Now we can choose
Gaussian coordinates (2.8) for simplicity, and evaluate the

v =w and v = i components of the identity above. Using
Egs. (4.2a)—(4.2b) we find

(8,, — Lat)C = —NKC — 2¢C;V'N — eNV'C,

+2NK'E! + 2NK ,E,,. (4.12a)
(8,‘, - ENk )C, = —CINK + Cle
—2V,(NE]) - NE, V¢, (4.12b)

where we restored the shift N for completeness.
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If the dynamical equations of motion are satisfied, i.e.,
E; = E, = 0 [see below Eq. (4.10b)], then the last lines of
Egs. (4.12a)—(4.12b) vanish. Therefore, if the constraints
are satisfied on a surface %, with w = w;,

C|Wi - Ci|w,- - 8]-C,-|w’_ - 0, (413)

they are satisfied on every surface X,,.

V. CONCLUSIONS

In this paper we have presented the d + 1 formulation of
ESGB theories in dimension D = d + 1 and for arbitrary
(spacelike or timelike) spacetime foliations. Our main
results are as follows:

(1) An extension of the actions found by Gibbons-
Hawking-York [57,58] and Myers [59] to ESGB
gravity theories [Eq. (2.12)].

(2) The ADM Lagrangian (3.10) and Hamiltonian
(3.12), which we found in a simple manner by
integrating the ESGB momenta.

(3) Thed + 1decomposition of the ESGB field equations
[Egs. (4.3a)—(4.3b)] and the corresponding constraint
propagation equations [Eqs. (4.12a)—(4.12b)].

Our results should be useful to guide future develop-
ments of numerical relativity for ESGB gravity in the
nonperturbative regime, and eventually to obtain gravita-
tional waveforms for the whole inspiral, merger and ring-
down of compact binary systems. This is important,
because most analytical [39,40] and numerical [41-44]
studies of black-hole binaries in ESGB so far have relied
on a small-a expansion. If and when numerical relativity
waveforms become available, it will be interesting to
compare them with post-Newtonian calculations valid in
the inspiral phase [45] and to guide developments of an
effective-one-body model for ESGB gravity, similar in
spirit to previous work in scalar-tensor [87,88] and
Einstein-Maxwell-dilaton [23,89] theories of gravity.

Pretorius and Ripley [49-51] have recently studied
spherically symmetric collapse in ESGB, finding evidence
that there are open sets of initial data for which the
character of the system of equations changes from hyper-
bolic to elliptic in a compact region of the spacetime. It will
be interesting to specialize our equations of motion to
spherically symmetric spacetimes and further investigate
this loss of hyperbolicity.

We noted that the nonlinearity of the momenta plays a
role in both the Hamiltonian’s multivaluedness and the
quasilinearity of the dynamical equations of motion.
Moreover, when det.7 defined in Eq. (4.6) vanishes at a
point x' of a constant-w foliation %,,, the predictability of
the dynamical equations of motion (4.3a)—(4.3b) is lost and

the Hamiltonian is not defined. Since det.7 must be
evaluated on-shell, it will be very useful to carefully study
the role of the constraints on the values this determinant can
take. Furthermore, we conjecture that these issues (the
existence of a multivalued Hamiltonian and a possible
breakdown of the Lagrangian equations of motion) may be
generic features of higher-order theories, such as Horndeski
theories of gravity.

We also expect the multivaluedness of the Hamiltonian
H to be related to pathologies at the quantum level. These
considerations imply that ESGB gravity should only be
considered as an effective low-energy field theory. Note
however that ESGB gravity (as well as other higher-order
theories, such as Lovelock and Horndeski theories) is,
by construction, devoid of ghosts, which is indeed a
requirement to build a quantum theory [90]. Our work
suggests that the nonmultivaluedness of H should be
treated as another important selection criterion for modified
theories of gravity, possibly as important as the absence of
ghosts.

Finally, a possible extension of our results is to general-
ize the definition of the ADM mass to ESGB theories. This
would be very useful to define global charges of BHs,
which play a central role in their thermodynamics and
in other applications, such as gauge-gravity dualities in
arbitrary dimension. These issues will be addressed in
future work.

ACKNOWLEDGMENTS

We are grateful to Nathalie Deruelle for enlightening
discussions and suggestions during the preparation of this
work. We also thank Eric Gourgoulhon, Nelson Merino,
Hector O. Silva, Thomas Sotiriou, Helvi Witek and Nicolas
Yunes for discussions. F.L.J. and E. B. are supported by
National Science Foundation (NSF) Grants No. PHY-
1912550 and AST-1841358, National Aeronautics and
Space Administration (NASA) Astrophysics Theory
Program (ATP) Grants No. 17-ATP17-0225 and 19-
ATP19-0051, and NSF-XSEDE Grant No. PHY-090003.
The authors would like to acknowledge networking support
by the GWverse European Cooperation in Science &
Technology (COST) Action CA16104, “Black holes,
gravitational waves and fundamental physics” and from
the Amaldi Research Center funded by the Ministero
dell'universita e della ricerca (MIUR) program
“Dipartimento di Eccellenza” (CUP: B81118001170001).

Note added—While completing this paper, we learned
about related work on the 3 + 1 split of the ESGB field
equations by Witek er al. [91].

124045-8



d + 1 FORMALISM IN EINSTEIN-SCALAR-GAUSS-BONNET ...

PHYS. REV. D 101, 124045 (2020)

[1] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep.
568, 1 (2015).

[2] E. Berti et al., Classical Quantum Gravity 32, 243001 (2015).

[3] K. Koyama, Rep. Prog. Phys. 79, 046902 (2016).

[4] N. Yunes and X. Siemens, Living Rev. Relativity 16,9 (2013).

[51 N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,
084002 (2016).

[6] J.R. Gair, M. Vallisneri, S.L. Larson, and J. G. Baker,
Living Rev. Relativity 16, 7 (2013).

[7] E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50, 46
(2018).

[8] E. Berti, K. Yagi, H. Yang, and N. Yunes, Gen. Relativ.
Gravit. 50, 49 (2018).

[9] E. Berti et al., arXiv:1903.02781.

[10] E. Barausse et al., arXiv:2001.09793.

[11] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E)
(2018).

[12] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 100, 104036 (2019).

[13] G. Darmois, Mém. Sci. Math. 25, 58 (1927), http://www
.numdam.org/item/MSM_1927__25__1_0/.

[14] Y. Foures-Bruhat, Acta Math. 88, 141 (1952).

[15] Y. Foures-Bruhat, J. Rational Mech. 5, 951 (1956), https://
www.jstor.org/stable/24900195 7seq=1.

[16] M. Salgado, D. Martinez-del Rio, M. Alcubierre, and D.
Nunez, Phys. Rev. D 77, 104010 (2008).

[17] M. Shibata, K. Taniguchi, H. Okawa, and A. Buonanno,
Phys. Rev. D 89, 084005 (2014).

[18] P.Jai-akson, A. Chatrabhuti, O. Evnin, and L. Lehner, Phys.
Rev. D 96, 044031 (2017).

[19] E.W. Hirschmann, L. Lehner, S.L. Liebling, and C.
Palenzuela, Phys. Rev. D 97, 064032 (2018).

[20] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D.
Shoemaker, and N. Yunes, Classical Quantum Gravity
29, 232002 (2012).

[21] M. W. Horbatsch and C. P. Burgess, J. Cosmol. Astropart.
Phys. 05 (2012) 010.

[22] E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, and U.
Sperhake, Phys. Rev. D 87, 124020 (2013).

[23] F.-L. Julié, J. Cosmol. Astropart. Phys. 01 (2018) 026.

[24] T.P. Sotiriou and E. Barausse, Phys. Rev. D 75, 084007
(2007).

[25] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 123, 011102 (2019).

[26] N. Franchini and T. P. Sotiriou, Phys. Rev. D 101, 064068
(2020).

[27] J. Noller, L. Santoni, E. Trincherini, and L. G. Trombetta,
Phys. Rev. D 101, 084049 (2020).

[28] D.J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987).

[29] S. Mignemi and N.R. Stewart, Phys. Rev. D 47, 5259
(1993).

[30] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Phys. Rev. D 54, 5049 (1996).

[31] G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett.
120, 131102 (2018).

[32] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E.
Berti, Phys. Rev. Lett. 120, 131104 (2018).

[33] D.D. Doneva and S.S. Yazadjiev, Phys. Rev. Lett. 120,
131103 (2018).

[34] P. V.P. Cunha, C. A. R. Herdeiro, and E. Radu, Phys. Rev.
Lett. 123, 011101 (2019).

[35] L. G. Collodel, B. Kleihaus, J. Kunz, and E. Berti, Classical
Quantum Gravity 37, 075018 (2020).

[36] J. L. Blazquez-Salcedo, D.D. Doneva, J. Kunz, and S.S.
Yazadjiev, Phys. Rev. D 98, 084011 (2018).

[37] H. O. Silva, C. E. B. Macedo, T.P. Sotiriou, L. Gualtieri, J.
Sakstein, and E. Berti, Phys. Rev. D 99, 064011 (2019).

[38] C.F.B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O.
Silva, and T.P. Sotiriou, Phys. Rev. D 99, 104041
(2019).

[39] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D
85, 064022 (2012); 93, 029902(E) (2016).

[40] K. Yagi, L. C. Stein, and N. Yunes, Phys. Rev. D 93, 024010
(2016).

[41] H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, Phys. Rev.
D 99, 064035 (2019).

[42] M. Okounkova, Phys. Rev. D 100, 124054 (2019).

[43] M. Okounkova, L. C. Stein, J. Moxon, M. A. Scheel, and
S. A. Teukolsky, Phys. Rev. D 101, 104016 (2020).

[44] M. Okounkova, arXiv:2001.03571.

[45] F.-L. Julié and E. Berti, Phys. Rev. D 100, 104061 (2019).

[46] J. Cayuso, N. Ortiz, and L. Lehner, Phys. Rev. D 96, 084043
(2017).

[47] G. Allwright and L. Lehner, Classical Quantum Gravity 36,
084001 (2019).

[48] L. Bernard, L. Lehner, and R. Luna, Phys. Rev. D 100,
024011 (2019).

[49] J.L. Ripley and F. Pretorius, Phys. Rev. D 99, 084014
(2019).

[50] J. Ripley and F. Pretorius, Classical Quantum Gravity 36,
134001 (2019).

[51] J.L. Ripley and F. Pretorius, Phys. Rev. D 101, 044015
(2020).

[52] G. Papallo and H. S. Reall, Phys. Rev. D 96, 044019 (2017).

[53] A.D. Kovacs and H. S. Reall, arXiv:2003.04327.

[54] A.D. Kovacs and H. S. Reall, arXiv:2003.08398.

[55] R. L. Amowitt, S. Deser, and C. W. Misner, Phys. Rev. 116,
1322 (1959).

[56] R.L. Arnowitt, S. Deser, and C. W. Misner, Gen. Relativ.
Gravit. 40, 1997 (2008).

[57] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752
(1977).

[58] J. W. York, Jr., Phys. Rev. Lett. 28, 1082 (1972).

[59] R. C. Myers, Phys. Rev. D 36, 392 (1987).

[60] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).

[61] E. Gourgoulhon, 3+1 Formalism in General Relativity:
Bases of Numerical Relativity, Lecture Notes in Physics
(Springer, Berlin, 2012).

[62] N. Deruelle and J.-P. Uzan, Relativity in Modern Physics,
Oxford Graduate Texts (Oxford University Press, Oxford,
2018).

[63] S.C. Davis, Phys. Rev. D 67, 024030 (2003).

[64] N. Deruelle, N. Merino, and R. Olea, Phys. Rev. D 98,
044031 (2018).

[65] N. Deruelle, P. Guilleminot, F.-L. Julié, N. Merino, and R.
Olea (to be published).

[66] E. Poisson, A Relativist’s Toolkit: The Mathematics
of Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2009).

124045-9



FELIX-LOUIS JULIE and EMANUELE BERTI

PHYS. REV. D 101, 124045 (2020)

[67] L. D. Landau and E. M. Lifshitz, Mechanics, Third Edition:
Volume 1 (Course of Theoretical Physics), 3rd ed. (Butter-
worth-Heinemann, 1976), https://books.google.fr/books/
about/Mechanics.html?id=bE-9tUH2J2wC&redir_esc=y,
ISBN 0080503470, 9780080503479.

[68] Y. Foures-Bruhat, Acta Mat. 88, 141 (1952).

[69] C. Teitelboim and J. Zanelli, Classical Quantum Gravity 4,
L125 (1987).

[70] P.Ruffini and Bologna, Stamp. S. Tom. d’Aq. 4, 207 (1799),
http://mathematica.sns.it/opere/7/.

[71] N. H. Abel, Imp. Groendahl, Christiania (1824).

[72] E. Galois, J. Math Pures Appl. 417 (1846), http://www
.bibnum.education.fr/sites/default/files/galois_memoire_sur_
la_resolubiblite.pdf.

[73] M. Henneaux, C. Teitelboim, and J. Zanelli, Phys. Rev. A
36, 4417 (1987).

[74] A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 200402
(2012).

[75] L. Zhao, P. Yu, and W. Xu, Mod. Phys. Lett. A 28, 1350002
(2013).

[76] E. Avraham and R. Brustein, Phys. Rev. D 90, 024003
(2014).

[77] S. Ruz, R. Mandal, S. Debnath, and A.K. Sanyal, Gen.
Relativ. Gravit. 48, 86 (2016).

[78] Y. Choquet-Bruhat, C. R. Acad. Sci. I 306, 445 (1988).

[79] Y. Choquet-Bruhat, J. Math. Phys. (N.Y.) 29, 1891 (1988).

[80] Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis,
Manifolds and Physics, Part 1: Basics (North Holland,
Amsterdam, 1982).

[81] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[82] G. W. Gibbons and P.J. Ruback, Phys. Lett. B 171, 390
(1986).

[83] A. Tomimatsu and H. Ishihara, Prog. Theor. Phys. 77, 1014
(1987).

[84] N. Deruelle and L. Farina-Busto, Phys. Rev. D 41, 3696
(1990).

[85] N. Deruelle and J. Madore, arXiv:gr-qc/0305004.

[86] T. Torii and H.-a. Shinkai, Phys. Rev. D 78, 084037 (2008).

[87] F.-L. Julié and N. Deruelle, Phys. Rev. D 95, 124054 (2017).

[88] F.-L. Julié, Phys. Rev. D 97, 024047 (2018).

[89] F.-L. Julié, J. Cosmol. Astropart. Phys. 10 (2018) 033.

[90] R.P. Woodard, Rep. Prog. Phys. 72, 126002 (2009).

[91] H. Witek, L. Gualtieri, and P. Pani, arXiv:2004.00009.

124045-10



